Highly Luminescent Earth‐Benign Organometallic Manganese Halide Crystals with Ultrahigh Thermal Stability of Emission from 4 to 623 K
The phosphor‐converted light‐emitting diode (PC‐LED) has become an indispensable solid‐state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare‐earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here,...
Saved in:
| Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 8; pp. e2205981 - n/a |
|---|---|
| Main Authors | , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Germany
Wiley Subscription Services, Inc
01.02.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1613-6810 1613-6829 1613-6829 |
| DOI | 10.1002/smll.202205981 |
Cover
| Abstract | The phosphor‐converted light‐emitting diode (PC‐LED) has become an indispensable solid‐state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare‐earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI2(XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron–phonon coupling and the unique rigid crystal structure of MnI2(XanPO) over the whole temperature range based on the temperature‐dependent photoluminescence (PL) and single crystal X‐ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC‐LEDs with a power efficacy of 102.5 lm W−1, an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m−2 are fabricated by integrating MnI2(XanPO) with commercial blue LEDs. Moreover, the applicability of MnI2(XanPO) in both micro‐LEDs and organic light‐emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications.
A highly efficient and thermally stable manganese halide crystal, MnI2(XanPO) is demonstrated. The low electron–phono coupling along with rigid crystal structure contributes to excellent photoluminescent quantum yield of 94% with unprecedented near zero thermal quenching from 4 to 623 K. The crystals find their applications in light emitting diodes and micro light emitting diodes with excellent external quantum efficiency (EQE) up to 22.7% and power efficacy as high as 102.5 lm W−1. |
|---|---|
| AbstractList | The phosphor‐converted light‐emitting diode (PC‐LED) has become an indispensable solid‐state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare‐earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI
2
(XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron–phonon coupling and the unique rigid crystal structure of MnI
2
(XanPO) over the whole temperature range based on the temperature‐dependent photoluminescence (PL) and single crystal X‐ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC‐LEDs with a power efficacy of 102.5 lm W
−1
, an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m
−2
are fabricated by integrating MnI
2
(XanPO) with commercial blue LEDs. Moreover, the applicability of MnI
2
(XanPO) in both micro‐LEDs and organic light‐emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications. The phosphor‐converted light‐emitting diode (PC‐LED) has become an indispensable solid‐state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare‐earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI2(XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron–phonon coupling and the unique rigid crystal structure of MnI2(XanPO) over the whole temperature range based on the temperature‐dependent photoluminescence (PL) and single crystal X‐ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC‐LEDs with a power efficacy of 102.5 lm W−1, an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m−2 are fabricated by integrating MnI2(XanPO) with commercial blue LEDs. Moreover, the applicability of MnI2(XanPO) in both micro‐LEDs and organic light‐emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications. The phosphor-converted light-emitting diode (PC-LED) has become an indispensable solid-state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare-earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI2 (XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron-phonon coupling and the unique rigid crystal structure of MnI2 (XanPO) over the whole temperature range based on the temperature-dependent photoluminescence (PL) and single crystal X-ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC-LEDs with a power efficacy of 102.5 lm W-1 , an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m-2 are fabricated by integrating MnI2 (XanPO) with commercial blue LEDs. Moreover, the applicability of MnI2 (XanPO) in both micro-LEDs and organic light-emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications.The phosphor-converted light-emitting diode (PC-LED) has become an indispensable solid-state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare-earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI2 (XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron-phonon coupling and the unique rigid crystal structure of MnI2 (XanPO) over the whole temperature range based on the temperature-dependent photoluminescence (PL) and single crystal X-ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC-LEDs with a power efficacy of 102.5 lm W-1 , an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m-2 are fabricated by integrating MnI2 (XanPO) with commercial blue LEDs. Moreover, the applicability of MnI2 (XanPO) in both micro-LEDs and organic light-emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications. The phosphor‐converted light‐emitting diode (PC‐LED) has become an indispensable solid‐state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare‐earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI2(XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron–phonon coupling and the unique rigid crystal structure of MnI2(XanPO) over the whole temperature range based on the temperature‐dependent photoluminescence (PL) and single crystal X‐ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC‐LEDs with a power efficacy of 102.5 lm W−1, an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m−2 are fabricated by integrating MnI2(XanPO) with commercial blue LEDs. Moreover, the applicability of MnI2(XanPO) in both micro‐LEDs and organic light‐emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications. A highly efficient and thermally stable manganese halide crystal, MnI2(XanPO) is demonstrated. The low electron–phono coupling along with rigid crystal structure contributes to excellent photoluminescent quantum yield of 94% with unprecedented near zero thermal quenching from 4 to 623 K. The crystals find their applications in light emitting diodes and micro light emitting diodes with excellent external quantum efficiency (EQE) up to 22.7% and power efficacy as high as 102.5 lm W−1. The phosphor-converted light-emitting diode (PC-LED) has become an indispensable solid-state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare-earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI (XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron-phonon coupling and the unique rigid crystal structure of MnI (XanPO) over the whole temperature range based on the temperature-dependent photoluminescence (PL) and single crystal X-ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC-LEDs with a power efficacy of 102.5 lm W , an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m are fabricated by integrating MnI (XanPO) with commercial blue LEDs. Moreover, the applicability of MnI (XanPO) in both micro-LEDs and organic light-emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications. |
| Author | Kuo, Hao‐Chung Tan, Guang‐Hsun Chen, Yi‐Sheng Chen, Li‐Yin Lin, Hao‐Cheng Lee, Tzu‐Yi Miao, Wen‐Chien Wong, Ken‐Tsung Lin, Hao‐Wu Chuang, Yung‐Tang Chen, Yu‐Neng Hsieh, Chung‐An |
| Author_xml | – sequence: 1 givenname: Guang‐Hsun surname: Tan fullname: Tan, Guang‐Hsun organization: National Tsing Hua University – sequence: 2 givenname: Yu‐Neng surname: Chen fullname: Chen, Yu‐Neng organization: National Taiwan University – sequence: 3 givenname: Yung‐Tang surname: Chuang fullname: Chuang, Yung‐Tang organization: National Tsing Hua University – sequence: 4 givenname: Hao‐Cheng surname: Lin fullname: Lin, Hao‐Cheng organization: National Tsing Hua University – sequence: 5 givenname: Chung‐An surname: Hsieh fullname: Hsieh, Chung‐An organization: National Yang Ming Chiao Tung University – sequence: 6 givenname: Yi‐Sheng surname: Chen fullname: Chen, Yi‐Sheng organization: National Taiwan University – sequence: 7 givenname: Tzu‐Yi surname: Lee fullname: Lee, Tzu‐Yi organization: National Yang Ming Chiao Tung University – sequence: 8 givenname: Wen‐Chien surname: Miao fullname: Miao, Wen‐Chien organization: Hon Hai Research Institute – sequence: 9 givenname: Hao‐Chung surname: Kuo fullname: Kuo, Hao‐Chung organization: National Yang Ming Chiao Tung University – sequence: 10 givenname: Li‐Yin surname: Chen fullname: Chen, Li‐Yin organization: National Yang Ming Chiao Tung University – sequence: 11 givenname: Ken‐Tsung surname: Wong fullname: Wong, Ken‐Tsung email: kenwong@ntu.edu.tw organization: Academia Sinica – sequence: 12 givenname: Hao‐Wu orcidid: 0000-0003-4216-7995 surname: Lin fullname: Lin, Hao‐Wu email: hwlin@mx.nthu.edu.tw organization: National Tsing Hua University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36507613$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtv1DAUha2qqC_YskSW2HQzgx-JnSxhNDCIVF20XUe240xcOXaxHVXZsWPLb-SX4DJlkCpVXdnW_c691-ecgkPnnQbgLUZLjBD5EEdrlwQRgsq6wgfgBDNMF6wi9eH-jtExOI3xFiGKScGPwDFlJeK5eAJ-bsx2sDNsptE4HZV2Ca5FSMPvH78-aWe2Dl6GrXB-1ElYaxS8EC6_ddRwI6zpNFyFOeZahPcmDfDGpiCG3BReDzqMwsKrJKSxJs3Q93A9mhiNd7APfoQFTB4yQuG31-BVn3voN4_nGbj5vL5ebRbN5Zevq4_NQlFO8aIvalHwjiOkaimJKjFHlVScYF5JiWrFkeokrbuS8YrRmhGuOya46pTsS43oGTjf9b0L_vukY2rzQkpbm7_kp9gSXlLGKkRZRt8_QW_9FFzeLlO8Khllf6l3j9QkR921d8GMIsztP4szsNwBKvgYg-73CEbtQ4btQ4btPsMsKJ4IlEkiZdOys8Y-L6t3sntj9fzCkPbqomn-a_8AOoCyBQ |
| CitedBy_id | crossref_primary_10_3390_ma17184459 crossref_primary_10_71267_mencom_7577 crossref_primary_10_1002_adma_202408777 crossref_primary_10_1016_j_cej_2023_145936 crossref_primary_10_1002_anie_202405310 crossref_primary_10_1021_acsami_4c09396 crossref_primary_10_1002_ange_202405310 crossref_primary_10_1002_anie_202419085 crossref_primary_10_1007_s11426_024_2345_0 crossref_primary_10_1002_adom_202301010 crossref_primary_10_3390_molecules30061319 crossref_primary_10_1002_adom_202302132 crossref_primary_10_1002_adom_202302384 crossref_primary_10_1002_ange_202419085 crossref_primary_10_1002_adom_202302185 |
| Cites_doi | 10.1016/j.jlumin.2021.117965 10.1021/acs.chemmater.2c00252 10.1021/acsami.2c04407 10.1016/j.optmat.2009.03.011 10.1021/acs.chemmater.9b03782 10.1038/s41467-020-18482-w 10.1039/C8DT01041B 10.1002/adfm.202009973 10.1021/acs.chemmater.0c02231 10.1016/j.jallcom.2021.163131 10.1039/C8TC00511G 10.1016/j.cej.2020.127664 10.1016/j.cej.2019.124004 10.1149/2.0111603jss 10.1016/j.cej.2020.124297 10.1002/adfm.202100855 10.1039/D0TC05137C 10.1002/adom.202100862 10.1021/jacs.9b08780 10.1002/asia.201501463 10.1016/j.cej.2020.125912 10.1016/j.gsf.2018.12.005 10.1002/adma.201802489 10.1016/j.jallcom.2020.156324 10.1002/lpor.202100309 10.1021/jacs.8b06021 10.1021/acs.jpclett.2c01573 10.1021/acsenergylett.1c00250 10.1039/D1SC01076J 10.1039/c1cp20404a 10.1002/ange.202105413 10.1016/S0022-2313(02)00448-9 10.1016/j.inoche.2018.04.023 10.1016/j.matt.2019.08.016 10.1021/acs.chemmater.8b05300 10.1039/D1TC02330F 10.1016/j.cej.2021.128979 10.1016/j.nanoen.2021.106166 10.1016/j.cej.2021.129886 10.1021/cm8030768 10.1039/D1QI00556A 10.1021/acs.jpcc.1c07221 10.1002/crat.201800236 10.1107/S0021889811038970 10.1021/acs.chemmater.2c01052 10.1002/adom.202101751 10.1039/D1TC02550C 10.1039/C4DT03694H 10.1002/adfm.202011191 10.1039/D1TC04890B 10.1002/adom.201801160 10.1016/j.jeurceramsoc.2014.10.002 10.1016/j.optmat.2004.10.009 10.1021/acsanm.2c00782 10.1021/acsmaterialslett.0c00603 10.1039/C9DT03283E 10.1093/oso/9780199298624.001.0001 10.1016/j.mtphys.2022.100703 10.1021/acs.jpcc.5b08828 10.1107/S1600576721002910 10.1039/D2TC02020C 10.1002/chem.201703875 10.1016/j.jlumin.2022.118814 10.1007/s12274-022-4447-7 10.1063/1.111832 10.1038/nmat4843 10.1149/1.3600349 10.1021/acssuschemeng.1c02667 10.1002/adma.201605739 10.1002/adom.201901187 10.1002/adom.202101700 10.1111/jace.18319 10.1016/j.ccr.2020.213331 10.1039/D1TC05411B 10.1039/C9TC00607A 10.1038/s41467-020-18119-y |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. 2023 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2023 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| DOI | 10.1002/smll.202205981 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1613-6829 |
| EndPage | n/a |
| ExternalDocumentID | 36507613 10_1002_smll_202205981 SMLL202205981 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Science and Technology Council of Taiwan funderid: 111‐2636‐E‐007‐024; 111‐2634‐F‐007‐007 – fundername: National Science and Technology Council of Taiwan grantid: 111-2634-F-007-007 – fundername: National Science and Technology Council of Taiwan grantid: 111-2636-E-007-024 |
| GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF LH4 AAYOK NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| ID | FETCH-LOGICAL-c3731-f49a47d700c9bb2c51708bc72178bb09c70cdb39d5678639627ed6a7cdcbf5e03 |
| IEDL.DBID | DR2 |
| ISSN | 1613-6810 1613-6829 |
| IngestDate | Thu Oct 02 04:14:30 EDT 2025 Fri Jul 25 12:12:48 EDT 2025 Wed Feb 19 02:25:36 EST 2025 Thu Apr 24 23:07:08 EDT 2025 Wed Oct 01 03:38:46 EDT 2025 Wed Jan 22 16:23:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | zero thermal quenching emission light-emitting diodes electron-phonon coupling coordination environments manganese(II) halide crystals |
| Language | English |
| License | 2022 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3731-f49a47d700c9bb2c51708bc72178bb09c70cdb39d5678639627ed6a7cdcbf5e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4216-7995 |
| PMID | 36507613 |
| PQID | 2778563636 |
| PQPubID | 1046358 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2753668036 proquest_journals_2778563636 pubmed_primary_36507613 crossref_primary_10_1002_smll_202205981 crossref_citationtrail_10_1002_smll_202205981 wiley_primary_10_1002_smll_202205981_SMLL202205981 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
| PublicationTitleAlternate | Small |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2015; 35 2011; 158 2019; 10 2021; 125 2019; 54 2021; 404 2022; 25 2011; 13 2020; 11 2005; 27 2020; 845 2022; 897 2018; 47 1994; 64 2018; 6 2021; 31 2021; 234 2015; 44 2002; 100 2022; 34 2018; 30 2020; 416 2022; 246 2021; 9 2019; 7 2021; 8 2021; 6 2021; 87 2021; 3 2018; 140 2009; 21 2019; 31 2021; 421 2021; 420 2019; 1 2017; 23 2006 2017; 29 2020; 386 2020; 389 2020; 32 2019; 141 2016; 11 2016; 5 2021; 15 2021; 54 2021; 12 2009; 31 2022; 5 2017; 16 2019; 48 2021; 415 2018; 92 2022; 13 2022; 14 2011; 44 2022; 15 2015; 119 2021; 133 2022; 10 2022; 105 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Henderson B. (e_1_2_8_67_1) 2006 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 47 start-page: 7306 year: 2018 publication-title: Dalton Trans. – volume: 11 start-page: 4329 year: 2020 publication-title: Nat. Commun. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 290 year: 2021 publication-title: ACS Mater. Lett. – volume: 32 start-page: 6256 year: 2020 publication-title: Chem. Mater. – volume: 54 year: 2019 publication-title: Cryst. Res. Technol. – volume: 15 year: 2021 publication-title: Laser Photonics Rev. – volume: 21 start-page: 2077 year: 2009 publication-title: Chem. Mater. – volume: 416 year: 2020 publication-title: Coord. Chem. Rev. – volume: 31 start-page: 1620 year: 2009 publication-title: Opt. Mater. – volume: 44 start-page: 1272 year: 2011 publication-title: J. Appl. Crystallogr. – volume: 105 start-page: 3403 year: 2022 publication-title: J. Am. Ceram. Soc. – volume: 92 start-page: 145 year: 2018 publication-title: Inorg. Chem. Commun. – volume: 15 start-page: 8486 year: 2022 publication-title: Nano Res. – volume: 44 start-page: 3289 year: 2015 publication-title: Dalton Trans. – volume: 5 start-page: 4623 year: 2022 publication-title: ACS Appl. Nano Mater. – volume: 10 start-page: 3461 year: 2022 publication-title: J. Mater. Chem. C – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 234 year: 2021 publication-title: J. Lumin. – volume: 389 year: 2020 publication-title: Chem. Eng. J. – volume: 11 start-page: 981 year: 2016 publication-title: Chem. ‐ Asian J. – volume: 64 start-page: 1687 year: 1994 publication-title: Appl. Phys. Lett. – volume: 10 start-page: 1285 year: 2019 publication-title: Geosci. Front. – volume: 897 year: 2022 publication-title: J. Alloys Compd. – volume: 54 start-page: 1006 year: 2021 publication-title: J. Appl. Crystallogr. – volume: 35 start-page: 859 year: 2015 publication-title: J. Eur. Ceram. Soc. – volume: 9 start-page: 2047 year: 2021 publication-title: J. Mater. Chem. C – volume: 158 start-page: J246 year: 2011 publication-title: J. Electrochem. Soc. – volume: 5 start-page: R34 year: 2016 publication-title: ECS J. Solid State Sci. Technol. – volume: 404 year: 2021 publication-title: Chem. Eng. J. – volume: 16 start-page: 543 year: 2017 publication-title: Nat. Mater. – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 12 start-page: 8537 year: 2021 publication-title: Chem. Sci. – volume: 34 start-page: 4039 year: 2022 publication-title: Chem. Mater. – volume: 9 start-page: 8848 year: 2021 publication-title: ACS Sustainable Chem. Eng. – volume: 23 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 7494 year: 2019 publication-title: J. Mater. Chem. C – volume: 1 start-page: 1644 year: 2019 publication-title: Matter – volume: 87 year: 2021 publication-title: Nano Energy – volume: 386 year: 2020 publication-title: Chem. Eng. J. – volume: 10 year: 2022 publication-title: J. Mater. Chem. C – volume: 13 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 140 start-page: 9730 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 2978 year: 2018 publication-title: J. Mater. Chem. C – volume: 11 start-page: 4649 year: 2020 publication-title: Nat. Commun. – volume: 119 year: 2015 publication-title: J. Phys. Chem. C – volume: 34 start-page: 5690 year: 2022 publication-title: Chem. Mater. – volume: 31 start-page: 3851 year: 2019 publication-title: Chem. Mater. – volume: 31 year: 2019 publication-title: Chem. Mater. – volume: 100 start-page: 163 year: 2002 publication-title: J. Lumin. – volume: 13 start-page: 5794 year: 2022 publication-title: J. Phys. Chem. Lett. – volume: 125 year: 2021 publication-title: J. Phys. Chem. C – volume: 415 year: 2021 publication-title: Chem. Eng. J. – volume: 845 year: 2020 publication-title: J. Alloys Compd. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 25 year: 2022 publication-title: Mater. Today Phys. – volume: 48 year: 2019 publication-title: Dalton Trans. – volume: 9 start-page: 9952 year: 2021 publication-title: J. Mater. Chem. C – volume: 133 year: 2021 publication-title: Angew. Chem. – volume: 10 start-page: 2955 year: 2022 publication-title: J. Mater. Chem. C – year: 2006 – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 421 year: 2021 publication-title: Chem. Eng. J. – volume: 8 start-page: 3767 year: 2021 publication-title: Inorg. Chem. Front. – volume: 420 year: 2021 publication-title: Chem. Eng. J. – volume: 9 year: 2021 publication-title: J. Mater. Chem. C – volume: 246 year: 2022 publication-title: J. Lumin. – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 6 start-page: 1901 year: 2021 publication-title: ACS Energy Lett. – volume: 27 start-page: 1456 year: 2005 publication-title: Opt. Mater. – ident: e_1_2_8_38_1 doi: 10.1016/j.jlumin.2021.117965 – ident: e_1_2_8_71_1 doi: 10.1021/acs.chemmater.2c00252 – ident: e_1_2_8_9_1 doi: 10.1021/acsami.2c04407 – ident: e_1_2_8_39_1 doi: 10.1016/j.optmat.2009.03.011 – ident: e_1_2_8_45_1 doi: 10.1021/acs.chemmater.9b03782 – ident: e_1_2_8_52_1 doi: 10.1038/s41467-020-18482-w – ident: e_1_2_8_11_1 doi: 10.1039/C8DT01041B – ident: e_1_2_8_23_1 doi: 10.1002/adfm.202009973 – ident: e_1_2_8_70_1 doi: 10.1021/acs.chemmater.0c02231 – ident: e_1_2_8_47_1 doi: 10.1016/j.jallcom.2021.163131 – ident: e_1_2_8_56_1 doi: 10.1039/C8TC00511G – ident: e_1_2_8_53_1 doi: 10.1016/j.cej.2020.127664 – ident: e_1_2_8_57_1 doi: 10.1016/j.cej.2019.124004 – ident: e_1_2_8_63_1 doi: 10.1149/2.0111603jss – ident: e_1_2_8_54_1 doi: 10.1016/j.cej.2020.124297 – ident: e_1_2_8_21_1 doi: 10.1002/adfm.202100855 – ident: e_1_2_8_32_1 doi: 10.1039/D0TC05137C – ident: e_1_2_8_68_1 doi: 10.1002/adom.202100862 – ident: e_1_2_8_7_1 doi: 10.1021/jacs.9b08780 – ident: e_1_2_8_6_1 doi: 10.1002/asia.201501463 – ident: e_1_2_8_59_1 doi: 10.1016/j.cej.2020.125912 – ident: e_1_2_8_5_1 doi: 10.1016/j.gsf.2018.12.005 – ident: e_1_2_8_49_1 doi: 10.1002/adma.201802489 – ident: e_1_2_8_30_1 doi: 10.1016/j.jallcom.2020.156324 – ident: e_1_2_8_17_1 doi: 10.1002/lpor.202100309 – ident: e_1_2_8_46_1 doi: 10.1021/jacs.8b06021 – ident: e_1_2_8_58_1 doi: 10.1021/acs.jpclett.2c01573 – ident: e_1_2_8_37_1 doi: 10.1021/acsenergylett.1c00250 – ident: e_1_2_8_69_1 doi: 10.1039/D1SC01076J – ident: e_1_2_8_74_1 doi: 10.1039/c1cp20404a – ident: e_1_2_8_12_1 doi: 10.1002/ange.202105413 – ident: e_1_2_8_40_1 doi: 10.1016/S0022-2313(02)00448-9 – ident: e_1_2_8_29_1 doi: 10.1016/j.inoche.2018.04.023 – ident: e_1_2_8_13_1 doi: 10.1016/j.matt.2019.08.016 – ident: e_1_2_8_2_1 doi: 10.1021/acs.chemmater.8b05300 – ident: e_1_2_8_24_1 doi: 10.1039/D1TC02330F – ident: e_1_2_8_51_1 doi: 10.1016/j.cej.2021.128979 – ident: e_1_2_8_15_1 doi: 10.1016/j.nanoen.2021.106166 – ident: e_1_2_8_26_1 doi: 10.1016/j.cej.2021.129886 – ident: e_1_2_8_61_1 doi: 10.1021/cm8030768 – ident: e_1_2_8_34_1 doi: 10.1039/D1QI00556A – ident: e_1_2_8_28_1 doi: 10.1021/acs.jpcc.1c07221 – ident: e_1_2_8_31_1 doi: 10.1002/crat.201800236 – ident: e_1_2_8_35_1 doi: 10.1107/S0021889811038970 – ident: e_1_2_8_60_1 doi: 10.1021/acs.chemmater.2c01052 – ident: e_1_2_8_72_1 doi: 10.1002/adom.202101751 – ident: e_1_2_8_20_1 doi: 10.1039/D1TC02550C – ident: e_1_2_8_10_1 doi: 10.1039/C4DT03694H – ident: e_1_2_8_25_1 doi: 10.1002/adfm.202011191 – ident: e_1_2_8_50_1 doi: 10.1039/D1TC04890B – ident: e_1_2_8_19_1 doi: 10.1002/adom.201801160 – ident: e_1_2_8_75_1 doi: 10.1016/j.jeurceramsoc.2014.10.002 – ident: e_1_2_8_41_1 doi: 10.1016/j.optmat.2004.10.009 – ident: e_1_2_8_27_1 doi: 10.1021/acsanm.2c00782 – ident: e_1_2_8_43_1 doi: 10.1021/acsmaterialslett.0c00603 – ident: e_1_2_8_44_1 doi: 10.1039/C9DT03283E – volume-title: Optical Spectroscopy of Inorganic Solids year: 2006 ident: e_1_2_8_67_1 doi: 10.1093/oso/9780199298624.001.0001 – ident: e_1_2_8_8_1 doi: 10.1016/j.mtphys.2022.100703 – ident: e_1_2_8_3_1 doi: 10.1021/acs.jpcc.5b08828 – ident: e_1_2_8_73_1 doi: 10.1107/S1600576721002910 – ident: e_1_2_8_65_1 doi: 10.1039/D2TC02020C – ident: e_1_2_8_76_1 doi: 10.1002/chem.201703875 – ident: e_1_2_8_42_1 doi: 10.1016/j.jlumin.2022.118814 – ident: e_1_2_8_18_1 doi: 10.1007/s12274-022-4447-7 – ident: e_1_2_8_1_1 doi: 10.1063/1.111832 – ident: e_1_2_8_4_1 doi: 10.1038/nmat4843 – ident: e_1_2_8_62_1 doi: 10.1149/1.3600349 – ident: e_1_2_8_33_1 doi: 10.1021/acssuschemeng.1c02667 – ident: e_1_2_8_22_1 doi: 10.1002/adma.201605739 – ident: e_1_2_8_55_1 doi: 10.1002/adom.201901187 – ident: e_1_2_8_14_1 doi: 10.1002/adom.202101700 – ident: e_1_2_8_64_1 doi: 10.1111/jace.18319 – ident: e_1_2_8_36_1 doi: 10.1016/j.ccr.2020.213331 – ident: e_1_2_8_48_1 doi: 10.1039/D1TC05411B – ident: e_1_2_8_66_1 doi: 10.1039/C9TC00607A – ident: e_1_2_8_16_1 doi: 10.1038/s41467-020-18119-y |
| SSID | ssj0031247 |
| Score | 2.4922154 |
| Snippet | The phosphor‐converted light‐emitting diode (PC‐LED) has become an indispensable solid‐state lighting and display technologies in the modern society.... The phosphor-converted light-emitting diode (PC-LED) has become an indispensable solid-state lighting and display technologies in the modern society.... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2205981 |
| SubjectTerms | coordination environments Crystal structure electron–phonon coupling Emission Light emitting diodes Manganese manganese(II) halide crystals Nanotechnology Organic light emitting diodes Phosphors Photoluminescence Quantum efficiency Single crystals Temperature dependence Thermal stability zero thermal quenching emission |
| Title | Highly Luminescent Earth‐Benign Organometallic Manganese Halide Crystals with Ultrahigh Thermal Stability of Emission from 4 to 623 K |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202205981 https://www.ncbi.nlm.nih.gov/pubmed/36507613 https://www.proquest.com/docview/2778563636 https://www.proquest.com/docview/2753668036 |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1613-6810 databaseCode: DR2 dateStart: 20050101 customDbUrl: isFulltext: true eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbQTuwAg_Gj7IceEhInb46d2M2RTZ0qaDkAlXaLbMeBaWmClvTQnXbjyt_IX7Jnpw0rCCHBLVZsx3E-53223_tMyCtthLRo6qhGuktjxQqqkVhTEbtCi1hLyX3s8PS9HM_it-fJ-Z0o_k4fol9w8yMj_K_9ANemOf4pGtrMS7914ANF0xB7HQkZ5lQfev0ogcYrnK6CNot64a21aiPjx5vFN63Sb1Rzk7kG03P2kOh1ozuPk8ujRWuO7PUveo7_81Y75MGKl8KbDkiPyD1XPSbbd9QKd8k37xNSLmGymHtfee_WCSNE3pcfN99PXHXxuYIQ2VnPHTL68sLCVFeYdo2DMdL93MHp1RLZaNmAX_6FWdnirw4rBQQrGogSkPoGZ90l1AWMEIJ-LQ98CAzE0NaALArePSGzs9Gn0zFdneNArVAiokWc6ljlijGbGsNtEik2NBbnnmpoDEutYjY3Is0TtJzImCRXLpda2dyaInFMPCVbVV255wSs0lGiIit4ZOJEKaOESTnHKlwuUqcHhK6_Y2ZXIuf-rI0y6-SZeeY7OOs7eEBe9_m_dvIef8y5v4ZFthrmTcaVGiYScScH5GV_G3vH77pg_9YLnycRUg6Zz_Osg1P_KIH8WCE4B4QHUPylDdnH6WTSp178S6E9ch-vRed3vk-22quFO0Ba1ZrDMHRuAcWRGnU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOQAH3o-FAoOExMltYif25liqrRaa7QG6ErfIdhyoyCaomz0sJ25c-Y38ks4km8CCEBIoJye24zhjz-fxzGfGnhsrlUNVxw3CXR7poOAGgTWXkS-MjIxSgmKHZydqOo9ev4t7b0KKhen4IQaDG42Mdr6mAU4G6f0frKHLRUl7BxQpmlDw9eVI4WKFcNGbgUFKovpqz1dBrcWJeqvnbQzE_nb5bb30G9jcxq6t8jm6wWzf7M7n5OPeqrF77vMvjI7_9V032fUNNIWDTpZusUu-us2u_URYeId9JbeQcg3pakHu8uTZCRMUvg_fv3x76auz9xW0wZ31wiOoL88czEyFab_0MEXEn3s4PF8jIC2XQBZgmJcNznZYKaC8oo4oAdFv66-7hrqACUohmfOAomAggqYGBFJwfJfNjyanh1O-OcqBO6llyIsoMZHOdRC4xFrh4lAHY-tw-anH1gaJ04HLrUzyGJUngiYltM-V0S53toh9IO-xnaqu_AMGTpsw1qGTIrRRrLXV0iZCYBU-l4k3I8b7H5m5Dc85HbdRZh1Ds8iog7Ohg0fsxZD_U8fw8cecu71cZJuRvsyE1uNYSbxG7NnwGHuHNl6wf-sV5YmlUuOA8tzv5Gl4lUSIrFE6R0y0UvGXNmRvZ2k6pB7-S6Gn7Mr0dJZm6auT40fsKt6XnRv6Lttpzlf-MaKsxj5px9EFc7kelg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELXQIiE48M1SWGCQkDhl17ETuznCbqvCtisEVOIW2Y4DK9JktU0P5cSNK7-RX8JM0gQKQkigHCInY8dxxp4Xe-aZsSfGSuXQ1AUG4W4QaZ4HBoF1ICOfGxkZpQTFDs9O1GQevXwXd96EFAvT8kP0E27UM5rxmjq4P8vygx-soctFQWsHFCmaUPD1xQjP5NV39LpnkJJovpr9VdBqBUS91fE2cnGwnX_bLv0GNrexa2N8xteY7ard-px83F_Vdt99-oXR8b_e6zq7uoGm8KzVpRvsgi9vsis_ERbeYl_ILaRYw3S1IHd58uyEESrfh2-fvz735en7EprgzmrhEdQXpw5mpsS0X3qYIOLPPByerxGQFkugGWCYFzWOdlgooL6ijSgA0W_jr7uGKocRaiFN5wFFwUAEdQUIpOD4NpuPR28PJ8FmK4fASS3DII8SE-lMc-4Sa4WLQ82H1uHvpx5ayxOnucusTLIYjSeCJiW0z5TRLnM2jz2Xd9hOWZX-LgOnTRjr0EkR2ijW2mppEyGwCJ_JxJsBC7oPmboNzzltt1GkLUOzSKmB076BB-xpL3_WMnz8UXKv04t009OXqdB6GCuJx4A97m9j69DCC7ZvtSKZWCo15CSz2-pT_yiJEFmjdg6YaLTiL3VI38ym0z51718yPWKXXh2N0-mLk-P77DJelq0X-h7bqc9X_gGCrNo-bLrRd_FcHho |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Luminescent+Earth%E2%80%90Benign+Organometallic+Manganese+Halide+Crystals+with+Ultrahigh+Thermal+Stability+of+Emission+from+4+to+623+K&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Guang%E2%80%90Hsun+Tan&rft.au=Yu%E2%80%90Neng+Chen&rft.au=Yung%E2%80%90Tang+Chuang&rft.au=Hao%E2%80%90Cheng+Lin&rft.date=2023-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=8&rft_id=info:doi/10.1002%2Fsmll.202205981&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |