Highly Luminescent Earth‐Benign Organometallic Manganese Halide Crystals with Ultrahigh Thermal Stability of Emission from 4 to 623 K

The phosphor‐converted light‐emitting diode (PC‐LED) has become an indispensable solid‐state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare‐earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here,...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 19; no. 8; pp. e2205981 - n/a
Main Authors Tan, Guang‐Hsun, Chen, Yu‐Neng, Chuang, Yung‐Tang, Lin, Hao‐Cheng, Hsieh, Chung‐An, Chen, Yi‐Sheng, Lee, Tzu‐Yi, Miao, Wen‐Chien, Kuo, Hao‐Chung, Chen, Li‐Yin, Wong, Ken‐Tsung, Lin, Hao‐Wu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2023
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.202205981

Cover

Abstract The phosphor‐converted light‐emitting diode (PC‐LED) has become an indispensable solid‐state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare‐earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI2(XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron–phonon coupling and the unique rigid crystal structure of MnI2(XanPO) over the whole temperature range based on the temperature‐dependent photoluminescence (PL) and single crystal X‐ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC‐LEDs with a power efficacy of 102.5 lm W−1, an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m−2 are fabricated by integrating MnI2(XanPO) with commercial blue LEDs. Moreover, the applicability of MnI2(XanPO) in both micro‐LEDs and organic light‐emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications. A highly efficient and thermally stable manganese halide crystal, MnI2(XanPO) is demonstrated. The low electron–phono coupling along with rigid crystal structure contributes to excellent photoluminescent quantum yield of 94% with unprecedented near zero thermal quenching from 4 to 623 K. The crystals find their applications in light emitting diodes and micro light emitting diodes with excellent external quantum efficiency (EQE) up to 22.7% and power efficacy as high as 102.5 lm W−1.
AbstractList The phosphor‐converted light‐emitting diode (PC‐LED) has become an indispensable solid‐state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare‐earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI 2 (XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron–phonon coupling and the unique rigid crystal structure of MnI 2 (XanPO) over the whole temperature range based on the temperature‐dependent photoluminescence (PL) and single crystal X‐ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC‐LEDs with a power efficacy of 102.5 lm W −1 , an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m −2 are fabricated by integrating MnI 2 (XanPO) with commercial blue LEDs. Moreover, the applicability of MnI 2 (XanPO) in both micro‐LEDs and organic light‐emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications.
The phosphor‐converted light‐emitting diode (PC‐LED) has become an indispensable solid‐state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare‐earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI2(XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron–phonon coupling and the unique rigid crystal structure of MnI2(XanPO) over the whole temperature range based on the temperature‐dependent photoluminescence (PL) and single crystal X‐ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC‐LEDs with a power efficacy of 102.5 lm W−1, an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m−2 are fabricated by integrating MnI2(XanPO) with commercial blue LEDs. Moreover, the applicability of MnI2(XanPO) in both micro‐LEDs and organic light‐emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications.
The phosphor-converted light-emitting diode (PC-LED) has become an indispensable solid-state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare-earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI2 (XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron-phonon coupling and the unique rigid crystal structure of MnI2 (XanPO) over the whole temperature range based on the temperature-dependent photoluminescence (PL) and single crystal X-ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC-LEDs with a power efficacy of 102.5 lm W-1 , an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m-2 are fabricated by integrating MnI2 (XanPO) with commercial blue LEDs. Moreover, the applicability of MnI2 (XanPO) in both micro-LEDs and organic light-emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications.The phosphor-converted light-emitting diode (PC-LED) has become an indispensable solid-state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare-earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI2 (XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron-phonon coupling and the unique rigid crystal structure of MnI2 (XanPO) over the whole temperature range based on the temperature-dependent photoluminescence (PL) and single crystal X-ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC-LEDs with a power efficacy of 102.5 lm W-1 , an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m-2 are fabricated by integrating MnI2 (XanPO) with commercial blue LEDs. Moreover, the applicability of MnI2 (XanPO) in both micro-LEDs and organic light-emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications.
The phosphor‐converted light‐emitting diode (PC‐LED) has become an indispensable solid‐state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare‐earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI2(XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron–phonon coupling and the unique rigid crystal structure of MnI2(XanPO) over the whole temperature range based on the temperature‐dependent photoluminescence (PL) and single crystal X‐ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC‐LEDs with a power efficacy of 102.5 lm W−1, an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m−2 are fabricated by integrating MnI2(XanPO) with commercial blue LEDs. Moreover, the applicability of MnI2(XanPO) in both micro‐LEDs and organic light‐emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications. A highly efficient and thermally stable manganese halide crystal, MnI2(XanPO) is demonstrated. The low electron–phono coupling along with rigid crystal structure contributes to excellent photoluminescent quantum yield of 94% with unprecedented near zero thermal quenching from 4 to 623 K. The crystals find their applications in light emitting diodes and micro light emitting diodes with excellent external quantum efficiency (EQE) up to 22.7% and power efficacy as high as 102.5 lm W−1.
The phosphor-converted light-emitting diode (PC-LED) has become an indispensable solid-state lighting and display technologies in the modern society. Nevertheless, the use of scarce rare-earth elements and the thermal quenching (TQ) behavior are still two most crucial issues yet to be solved. Here, this work successfully demonstrates a highly efficient and thermally stable green emissive MnI (XanPO) crystals showing a notable photoluminescence quantum yield (PLQY) of 94% and a super TQ resistance from 4 to 623 K. This unprecedented superior thermal stability is attributed to the low electron-phonon coupling and the unique rigid crystal structure of MnI (XanPO) over the whole temperature range based on the temperature-dependent photoluminescence (PL) and single crystal X-ray diffraction (SCXRD) analyses. Considering these appealing properties, green PC-LEDs with a power efficacy of 102.5 lm W , an external quantum efficiency (EQE) of 22.7% and a peak luminance up to 7750 000 cd m are fabricated by integrating MnI (XanPO) with commercial blue LEDs. Moreover, the applicability of MnI (XanPO) in both micro-LEDs and organic light-emitting diodes (OLEDs) is also demonstrated. In a nutshell, this study uncovers a candidate of highly luminescent and TQ resistant manganese halide suitable for a variety of emission applications.
Author Kuo, Hao‐Chung
Tan, Guang‐Hsun
Chen, Yi‐Sheng
Chen, Li‐Yin
Lin, Hao‐Cheng
Lee, Tzu‐Yi
Miao, Wen‐Chien
Wong, Ken‐Tsung
Lin, Hao‐Wu
Chuang, Yung‐Tang
Chen, Yu‐Neng
Hsieh, Chung‐An
Author_xml – sequence: 1
  givenname: Guang‐Hsun
  surname: Tan
  fullname: Tan, Guang‐Hsun
  organization: National Tsing Hua University
– sequence: 2
  givenname: Yu‐Neng
  surname: Chen
  fullname: Chen, Yu‐Neng
  organization: National Taiwan University
– sequence: 3
  givenname: Yung‐Tang
  surname: Chuang
  fullname: Chuang, Yung‐Tang
  organization: National Tsing Hua University
– sequence: 4
  givenname: Hao‐Cheng
  surname: Lin
  fullname: Lin, Hao‐Cheng
  organization: National Tsing Hua University
– sequence: 5
  givenname: Chung‐An
  surname: Hsieh
  fullname: Hsieh, Chung‐An
  organization: National Yang Ming Chiao Tung University
– sequence: 6
  givenname: Yi‐Sheng
  surname: Chen
  fullname: Chen, Yi‐Sheng
  organization: National Taiwan University
– sequence: 7
  givenname: Tzu‐Yi
  surname: Lee
  fullname: Lee, Tzu‐Yi
  organization: National Yang Ming Chiao Tung University
– sequence: 8
  givenname: Wen‐Chien
  surname: Miao
  fullname: Miao, Wen‐Chien
  organization: Hon Hai Research Institute
– sequence: 9
  givenname: Hao‐Chung
  surname: Kuo
  fullname: Kuo, Hao‐Chung
  organization: National Yang Ming Chiao Tung University
– sequence: 10
  givenname: Li‐Yin
  surname: Chen
  fullname: Chen, Li‐Yin
  organization: National Yang Ming Chiao Tung University
– sequence: 11
  givenname: Ken‐Tsung
  surname: Wong
  fullname: Wong, Ken‐Tsung
  email: kenwong@ntu.edu.tw
  organization: Academia Sinica
– sequence: 12
  givenname: Hao‐Wu
  orcidid: 0000-0003-4216-7995
  surname: Lin
  fullname: Lin, Hao‐Wu
  email: hwlin@mx.nthu.edu.tw
  organization: National Tsing Hua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36507613$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUha2qqC_YskSW2HQzgx-JnSxhNDCIVF20XUe240xcOXaxHVXZsWPLb-SX4DJlkCpVXdnW_c691-ecgkPnnQbgLUZLjBD5EEdrlwQRgsq6wgfgBDNMF6wi9eH-jtExOI3xFiGKScGPwDFlJeK5eAJ-bsx2sDNsptE4HZV2Ca5FSMPvH78-aWe2Dl6GrXB-1ElYaxS8EC6_ddRwI6zpNFyFOeZahPcmDfDGpiCG3BReDzqMwsKrJKSxJs3Q93A9mhiNd7APfoQFTB4yQuG31-BVn3voN4_nGbj5vL5ebRbN5Zevq4_NQlFO8aIvalHwjiOkaimJKjFHlVScYF5JiWrFkeokrbuS8YrRmhGuOya46pTsS43oGTjf9b0L_vukY2rzQkpbm7_kp9gSXlLGKkRZRt8_QW_9FFzeLlO8Khllf6l3j9QkR921d8GMIsztP4szsNwBKvgYg-73CEbtQ4btQ4btPsMsKJ4IlEkiZdOys8Y-L6t3sntj9fzCkPbqomn-a_8AOoCyBQ
CitedBy_id crossref_primary_10_3390_ma17184459
crossref_primary_10_71267_mencom_7577
crossref_primary_10_1002_adma_202408777
crossref_primary_10_1016_j_cej_2023_145936
crossref_primary_10_1002_anie_202405310
crossref_primary_10_1021_acsami_4c09396
crossref_primary_10_1002_ange_202405310
crossref_primary_10_1002_anie_202419085
crossref_primary_10_1007_s11426_024_2345_0
crossref_primary_10_1002_adom_202301010
crossref_primary_10_3390_molecules30061319
crossref_primary_10_1002_adom_202302132
crossref_primary_10_1002_adom_202302384
crossref_primary_10_1002_ange_202419085
crossref_primary_10_1002_adom_202302185
Cites_doi 10.1016/j.jlumin.2021.117965
10.1021/acs.chemmater.2c00252
10.1021/acsami.2c04407
10.1016/j.optmat.2009.03.011
10.1021/acs.chemmater.9b03782
10.1038/s41467-020-18482-w
10.1039/C8DT01041B
10.1002/adfm.202009973
10.1021/acs.chemmater.0c02231
10.1016/j.jallcom.2021.163131
10.1039/C8TC00511G
10.1016/j.cej.2020.127664
10.1016/j.cej.2019.124004
10.1149/2.0111603jss
10.1016/j.cej.2020.124297
10.1002/adfm.202100855
10.1039/D0TC05137C
10.1002/adom.202100862
10.1021/jacs.9b08780
10.1002/asia.201501463
10.1016/j.cej.2020.125912
10.1016/j.gsf.2018.12.005
10.1002/adma.201802489
10.1016/j.jallcom.2020.156324
10.1002/lpor.202100309
10.1021/jacs.8b06021
10.1021/acs.jpclett.2c01573
10.1021/acsenergylett.1c00250
10.1039/D1SC01076J
10.1039/c1cp20404a
10.1002/ange.202105413
10.1016/S0022-2313(02)00448-9
10.1016/j.inoche.2018.04.023
10.1016/j.matt.2019.08.016
10.1021/acs.chemmater.8b05300
10.1039/D1TC02330F
10.1016/j.cej.2021.128979
10.1016/j.nanoen.2021.106166
10.1016/j.cej.2021.129886
10.1021/cm8030768
10.1039/D1QI00556A
10.1021/acs.jpcc.1c07221
10.1002/crat.201800236
10.1107/S0021889811038970
10.1021/acs.chemmater.2c01052
10.1002/adom.202101751
10.1039/D1TC02550C
10.1039/C4DT03694H
10.1002/adfm.202011191
10.1039/D1TC04890B
10.1002/adom.201801160
10.1016/j.jeurceramsoc.2014.10.002
10.1016/j.optmat.2004.10.009
10.1021/acsanm.2c00782
10.1021/acsmaterialslett.0c00603
10.1039/C9DT03283E
10.1093/oso/9780199298624.001.0001
10.1016/j.mtphys.2022.100703
10.1021/acs.jpcc.5b08828
10.1107/S1600576721002910
10.1039/D2TC02020C
10.1002/chem.201703875
10.1016/j.jlumin.2022.118814
10.1007/s12274-022-4447-7
10.1063/1.111832
10.1038/nmat4843
10.1149/1.3600349
10.1021/acssuschemeng.1c02667
10.1002/adma.201605739
10.1002/adom.201901187
10.1002/adom.202101700
10.1111/jace.18319
10.1016/j.ccr.2020.213331
10.1039/D1TC05411B
10.1039/C9TC00607A
10.1038/s41467-020-18119-y
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202205981
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 36507613
10_1002_smll_202205981
SMLL202205981
Genre article
Journal Article
GrantInformation_xml – fundername: National Science and Technology Council of Taiwan
  funderid: 111‐2636‐E‐007‐024; 111‐2634‐F‐007‐007
– fundername: National Science and Technology Council of Taiwan
  grantid: 111-2634-F-007-007
– fundername: National Science and Technology Council of Taiwan
  grantid: 111-2636-E-007-024
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
LH4
AAYOK
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c3731-f49a47d700c9bb2c51708bc72178bb09c70cdb39d5678639627ed6a7cdcbf5e03
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Oct 02 04:14:30 EDT 2025
Fri Jul 25 12:12:48 EDT 2025
Wed Feb 19 02:25:36 EST 2025
Thu Apr 24 23:07:08 EDT 2025
Wed Oct 01 03:38:46 EDT 2025
Wed Jan 22 16:23:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords zero thermal quenching emission
light-emitting diodes
electron-phonon coupling
coordination environments
manganese(II) halide crystals
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-f49a47d700c9bb2c51708bc72178bb09c70cdb39d5678639627ed6a7cdcbf5e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4216-7995
PMID 36507613
PQID 2778563636
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_miscellaneous_2753668036
proquest_journals_2778563636
pubmed_primary_36507613
crossref_primary_10_1002_smll_202205981
crossref_citationtrail_10_1002_smll_202205981
wiley_primary_10_1002_smll_202205981_SMLL202205981
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 35
2011; 158
2019; 10
2021; 125
2019; 54
2021; 404
2022; 25
2011; 13
2020; 11
2005; 27
2020; 845
2022; 897
2018; 47
1994; 64
2018; 6
2021; 31
2021; 234
2015; 44
2002; 100
2022; 34
2018; 30
2020; 416
2022; 246
2021; 9
2019; 7
2021; 8
2021; 6
2021; 87
2021; 3
2018; 140
2009; 21
2019; 31
2021; 421
2021; 420
2019; 1
2017; 23
2006
2017; 29
2020; 386
2020; 389
2020; 32
2019; 141
2016; 11
2016; 5
2021; 15
2021; 54
2021; 12
2009; 31
2022; 5
2017; 16
2019; 48
2021; 415
2018; 92
2022; 13
2022; 14
2011; 44
2022; 15
2015; 119
2021; 133
2022; 10
2022; 105
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Henderson B. (e_1_2_8_67_1) 2006
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 47
  start-page: 7306
  year: 2018
  publication-title: Dalton Trans.
– volume: 11
  start-page: 4329
  year: 2020
  publication-title: Nat. Commun.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 290
  year: 2021
  publication-title: ACS Mater. Lett.
– volume: 32
  start-page: 6256
  year: 2020
  publication-title: Chem. Mater.
– volume: 54
  year: 2019
  publication-title: Cryst. Res. Technol.
– volume: 15
  year: 2021
  publication-title: Laser Photonics Rev.
– volume: 21
  start-page: 2077
  year: 2009
  publication-title: Chem. Mater.
– volume: 416
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 31
  start-page: 1620
  year: 2009
  publication-title: Opt. Mater.
– volume: 44
  start-page: 1272
  year: 2011
  publication-title: J. Appl. Crystallogr.
– volume: 105
  start-page: 3403
  year: 2022
  publication-title: J. Am. Ceram. Soc.
– volume: 92
  start-page: 145
  year: 2018
  publication-title: Inorg. Chem. Commun.
– volume: 15
  start-page: 8486
  year: 2022
  publication-title: Nano Res.
– volume: 44
  start-page: 3289
  year: 2015
  publication-title: Dalton Trans.
– volume: 5
  start-page: 4623
  year: 2022
  publication-title: ACS Appl. Nano Mater.
– volume: 10
  start-page: 3461
  year: 2022
  publication-title: J. Mater. Chem. C
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 234
  year: 2021
  publication-title: J. Lumin.
– volume: 389
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 981
  year: 2016
  publication-title: Chem. ‐ Asian J.
– volume: 64
  start-page: 1687
  year: 1994
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 1285
  year: 2019
  publication-title: Geosci. Front.
– volume: 897
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 54
  start-page: 1006
  year: 2021
  publication-title: J. Appl. Crystallogr.
– volume: 35
  start-page: 859
  year: 2015
  publication-title: J. Eur. Ceram. Soc.
– volume: 9
  start-page: 2047
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 158
  start-page: J246
  year: 2011
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: R34
  year: 2016
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 404
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 543
  year: 2017
  publication-title: Nat. Mater.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 12
  start-page: 8537
  year: 2021
  publication-title: Chem. Sci.
– volume: 34
  start-page: 4039
  year: 2022
  publication-title: Chem. Mater.
– volume: 9
  start-page: 8848
  year: 2021
  publication-title: ACS Sustainable Chem. Eng.
– volume: 23
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 7494
  year: 2019
  publication-title: J. Mater. Chem. C
– volume: 1
  start-page: 1644
  year: 2019
  publication-title: Matter
– volume: 87
  year: 2021
  publication-title: Nano Energy
– volume: 386
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. C
– volume: 13
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 140
  start-page: 9730
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 2978
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 11
  start-page: 4649
  year: 2020
  publication-title: Nat. Commun.
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 34
  start-page: 5690
  year: 2022
  publication-title: Chem. Mater.
– volume: 31
  start-page: 3851
  year: 2019
  publication-title: Chem. Mater.
– volume: 31
  year: 2019
  publication-title: Chem. Mater.
– volume: 100
  start-page: 163
  year: 2002
  publication-title: J. Lumin.
– volume: 13
  start-page: 5794
  year: 2022
  publication-title: J. Phys. Chem. Lett.
– volume: 125
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 415
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 845
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 25
  year: 2022
  publication-title: Mater. Today Phys.
– volume: 48
  year: 2019
  publication-title: Dalton Trans.
– volume: 9
  start-page: 9952
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 133
  year: 2021
  publication-title: Angew. Chem.
– volume: 10
  start-page: 2955
  year: 2022
  publication-title: J. Mater. Chem. C
– year: 2006
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 421
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 3767
  year: 2021
  publication-title: Inorg. Chem. Front.
– volume: 420
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 246
  year: 2022
  publication-title: J. Lumin.
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 6
  start-page: 1901
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 27
  start-page: 1456
  year: 2005
  publication-title: Opt. Mater.
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jlumin.2021.117965
– ident: e_1_2_8_71_1
  doi: 10.1021/acs.chemmater.2c00252
– ident: e_1_2_8_9_1
  doi: 10.1021/acsami.2c04407
– ident: e_1_2_8_39_1
  doi: 10.1016/j.optmat.2009.03.011
– ident: e_1_2_8_45_1
  doi: 10.1021/acs.chemmater.9b03782
– ident: e_1_2_8_52_1
  doi: 10.1038/s41467-020-18482-w
– ident: e_1_2_8_11_1
  doi: 10.1039/C8DT01041B
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.202009973
– ident: e_1_2_8_70_1
  doi: 10.1021/acs.chemmater.0c02231
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jallcom.2021.163131
– ident: e_1_2_8_56_1
  doi: 10.1039/C8TC00511G
– ident: e_1_2_8_53_1
  doi: 10.1016/j.cej.2020.127664
– ident: e_1_2_8_57_1
  doi: 10.1016/j.cej.2019.124004
– ident: e_1_2_8_63_1
  doi: 10.1149/2.0111603jss
– ident: e_1_2_8_54_1
  doi: 10.1016/j.cej.2020.124297
– ident: e_1_2_8_21_1
  doi: 10.1002/adfm.202100855
– ident: e_1_2_8_32_1
  doi: 10.1039/D0TC05137C
– ident: e_1_2_8_68_1
  doi: 10.1002/adom.202100862
– ident: e_1_2_8_7_1
  doi: 10.1021/jacs.9b08780
– ident: e_1_2_8_6_1
  doi: 10.1002/asia.201501463
– ident: e_1_2_8_59_1
  doi: 10.1016/j.cej.2020.125912
– ident: e_1_2_8_5_1
  doi: 10.1016/j.gsf.2018.12.005
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.201802489
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jallcom.2020.156324
– ident: e_1_2_8_17_1
  doi: 10.1002/lpor.202100309
– ident: e_1_2_8_46_1
  doi: 10.1021/jacs.8b06021
– ident: e_1_2_8_58_1
  doi: 10.1021/acs.jpclett.2c01573
– ident: e_1_2_8_37_1
  doi: 10.1021/acsenergylett.1c00250
– ident: e_1_2_8_69_1
  doi: 10.1039/D1SC01076J
– ident: e_1_2_8_74_1
  doi: 10.1039/c1cp20404a
– ident: e_1_2_8_12_1
  doi: 10.1002/ange.202105413
– ident: e_1_2_8_40_1
  doi: 10.1016/S0022-2313(02)00448-9
– ident: e_1_2_8_29_1
  doi: 10.1016/j.inoche.2018.04.023
– ident: e_1_2_8_13_1
  doi: 10.1016/j.matt.2019.08.016
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.chemmater.8b05300
– ident: e_1_2_8_24_1
  doi: 10.1039/D1TC02330F
– ident: e_1_2_8_51_1
  doi: 10.1016/j.cej.2021.128979
– ident: e_1_2_8_15_1
  doi: 10.1016/j.nanoen.2021.106166
– ident: e_1_2_8_26_1
  doi: 10.1016/j.cej.2021.129886
– ident: e_1_2_8_61_1
  doi: 10.1021/cm8030768
– ident: e_1_2_8_34_1
  doi: 10.1039/D1QI00556A
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.jpcc.1c07221
– ident: e_1_2_8_31_1
  doi: 10.1002/crat.201800236
– ident: e_1_2_8_35_1
  doi: 10.1107/S0021889811038970
– ident: e_1_2_8_60_1
  doi: 10.1021/acs.chemmater.2c01052
– ident: e_1_2_8_72_1
  doi: 10.1002/adom.202101751
– ident: e_1_2_8_20_1
  doi: 10.1039/D1TC02550C
– ident: e_1_2_8_10_1
  doi: 10.1039/C4DT03694H
– ident: e_1_2_8_25_1
  doi: 10.1002/adfm.202011191
– ident: e_1_2_8_50_1
  doi: 10.1039/D1TC04890B
– ident: e_1_2_8_19_1
  doi: 10.1002/adom.201801160
– ident: e_1_2_8_75_1
  doi: 10.1016/j.jeurceramsoc.2014.10.002
– ident: e_1_2_8_41_1
  doi: 10.1016/j.optmat.2004.10.009
– ident: e_1_2_8_27_1
  doi: 10.1021/acsanm.2c00782
– ident: e_1_2_8_43_1
  doi: 10.1021/acsmaterialslett.0c00603
– ident: e_1_2_8_44_1
  doi: 10.1039/C9DT03283E
– volume-title: Optical Spectroscopy of Inorganic Solids
  year: 2006
  ident: e_1_2_8_67_1
  doi: 10.1093/oso/9780199298624.001.0001
– ident: e_1_2_8_8_1
  doi: 10.1016/j.mtphys.2022.100703
– ident: e_1_2_8_3_1
  doi: 10.1021/acs.jpcc.5b08828
– ident: e_1_2_8_73_1
  doi: 10.1107/S1600576721002910
– ident: e_1_2_8_65_1
  doi: 10.1039/D2TC02020C
– ident: e_1_2_8_76_1
  doi: 10.1002/chem.201703875
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jlumin.2022.118814
– ident: e_1_2_8_18_1
  doi: 10.1007/s12274-022-4447-7
– ident: e_1_2_8_1_1
  doi: 10.1063/1.111832
– ident: e_1_2_8_4_1
  doi: 10.1038/nmat4843
– ident: e_1_2_8_62_1
  doi: 10.1149/1.3600349
– ident: e_1_2_8_33_1
  doi: 10.1021/acssuschemeng.1c02667
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.201605739
– ident: e_1_2_8_55_1
  doi: 10.1002/adom.201901187
– ident: e_1_2_8_14_1
  doi: 10.1002/adom.202101700
– ident: e_1_2_8_64_1
  doi: 10.1111/jace.18319
– ident: e_1_2_8_36_1
  doi: 10.1016/j.ccr.2020.213331
– ident: e_1_2_8_48_1
  doi: 10.1039/D1TC05411B
– ident: e_1_2_8_66_1
  doi: 10.1039/C9TC00607A
– ident: e_1_2_8_16_1
  doi: 10.1038/s41467-020-18119-y
SSID ssj0031247
Score 2.4922154
Snippet The phosphor‐converted light‐emitting diode (PC‐LED) has become an indispensable solid‐state lighting and display technologies in the modern society....
The phosphor-converted light-emitting diode (PC-LED) has become an indispensable solid-state lighting and display technologies in the modern society....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2205981
SubjectTerms coordination environments
Crystal structure
electron–phonon coupling
Emission
Light emitting diodes
Manganese
manganese(II) halide crystals
Nanotechnology
Organic light emitting diodes
Phosphors
Photoluminescence
Quantum efficiency
Single crystals
Temperature dependence
Thermal stability
zero thermal quenching emission
Title Highly Luminescent Earth‐Benign Organometallic Manganese Halide Crystals with Ultrahigh Thermal Stability of Emission from 4 to 623 K
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202205981
https://www.ncbi.nlm.nih.gov/pubmed/36507613
https://www.proquest.com/docview/2778563636
https://www.proquest.com/docview/2753668036
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1613-6810
  databaseCode: DR2
  dateStart: 20050101
  customDbUrl:
  isFulltext: true
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbQTuwAg_Gj7IceEhInb46d2M2RTZ0qaDkAlXaLbMeBaWmClvTQnXbjyt_IX7Jnpw0rCCHBLVZsx3E-53223_tMyCtthLRo6qhGuktjxQqqkVhTEbtCi1hLyX3s8PS9HM_it-fJ-Z0o_k4fol9w8yMj_K_9ANemOf4pGtrMS7914ANF0xB7HQkZ5lQfev0ogcYrnK6CNot64a21aiPjx5vFN63Sb1Rzk7kG03P2kOh1ozuPk8ujRWuO7PUveo7_81Y75MGKl8KbDkiPyD1XPSbbd9QKd8k37xNSLmGymHtfee_WCSNE3pcfN99PXHXxuYIQ2VnPHTL68sLCVFeYdo2DMdL93MHp1RLZaNmAX_6FWdnirw4rBQQrGogSkPoGZ90l1AWMEIJ-LQ98CAzE0NaALArePSGzs9Gn0zFdneNArVAiokWc6ljlijGbGsNtEik2NBbnnmpoDEutYjY3Is0TtJzImCRXLpda2dyaInFMPCVbVV255wSs0lGiIit4ZOJEKaOESTnHKlwuUqcHhK6_Y2ZXIuf-rI0y6-SZeeY7OOs7eEBe9_m_dvIef8y5v4ZFthrmTcaVGiYScScH5GV_G3vH77pg_9YLnycRUg6Zz_Osg1P_KIH8WCE4B4QHUPylDdnH6WTSp178S6E9ch-vRed3vk-22quFO0Ba1ZrDMHRuAcWRGnU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOQAH3o-FAoOExMltYif25liqrRaa7QG6ErfIdhyoyCaomz0sJ25c-Y38ks4km8CCEBIoJye24zhjz-fxzGfGnhsrlUNVxw3CXR7poOAGgTWXkS-MjIxSgmKHZydqOo9ev4t7b0KKhen4IQaDG42Mdr6mAU4G6f0frKHLRUl7BxQpmlDw9eVI4WKFcNGbgUFKovpqz1dBrcWJeqvnbQzE_nb5bb30G9jcxq6t8jm6wWzf7M7n5OPeqrF77vMvjI7_9V032fUNNIWDTpZusUu-us2u_URYeId9JbeQcg3pakHu8uTZCRMUvg_fv3x76auz9xW0wZ31wiOoL88czEyFab_0MEXEn3s4PF8jIC2XQBZgmJcNznZYKaC8oo4oAdFv66-7hrqACUohmfOAomAggqYGBFJwfJfNjyanh1O-OcqBO6llyIsoMZHOdRC4xFrh4lAHY-tw-anH1gaJ04HLrUzyGJUngiYltM-V0S53toh9IO-xnaqu_AMGTpsw1qGTIrRRrLXV0iZCYBU-l4k3I8b7H5m5Dc85HbdRZh1Ds8iog7Ohg0fsxZD_U8fw8cecu71cZJuRvsyE1uNYSbxG7NnwGHuHNl6wf-sV5YmlUuOA8tzv5Gl4lUSIrFE6R0y0UvGXNmRvZ2k6pB7-S6Gn7Mr0dJZm6auT40fsKt6XnRv6Lttpzlf-MaKsxj5px9EFc7kelg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELXQIiE48M1SWGCQkDhl17ETuznCbqvCtisEVOIW2Y4DK9JktU0P5cSNK7-RX8JM0gQKQkigHCInY8dxxp4Xe-aZsSfGSuXQ1AUG4W4QaZ4HBoF1ICOfGxkZpQTFDs9O1GQevXwXd96EFAvT8kP0E27UM5rxmjq4P8vygx-soctFQWsHFCmaUPD1xQjP5NV39LpnkJJovpr9VdBqBUS91fE2cnGwnX_bLv0GNrexa2N8xteY7ard-px83F_Vdt99-oXR8b_e6zq7uoGm8KzVpRvsgi9vsis_ERbeYl_ILaRYw3S1IHd58uyEESrfh2-fvz735en7EprgzmrhEdQXpw5mpsS0X3qYIOLPPByerxGQFkugGWCYFzWOdlgooL6ijSgA0W_jr7uGKocRaiFN5wFFwUAEdQUIpOD4NpuPR28PJ8FmK4fASS3DII8SE-lMc-4Sa4WLQ82H1uHvpx5ayxOnucusTLIYjSeCJiW0z5TRLnM2jz2Xd9hOWZX-LgOnTRjr0EkR2ijW2mppEyGwCJ_JxJsBC7oPmboNzzltt1GkLUOzSKmB076BB-xpL3_WMnz8UXKv04t009OXqdB6GCuJx4A97m9j69DCC7ZvtSKZWCo15CSz2-pT_yiJEFmjdg6YaLTiL3VI38ym0z51718yPWKXXh2N0-mLk-P77DJelq0X-h7bqc9X_gGCrNo-bLrRd_FcHho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Luminescent+Earth%E2%80%90Benign+Organometallic+Manganese+Halide+Crystals+with+Ultrahigh+Thermal+Stability+of+Emission+from+4+to+623+K&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Guang%E2%80%90Hsun+Tan&rft.au=Yu%E2%80%90Neng+Chen&rft.au=Yung%E2%80%90Tang+Chuang&rft.au=Hao%E2%80%90Cheng+Lin&rft.date=2023-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=19&rft.issue=8&rft_id=info:doi/10.1002%2Fsmll.202205981&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon