The First Enantiomeric Stereogenic Sulfur‐Chiral Organic Ferroelectric Crystals
Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented s...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 31; pp. e202306732 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2023
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202306732 |
Cover
Abstract | Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur‐chiral single‐component organic ferroelectric crystals, Rs‐tert‐butanesulfinamide (Rs‐tBuSA) and Ss‐tert‐butanesulfinamide (Ss‐tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral‐polar point group 2 (C2) and exhibit mirror‐image relationships. They undergo high‐temperature 432F2‐type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2‐type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects.
Following the discovery of the first ferroelectric chiral Rochelle salt more than 100 years ago, the first pair of stereogenic heteroatom sulfur‐chiral ferroelectric crystals is reported on this study. The findings provide a perspective for the development of heteroatomic chiral ferroelectric crystals with great application prospects. |
---|---|
AbstractList | Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur-chiral single-component organic ferroelectric crystals, R
-tert-butanesulfinamide (R
-tBuSA) and S
-tert-butanesulfinamide (S
-tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral-polar point group 2 (C
) and exhibit mirror-image relationships. They undergo high-temperature 432F2-type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2-type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects. Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur‐chiral single‐component organic ferroelectric crystals, Rs‐tert‐butanesulfinamide (Rs‐tBuSA) and Ss‐tert‐butanesulfinamide (Ss‐tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral‐polar point group 2 (C2) and exhibit mirror‐image relationships. They undergo high‐temperature 432F2‐type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2‐type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects. Following the discovery of the first ferroelectric chiral Rochelle salt more than 100 years ago, the first pair of stereogenic heteroatom sulfur‐chiral ferroelectric crystals is reported on this study. The findings provide a perspective for the development of heteroatomic chiral ferroelectric crystals with great application prospects. Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur-chiral single-component organic ferroelectric crystals, Rs -tert-butanesulfinamide (Rs -tBuSA) and Ss -tert-butanesulfinamide (Ss -tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral-polar point group 2 (C2 ) and exhibit mirror-image relationships. They undergo high-temperature 432F2-type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2-type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects.Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur-chiral single-component organic ferroelectric crystals, Rs -tert-butanesulfinamide (Rs -tBuSA) and Ss -tert-butanesulfinamide (Ss -tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral-polar point group 2 (C2 ) and exhibit mirror-image relationships. They undergo high-temperature 432F2-type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2-type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects. Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur‐chiral single‐component organic ferroelectric crystals, R s ‐ tert ‐butanesulfinamide ( R s ‐tBuSA) and S s ‐ tert ‐butanesulfinamide ( S s ‐tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral‐polar point group 2 ( C 2 ) and exhibit mirror‐image relationships. They undergo high‐temperature 432 F 2‐type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432 F 2‐type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects. Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur‐chiral single‐component organic ferroelectric crystals, Rs‐tert‐butanesulfinamide (Rs‐tBuSA) and Ss‐tert‐butanesulfinamide (Ss‐tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral‐polar point group 2 (C2) and exhibit mirror‐image relationships. They undergo high‐temperature 432F2‐type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2‐type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects. |
Author | Peng, Hang Li, Peng‐Fei Xiong, Ren‐Gen Xu, Zhe‐Kun Wang, Zhong‐Xia Liao, Wei‐Qiang Du, Ye |
Author_xml | – sequence: 1 givenname: Hang surname: Peng fullname: Peng, Hang organization: Nanchang University – sequence: 2 givenname: Zhe‐Kun surname: Xu fullname: Xu, Zhe‐Kun organization: Nanchang University – sequence: 3 givenname: Ye surname: Du fullname: Du, Ye organization: Gannan Normal University – sequence: 4 givenname: Peng‐Fei surname: Li fullname: Li, Peng‐Fei organization: Nanchang University – sequence: 5 givenname: Zhong‐Xia surname: Wang fullname: Wang, Zhong‐Xia organization: Gannan Normal University – sequence: 6 givenname: Ren‐Gen orcidid: 0000-0003-2364-0193 surname: Xiong fullname: Xiong, Ren‐Gen email: xiongrg@seu.edu.cn organization: Nanchang University – sequence: 7 givenname: Wei‐Qiang surname: Liao fullname: Liao, Wei‐Qiang email: liaowq@ncu.edu.cn organization: Nanchang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37272456$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9KAzEQh4Mo1qpXj1Lw4mVr_u0me5TSaqFYRD2HbDqrkW1Wk12kNx_BZ_RJzNJWQRBPMwzfNwzz66NdVztA6ITgIcGYXmhnYUgxZTgTjO6gA5JSkjAh2G7sOWOJkCnpoX4Iz5GXEmf7qMcEFZSn2QG6vX-CwcT60AzGTrvG1kvw1gzuGvBQP4Lr-rYqW__5_jF6sl5Xg7l_1N18At7XUIFpOmPkV6HRVThCe2UscLyph-hhMr4fXSez-dV0dDlLDIuXJpnUGU5lnhZS4NJQvWCC55kpBVmIgkuTE1PknJeaYy4zWi6KHAPhIEoAShg7ROfrvS--fm0hNGppg4Gq0g7qNigqKRVYUtahZ7_Q57r1Ll4XKU4oF4JkkTrdUG2xhIV68Xap_UptnxUBvgaMr0PwUCpjGx1f5hqvbaUIVl0mqstEfWcSteEvbbv5TyFfC2-2gtU_tLq8mY5_3C_Lt56O |
CitedBy_id | crossref_primary_10_1002_asia_202401506 crossref_primary_10_1021_jacs_5c00346 crossref_primary_10_1039_D4TC00428K crossref_primary_10_1002_adma_202405981 crossref_primary_10_1002_adfm_202316747 crossref_primary_10_1021_acsmaterialslett_3c01458 crossref_primary_10_1002_ejic_202400612 crossref_primary_10_1002_adfm_202402649 crossref_primary_10_1039_D4CE01322K crossref_primary_10_1002_advs_202414977 crossref_primary_10_1002_anie_202400511 crossref_primary_10_1016_j_cjsc_2023_100212 crossref_primary_10_1002_ange_202407934 crossref_primary_10_1021_acs_nanolett_4c01707 crossref_primary_10_1002_cjoc_202300640 crossref_primary_10_1002_adfm_202502822 crossref_primary_10_1002_chem_202404034 crossref_primary_10_1039_D4TC01471E crossref_primary_10_1021_jacs_5c01725 crossref_primary_10_3390_ijms25169064 crossref_primary_10_1021_acsami_4c21385 crossref_primary_10_1002_ange_202400511 crossref_primary_10_1021_acs_jpcc_4c07842 crossref_primary_10_1002_anie_202407934 crossref_primary_10_1016_j_inoche_2024_112465 |
Cites_doi | 10.1002/adma.201808088 10.1021/jacs.1c06108 10.1143/JPSJ.27.387 10.1021/jacs.1c11000 10.1016/j.trechm.2021.09.010 10.1080/00268948808075350 10.1126/sciadv.aay4213 10.1021/ma00120a007 10.1002/anie.202011138 10.1039/D1SC06781H 10.1021/cr200174w 10.1073/pnas.1817866116 10.1002/anie.202007660 10.1126/science.aas9330 10.1038/nature08731 10.1021/jacs.8b08286 10.1039/C9CS00504H 10.1021/cr900382t 10.1002/anie.201200407 10.1039/C5CS00308C 10.1038/nchem.2567 10.1021/jacs.9b03369 10.1021/jacs.0c07055 10.1126/science.1129564 10.1021/cm00047a024 10.1021/jacs.2c11213 10.1002/anie.202210809 10.1038/s41467-022-30085-1 10.1002/anie.201208952 10.1039/D0TC02414G 10.1002/anie.202209340 10.1021/jacs.9b11697 10.1002/anie.202200135 10.1002/anie.201411073 10.1080/02678299208030402 10.1080/02678292.2011.625126 10.1039/C4CS00524D 10.1002/anie.201401067 10.1080/00150190490464827 10.1021/jacs.2c08667 10.1126/science.1229675 10.1021/acsnano.7b07090 10.1021/jacs.2c01069 10.1103/PhysRev.17.475 10.1021/acs.accounts.8b00677 10.1039/D0TC05800A 10.1002/advs.202102614 10.1002/anie.202204135 10.1002/anie.202102195 10.1016/j.matt.2020.12.018 10.3762/bjoc.12.107 10.1126/science.aai8535 10.1063/1.473739 10.1021/jacs.5b11088 10.1021/jacs.2c12951 10.1021/jacs.7b03633 10.1557/JMR.1992.1564 10.1002/adma.202005760 10.1038/ncomms13635 10.1246/cl.1990.623 10.1021/cm00041a012 10.1021/jacs.7b12524 10.1021/jacs.6b08817 10.1021/acs.chemrev.6b00517 10.1038/s41578-020-0181-5 10.1021/jacs.0c06936 10.1016/j.matt.2019.12.008 10.1021/jacs.8b04600 10.1080/026782999203779 10.1002/anie.202213600 10.1002/adma.202204119 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202306732 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 37272456 10_1002_anie_202306732 ANIE202306732 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21831004; 21991142; 91856114; 22175082; 22222502 – fundername: National Natural Science Foundation of China grantid: 91856114 – fundername: National Natural Science Foundation of China grantid: 22222502 – fundername: National Natural Science Foundation of China grantid: 21991142 – fundername: National Natural Science Foundation of China grantid: 22175082 – fundername: National Natural Science Foundation of China grantid: 21831004 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 9M8 AANHP AASGY AAYJJ AAYOK AAYXX ABDBF ABDPE ABEFU ABJNI ACBWZ ACRPL ACYXJ ADNMO ADXHL AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF H~9 LW6 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3732-68a605895b870fc2ad37496cf71d7b48c91cb944fa404862fdb90e14e7fee2133 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 19:23:15 EDT 2025 Fri Jul 25 10:27:51 EDT 2025 Mon Jul 21 05:55:21 EDT 2025 Thu Apr 24 23:03:42 EDT 2025 Tue Jul 01 01:47:13 EDT 2025 Wed Jan 22 16:21:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | Ferroelectric Domain Sulfur-Chiral Structural Phase Transition Single-Component Molecular Ferroelectric |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3732-68a605895b870fc2ad37496cf71d7b48c91cb944fa404862fdb90e14e7fee2133 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2364-0193 |
PMID | 37272456 |
PQID | 2841247716 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2822708233 proquest_journals_2841247716 pubmed_primary_37272456 crossref_citationtrail_10_1002_anie_202306732 crossref_primary_10_1002_anie_202306732 wiley_primary_10_1002_anie_202306732_ANIE202306732 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 1, 2023 2023-08-00 2023-Aug-01 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 1, 2023 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 361 2019; 52 1990; 19 2023; 145 2010; 463 2020; 59 1992; 12 2017; 357 2017; 117 1977 2012; 51 2020; 8 1992; 7 2020; 6 2023; 62 2020; 5 1997; 106 2020; 2 2021; 33 1995; 28 2015; 137 2015; 44 2013; 52 2022; 34 2010; 110 2019; 116 2016; 45 2014; 53 2021; 9 2021; 8 2021; 4 2004; 301 2021; 3 2018; 140 2019; 31 2020; 142 1999; 26 2015; 54 2021; 143 2021; 50 2011; 38 2019; 141 1995; 5 2017; 139 2016; 12 2022; 144 2016; 7 2012; 112 2007; 315 2013; 339 2022; 61 2017; 11 1921; 17 1988; 158 2022; 13 1969; 27 2016; 138 2021; 60 2016; 8 1994; 6 e_1_2_8_28_2 e_1_2_8_24_2 e_1_2_8_45_2 Cherkaoui M. Z. (e_1_2_8_49_2) 1995; 5 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_68_2 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_20_2 e_1_2_8_41_2 Chen X. G. (e_1_2_8_69_2) 2023; 145 e_1_2_8_87_1 e_1_2_8_22_2 e_1_2_8_64_2 e_1_2_8_85_1 e_1_2_8_62_2 e_1_2_8_83_2 e_1_2_8_1_1 e_1_2_8_60_2 e_1_2_8_81_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_36_1 e_1_2_8_13_2 e_1_2_8_59_2 e_1_2_8_15_1 e_1_2_8_57_2 e_1_2_8_78_1 e_1_2_8_30_2 e_1_2_8_55_2 e_1_2_8_76_2 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_11_2 e_1_2_8_32_2 e_1_2_8_74_1 e_1_2_8_51_2 e_1_2_8_72_2 e_1_2_8_70_2 e_1_2_8_27_2 e_1_2_8_29_1 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_67_2 e_1_2_8_80_2 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_88_1 e_1_2_8_21_2 e_1_2_8_63_2 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_61_2 e_1_2_8_84_2 e_1_2_8_40_2 e_1_2_8_82_1 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_56_2 e_1_2_8_79_2 e_1_2_8_37_1 e_1_2_8_58_1 Lines M. E. (e_1_2_8_2_2) 1977 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_77_1 e_1_2_8_10_2 e_1_2_8_52_2 e_1_2_8_75_2 e_1_2_8_33_1 e_1_2_8_50_2 e_1_2_8_73_2 e_1_2_8_71_1 |
References_xml | – volume: 301 start-page: 15 year: 2004 end-page: 45 publication-title: Ferroelectrics – volume: 139 start-page: 8098 year: 2017 end-page: 8101 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 3975 year: 2018 end-page: 3980 publication-title: J. Am. Chem. Soc. – volume: 315 start-page: 954 year: 2007 end-page: 959 publication-title: Science – volume: 50 start-page: 8248 year: 2021 end-page: 8278 publication-title: Chem. Soc. Rev. – volume: 143 start-page: 13816 year: 2021 end-page: 13823 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 1445 year: 1999 end-page: 1454 publication-title: Liq. Cryst. – volume: 142 start-page: 13989 year: 2020 end-page: 13995 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1564 year: 1992 end-page: 1583 publication-title: J. Mater. Res. – volume: 144 start-page: 8633 year: 2022 end-page: 8640 publication-title: J. Am. Chem. Soc. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 357 start-page: 306 year: 2017 end-page: 309 publication-title: Science – volume: 141 start-page: 9349 year: 2019 end-page: 9357 publication-title: J. Am. Chem. Soc. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 54 start-page: 5026 year: 2015 end-page: 5043 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 347 year: 1992 end-page: 353 publication-title: Liq. Cryst. – volume: 5 start-page: 1263 year: 1995 end-page: 1268 publication-title: J. Phys. II – volume: 13 start-page: 2379 year: 2022 publication-title: Nat. Commun. – volume: 117 start-page: 4147 year: 2017 end-page: 4181 publication-title: Chem. Rev. – volume: 106 start-page: 7816 year: 1997 end-page: 7821 publication-title: J. Chem. Phys. – volume: 339 start-page: 425 year: 2013 end-page: 428 publication-title: Science – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 12 start-page: 1111 year: 2016 end-page: 1121 publication-title: Beilstein J. Org. Chem. – volume: 19 start-page: 623 year: 1990 end-page: 626 publication-title: Chem. Lett. – volume: 140 start-page: 12296 year: 2018 end-page: 12302 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 697 year: 2020 end-page: 710 publication-title: Matter – volume: 116 start-page: 5878 year: 2019 end-page: 5885 publication-title: Proc. Natl. Acad. Sci. USA – volume: 52 start-page: 1928 year: 2019 end-page: 1938 publication-title: Acc. Chem. Res. – volume: 11 start-page: 11739 year: 2017 end-page: 11745 publication-title: ACS Nano – volume: 28 start-page: 5440 year: 1995 end-page: 5449 publication-title: Macromolecules – volume: 4 start-page: 794 year: 2021 end-page: 820 publication-title: Matter – volume: 138 start-page: 13175 year: 2016 end-page: 13178 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 17477 year: 2020 end-page: 17481 publication-title: Angew. Chem. Int. Ed. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 7 start-page: 13635 year: 2016 publication-title: Nat. Commun. – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 145 start-page: 3187 year: 2023 end-page: 3195 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 4453 year: 2021 end-page: 4465 publication-title: J. Mater. Chem. C – volume: 51 start-page: 3871 year: 2012 end-page: 3876 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 625 year: 1994 end-page: 632 publication-title: Chem. Mater. – volume: 5 start-page: 423 year: 2020 end-page: 439 publication-title: Nat. Rev. Mater. – volume: 17 start-page: 475 year: 1921 publication-title: Phys. Rev. – volume: 13 start-page: 748 year: 2022 end-page: 753 publication-title: Chem. Sci. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 145 start-page: 3975 year: 2023 end-page: 3980 publication-title: J. Am. Chem. Soc. – volume: 144 start-page: 22325 year: 2022 end-page: 22331 publication-title: J. Am. Chem. Soc. – volume: 143 start-page: 21685 year: 2021 end-page: 21693 publication-title: J. Am. Chem. Soc. – volume: 158 start-page: 1 year: 1988 end-page: 150 publication-title: Mol. Cryst. Liq. Cryst. – year: 1977 – volume: 142 start-page: 545 year: 2020 end-page: 551 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1088 year: 2021 end-page: 1099 publication-title: Trends Chem. – volume: 110 start-page: 3600 year: 2010 end-page: 3740 publication-title: Chem. Rev. – volume: 142 start-page: 15205 year: 2020 end-page: 15218 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 387 year: 1969 end-page: 396 publication-title: J. Phys. Soc. Jpn. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 140 start-page: 8051 year: 2018 end-page: 8059 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 1467 year: 2011 end-page: 1493 publication-title: Liq. Cryst. – volume: 8 start-page: 946 year: 2016 end-page: 952 publication-title: Nat. Chem. – volume: 112 start-page: 1163 year: 2012 end-page: 1195 publication-title: Chem. Rev. – volume: 8 start-page: 10283 year: 2020 end-page: 10289 publication-title: J. Mater. Chem. C – volume: 144 start-page: 19559 year: 2022 end-page: 19566 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 15660 year: 2015 end-page: 15663 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 4350 year: 2014 end-page: 4354 publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 7076 year: 2013 end-page: 7078 publication-title: Angew. Chem. Int. Ed. – volume: 361 start-page: 151 year: 2018 end-page: 155 publication-title: Science – volume: 60 start-page: 10730 year: 2021 end-page: 10735 publication-title: Angew. Chem. Int. Ed. – volume: 45 start-page: 3811 year: 2016 end-page: 3827 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 2026 year: 1994 end-page: 2039 publication-title: Chem. Mater. – volume: 463 start-page: 789 year: 2010 end-page: 792 publication-title: Nature – volume: 60 start-page: 758 year: 2021 end-page: 765 publication-title: Angew. Chem. Int. Ed. – volume: 44 start-page: 3834 year: 2015 end-page: 3860 publication-title: Chem. Soc. Rev. – ident: e_1_2_8_34_1 doi: 10.1002/adma.201808088 – ident: e_1_2_8_38_2 doi: 10.1021/jacs.1c06108 – ident: e_1_2_8_37_1 – ident: e_1_2_8_14_1 doi: 10.1143/JPSJ.27.387 – ident: e_1_2_8_39_2 doi: 10.1021/jacs.1c11000 – ident: e_1_2_8_64_2 doi: 10.1016/j.trechm.2021.09.010 – ident: e_1_2_8_6_2 doi: 10.1080/00268948808075350 – ident: e_1_2_8_33_1 doi: 10.1126/sciadv.aay4213 – ident: e_1_2_8_50_2 doi: 10.1021/ma00120a007 – ident: e_1_2_8_76_2 doi: 10.1002/anie.202011138 – ident: e_1_2_8_83_2 doi: 10.1039/D1SC06781H – ident: e_1_2_8_12_2 doi: 10.1021/cr200174w – ident: e_1_2_8_36_1 doi: 10.1073/pnas.1817866116 – ident: e_1_2_8_20_2 doi: 10.1002/anie.202007660 – ident: e_1_2_8_35_1 doi: 10.1126/science.aas9330 – ident: e_1_2_8_59_2 doi: 10.1038/nature08731 – ident: e_1_2_8_44_1 – ident: e_1_2_8_67_2 doi: 10.1021/jacs.8b08286 – ident: e_1_2_8_63_2 doi: 10.1039/C9CS00504H – ident: e_1_2_8_72_2 doi: 10.1021/cr900382t – ident: e_1_2_8_30_2 doi: 10.1002/anie.201200407 – ident: e_1_2_8_58_1 – volume: 145 start-page: 3975 year: 2023 ident: e_1_2_8_69_2 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_13_2 doi: 10.1039/C5CS00308C – ident: e_1_2_8_71_1 – ident: e_1_2_8_61_2 doi: 10.1038/nchem.2567 – ident: e_1_2_8_81_2 doi: 10.1021/jacs.9b03369 – ident: e_1_2_8_11_2 doi: 10.1021/jacs.0c07055 – ident: e_1_2_8_3_2 doi: 10.1126/science.1129564 – ident: e_1_2_8_47_2 doi: 10.1021/cm00047a024 – ident: e_1_2_8_66_1 – ident: e_1_2_8_86_1 doi: 10.1021/jacs.2c11213 – ident: e_1_2_8_88_1 doi: 10.1002/anie.202210809 – ident: e_1_2_8_41_2 doi: 10.1038/s41467-022-30085-1 – ident: e_1_2_8_31_2 doi: 10.1002/anie.201208952 – ident: e_1_2_8_18_2 doi: 10.1039/D0TC02414G – ident: e_1_2_8_77_1 – ident: e_1_2_8_65_2 doi: 10.1002/anie.202209340 – ident: e_1_2_8_19_2 doi: 10.1021/jacs.9b11697 – ident: e_1_2_8_26_2 doi: 10.1002/anie.202200135 – ident: e_1_2_8_56_2 doi: 10.1002/anie.201411073 – ident: e_1_2_8_46_2 doi: 10.1080/02678299208030402 – ident: e_1_2_8_15_1 – ident: e_1_2_8_8_2 doi: 10.1080/02678292.2011.625126 – ident: e_1_2_8_55_2 doi: 10.1039/C4CS00524D – ident: e_1_2_8_9_1 – ident: e_1_2_8_53_1 – ident: e_1_2_8_54_2 doi: 10.1002/anie.201401067 – ident: e_1_2_8_29_1 – ident: e_1_2_8_7_2 doi: 10.1080/00150190490464827 – ident: e_1_2_8_43_1 doi: 10.1021/jacs.2c08667 – ident: e_1_2_8_60_2 doi: 10.1126/science.1229675 – ident: e_1_2_8_16_2 doi: 10.1021/acsnano.7b07090 – volume: 5 start-page: 1263 year: 1995 ident: e_1_2_8_49_2 publication-title: J. Phys. II – ident: e_1_2_8_42_2 doi: 10.1021/jacs.2c01069 – ident: e_1_2_8_4_1 doi: 10.1103/PhysRev.17.475 – ident: e_1_2_8_10_2 doi: 10.1021/acs.accounts.8b00677 – ident: e_1_2_8_25_2 doi: 10.1039/D0TC05800A – ident: e_1_2_8_40_2 doi: 10.1002/advs.202102614 – volume-title: Principles and Applications of Ferroelectrics and Related Materials year: 1977 ident: e_1_2_8_2_2 – ident: e_1_2_8_27_2 doi: 10.1002/anie.202204135 – ident: e_1_2_8_78_1 – ident: e_1_2_8_82_1 – ident: e_1_2_8_24_2 doi: 10.1002/anie.202102195 – ident: e_1_2_8_21_2 doi: 10.1016/j.matt.2020.12.018 – ident: e_1_2_8_74_1 – ident: e_1_2_8_1_1 – ident: e_1_2_8_75_2 doi: 10.3762/bjoc.12.107 – ident: e_1_2_8_62_2 doi: 10.1126/science.aai8535 – ident: e_1_2_8_51_2 doi: 10.1063/1.473739 – ident: e_1_2_8_79_2 doi: 10.1021/jacs.5b11088 – ident: e_1_2_8_87_1 doi: 10.1021/jacs.2c12951 – ident: e_1_2_8_17_2 doi: 10.1021/jacs.7b03633 – ident: e_1_2_8_5_1 – ident: e_1_2_8_89_1 doi: 10.1557/JMR.1992.1564 – ident: e_1_2_8_22_2 doi: 10.1002/adma.202005760 – ident: e_1_2_8_32_2 doi: 10.1038/ncomms13635 – ident: e_1_2_8_45_2 doi: 10.1246/cl.1990.623 – ident: e_1_2_8_48_2 doi: 10.1021/cm00041a012 – ident: e_1_2_8_68_2 doi: 10.1021/jacs.7b12524 – ident: e_1_2_8_80_2 doi: 10.1021/jacs.6b08817 – ident: e_1_2_8_73_2 doi: 10.1021/acs.chemrev.6b00517 – ident: e_1_2_8_23_2 doi: 10.1038/s41578-020-0181-5 – ident: e_1_2_8_84_2 doi: 10.1021/jacs.0c06936 – ident: e_1_2_8_70_2 doi: 10.1016/j.matt.2019.12.008 – ident: e_1_2_8_85_1 doi: 10.1021/jacs.8b04600 – ident: e_1_2_8_52_2 doi: 10.1080/026782999203779 – ident: e_1_2_8_57_2 doi: 10.1002/anie.202213600 – ident: e_1_2_8_28_2 doi: 10.1002/adma.202204119 |
SSID | ssj0028806 |
Score | 2.6294658 |
Snippet | Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202306732 |
SubjectTerms | Chirality Crystals Enantiomers Ferroelectric crystals Ferroelectric Domain Ferroelectric materials Ferroelectricity Hysteresis loops Light microscopy Mechanical properties Modulus of elasticity Molecular Ferroelectric Optical microscopy Phase transitions Polarized light Single-Component Structural Phase Transition Sulfur Sulfur-Chiral |
Title | The First Enantiomeric Stereogenic Sulfur‐Chiral Organic Ferroelectric Crystals |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202306732 https://www.ncbi.nlm.nih.gov/pubmed/37272456 https://www.proquest.com/docview/2841247716 https://www.proquest.com/docview/2822708233 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB6hvcBl-d8N20VBWmlPaeufxM2x6rYqSFRil0q9RbHjiGqrFKXNAU48wj4jT8JMnAQKQkjLLVbsxPHM2N_Enm8ALsI41OgW0LkwHgVS8TTQeWYCI61hOsuiUUrxzu8X0Xwp363C1S9R_I4fovvhRpZRz9dk4KneDX6ShlIEdp_XEFoJmoSZiIg8_-q644_iqJwuvEiIgLLQt6yNQz44bH64Kv0BNQ-Ra730zB5D2nbanTi57Vd73Tdff-Nz_J-vegLHDS71x06RnsIDWzyDh5M2Hdxz-IAK5c_WCBb9KR2eobB9nEP9GxSM3aIa0nW1yavy-7e7yad1iU9zgZ7Gn9my3LqEO1ialF8Qkm52L2A5m36czIMmH0NgBHYmQLnRJipKF408NzzNhJJxZHLFMqXlyMTM6FjKPJVE5MfzTMdDy6RVubUcneGXcFRsC3sKPssiYZlNhcqVDG04Yhb9KMbi2AyFUpkHQSuPxDRk5ZQzY5M4mmWe0EAl3UB5cNnV_-xoOv5as9eKN2nMdZfgGo04R6Hv6MGb7jYOMO2epIXdVlSHc0X7ksKDE6cW3asEbWcjFPWA18L9Rx-S8eLttCu9uk-jM3hE1-4oYg-O9mVlzxEe7fXr2gR-ABRtBhU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4hONBLebS0Li9XQuLkkH3YGx9RSBRekSggcbO867WKiJLKxIf2xE_gN_JLmPHGRilCSO0tjtfxZmdm99udmW8A9sI41LgtoLgwHgVS8TTQeWYCI61hOsuiTkr5zufDaHAtT27COpqQcmEcP0Rz4EaWUc3XZOB0IH3wwhpKKdgtXmFoJXAWXiInHdnm0Y-GQYqjeroEIyECqkNf8za2-cH88_Pr0iuwOY9dq8WnvwK67raLOblrlVPdMn_-YnT8r_-1Ch9n0NQ_dLq0Bgt2vA7L3boi3Ce4QJ3y-7eIF_0exc9Q5j5Oo_4lysZOUBPpcznKy-Lp4bH787bAX3O5nsbv26KYuJo7eNUtfiMqHd1_hut-76o7CGYlGQIjsDMBio78qChgtPPc8DQTSsaRyRXLlJYdEzOjYynzVBKXH88zHbctk1bl1nLcD2_A4ngytl_BZ1kkLLOpULmSoQ07zOJWirE4Nm2hVOZBUAskMTO-ciqbMUoc0zJPaKCSZqA82G_a_3JMHW-23Krlm8ws9j7BZRqhjsLtowffm9s4wORAScd2UlIbzhW5JoUHX5xeNK8S5NFGNOoBr6T7Th-Sw-Fxr7n69i8P7cLy4Or8LDk7Hp5uwgf63kUmbsHitCjtNqKlqd6p7OEZfroKMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VILW9AH1BKJRUqsQpy_qReHNEy0ZA21UfIHGLEj9U1NUuCpsDnPgJ_Y39JZ2JNynbqqrU3uLESRzPjP1N7PkG4E2cxiW6BbQvjCeRVLyISmd0pKXVrDQmGRQU7_x-nByfy9OL-OJeFL_nh-h-uJFlNOM1GfiVcQc_SUMpArvHGwitBA7CqzJBF4tg0aeOQIqjdvr4IiEiSkPf0jb2-cHy_cvT0m9Ycxm6NnNPtg5F22q_5eRrr56XPX37C6Hj_3zWBqwtgGl46DXpCTyw06fwaNjmg3sGH1GjwuwS0WI4ot0zFLePg2j4GSVjZ6iHdFxPXF19v_s2_HJZ4dN8pKcOM1tVM59xB0vD6gYx6eT6OZxno7PhcbRIyBBpgY2JUHC0ioriRSt3mhdGKJkm2ilmVCkHOmW6TKV0hSQmP-5MmfYtk1Y5azl6wy9gZTqb2i0ImUmEZbYQyikZ23jALDpSjKWp7gulTABRK49cL9jKKWnGJPc8yzynjsq7jgpgv6t_5Xk6_lhzpxVvvrDX6xwnaQQ6Cp3HAF53l7GDafmkmNpZTXU4V7QwKQLY9GrRvUrQejZi0QB4I9y_tCE_HJ-MutL2v9y0Bw8_HGX5u5Px25fwmE77bYk7sDKvaruLUGlevmqs4QdQLQjh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+First+Enantiomeric+Stereogenic+Sulfur-Chiral+Organic+Ferroelectric+Crystals&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Peng%2C+Hang&rft.au=Xu%2C+Zhe-Kun&rft.au=Du%2C+Ye&rft.au=Li%2C+Peng-Fei&rft.date=2023-08-01&rft.eissn=1521-3773&rft.volume=62&rft.issue=31&rft.spage=e202306732&rft_id=info:doi/10.1002%2Fanie.202306732&rft_id=info%3Apmid%2F37272456&rft.externalDocID=37272456 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |