Data Clustering Method Using a Modified Gaussian Kernel Metric and Kernel PCA
Most hyper‐ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot be realized since the cost function of partitional clustering is a constant. We demonstrate that HEC with a modified Gaussian kernel metric...
        Saved in:
      
    
          | Published in | ETRI journal Vol. 36; no. 3; pp. 333 - 342 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Electronics and Telecommunications Research Institute (ETRI)
    
        01.06.2014
     한국전자통신연구원  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1225-6463 2233-7326 2233-7326  | 
| DOI | 10.4218/etrij.14.0113.0553 | 
Cover
| Abstract | Most hyper‐ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot be realized since the cost function of partitional clustering is a constant. We demonstrate that HEC with a modified Gaussian kernel metric can be interpreted as a problem of finding condensed ellipsoidal clusters (with respect to the volumes and densities of the clusters) and propose a practical HEC algorithm that is able to efficiently handle clusters that are ellipsoidal in shape and that are of different size and density. We then try to refine the HEC algorithm by utilizing ellipsoids defined on the kernel feature space to deal with more complex‐shaped clusters. The proposed methods lead to a significant improvement in the clustering results over K‐means algorithm, fuzzy C‐means algorithm, GMM‐EM algorithm, and HEC algorithm based on minimum‐volume ellipsoids using Mahalanobis distance. | 
    
|---|---|
| AbstractList | Most hyper‐ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot be realized since the cost function of partitional clustering is a constant. We demonstrate that HEC with a modified Gaussian kernel metric can be interpreted as a problem of finding condensed ellipsoidal clusters (with respect to the volumes and densities of the clusters) and propose a practical HEC algorithm that is able to efficiently handle clusters that are ellipsoidal in shape and that are of different size and density. We then try to refine the HEC algorithm by utilizing ellipsoids defined on the kernel feature space to deal with more complex‐shaped clusters. The proposed methods lead to a significant improvement in the clustering results over K‐means algorithm, fuzzy C‐means algorithm, GMM‐EM algorithm, and HEC algorithm based on minimum‐volume ellipsoids using Mahalanobis distance. Most hyper-ellipsoidal clustering (HEC) approaches usethe Mahalanobis distance as a distance metric. It has beenproven that HEC, under this condition, cannot be realizedsince the cost function of partitional clustering is aconstant. We demonstrate that HEC with a modifiedGaussian kernel metric can be interpreted as a problem offinding condensed ellipsoidal clusters (with respect to thevolumes and densities of the clusters) and propose apractical HEC algorithm that is able to efficiently handleclusters that are ellipsoidal in shape and that are ofdifferent size and density. We then try to refine the HECalgorithm by utilizing ellipsoids defined on the kernelfeature space to deal with more complex-shaped clusters. The proposed methods lead to a significant improvementin the clustering results over K-means algorithm, fuzzy Cmeansalgorithm, GMM-EM algorithm, and HECalgorithm based on minimum-volume ellipsoids usingMahalanobis distance. KCI Citation Count: 3  | 
    
| Author | Lee, Hansung Park, Daihee Yoo, Jang‐Hee  | 
    
| Author_xml | – sequence: 1 givenname: Hansung surname: Lee fullname: Lee, Hansung email: mohan@etri.re.kr – sequence: 2 givenname: Jang‐Hee surname: Yoo fullname: Yoo, Jang‐Hee email: jhy@etri.re.kr – sequence: 3 givenname: Daihee surname: Park fullname: Park, Daihee email: dhpark@korea.ac.kr  | 
    
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001877212$$DAccess content in National Research Foundation of Korea (NRF) | 
    
| BookMark | eNqNkE1PAjEQhhuDiYD-AU979LLYr_06khWRCNEQODez3RYLa5e0Swj_3l3QiyeSJpNO3mdm8gxQz9ZWIfRI8IhTkj6rxpntiPARJoSNcBSxG9SnlLEwYTTuoT6hNApjHrM7NPB-izHFPEr7aPECDQR5dfCNcsZugoVqvuoyWPvuA8GiLo02qgymcPDegA3elbOq6nLOyABs-df5zMf36FZD5dXDbx2i9etklb-F84_pLB_PQ8mS9iadFrzEhaaaAAHKZRFFCe96jOksViBxGtOiZAlJgROZMRLFqdSQdC_N2BA9XeZap8VOGlGDOddNLXZOjJermchIS_M2yi7Rg93D6QhVJfbOfIM7CYJFJ0-c5QnCRSdPdPJail4o6WrvndLXQek_SJoGGlPbxoGprkKPplKnK5aJyWpJW12M_QAY1pjF | 
    
| CitedBy_id | crossref_primary_10_4218_etrij_15_0114_0112 crossref_primary_10_1109_TBME_2017_2712161 crossref_primary_10_4218_etrij_15_2314_0070 crossref_primary_10_1186_s40488_020_00111_y  | 
    
| Cites_doi | 10.1109/72.478389 10.1007/s10957-005-2653-6 10.1016/j.patcog.2011.03.007 10.1109/72.641479 10.1142/S021800140300240X 10.1016/j.dam.2007.02.013 10.1109/ICIPS.1997.672853 10.1017/CBO9780511809682 10.4218/etrij.13.0112.0520 10.1007/978-1-84800-155-8_7 10.1007/BFb0020217 10.1017/CBO9780511804441 10.1016/j.patrec.2009.09.011 10.1109/FUZZY.1996.552379 10.1007/s10589-007-9024-1 10.1016/j.cor.2006.07.001 10.1109/TKDE.2005.198  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 ETRI | 
    
| Copyright_xml | – notice: 2014 ETRI | 
    
| DBID | AAYXX CITATION ADTOC UNPAY ACYCR  | 
    
| DOI | 10.4218/etrij.14.0113.0553 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall Korean Citation Index  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2233-7326 | 
    
| EndPage | 342 | 
    
| ExternalDocumentID | oai_kci_go_kr_ARTI_917184 10.4218/etrij.14.0113.0553 10_4218_etrij_14_0113_0553 ETR20333  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: Development of Basic Technology of Human Identification and Retrieval at a Distance for Active Video Surveillance Service with Real‐time Awareness of Safety Threats funderid: 10039149 – fundername: IT R&D program of MOTIE/KEIT, Korea  | 
    
| GroupedDBID | -~X .4S .DC 0R~ 29G 2WC 5GY 5VS 9ZL AAKPC AAMMB ACGFS ACXQS ACYCR ADBBV ADDVE ADMLS AEFGJ AENEX AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ARCSS AVUZU BCNDV DU5 E3Z EBS EDO EJD GROUPED_DOAJ IPNFZ ITG ITH JDI KQ8 KVFHK MK~ ML~ O9- OK1 OVT RIG RNS TR2 TUS WIN XSB AAYXX CITATION ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c3733-f8b4d0bf2f1a1a24cb5574b4d033f96eac0862bd3718a41c931568cfa7fa7f893 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1225-6463 2233-7326  | 
    
| IngestDate | Sat Oct 25 08:03:02 EDT 2025 Tue Aug 19 20:16:19 EDT 2025 Thu Apr 24 22:56:55 EDT 2025 Wed Oct 01 02:46:28 EDT 2025 Tue Sep 09 05:06:13 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3733-f8b4d0bf2f1a1a24cb5574b4d033f96eac0862bd3718a41c931568cfa7fa7f893 | 
    
| Notes | This work was supported by the IT R&D program of MOTIE/KEIT, Korea (10039149, Development of Basic Technology of Human Identification and Retrieval at a Distance for Active Video Surveillance Service with Real‐time Awareness of Safety Threats). G704-001110.2014.36.3.022 http://etrij.etri.re.kr/etrij/journal/article/article.do?volume=36&issue=3&page=333  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.4218/etrij.14.0113.0553 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_917184 unpaywall_primary_10_4218_etrij_14_0113_0553 crossref_primary_10_4218_etrij_14_0113_0553 crossref_citationtrail_10_4218_etrij_14_0113_0553 wiley_primary_10_4218_etrij_14_0113_0553_ETR20333  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | June 2014 | 
    
| PublicationDateYYYYMMDD | 2014-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2014 text: June 2014  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | ETRI journal | 
    
| PublicationYear | 2014 | 
    
| Publisher | Electronics and Telecommunications Research Institute (ETRI) 한국전자통신연구원  | 
    
| Publisher_xml | – name: Electronics and Telecommunications Research Institute (ETRI) – name: 한국전자통신연구원  | 
    
| References | 2010; 31 2002; 2388 2013; 35 2002; 12 2007; 155 2005; 126 1998 1997 2007 2011; 44 2008; 35 2005 2004 2013 1996; 2 2005; 17 2008; 371 2007; 37 1997; 1327 1996; 7 1997; 8 Key-10.4218/etrij.14.0113.0553-9 Key-10.4218/etrij.14.0113.0553-11 Key-10.4218/etrij.14.0113.0553-10 Key-10.4218/etrij.14.0113.0553-7 Key-10.4218/etrij.14.0113.0553-8 Key-10.4218/etrij.14.0113.0553-15 Key-10.4218/etrij.14.0113.0553-14 Key-10.4218/etrij.14.0113.0553-13 Key-10.4218/etrij.14.0113.0553-12 Key-10.4218/etrij.14.0113.0553-17 Key-10.4218/etrij.14.0113.0553-16 Key-10.4218/etrij.14.0113.0553-5 Key-10.4218/etrij.14.0113.0553-6 Key-10.4218/etrij.14.0113.0553-3 Key-10.4218/etrij.14.0113.0553-4 Key-10.4218/etrij.14.0113.0553-1 Key-10.4218/etrij.14.0113.0553-2  | 
    
| References_xml | – volume: 37 start-page: 247 issue: 3 year: 2007 end-page: 295 article-title: Clustering via Minimum Volume Ellipsoids publication-title: Comput. Optim. Appl. – volume: 1327 start-page: 583 year: 1997 end-page: 588 article-title: Kernel Principal Component Analysis – start-page: 148 year: 1998 end-page: 152 article-title: Fuzzy C‐Means Clustering Algorithm with Pseudo Mahalanobis Distances – volume: 44 start-page: 2197 issue: 9 year: 2011 end-page: 2209 article-title: An Efficient Hyperellipsoidal Clustering Algorithm for Resource‐Constrained Environments publication-title: Pattern Recogn. – volume: 371 start-page: 95 year: 2008 end-page: 110 article-title: Graph Implementations for Nonsmooth Convex Programs publication-title: Recent Advances Learning Contr. LNCIS – volume: 126 start-page: 1 issue: 1 year: 2005 end-page: 21 article-title: Minimum Volume Enclosing Ellipsoids and Core Set publication-title: J. Optim. Theory Appl. – year: 2005 – year: 2007 – year: 2004 – volume: 35 start-page: 311 issue: 2 year: 2013 end-page: 320 article-title: A Max‐Flow‐Based Similarity Measure for Spectral Clustering publication-title: ETRI J. – volume: 35 start-page: 1017 issue: 4 year: 2008 end-page: 1029 article-title: Scale‐Invariant Clustering with Minimum Volume Ellipsoids publication-title: Comput. Operations. Res. – volume: 31 start-page: 651 issue: 8 year: 2010 end-page: 666 article-title: Data Clustering: 50 Years Beyond K‐means publication-title: Pattern Recognition Lett. – volume: 8 start-page: 1561 issue: 6 year: 1997 end-page: 1563 article-title: Comments on a Self‐Organizing Network for Hyper‐ellipsoidal Clustering (HEC) publication-title: IEEE Trans. Neural Netw. – volume: 7 start-page: 16 issue: 1 year: 1996 end-page: 29 article-title: A Self‐Organizing Network for Hyperellipsoidal Clustering (HEC) publication-title: IEEE Trans. Neural Netw. – volume: 2 start-page: 1387 year: 1996 end-page: 1392 article-title: A Clustering Algorithm Based on Minimum Volume – volume: 12 start-page: 300 issue: 4 year: 2002 end-page: 305 article-title: Hyper‐ellipsoidal Clustering Algorithm Using Linear Matrix Inequality publication-title: J. Korea Institute Intell. Syst. – volume: 2388 start-page: 40 year: 2002 end-page: 52 article-title: Kernel Whitening for One‐Class Classification – volume: 155 start-page: 1731 issue: 13 year: 2007 end-page: 1744 article-title: On Khachiyan's Algorithm for the Computation of Minimum‐Volume Enclosing Ellipsoids publication-title: Discr. Appl. Math. – start-page: 592 year: 1997 end-page: 596 article-title: The Hyperellipsoidal Clustering Using Genetic Algorithm – year: 2013 – volume: 17 start-page: 1624 issue: 12 year: 2005 end-page: 1637 article-title: Document Clustering Using Locality Preserving Indexing publication-title: IEEE Trans. KDE – ident: Key-10.4218/etrij.14.0113.0553-2 doi: 10.1109/72.478389 – ident: Key-10.4218/etrij.14.0113.0553-11 doi: 10.1007/s10957-005-2653-6 – ident: Key-10.4218/etrij.14.0113.0553-4 doi: 10.1016/j.patcog.2011.03.007 – ident: Key-10.4218/etrij.14.0113.0553-5 doi: 10.1109/72.641479 – ident: Key-10.4218/etrij.14.0113.0553-15 doi: 10.1142/S021800140300240X – ident: Key-10.4218/etrij.14.0113.0553-10 doi: 10.1016/j.dam.2007.02.013 – ident: Key-10.4218/etrij.14.0113.0553-3 doi: 10.1109/ICIPS.1997.672853 – ident: Key-10.4218/etrij.14.0113.0553-13 doi: 10.1017/CBO9780511809682 – ident: Key-10.4218/etrij.14.0113.0553-12 doi: 10.4218/etrij.13.0112.0520 – ident: Key-10.4218/etrij.14.0113.0553-16 doi: 10.1007/978-1-84800-155-8_7 – ident: Key-10.4218/etrij.14.0113.0553-14 doi: 10.1007/BFb0020217 – ident: Key-10.4218/etrij.14.0113.0553-9 doi: 10.1017/CBO9780511804441 – ident: Key-10.4218/etrij.14.0113.0553-1 doi: 10.1016/j.patrec.2009.09.011 – ident: Key-10.4218/etrij.14.0113.0553-6 doi: 10.1109/FUZZY.1996.552379 – ident: Key-10.4218/etrij.14.0113.0553-8 doi: 10.1007/s10589-007-9024-1 – ident: Key-10.4218/etrij.14.0113.0553-7 doi: 10.1016/j.cor.2006.07.001 – ident: Key-10.4218/etrij.14.0113.0553-17 doi: 10.1109/TKDE.2005.198  | 
    
| SSID | ssj0020458 | 
    
| Score | 1.9966323 | 
    
| Snippet | Most hyper‐ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot... Most hyper-ellipsoidal clustering (HEC) approaches usethe Mahalanobis distance as a distance metric. It has beenproven that HEC, under this condition, cannot...  | 
    
| SourceID | nrf unpaywall crossref wiley  | 
    
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 333 | 
    
| SubjectTerms | Data clustering Gaussian kernel hyper‐ellipsoidal clustering kernel PCA minimum‐volume ellipsoids 전자/정보통신공학  | 
    
| Title | Data Clustering Method Using a Modified Gaussian Kernel Metric and Kernel PCA | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.4218%2Fetrij.14.0113.0553 https://onlinelibrary.wiley.com/doi/pdfdirect/10.4218/etrij.14.0113.0553 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001877212  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 36 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| ispartofPNX | ETRI Journal, 2014, 36(3), , pp.333-342 | 
    
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2233-7326 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020458 issn: 2233-7326 databaseCode: KQ8 dateStart: 19930101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2233-7326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020458 issn: 2233-7326 databaseCode: ADMLS dateStart: 20090601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2233-7326 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020458 issn: 2233-7326 databaseCode: AVUZU dateStart: 19930401 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED_y8bD2oR9rS9N1RYO-dc5sS7bsx5B-ZBsppdSj3YuQ_FFCghPSmNL-9buzk9AOWjIYGBuELFkn3d3vZ6Q7gGPhuDJMQttC1xtYIky0pQPDrcSTPAxCqd0y3Vv_0u9F4setd1uD3uIsTBUfYvnDjTSjtNek4JMkq-w8qbpA3_SNkk6RsrdxlfK27Xm8Dk3fQ1TegGZ0edW5I76FS9byRZlUDXvmlkTIUp2feaORVz6qnk_x_qHIJ_rpUY9Gr1Fs6YbON2GwGEC1-2TYLmamHT__Fdvxf4xwCzbmWJV1qsW1DbU0_wjrLyIY7kD_VM80644KireAJaxfZqRm5U4Epll_nAwyRLnsQhcPdF6T_Uyn-F1UDy0w03myKLnqdnYhOj-76faseYYGK-YSJZkFRiS2ydzM0Y52RWw8Twoq4zwLfTTqxJhMwtEDauHEIUe6GMSZlnQhVNqDRj7O031gjm8QbAkpU50KNAtahEKaDBv0Um643QJnMScqnocvpywaI4U0hkSlSlEhlVEkKkWiasHJ8p1JFbzj3dpfcKrVMB4oirlNz_uxGk4VMovvCmktkuEWfF0uhJWadMoJXqGqOru5dlFs_ODfuvgEa4jhRLV77RAas2mRfkacNDNH0Oz8in5HR3NV-ANMQgtq | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90PqgP4ifOzwi-aXVt0qZ9HHM63Soim4gvIemHDEcndUP8771rt6EIIkJpIST3cJfL_X5pcgdwLGxHBnFQszD0-pYIYm1p33ArdiUP_EBqpyj3Ft56rZ64eXQf56A5vQtT5oeYbbiRZxTrNTk4bUiTlwsMS2TFUd4nTz_DKcrPaq7L52HBpfhUgYX6Q--pN2Ne9DeQmBdOXssTHi9vz5Cc859SvkWo-SzH9-I4e9Uf73ow-I5hiyB0uQorE_TI6qW512AuydZh-UtOwQ0IL_RIs8ZgTBkQsIWFRY1oVpwNYJqFw7ifIu5kV3r8RjcoWTvJURfUD9dEprN42nLXqG9C77LZbbSsSc0EK-KScyv1jYhrJnVSW9vaEZFxXSmojfM08HCZJQ5jYo4xSQs7CjgSOD9KtaQHwcsWVLJhlmwDsz2D8EdImehEoKNqEQhpUhToJtzwWhXsqZ5UNEkoTnUtBgqJBelWFbpFcqFIt4p0W4WT2ZjXMp3Gr72PUP3qJeoryoJN3-eheskVYv1rhUQT6WkVTmfG-ZNIu7DfH7qqZvfeQbXxnX-MOYTFVjfsqM71bXsXlhBmifKA2R5URvk42UcoMzIHk4n6CZR66BQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oBC8P4hXnNYJvWm2btGkfx9y8TkSciC8h6UXGRjfqhvjvPafdhiKICKWFkObhOzk539cm5wAcCceVYRzaFobewBJhrC0dGG7FnuRhEErtFuXeWnf-ZVtcP3vPM9CYnIUp80NMP7iRZxTrNTl4MohT8nKBYYmsOMw75OmnOEX5qe15fBbmMKDbogJztaf2S3uqvOhvICkvnLyWL3xenp6hcc5-jvItQs1mOd4XRtlAf7zrXu87hy2CUHMFlsfskdVKc6_CTJKtwdKXnILr0DrXQ83qvRFlQMAW1ipqRLNibwDTrNWPOynyTnahR290gpLdJDliQf1wTWQ6iyct9_XaBrSbjcf6pTWumWBFXHJupYERsW1SN3W0o10RGc-Tgto4T0Mfl1nSMCbmGJO0cKKQo4ALolRLupC8bEIl62fJFjDHN0h_hJSJTgQ6qhahkCbFAb2EG25XwZngpKJxQnGqa9FTKCwIW1Vgi-JCEbaKsK3C8fSdQZlO49fehwi_6kYdRVmw6fnaV91cIde_Uig0UZ5W4WRqnD8N6RT2-0NX1Xh8cBE2vv2Pdw5g_v68qW6v7m52YBFZlij3l-1CZZiPkj1kMkOzP56nn2ti56M | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90PqgPfovziwi-aefapE37OKZzKpMhDvQpJP2QsdGNuSL613vXbkMFRUEoLYQ0aS65u9-vJHcAx8J2ZBAFVQtdr2-JINKW9g23IlfywA-kdvJ0b61br9kR1w_uwxw0p2dhivgQsx9upBm5vSYFH0ZJYedJ1QX6pjNKOkXKXsFVyitV1-XzsOC5iMpLsNC5bdceiW_hkrU8kSdVw565JRGyFOdnvmnkk4-aT0d4X8zSoX590f3-ZxSbu6HGKnSnAyh2n_Qq2dhUwrcvsR3_Y4RrsDLBqqxWLK51mIvTDVj-EMFwE1rneqxZvZ9RvAUsYa08IzXLdyIwzVqDqJsgymWXOnum85rsJh7hd1E9tMBMp9G0pF2vbUGncXFfb1qTDA1WyCVKMvGNiKomcRJb29oRoXFdKaiM8yTw0KgTYzIRRw-ohR0GHOmiHyZa0oVQaRtK6SCNd4DZnkGwJaSMdSzQLGgRCGkSbNCNueHVMtjTOVHhJHw5ZdHoK6QxJCqViwqpjCJRKRJVGU5m7wyL4B0_1j7CqVa9sKso5jY9nwaqN1LILK4U0lokw2U4nS2EXzVp5xP8i6rq4v7OQbHx3b91sQdLiOFEsXttH0rjURYfIE4am8OJCrwD-LAJrA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Clustering+Method+Using+a+Modified+Gaussian+Kernel+Metric+and+Kernel+PCA&rft.jtitle=ETRI+journal&rft.au=Lee%2C+Hansung&rft.au=Yoo%2C+Jang-Hee&rft.au=Park%2C+Daihee&rft.date=2014-06-01&rft.issn=1225-6463&rft.volume=36&rft.issue=3&rft.spage=333&rft.epage=342&rft_id=info:doi/10.4218%2Fetrij.14.0113.0553&rft.externalDBID=n%2Fa&rft.externalDocID=10_4218_etrij_14_0113_0553 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-6463&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-6463&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-6463&client=summon |