The First Enantiomeric Stereogenic Sulfur‐Chiral Organic Ferroelectric Crystals

Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented s...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 62; no. 31; pp. e202306732 - n/a
Main Authors Peng, Hang, Xu, Zhe‐Kun, Du, Ye, Li, Peng‐Fei, Wang, Zhong‐Xia, Xiong, Ren‐Gen, Liao, Wei‐Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2023
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202306732

Cover

Abstract Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur‐chiral single‐component organic ferroelectric crystals, Rs‐tert‐butanesulfinamide (Rs‐tBuSA) and Ss‐tert‐butanesulfinamide (Ss‐tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral‐polar point group 2 (C2) and exhibit mirror‐image relationships. They undergo high‐temperature 432F2‐type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2‐type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects. Following the discovery of the first ferroelectric chiral Rochelle salt more than 100 years ago, the first pair of stereogenic heteroatom sulfur‐chiral ferroelectric crystals is reported on this study. The findings provide a perspective for the development of heteroatomic chiral ferroelectric crystals with great application prospects.
AbstractList Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur-chiral single-component organic ferroelectric crystals, R -tert-butanesulfinamide (R -tBuSA) and S -tert-butanesulfinamide (S -tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral-polar point group 2 (C ) and exhibit mirror-image relationships. They undergo high-temperature 432F2-type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2-type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects.
Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur‐chiral single‐component organic ferroelectric crystals, Rs‐tert‐butanesulfinamide (Rs‐tBuSA) and Ss‐tert‐butanesulfinamide (Ss‐tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral‐polar point group 2 (C2) and exhibit mirror‐image relationships. They undergo high‐temperature 432F2‐type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2‐type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects. Following the discovery of the first ferroelectric chiral Rochelle salt more than 100 years ago, the first pair of stereogenic heteroatom sulfur‐chiral ferroelectric crystals is reported on this study. The findings provide a perspective for the development of heteroatomic chiral ferroelectric crystals with great application prospects.
Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur-chiral single-component organic ferroelectric crystals, Rs -tert-butanesulfinamide (Rs -tBuSA) and Ss -tert-butanesulfinamide (Ss -tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral-polar point group 2 (C2 ) and exhibit mirror-image relationships. They undergo high-temperature 432F2-type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2-type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects.Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur-chiral single-component organic ferroelectric crystals, Rs -tert-butanesulfinamide (Rs -tBuSA) and Ss -tert-butanesulfinamide (Ss -tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral-polar point group 2 (C2 ) and exhibit mirror-image relationships. They undergo high-temperature 432F2-type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2-type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects.
Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur‐chiral single‐component organic ferroelectric crystals, R s ‐ tert ‐butanesulfinamide ( R s ‐tBuSA) and S s ‐ tert ‐butanesulfinamide ( S s ‐tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral‐polar point group 2 ( C 2 ) and exhibit mirror‐image relationships. They undergo high‐temperature 432 F 2‐type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432 F 2‐type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects.
Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been successively developed in recent years. However, ferroelectric crystals with stereogenic heteroatomic chirality have never been documented so far. Here, we discover and report a pair of enantiomeric stereogenic sulfur‐chiral single‐component organic ferroelectric crystals, Rs‐tert‐butanesulfinamide (Rs‐tBuSA) and Ss‐tert‐butanesulfinamide (Ss‐tBuSA) through the deep understanding of the chemical design of molecular ferroelectric crystals. Both enantiomers adopt chiral‐polar point group 2 (C2) and exhibit mirror‐image relationships. They undergo high‐temperature 432F2‐type plastic ferroelectric phase transition around 348 K. The ferroelectricity has been well confirmed by ferroelectric hysteresis loops and domains. Polarized light microscopy records the evolution of the ferroelastic domains, according with the fact that the 432F2‐type phase transition is both ferroelectric and ferroelastic. The very soft characteristics with low elastic modulus and hardness reveals their excellent mechanical flexibility. This finding indicates the first stereosulfur chiral molecular ferroelectric crystals, opening up new fertile ground for exploring molecular ferroelectric crystals with great application prospects.
Author Peng, Hang
Li, Peng‐Fei
Xiong, Ren‐Gen
Xu, Zhe‐Kun
Wang, Zhong‐Xia
Liao, Wei‐Qiang
Du, Ye
Author_xml – sequence: 1
  givenname: Hang
  surname: Peng
  fullname: Peng, Hang
  organization: Nanchang University
– sequence: 2
  givenname: Zhe‐Kun
  surname: Xu
  fullname: Xu, Zhe‐Kun
  organization: Nanchang University
– sequence: 3
  givenname: Ye
  surname: Du
  fullname: Du, Ye
  organization: Gannan Normal University
– sequence: 4
  givenname: Peng‐Fei
  surname: Li
  fullname: Li, Peng‐Fei
  organization: Nanchang University
– sequence: 5
  givenname: Zhong‐Xia
  surname: Wang
  fullname: Wang, Zhong‐Xia
  organization: Gannan Normal University
– sequence: 6
  givenname: Ren‐Gen
  orcidid: 0000-0003-2364-0193
  surname: Xiong
  fullname: Xiong, Ren‐Gen
  email: xiongrg@seu.edu.cn
  organization: Nanchang University
– sequence: 7
  givenname: Wei‐Qiang
  surname: Liao
  fullname: Liao, Wei‐Qiang
  email: liaowq@ncu.edu.cn
  organization: Nanchang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37272456$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9KAzEQh4Mo1qpXj1Lw4mVr_u0me5TSaqFYRD2HbDqrkW1Wk12kNx_BZ_RJzNJWQRBPMwzfNwzz66NdVztA6ITgIcGYXmhnYUgxZTgTjO6gA5JSkjAh2G7sOWOJkCnpoX4Iz5GXEmf7qMcEFZSn2QG6vX-CwcT60AzGTrvG1kvw1gzuGvBQP4Lr-rYqW__5_jF6sl5Xg7l_1N18At7XUIFpOmPkV6HRVThCe2UscLyph-hhMr4fXSez-dV0dDlLDIuXJpnUGU5lnhZS4NJQvWCC55kpBVmIgkuTE1PknJeaYy4zWi6KHAPhIEoAShg7ROfrvS--fm0hNGppg4Gq0g7qNigqKRVYUtahZ7_Q57r1Ll4XKU4oF4JkkTrdUG2xhIV68Xap_UptnxUBvgaMr0PwUCpjGx1f5hqvbaUIVl0mqstEfWcSteEvbbv5TyFfC2-2gtU_tLq8mY5_3C_Lt56O
CitedBy_id crossref_primary_10_1002_asia_202401506
crossref_primary_10_1021_jacs_5c00346
crossref_primary_10_1039_D4TC00428K
crossref_primary_10_1002_adma_202405981
crossref_primary_10_1002_adfm_202316747
crossref_primary_10_1021_acsmaterialslett_3c01458
crossref_primary_10_1002_ejic_202400612
crossref_primary_10_1002_adfm_202402649
crossref_primary_10_1039_D4CE01322K
crossref_primary_10_1002_advs_202414977
crossref_primary_10_1002_anie_202400511
crossref_primary_10_1016_j_cjsc_2023_100212
crossref_primary_10_1002_ange_202407934
crossref_primary_10_1021_acs_nanolett_4c01707
crossref_primary_10_1002_cjoc_202300640
crossref_primary_10_1002_adfm_202502822
crossref_primary_10_1002_chem_202404034
crossref_primary_10_1039_D4TC01471E
crossref_primary_10_1021_jacs_5c01725
crossref_primary_10_3390_ijms25169064
crossref_primary_10_1021_acsami_4c21385
crossref_primary_10_1002_ange_202400511
crossref_primary_10_1021_acs_jpcc_4c07842
crossref_primary_10_1002_anie_202407934
crossref_primary_10_1016_j_inoche_2024_112465
Cites_doi 10.1002/adma.201808088
10.1021/jacs.1c06108
10.1143/JPSJ.27.387
10.1021/jacs.1c11000
10.1016/j.trechm.2021.09.010
10.1080/00268948808075350
10.1126/sciadv.aay4213
10.1021/ma00120a007
10.1002/anie.202011138
10.1039/D1SC06781H
10.1021/cr200174w
10.1073/pnas.1817866116
10.1002/anie.202007660
10.1126/science.aas9330
10.1038/nature08731
10.1021/jacs.8b08286
10.1039/C9CS00504H
10.1021/cr900382t
10.1002/anie.201200407
10.1039/C5CS00308C
10.1038/nchem.2567
10.1021/jacs.9b03369
10.1021/jacs.0c07055
10.1126/science.1129564
10.1021/cm00047a024
10.1021/jacs.2c11213
10.1002/anie.202210809
10.1038/s41467-022-30085-1
10.1002/anie.201208952
10.1039/D0TC02414G
10.1002/anie.202209340
10.1021/jacs.9b11697
10.1002/anie.202200135
10.1002/anie.201411073
10.1080/02678299208030402
10.1080/02678292.2011.625126
10.1039/C4CS00524D
10.1002/anie.201401067
10.1080/00150190490464827
10.1021/jacs.2c08667
10.1126/science.1229675
10.1021/acsnano.7b07090
10.1021/jacs.2c01069
10.1103/PhysRev.17.475
10.1021/acs.accounts.8b00677
10.1039/D0TC05800A
10.1002/advs.202102614
10.1002/anie.202204135
10.1002/anie.202102195
10.1016/j.matt.2020.12.018
10.3762/bjoc.12.107
10.1126/science.aai8535
10.1063/1.473739
10.1021/jacs.5b11088
10.1021/jacs.2c12951
10.1021/jacs.7b03633
10.1557/JMR.1992.1564
10.1002/adma.202005760
10.1038/ncomms13635
10.1246/cl.1990.623
10.1021/cm00041a012
10.1021/jacs.7b12524
10.1021/jacs.6b08817
10.1021/acs.chemrev.6b00517
10.1038/s41578-020-0181-5
10.1021/jacs.0c06936
10.1016/j.matt.2019.12.008
10.1021/jacs.8b04600
10.1080/026782999203779
10.1002/anie.202213600
10.1002/adma.202204119
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202306732
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 37272456
10_1002_anie_202306732
ANIE202306732
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21831004; 21991142; 91856114; 22175082; 22222502
– fundername: National Natural Science Foundation of China
  grantid: 91856114
– fundername: National Natural Science Foundation of China
  grantid: 22222502
– fundername: National Natural Science Foundation of China
  grantid: 21991142
– fundername: National Natural Science Foundation of China
  grantid: 22175082
– fundername: National Natural Science Foundation of China
  grantid: 21831004
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
9M8
AANHP
AASGY
AAYJJ
AAYOK
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3732-68a605895b870fc2ad37496cf71d7b48c91cb944fa404862fdb90e14e7fee2133
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 19:23:15 EDT 2025
Fri Jul 25 10:27:51 EDT 2025
Mon Jul 21 05:55:21 EDT 2025
Thu Apr 24 23:03:42 EDT 2025
Tue Jul 01 01:47:13 EDT 2025
Wed Jan 22 16:21:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords Ferroelectric Domain
Sulfur-Chiral
Structural Phase Transition
Single-Component
Molecular Ferroelectric
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-68a605895b870fc2ad37496cf71d7b48c91cb944fa404862fdb90e14e7fee2133
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2364-0193
PMID 37272456
PQID 2841247716
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2822708233
proquest_journals_2841247716
pubmed_primary_37272456
crossref_citationtrail_10_1002_anie_202306732
crossref_primary_10_1002_anie_202306732
wiley_primary_10_1002_anie_202306732_ANIE202306732
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 1, 2023
2023-08-00
2023-Aug-01
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 1, 2023
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 361
2019; 52
1990; 19
2023; 145
2010; 463
2020; 59
1992; 12
2017; 357
2017; 117
1977
2012; 51
2020; 8
1992; 7
2020; 6
2023; 62
2020; 5
1997; 106
2020; 2
2021; 33
1995; 28
2015; 137
2015; 44
2013; 52
2022; 34
2010; 110
2019; 116
2016; 45
2014; 53
2021; 9
2021; 8
2021; 4
2004; 301
2021; 3
2018; 140
2019; 31
2020; 142
1999; 26
2015; 54
2021; 143
2021; 50
2011; 38
2019; 141
1995; 5
2017; 139
2016; 12
2022; 144
2016; 7
2012; 112
2007; 315
2013; 339
2022; 61
2017; 11
1921; 17
1988; 158
2022; 13
1969; 27
2016; 138
2021; 60
2016; 8
1994; 6
e_1_2_8_28_2
e_1_2_8_24_2
e_1_2_8_45_2
Cherkaoui M. Z. (e_1_2_8_49_2) 1995; 5
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_68_2
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_20_2
e_1_2_8_41_2
Chen X. G. (e_1_2_8_69_2) 2023; 145
e_1_2_8_87_1
e_1_2_8_22_2
e_1_2_8_64_2
e_1_2_8_85_1
e_1_2_8_62_2
e_1_2_8_83_2
e_1_2_8_1_1
e_1_2_8_60_2
e_1_2_8_81_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_36_1
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_15_1
e_1_2_8_57_2
e_1_2_8_78_1
e_1_2_8_30_2
e_1_2_8_55_2
e_1_2_8_76_2
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_11_2
e_1_2_8_32_2
e_1_2_8_74_1
e_1_2_8_51_2
e_1_2_8_72_2
e_1_2_8_70_2
e_1_2_8_27_2
e_1_2_8_29_1
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_67_2
e_1_2_8_80_2
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_88_1
e_1_2_8_21_2
e_1_2_8_63_2
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_61_2
e_1_2_8_84_2
e_1_2_8_40_2
e_1_2_8_82_1
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_56_2
e_1_2_8_79_2
e_1_2_8_37_1
e_1_2_8_58_1
Lines M. E. (e_1_2_8_2_2) 1977
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_77_1
e_1_2_8_10_2
e_1_2_8_52_2
e_1_2_8_75_2
e_1_2_8_33_1
e_1_2_8_50_2
e_1_2_8_73_2
e_1_2_8_71_1
References_xml – volume: 301
  start-page: 15
  year: 2004
  end-page: 45
  publication-title: Ferroelectrics
– volume: 139
  start-page: 8098
  year: 2017
  end-page: 8101
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 3975
  year: 2018
  end-page: 3980
  publication-title: J. Am. Chem. Soc.
– volume: 315
  start-page: 954
  year: 2007
  end-page: 959
  publication-title: Science
– volume: 50
  start-page: 8248
  year: 2021
  end-page: 8278
  publication-title: Chem. Soc. Rev.
– volume: 143
  start-page: 13816
  year: 2021
  end-page: 13823
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 1445
  year: 1999
  end-page: 1454
  publication-title: Liq. Cryst.
– volume: 142
  start-page: 13989
  year: 2020
  end-page: 13995
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1564
  year: 1992
  end-page: 1583
  publication-title: J. Mater. Res.
– volume: 144
  start-page: 8633
  year: 2022
  end-page: 8640
  publication-title: J. Am. Chem. Soc.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 357
  start-page: 306
  year: 2017
  end-page: 309
  publication-title: Science
– volume: 141
  start-page: 9349
  year: 2019
  end-page: 9357
  publication-title: J. Am. Chem. Soc.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 54
  start-page: 5026
  year: 2015
  end-page: 5043
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 347
  year: 1992
  end-page: 353
  publication-title: Liq. Cryst.
– volume: 5
  start-page: 1263
  year: 1995
  end-page: 1268
  publication-title: J. Phys. II
– volume: 13
  start-page: 2379
  year: 2022
  publication-title: Nat. Commun.
– volume: 117
  start-page: 4147
  year: 2017
  end-page: 4181
  publication-title: Chem. Rev.
– volume: 106
  start-page: 7816
  year: 1997
  end-page: 7821
  publication-title: J. Chem. Phys.
– volume: 339
  start-page: 425
  year: 2013
  end-page: 428
  publication-title: Science
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1111
  year: 2016
  end-page: 1121
  publication-title: Beilstein J. Org. Chem.
– volume: 19
  start-page: 623
  year: 1990
  end-page: 626
  publication-title: Chem. Lett.
– volume: 140
  start-page: 12296
  year: 2018
  end-page: 12302
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 697
  year: 2020
  end-page: 710
  publication-title: Matter
– volume: 116
  start-page: 5878
  year: 2019
  end-page: 5885
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 52
  start-page: 1928
  year: 2019
  end-page: 1938
  publication-title: Acc. Chem. Res.
– volume: 11
  start-page: 11739
  year: 2017
  end-page: 11745
  publication-title: ACS Nano
– volume: 28
  start-page: 5440
  year: 1995
  end-page: 5449
  publication-title: Macromolecules
– volume: 4
  start-page: 794
  year: 2021
  end-page: 820
  publication-title: Matter
– volume: 138
  start-page: 13175
  year: 2016
  end-page: 13178
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 17477
  year: 2020
  end-page: 17481
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 7
  start-page: 13635
  year: 2016
  publication-title: Nat. Commun.
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 145
  start-page: 3187
  year: 2023
  end-page: 3195
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 4453
  year: 2021
  end-page: 4465
  publication-title: J. Mater. Chem. C
– volume: 51
  start-page: 3871
  year: 2012
  end-page: 3876
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 625
  year: 1994
  end-page: 632
  publication-title: Chem. Mater.
– volume: 5
  start-page: 423
  year: 2020
  end-page: 439
  publication-title: Nat. Rev. Mater.
– volume: 17
  start-page: 475
  year: 1921
  publication-title: Phys. Rev.
– volume: 13
  start-page: 748
  year: 2022
  end-page: 753
  publication-title: Chem. Sci.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 145
  start-page: 3975
  year: 2023
  end-page: 3980
  publication-title: J. Am. Chem. Soc.
– volume: 144
  start-page: 22325
  year: 2022
  end-page: 22331
  publication-title: J. Am. Chem. Soc.
– volume: 143
  start-page: 21685
  year: 2021
  end-page: 21693
  publication-title: J. Am. Chem. Soc.
– volume: 158
  start-page: 1
  year: 1988
  end-page: 150
  publication-title: Mol. Cryst. Liq. Cryst.
– year: 1977
– volume: 142
  start-page: 545
  year: 2020
  end-page: 551
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1088
  year: 2021
  end-page: 1099
  publication-title: Trends Chem.
– volume: 110
  start-page: 3600
  year: 2010
  end-page: 3740
  publication-title: Chem. Rev.
– volume: 142
  start-page: 15205
  year: 2020
  end-page: 15218
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 387
  year: 1969
  end-page: 396
  publication-title: J. Phys. Soc. Jpn.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 140
  start-page: 8051
  year: 2018
  end-page: 8059
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 1467
  year: 2011
  end-page: 1493
  publication-title: Liq. Cryst.
– volume: 8
  start-page: 946
  year: 2016
  end-page: 952
  publication-title: Nat. Chem.
– volume: 112
  start-page: 1163
  year: 2012
  end-page: 1195
  publication-title: Chem. Rev.
– volume: 8
  start-page: 10283
  year: 2020
  end-page: 10289
  publication-title: J. Mater. Chem. C
– volume: 144
  start-page: 19559
  year: 2022
  end-page: 19566
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 15660
  year: 2015
  end-page: 15663
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 4350
  year: 2014
  end-page: 4354
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 7076
  year: 2013
  end-page: 7078
  publication-title: Angew. Chem. Int. Ed.
– volume: 361
  start-page: 151
  year: 2018
  end-page: 155
  publication-title: Science
– volume: 60
  start-page: 10730
  year: 2021
  end-page: 10735
  publication-title: Angew. Chem. Int. Ed.
– volume: 45
  start-page: 3811
  year: 2016
  end-page: 3827
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 2026
  year: 1994
  end-page: 2039
  publication-title: Chem. Mater.
– volume: 463
  start-page: 789
  year: 2010
  end-page: 792
  publication-title: Nature
– volume: 60
  start-page: 758
  year: 2021
  end-page: 765
  publication-title: Angew. Chem. Int. Ed.
– volume: 44
  start-page: 3834
  year: 2015
  end-page: 3860
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.201808088
– ident: e_1_2_8_38_2
  doi: 10.1021/jacs.1c06108
– ident: e_1_2_8_37_1
– ident: e_1_2_8_14_1
  doi: 10.1143/JPSJ.27.387
– ident: e_1_2_8_39_2
  doi: 10.1021/jacs.1c11000
– ident: e_1_2_8_64_2
  doi: 10.1016/j.trechm.2021.09.010
– ident: e_1_2_8_6_2
  doi: 10.1080/00268948808075350
– ident: e_1_2_8_33_1
  doi: 10.1126/sciadv.aay4213
– ident: e_1_2_8_50_2
  doi: 10.1021/ma00120a007
– ident: e_1_2_8_76_2
  doi: 10.1002/anie.202011138
– ident: e_1_2_8_83_2
  doi: 10.1039/D1SC06781H
– ident: e_1_2_8_12_2
  doi: 10.1021/cr200174w
– ident: e_1_2_8_36_1
  doi: 10.1073/pnas.1817866116
– ident: e_1_2_8_20_2
  doi: 10.1002/anie.202007660
– ident: e_1_2_8_35_1
  doi: 10.1126/science.aas9330
– ident: e_1_2_8_59_2
  doi: 10.1038/nature08731
– ident: e_1_2_8_44_1
– ident: e_1_2_8_67_2
  doi: 10.1021/jacs.8b08286
– ident: e_1_2_8_63_2
  doi: 10.1039/C9CS00504H
– ident: e_1_2_8_72_2
  doi: 10.1021/cr900382t
– ident: e_1_2_8_30_2
  doi: 10.1002/anie.201200407
– ident: e_1_2_8_58_1
– volume: 145
  start-page: 3975
  year: 2023
  ident: e_1_2_8_69_2
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_8_13_2
  doi: 10.1039/C5CS00308C
– ident: e_1_2_8_71_1
– ident: e_1_2_8_61_2
  doi: 10.1038/nchem.2567
– ident: e_1_2_8_81_2
  doi: 10.1021/jacs.9b03369
– ident: e_1_2_8_11_2
  doi: 10.1021/jacs.0c07055
– ident: e_1_2_8_3_2
  doi: 10.1126/science.1129564
– ident: e_1_2_8_47_2
  doi: 10.1021/cm00047a024
– ident: e_1_2_8_66_1
– ident: e_1_2_8_86_1
  doi: 10.1021/jacs.2c11213
– ident: e_1_2_8_88_1
  doi: 10.1002/anie.202210809
– ident: e_1_2_8_41_2
  doi: 10.1038/s41467-022-30085-1
– ident: e_1_2_8_31_2
  doi: 10.1002/anie.201208952
– ident: e_1_2_8_18_2
  doi: 10.1039/D0TC02414G
– ident: e_1_2_8_77_1
– ident: e_1_2_8_65_2
  doi: 10.1002/anie.202209340
– ident: e_1_2_8_19_2
  doi: 10.1021/jacs.9b11697
– ident: e_1_2_8_26_2
  doi: 10.1002/anie.202200135
– ident: e_1_2_8_56_2
  doi: 10.1002/anie.201411073
– ident: e_1_2_8_46_2
  doi: 10.1080/02678299208030402
– ident: e_1_2_8_15_1
– ident: e_1_2_8_8_2
  doi: 10.1080/02678292.2011.625126
– ident: e_1_2_8_55_2
  doi: 10.1039/C4CS00524D
– ident: e_1_2_8_9_1
– ident: e_1_2_8_53_1
– ident: e_1_2_8_54_2
  doi: 10.1002/anie.201401067
– ident: e_1_2_8_29_1
– ident: e_1_2_8_7_2
  doi: 10.1080/00150190490464827
– ident: e_1_2_8_43_1
  doi: 10.1021/jacs.2c08667
– ident: e_1_2_8_60_2
  doi: 10.1126/science.1229675
– ident: e_1_2_8_16_2
  doi: 10.1021/acsnano.7b07090
– volume: 5
  start-page: 1263
  year: 1995
  ident: e_1_2_8_49_2
  publication-title: J. Phys. II
– ident: e_1_2_8_42_2
  doi: 10.1021/jacs.2c01069
– ident: e_1_2_8_4_1
  doi: 10.1103/PhysRev.17.475
– ident: e_1_2_8_10_2
  doi: 10.1021/acs.accounts.8b00677
– ident: e_1_2_8_25_2
  doi: 10.1039/D0TC05800A
– ident: e_1_2_8_40_2
  doi: 10.1002/advs.202102614
– volume-title: Principles and Applications of Ferroelectrics and Related Materials
  year: 1977
  ident: e_1_2_8_2_2
– ident: e_1_2_8_27_2
  doi: 10.1002/anie.202204135
– ident: e_1_2_8_78_1
– ident: e_1_2_8_82_1
– ident: e_1_2_8_24_2
  doi: 10.1002/anie.202102195
– ident: e_1_2_8_21_2
  doi: 10.1016/j.matt.2020.12.018
– ident: e_1_2_8_74_1
– ident: e_1_2_8_1_1
– ident: e_1_2_8_75_2
  doi: 10.3762/bjoc.12.107
– ident: e_1_2_8_62_2
  doi: 10.1126/science.aai8535
– ident: e_1_2_8_51_2
  doi: 10.1063/1.473739
– ident: e_1_2_8_79_2
  doi: 10.1021/jacs.5b11088
– ident: e_1_2_8_87_1
  doi: 10.1021/jacs.2c12951
– ident: e_1_2_8_17_2
  doi: 10.1021/jacs.7b03633
– ident: e_1_2_8_5_1
– ident: e_1_2_8_89_1
  doi: 10.1557/JMR.1992.1564
– ident: e_1_2_8_22_2
  doi: 10.1002/adma.202005760
– ident: e_1_2_8_32_2
  doi: 10.1038/ncomms13635
– ident: e_1_2_8_45_2
  doi: 10.1246/cl.1990.623
– ident: e_1_2_8_48_2
  doi: 10.1021/cm00041a012
– ident: e_1_2_8_68_2
  doi: 10.1021/jacs.7b12524
– ident: e_1_2_8_80_2
  doi: 10.1021/jacs.6b08817
– ident: e_1_2_8_73_2
  doi: 10.1021/acs.chemrev.6b00517
– ident: e_1_2_8_23_2
  doi: 10.1038/s41578-020-0181-5
– ident: e_1_2_8_84_2
  doi: 10.1021/jacs.0c06936
– ident: e_1_2_8_70_2
  doi: 10.1016/j.matt.2019.12.008
– ident: e_1_2_8_85_1
  doi: 10.1021/jacs.8b04600
– ident: e_1_2_8_52_2
  doi: 10.1080/026782999203779
– ident: e_1_2_8_57_2
  doi: 10.1002/anie.202213600
– ident: e_1_2_8_28_2
  doi: 10.1002/adma.202204119
SSID ssj0028806
Score 2.6294658
Snippet Chiral ferroelectric crystals with intriguing features have attracted great interest and many with point or axial chirality based on the stereocarbon have been...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202306732
SubjectTerms Chirality
Crystals
Enantiomers
Ferroelectric crystals
Ferroelectric Domain
Ferroelectric materials
Ferroelectricity
Hysteresis loops
Light microscopy
Mechanical properties
Modulus of elasticity
Molecular Ferroelectric
Optical microscopy
Phase transitions
Polarized light
Single-Component
Structural Phase Transition
Sulfur
Sulfur-Chiral
Title The First Enantiomeric Stereogenic Sulfur‐Chiral Organic Ferroelectric Crystals
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202306732
https://www.ncbi.nlm.nih.gov/pubmed/37272456
https://www.proquest.com/docview/2841247716
https://www.proquest.com/docview/2822708233
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB6hvcBl-d8N20VBWmlPaeufxM2x6rYqSFRil0q9RbHjiGqrFKXNAU48wj4jT8JMnAQKQkjLLVbsxPHM2N_Enm8ALsI41OgW0LkwHgVS8TTQeWYCI61hOsuiUUrxzu8X0Xwp363C1S9R_I4fovvhRpZRz9dk4KneDX6ShlIEdp_XEFoJmoSZiIg8_-q644_iqJwuvEiIgLLQt6yNQz44bH64Kv0BNQ-Ra730zB5D2nbanTi57Vd73Tdff-Nz_J-vegLHDS71x06RnsIDWzyDh5M2Hdxz-IAK5c_WCBb9KR2eobB9nEP9GxSM3aIa0nW1yavy-7e7yad1iU9zgZ7Gn9my3LqEO1ialF8Qkm52L2A5m36czIMmH0NgBHYmQLnRJipKF408NzzNhJJxZHLFMqXlyMTM6FjKPJVE5MfzTMdDy6RVubUcneGXcFRsC3sKPssiYZlNhcqVDG04Yhb9KMbi2AyFUpkHQSuPxDRk5ZQzY5M4mmWe0EAl3UB5cNnV_-xoOv5as9eKN2nMdZfgGo04R6Hv6MGb7jYOMO2epIXdVlSHc0X7ksKDE6cW3asEbWcjFPWA18L9Rx-S8eLttCu9uk-jM3hE1-4oYg-O9mVlzxEe7fXr2gR-ABRtBhU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4hONBLebS0Li9XQuLkkH3YGx9RSBRekSggcbO867WKiJLKxIf2xE_gN_JLmPHGRilCSO0tjtfxZmdm99udmW8A9sI41LgtoLgwHgVS8TTQeWYCI61hOsuiTkr5zufDaHAtT27COpqQcmEcP0Rz4EaWUc3XZOB0IH3wwhpKKdgtXmFoJXAWXiInHdnm0Y-GQYqjeroEIyECqkNf8za2-cH88_Pr0iuwOY9dq8WnvwK67raLOblrlVPdMn_-YnT8r_-1Ch9n0NQ_dLq0Bgt2vA7L3boi3Ce4QJ3y-7eIF_0exc9Q5j5Oo_4lysZOUBPpcznKy-Lp4bH787bAX3O5nsbv26KYuJo7eNUtfiMqHd1_hut-76o7CGYlGQIjsDMBio78qChgtPPc8DQTSsaRyRXLlJYdEzOjYynzVBKXH88zHbctk1bl1nLcD2_A4ngytl_BZ1kkLLOpULmSoQ07zOJWirE4Nm2hVOZBUAskMTO-ciqbMUoc0zJPaKCSZqA82G_a_3JMHW-23Krlm8ws9j7BZRqhjsLtowffm9s4wORAScd2UlIbzhW5JoUHX5xeNK8S5NFGNOoBr6T7Th-Sw-Fxr7n69i8P7cLy4Or8LDk7Hp5uwgf63kUmbsHitCjtNqKlqd6p7OEZfroKMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VILW9AH1BKJRUqsQpy_qReHNEy0ZA21UfIHGLEj9U1NUuCpsDnPgJ_Y39JZ2JNynbqqrU3uLESRzPjP1N7PkG4E2cxiW6BbQvjCeRVLyISmd0pKXVrDQmGRQU7_x-nByfy9OL-OJeFL_nh-h-uJFlNOM1GfiVcQc_SUMpArvHGwitBA7CqzJBF4tg0aeOQIqjdvr4IiEiSkPf0jb2-cHy_cvT0m9Ycxm6NnNPtg5F22q_5eRrr56XPX37C6Hj_3zWBqwtgGl46DXpCTyw06fwaNjmg3sGH1GjwuwS0WI4ot0zFLePg2j4GSVjZ6iHdFxPXF19v_s2_HJZ4dN8pKcOM1tVM59xB0vD6gYx6eT6OZxno7PhcbRIyBBpgY2JUHC0ioriRSt3mhdGKJkm2ilmVCkHOmW6TKV0hSQmP-5MmfYtk1Y5azl6wy9gZTqb2i0ImUmEZbYQyikZ23jALDpSjKWp7gulTABRK49cL9jKKWnGJPc8yzynjsq7jgpgv6t_5Xk6_lhzpxVvvrDX6xwnaQQ6Cp3HAF53l7GDafmkmNpZTXU4V7QwKQLY9GrRvUrQejZi0QB4I9y_tCE_HJ-MutL2v9y0Bw8_HGX5u5Px25fwmE77bYk7sDKvaruLUGlevmqs4QdQLQjh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+First+Enantiomeric+Stereogenic+Sulfur-Chiral+Organic+Ferroelectric+Crystals&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Peng%2C+Hang&rft.au=Xu%2C+Zhe-Kun&rft.au=Du%2C+Ye&rft.au=Li%2C+Peng-Fei&rft.date=2023-08-01&rft.eissn=1521-3773&rft.volume=62&rft.issue=31&rft.spage=e202306732&rft_id=info:doi/10.1002%2Fanie.202306732&rft_id=info%3Apmid%2F37272456&rft.externalDocID=37272456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon