Data Clustering Method Using a Modified Gaussian Kernel Metric and Kernel PCA

Most hyper‐ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot be realized since the cost function of partitional clustering is a constant. We demonstrate that HEC with a modified Gaussian kernel metric...

Full description

Saved in:
Bibliographic Details
Published inETRI journal Vol. 36; no. 3; pp. 333 - 342
Main Authors Lee, Hansung, Yoo, Jang‐Hee, Park, Daihee
Format Journal Article
LanguageEnglish
Published Electronics and Telecommunications Research Institute (ETRI) 01.06.2014
한국전자통신연구원
Subjects
Online AccessGet full text
ISSN1225-6463
2233-7326
2233-7326
DOI10.4218/etrij.14.0113.0553

Cover

Abstract Most hyper‐ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot be realized since the cost function of partitional clustering is a constant. We demonstrate that HEC with a modified Gaussian kernel metric can be interpreted as a problem of finding condensed ellipsoidal clusters (with respect to the volumes and densities of the clusters) and propose a practical HEC algorithm that is able to efficiently handle clusters that are ellipsoidal in shape and that are of different size and density. We then try to refine the HEC algorithm by utilizing ellipsoids defined on the kernel feature space to deal with more complex‐shaped clusters. The proposed methods lead to a significant improvement in the clustering results over K‐means algorithm, fuzzy C‐means algorithm, GMM‐EM algorithm, and HEC algorithm based on minimum‐volume ellipsoids using Mahalanobis distance.
AbstractList Most hyper‐ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot be realized since the cost function of partitional clustering is a constant. We demonstrate that HEC with a modified Gaussian kernel metric can be interpreted as a problem of finding condensed ellipsoidal clusters (with respect to the volumes and densities of the clusters) and propose a practical HEC algorithm that is able to efficiently handle clusters that are ellipsoidal in shape and that are of different size and density. We then try to refine the HEC algorithm by utilizing ellipsoids defined on the kernel feature space to deal with more complex‐shaped clusters. The proposed methods lead to a significant improvement in the clustering results over K‐means algorithm, fuzzy C‐means algorithm, GMM‐EM algorithm, and HEC algorithm based on minimum‐volume ellipsoids using Mahalanobis distance.
Most hyper-ellipsoidal clustering (HEC) approaches usethe Mahalanobis distance as a distance metric. It has beenproven that HEC, under this condition, cannot be realizedsince the cost function of partitional clustering is aconstant. We demonstrate that HEC with a modifiedGaussian kernel metric can be interpreted as a problem offinding condensed ellipsoidal clusters (with respect to thevolumes and densities of the clusters) and propose apractical HEC algorithm that is able to efficiently handleclusters that are ellipsoidal in shape and that are ofdifferent size and density. We then try to refine the HECalgorithm by utilizing ellipsoids defined on the kernelfeature space to deal with more complex-shaped clusters. The proposed methods lead to a significant improvementin the clustering results over K-means algorithm, fuzzy Cmeansalgorithm, GMM-EM algorithm, and HECalgorithm based on minimum-volume ellipsoids usingMahalanobis distance. KCI Citation Count: 3
Author Lee, Hansung
Park, Daihee
Yoo, Jang‐Hee
Author_xml – sequence: 1
  givenname: Hansung
  surname: Lee
  fullname: Lee, Hansung
  email: mohan@etri.re.kr
– sequence: 2
  givenname: Jang‐Hee
  surname: Yoo
  fullname: Yoo, Jang‐Hee
  email: jhy@etri.re.kr
– sequence: 3
  givenname: Daihee
  surname: Park
  fullname: Park, Daihee
  email: dhpark@korea.ac.kr
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001877212$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqNkE1PAjEQhhuDiYD-AU979LLYr_06khWRCNEQODez3RYLa5e0Swj_3l3QiyeSJpNO3mdm8gxQz9ZWIfRI8IhTkj6rxpntiPARJoSNcBSxG9SnlLEwYTTuoT6hNApjHrM7NPB-izHFPEr7aPECDQR5dfCNcsZugoVqvuoyWPvuA8GiLo02qgymcPDegA3elbOq6nLOyABs-df5zMf36FZD5dXDbx2i9etklb-F84_pLB_PQ8mS9iadFrzEhaaaAAHKZRFFCe96jOksViBxGtOiZAlJgROZMRLFqdSQdC_N2BA9XeZap8VOGlGDOddNLXZOjJermchIS_M2yi7Rg93D6QhVJfbOfIM7CYJFJ0-c5QnCRSdPdPJail4o6WrvndLXQek_SJoGGlPbxoGprkKPplKnK5aJyWpJW12M_QAY1pjF
CitedBy_id crossref_primary_10_4218_etrij_15_0114_0112
crossref_primary_10_1109_TBME_2017_2712161
crossref_primary_10_4218_etrij_15_2314_0070
crossref_primary_10_1186_s40488_020_00111_y
Cites_doi 10.1109/72.478389
10.1007/s10957-005-2653-6
10.1016/j.patcog.2011.03.007
10.1109/72.641479
10.1142/S021800140300240X
10.1016/j.dam.2007.02.013
10.1109/ICIPS.1997.672853
10.1017/CBO9780511809682
10.4218/etrij.13.0112.0520
10.1007/978-1-84800-155-8_7
10.1007/BFb0020217
10.1017/CBO9780511804441
10.1016/j.patrec.2009.09.011
10.1109/FUZZY.1996.552379
10.1007/s10589-007-9024-1
10.1016/j.cor.2006.07.001
10.1109/TKDE.2005.198
ContentType Journal Article
Copyright 2014 ETRI
Copyright_xml – notice: 2014 ETRI
DBID AAYXX
CITATION
ADTOC
UNPAY
ACYCR
DOI 10.4218/etrij.14.0113.0553
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2233-7326
EndPage 342
ExternalDocumentID oai_kci_go_kr_ARTI_917184
10.4218/etrij.14.0113.0553
10_4218_etrij_14_0113_0553
ETR20333
Genre article
GrantInformation_xml – fundername: Development of Basic Technology of Human Identification and Retrieval at a Distance for Active Video Surveillance Service with Real‐time Awareness of Safety Threats
  funderid: 10039149
– fundername: IT R&D program of MOTIE/KEIT, Korea
GroupedDBID -~X
.4S
.DC
0R~
29G
2WC
5GY
5VS
9ZL
AAKPC
AAMMB
ACGFS
ACXQS
ACYCR
ADBBV
ADDVE
ADMLS
AEFGJ
AENEX
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVUZU
BCNDV
DU5
E3Z
EBS
EDO
EJD
GROUPED_DOAJ
IPNFZ
ITG
ITH
JDI
KQ8
KVFHK
MK~
ML~
O9-
OK1
OVT
RIG
RNS
TR2
TUS
WIN
XSB
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c3733-f8b4d0bf2f1a1a24cb5574b4d033f96eac0862bd3718a41c931568cfa7fa7f893
IEDL.DBID UNPAY
ISSN 1225-6463
2233-7326
IngestDate Sat Oct 25 08:03:02 EDT 2025
Tue Aug 19 20:16:19 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
Wed Oct 01 02:46:28 EDT 2025
Tue Sep 09 05:06:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3733-f8b4d0bf2f1a1a24cb5574b4d033f96eac0862bd3718a41c931568cfa7fa7f893
Notes This work was supported by the IT R&D program of MOTIE/KEIT, Korea (10039149, Development of Basic Technology of Human Identification and Retrieval at a Distance for Active Video Surveillance Service with Real‐time Awareness of Safety Threats).
G704-001110.2014.36.3.022
http://etrij.etri.re.kr/etrij/journal/article/article.do?volume=36&issue=3&page=333
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.4218/etrij.14.0113.0553
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_917184
unpaywall_primary_10_4218_etrij_14_0113_0553
crossref_primary_10_4218_etrij_14_0113_0553
crossref_citationtrail_10_4218_etrij_14_0113_0553
wiley_primary_10_4218_etrij_14_0113_0553_ETR20333
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationTitle ETRI journal
PublicationYear 2014
Publisher Electronics and Telecommunications Research Institute (ETRI)
한국전자통신연구원
Publisher_xml – name: Electronics and Telecommunications Research Institute (ETRI)
– name: 한국전자통신연구원
References 2010; 31
2002; 2388
2013; 35
2002; 12
2007; 155
2005; 126
1998
1997
2007
2011; 44
2008; 35
2005
2004
2013
1996; 2
2005; 17
2008; 371
2007; 37
1997; 1327
1996; 7
1997; 8
Key-10.4218/etrij.14.0113.0553-9
Key-10.4218/etrij.14.0113.0553-11
Key-10.4218/etrij.14.0113.0553-10
Key-10.4218/etrij.14.0113.0553-7
Key-10.4218/etrij.14.0113.0553-8
Key-10.4218/etrij.14.0113.0553-15
Key-10.4218/etrij.14.0113.0553-14
Key-10.4218/etrij.14.0113.0553-13
Key-10.4218/etrij.14.0113.0553-12
Key-10.4218/etrij.14.0113.0553-17
Key-10.4218/etrij.14.0113.0553-16
Key-10.4218/etrij.14.0113.0553-5
Key-10.4218/etrij.14.0113.0553-6
Key-10.4218/etrij.14.0113.0553-3
Key-10.4218/etrij.14.0113.0553-4
Key-10.4218/etrij.14.0113.0553-1
Key-10.4218/etrij.14.0113.0553-2
References_xml – volume: 37
  start-page: 247
  issue: 3
  year: 2007
  end-page: 295
  article-title: Clustering via Minimum Volume Ellipsoids
  publication-title: Comput. Optim. Appl.
– volume: 1327
  start-page: 583
  year: 1997
  end-page: 588
  article-title: Kernel Principal Component Analysis
– start-page: 148
  year: 1998
  end-page: 152
  article-title: Fuzzy C‐Means Clustering Algorithm with Pseudo Mahalanobis Distances
– volume: 44
  start-page: 2197
  issue: 9
  year: 2011
  end-page: 2209
  article-title: An Efficient Hyperellipsoidal Clustering Algorithm for Resource‐Constrained Environments
  publication-title: Pattern Recogn.
– volume: 371
  start-page: 95
  year: 2008
  end-page: 110
  article-title: Graph Implementations for Nonsmooth Convex Programs
  publication-title: Recent Advances Learning Contr. LNCIS
– volume: 126
  start-page: 1
  issue: 1
  year: 2005
  end-page: 21
  article-title: Minimum Volume Enclosing Ellipsoids and Core Set
  publication-title: J. Optim. Theory Appl.
– year: 2005
– year: 2007
– year: 2004
– volume: 35
  start-page: 311
  issue: 2
  year: 2013
  end-page: 320
  article-title: A Max‐Flow‐Based Similarity Measure for Spectral Clustering
  publication-title: ETRI J.
– volume: 35
  start-page: 1017
  issue: 4
  year: 2008
  end-page: 1029
  article-title: Scale‐Invariant Clustering with Minimum Volume Ellipsoids
  publication-title: Comput. Operations. Res.
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  end-page: 666
  article-title: Data Clustering: 50 Years Beyond K‐means
  publication-title: Pattern Recognition Lett.
– volume: 8
  start-page: 1561
  issue: 6
  year: 1997
  end-page: 1563
  article-title: Comments on a Self‐Organizing Network for Hyper‐ellipsoidal Clustering (HEC)
  publication-title: IEEE Trans. Neural Netw.
– volume: 7
  start-page: 16
  issue: 1
  year: 1996
  end-page: 29
  article-title: A Self‐Organizing Network for Hyperellipsoidal Clustering (HEC)
  publication-title: IEEE Trans. Neural Netw.
– volume: 2
  start-page: 1387
  year: 1996
  end-page: 1392
  article-title: A Clustering Algorithm Based on Minimum Volume
– volume: 12
  start-page: 300
  issue: 4
  year: 2002
  end-page: 305
  article-title: Hyper‐ellipsoidal Clustering Algorithm Using Linear Matrix Inequality
  publication-title: J. Korea Institute Intell. Syst.
– volume: 2388
  start-page: 40
  year: 2002
  end-page: 52
  article-title: Kernel Whitening for One‐Class Classification
– volume: 155
  start-page: 1731
  issue: 13
  year: 2007
  end-page: 1744
  article-title: On Khachiyan's Algorithm for the Computation of Minimum‐Volume Enclosing Ellipsoids
  publication-title: Discr. Appl. Math.
– start-page: 592
  year: 1997
  end-page: 596
  article-title: The Hyperellipsoidal Clustering Using Genetic Algorithm
– year: 2013
– volume: 17
  start-page: 1624
  issue: 12
  year: 2005
  end-page: 1637
  article-title: Document Clustering Using Locality Preserving Indexing
  publication-title: IEEE Trans. KDE
– ident: Key-10.4218/etrij.14.0113.0553-2
  doi: 10.1109/72.478389
– ident: Key-10.4218/etrij.14.0113.0553-11
  doi: 10.1007/s10957-005-2653-6
– ident: Key-10.4218/etrij.14.0113.0553-4
  doi: 10.1016/j.patcog.2011.03.007
– ident: Key-10.4218/etrij.14.0113.0553-5
  doi: 10.1109/72.641479
– ident: Key-10.4218/etrij.14.0113.0553-15
  doi: 10.1142/S021800140300240X
– ident: Key-10.4218/etrij.14.0113.0553-10
  doi: 10.1016/j.dam.2007.02.013
– ident: Key-10.4218/etrij.14.0113.0553-3
  doi: 10.1109/ICIPS.1997.672853
– ident: Key-10.4218/etrij.14.0113.0553-13
  doi: 10.1017/CBO9780511809682
– ident: Key-10.4218/etrij.14.0113.0553-12
  doi: 10.4218/etrij.13.0112.0520
– ident: Key-10.4218/etrij.14.0113.0553-16
  doi: 10.1007/978-1-84800-155-8_7
– ident: Key-10.4218/etrij.14.0113.0553-14
  doi: 10.1007/BFb0020217
– ident: Key-10.4218/etrij.14.0113.0553-9
  doi: 10.1017/CBO9780511804441
– ident: Key-10.4218/etrij.14.0113.0553-1
  doi: 10.1016/j.patrec.2009.09.011
– ident: Key-10.4218/etrij.14.0113.0553-6
  doi: 10.1109/FUZZY.1996.552379
– ident: Key-10.4218/etrij.14.0113.0553-8
  doi: 10.1007/s10589-007-9024-1
– ident: Key-10.4218/etrij.14.0113.0553-7
  doi: 10.1016/j.cor.2006.07.001
– ident: Key-10.4218/etrij.14.0113.0553-17
  doi: 10.1109/TKDE.2005.198
SSID ssj0020458
Score 1.9966323
Snippet Most hyper‐ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot...
Most hyper-ellipsoidal clustering (HEC) approaches usethe Mahalanobis distance as a distance metric. It has beenproven that HEC, under this condition, cannot...
SourceID nrf
unpaywall
crossref
wiley
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 333
SubjectTerms Data clustering
Gaussian kernel
hyper‐ellipsoidal clustering
kernel PCA
minimum‐volume ellipsoids
전자/정보통신공학
Title Data Clustering Method Using a Modified Gaussian Kernel Metric and Kernel PCA
URI https://onlinelibrary.wiley.com/doi/abs/10.4218%2Fetrij.14.0113.0553
https://onlinelibrary.wiley.com/doi/pdfdirect/10.4218/etrij.14.0113.0553
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001877212
UnpaywallVersion publishedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ETRI Journal, 2014, 36(3), , pp.333-342
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2233-7326
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020458
  issn: 2233-7326
  databaseCode: KQ8
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2233-7326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020458
  issn: 2233-7326
  databaseCode: ADMLS
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2233-7326
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020458
  issn: 2233-7326
  databaseCode: AVUZU
  dateStart: 19930401
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED_y8bD2oR9rS9N1RYO-dc5sS7bsx5B-ZBsppdSj3YuQ_FFCghPSmNL-9buzk9AOWjIYGBuELFkn3d3vZ6Q7gGPhuDJMQttC1xtYIky0pQPDrcSTPAxCqd0y3Vv_0u9F4setd1uD3uIsTBUfYvnDjTSjtNek4JMkq-w8qbpA3_SNkk6RsrdxlfK27Xm8Dk3fQ1TegGZ0edW5I76FS9byRZlUDXvmlkTIUp2feaORVz6qnk_x_qHIJ_rpUY9Gr1Fs6YbON2GwGEC1-2TYLmamHT__Fdvxf4xwCzbmWJV1qsW1DbU0_wjrLyIY7kD_VM80644KireAJaxfZqRm5U4Epll_nAwyRLnsQhcPdF6T_Uyn-F1UDy0w03myKLnqdnYhOj-76faseYYGK-YSJZkFRiS2ydzM0Y52RWw8Twoq4zwLfTTqxJhMwtEDauHEIUe6GMSZlnQhVNqDRj7O031gjm8QbAkpU50KNAtahEKaDBv0Um643QJnMScqnocvpywaI4U0hkSlSlEhlVEkKkWiasHJ8p1JFbzj3dpfcKrVMB4oirlNz_uxGk4VMovvCmktkuEWfF0uhJWadMoJXqGqOru5dlFs_ODfuvgEa4jhRLV77RAas2mRfkacNDNH0Oz8in5HR3NV-ANMQgtq
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90PqgP4ifOzwi-aXVt0qZ9HHM63Soim4gvIemHDEcndUP8771rt6EIIkJpIST3cJfL_X5pcgdwLGxHBnFQszD0-pYIYm1p33ArdiUP_EBqpyj3Ft56rZ64eXQf56A5vQtT5oeYbbiRZxTrNTk4bUiTlwsMS2TFUd4nTz_DKcrPaq7L52HBpfhUgYX6Q--pN2Ne9DeQmBdOXssTHi9vz5Cc859SvkWo-SzH9-I4e9Uf73ow-I5hiyB0uQorE_TI6qW512AuydZh-UtOwQ0IL_RIs8ZgTBkQsIWFRY1oVpwNYJqFw7ifIu5kV3r8RjcoWTvJURfUD9dEprN42nLXqG9C77LZbbSsSc0EK-KScyv1jYhrJnVSW9vaEZFxXSmojfM08HCZJQ5jYo4xSQs7CjgSOD9KtaQHwcsWVLJhlmwDsz2D8EdImehEoKNqEQhpUhToJtzwWhXsqZ5UNEkoTnUtBgqJBelWFbpFcqFIt4p0W4WT2ZjXMp3Gr72PUP3qJeoryoJN3-eheskVYv1rhUQT6WkVTmfG-ZNIu7DfH7qqZvfeQbXxnX-MOYTFVjfsqM71bXsXlhBmifKA2R5URvk42UcoMzIHk4n6CZR66BQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oBC8P4hXnNYJvWm2btGkfx9y8TkSciC8h6UXGRjfqhvjvPafdhiKICKWFkObhOzk539cm5wAcCceVYRzaFobewBJhrC0dGG7FnuRhEErtFuXeWnf-ZVtcP3vPM9CYnIUp80NMP7iRZxTrNTl4MohT8nKBYYmsOMw75OmnOEX5qe15fBbmMKDbogJztaf2S3uqvOhvICkvnLyWL3xenp6hcc5-jvItQs1mOd4XRtlAf7zrXu87hy2CUHMFlsfskdVKc6_CTJKtwdKXnILr0DrXQ83qvRFlQMAW1ipqRLNibwDTrNWPOynyTnahR290gpLdJDliQf1wTWQ6iyct9_XaBrSbjcf6pTWumWBFXHJupYERsW1SN3W0o10RGc-Tgto4T0Mfl1nSMCbmGJO0cKKQo4ALolRLupC8bEIl62fJFjDHN0h_hJSJTgQ6qhahkCbFAb2EG25XwZngpKJxQnGqa9FTKCwIW1Vgi-JCEbaKsK3C8fSdQZlO49fehwi_6kYdRVmw6fnaV91cIde_Uig0UZ5W4WRqnD8N6RT2-0NX1Xh8cBE2vv2Pdw5g_v68qW6v7m52YBFZlij3l-1CZZiPkj1kMkOzP56nn2ti56M
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90PqgPfovziwi-aefapE37OKZzKpMhDvQpJP2QsdGNuSL613vXbkMFRUEoLYQ0aS65u9-vJHcAx8J2ZBAFVQtdr2-JINKW9g23IlfywA-kdvJ0b61br9kR1w_uwxw0p2dhivgQsx9upBm5vSYFH0ZJYedJ1QX6pjNKOkXKXsFVyitV1-XzsOC5iMpLsNC5bdceiW_hkrU8kSdVw565JRGyFOdnvmnkk4-aT0d4X8zSoX590f3-ZxSbu6HGKnSnAyh2n_Qq2dhUwrcvsR3_Y4RrsDLBqqxWLK51mIvTDVj-EMFwE1rneqxZvZ9RvAUsYa08IzXLdyIwzVqDqJsgymWXOnum85rsJh7hd1E9tMBMp9G0pF2vbUGncXFfb1qTDA1WyCVKMvGNiKomcRJb29oRoXFdKaiM8yTw0KgTYzIRRw-ohR0GHOmiHyZa0oVQaRtK6SCNd4DZnkGwJaSMdSzQLGgRCGkSbNCNueHVMtjTOVHhJHw5ZdHoK6QxJCqViwqpjCJRKRJVGU5m7wyL4B0_1j7CqVa9sKso5jY9nwaqN1LILK4U0lokw2U4nS2EXzVp5xP8i6rq4v7OQbHx3b91sQdLiOFEsXttH0rjURYfIE4am8OJCrwD-LAJrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Clustering+Method+Using+a+Modified+Gaussian+Kernel+Metric+and+Kernel+PCA&rft.jtitle=ETRI+journal&rft.au=Lee%2C+Hansung&rft.au=Yoo%2C+Jang-Hee&rft.au=Park%2C+Daihee&rft.date=2014-06-01&rft.issn=1225-6463&rft.volume=36&rft.issue=3&rft.spage=333&rft.epage=342&rft_id=info:doi/10.4218%2Fetrij.14.0113.0553&rft.externalDBID=n%2Fa&rft.externalDocID=10_4218_etrij_14_0113_0553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-6463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-6463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-6463&client=summon