Soluble Hyperbranched Porous Organic Polymers

Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymer...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 39; no. 21; pp. e1800441 - n/a
Main Authors Yang, Yuwan, Feng, Lingyun, Ren, Jun, Liu, Yunfei, Jin, Shangbin, Su, Li, Wood, Colin, Tan, Bien
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2018
Subjects
Online AccessGet full text
ISSN1022-1336
1521-3927
1521-3927
DOI10.1002/marc.201800441

Cover

Abstract Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymers with rigid building blocks. By using this facile, one‐step strategy, a class of novel SPOPs which possess surface areas up to 646 m2 g−1 have been synthesized. The extended π‐conjugated backbone affords the polymers bright fluorescence under UV irradiation. Interestingly, after dissolution in a suitable solvent that was slowly evaporated, the polymers retain a large extent of porosity. The SPOPs are potential candidates for gas storage and separation, photovoltaic, and biological applications. In particular, due to the presence of an internal porous structure and open conformations, they show high drug loading efficiency (1.91 g of ibuprofen per gram), which is considerably higher than conventional porous organic polymers. A new concept for the construction of soluble porous organic polymers (SPOPs) is presented via the combination of unique topological structure of hyperbranched polymers with rigid building blocks. The resulting SPOPs exhibit good porous and fluorescence properties no matter in solid or solution form, which is promising in separation, photovoltaic, and biomaterial field.
AbstractList Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymers with rigid building blocks. By using this facile, one-step strategy, a class of novel SPOPs which possess surface areas up to 646 m2 g-1 have been synthesized. The extended π-conjugated backbone affords the polymers bright fluorescence under UV irradiation. Interestingly, after dissolution in a suitable solvent that was slowly evaporated, the polymers retain a large extent of porosity. The SPOPs are potential candidates for gas storage and separation, photovoltaic, and biological applications. In particular, due to the presence of an internal porous structure and open conformations, they show high drug loading efficiency (1.91 g of ibuprofen per gram), which is considerably higher than conventional porous organic polymers.Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymers with rigid building blocks. By using this facile, one-step strategy, a class of novel SPOPs which possess surface areas up to 646 m2 g-1 have been synthesized. The extended π-conjugated backbone affords the polymers bright fluorescence under UV irradiation. Interestingly, after dissolution in a suitable solvent that was slowly evaporated, the polymers retain a large extent of porosity. The SPOPs are potential candidates for gas storage and separation, photovoltaic, and biological applications. In particular, due to the presence of an internal porous structure and open conformations, they show high drug loading efficiency (1.91 g of ibuprofen per gram), which is considerably higher than conventional porous organic polymers.
Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymers with rigid building blocks. By using this facile, one‐step strategy, a class of novel SPOPs which possess surface areas up to 646 m2 g−1 have been synthesized. The extended π‐conjugated backbone affords the polymers bright fluorescence under UV irradiation. Interestingly, after dissolution in a suitable solvent that was slowly evaporated, the polymers retain a large extent of porosity. The SPOPs are potential candidates for gas storage and separation, photovoltaic, and biological applications. In particular, due to the presence of an internal porous structure and open conformations, they show high drug loading efficiency (1.91 g of ibuprofen per gram), which is considerably higher than conventional porous organic polymers.
Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymers with rigid building blocks. By using this facile, one‐step strategy, a class of novel SPOPs which possess surface areas up to 646 m 2 g −1 have been synthesized. The extended π‐conjugated backbone affords the polymers bright fluorescence under UV irradiation. Interestingly, after dissolution in a suitable solvent that was slowly evaporated, the polymers retain a large extent of porosity. The SPOPs are potential candidates for gas storage and separation, photovoltaic, and biological applications. In particular, due to the presence of an internal porous structure and open conformations, they show high drug loading efficiency (1.91 g of ibuprofen per gram), which is considerably higher than conventional porous organic polymers.
Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymers with rigid building blocks. By using this facile, one-step strategy, a class of novel SPOPs which possess surface areas up to 646 m g have been synthesized. The extended π-conjugated backbone affords the polymers bright fluorescence under UV irradiation. Interestingly, after dissolution in a suitable solvent that was slowly evaporated, the polymers retain a large extent of porosity. The SPOPs are potential candidates for gas storage and separation, photovoltaic, and biological applications. In particular, due to the presence of an internal porous structure and open conformations, they show high drug loading efficiency (1.91 g of ibuprofen per gram), which is considerably higher than conventional porous organic polymers.
Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymers with rigid building blocks. By using this facile, one‐step strategy, a class of novel SPOPs which possess surface areas up to 646 m2 g−1 have been synthesized. The extended π‐conjugated backbone affords the polymers bright fluorescence under UV irradiation. Interestingly, after dissolution in a suitable solvent that was slowly evaporated, the polymers retain a large extent of porosity. The SPOPs are potential candidates for gas storage and separation, photovoltaic, and biological applications. In particular, due to the presence of an internal porous structure and open conformations, they show high drug loading efficiency (1.91 g of ibuprofen per gram), which is considerably higher than conventional porous organic polymers. A new concept for the construction of soluble porous organic polymers (SPOPs) is presented via the combination of unique topological structure of hyperbranched polymers with rigid building blocks. The resulting SPOPs exhibit good porous and fluorescence properties no matter in solid or solution form, which is promising in separation, photovoltaic, and biomaterial field.
Author Yang, Yuwan
Ren, Jun
Su, Li
Wood, Colin
Feng, Lingyun
Jin, Shangbin
Liu, Yunfei
Tan, Bien
Author_xml – sequence: 1
  givenname: Yuwan
  surname: Yang
  fullname: Yang, Yuwan
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Lingyun
  surname: Feng
  fullname: Feng, Lingyun
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Jun
  surname: Ren
  fullname: Ren, Jun
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Yunfei
  surname: Liu
  fullname: Liu, Yunfei
  organization: Huazhong University of Science and Technology
– sequence: 5
  givenname: Shangbin
  surname: Jin
  fullname: Jin, Shangbin
  organization: Huazhong University of Science and Technology
– sequence: 6
  givenname: Li
  surname: Su
  fullname: Su, Li
  organization: Huazhong University of Science and Technology
– sequence: 7
  givenname: Colin
  surname: Wood
  fullname: Wood, Colin
  organization: Commonwealth Scientific and Industrial Research Organization
– sequence: 8
  givenname: Bien
  orcidid: 0000-0001-7181-347X
  surname: Tan
  fullname: Tan, Bien
  email: bien.tan@mail.hust.edu.cn
  organization: Huazhong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30091827$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLw0AQgBdR7EOvHqXgxUvqzL6yOZaiVqhUfJyXTbLRlDSpuw3Sf--WtgoF8bSz8H3D8PXIcd3UlpALhCEC0JuFcdmQAioAzvGIdFFQjFhC4-MwA6URMiY7pOf9HAAUB3pKOgwgQUXjLolemqpNKzuYrJfWpc7U2YfNB0-Na1o_mLl3U5dZ-FbrhXX-jJwUpvL2fPf2ydvd7et4Ek1n9w_j0TTKWMwwEnmcSqAJAqZcomQ5z0UqYmsLI41S0lDJMbeFZSKRIi0UGKMEz5ElyCVjfXK93bt0zWdr_UovSp_ZqjK1DXdpCkpSkVAUAb06QOdN6-pwnaZIEyUhQIG63FFturC5XroylFvrfYgA8C2QucZ7ZwudlSuzKpt65UxZaQS96a03vfVP76AND7T95j-FZCt8lZVd_0Prx9Hz-Nf9BumNj4s
CitedBy_id crossref_primary_10_1002_macp_201900302
crossref_primary_10_1007_s11426_022_1475_x
crossref_primary_10_1134_S156009042004003X
crossref_primary_10_1039_C9RA10384H
crossref_primary_10_1177_0954008320987290
crossref_primary_10_1016_j_jtice_2022_104404
crossref_primary_10_1016_j_jcis_2022_03_109
crossref_primary_10_1039_C9TA04594E
crossref_primary_10_1039_D2CS00123C
crossref_primary_10_1016_j_cej_2021_132350
crossref_primary_10_1016_j_seppur_2024_128177
crossref_primary_10_1002_smll_202406001
crossref_primary_10_1021_acsapm_4c03568
crossref_primary_10_1039_D3OB02054A
crossref_primary_10_1039_C8PY01730A
crossref_primary_10_1016_j_micromeso_2021_111069
Cites_doi 10.1002/anie.201709492
10.1021/acs.chemmater.6b00691
10.1021/ma200656h
10.1039/b311764b
10.1021/cr900068q
10.1021/cm040346z
10.1002/anie.201205521
10.1039/C3PY00854A
10.1126/science.251.4996.887
10.1039/c1cc00084e
10.1002/adma.200801971
10.1007/s11095-004-7670-x
10.1002/adma.200306053
10.1021/cm070356a
10.1002/anie.200702580
10.1002/anie.201407387
10.1039/C5PY00235D
10.1002/anie.201108985
10.1016/S0378-5173(03)00225-4
10.1039/c2cs35157a
10.1016/j.micromeso.2016.01.003
10.1039/C6CS00851H
10.1002/1099-0518(20000715)38:14<2505::AID-POLA10>3.0.CO;2-8
10.1021/bm800371n
10.1016/j.polymer.2015.02.006
10.1021/acsami.6b15005
10.1002/adma.201000369
10.1070/MC2006v016n02ABEH002224
10.1038/srep31359
10.1021/j150275a014
10.1002/anie.201702303
10.1002/anie.201502578
10.1021/ja908206a
10.1002/adma.201403299
10.1002/adma.201700665
10.1021/ja00197a053
10.1002/marc.200700346
10.1039/C6CC08903H
10.1002/adfm.201401001
10.1021/ja037836x
10.1002/anie.200705710
10.1038/srep02128
10.1039/b711509a
10.1002/ppsc.200400923
10.1039/C6CC07421A
10.1039/C7TA05232D
10.1021/jp201899u
10.1126/science.1139915
10.1021/acsami.6b08331
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.201800441
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 30091827
10_1002_marc_201800441
MARC201800441
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21474033
– fundername: International S&T Cooperation Program of China
  funderid: 2016YFE 0124400
– fundername: Program for HUST Interdisciplinary Innovation Team
  funderid: 2016JCTD104
– fundername: Program for HUST Interdisciplinary Innovation Team
  grantid: 2016JCTD104
– fundername: International S&T Cooperation Program of China
  grantid: 2016YFE 0124400
– fundername: National Natural Science Foundation of China
  grantid: 21474033
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c3731-5d7b6029101b46163d4d5b57eefa6a886a2641defe35965bf80aa854d13914633
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 03:03:17 EDT 2025
Sun Jul 13 04:51:35 EDT 2025
Mon Jul 21 05:59:16 EDT 2025
Thu Apr 24 22:51:06 EDT 2025
Tue Jul 01 03:31:39 EDT 2025
Wed Jan 22 17:00:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords soluble
drug delivery
fluorescence
hyperbranched polymers
porous organic polymers
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-5d7b6029101b46163d4d5b57eefa6a886a2641defe35965bf80aa854d13914633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7181-347X
PMID 30091827
PQID 2129860153
PQPubID 1016394
PageCount 7
ParticipantIDs proquest_miscellaneous_2086259215
proquest_journals_2129860153
pubmed_primary_30091827
crossref_citationtrail_10_1002_marc_201800441
crossref_primary_10_1002_marc_201800441
wiley_primary_10_1002_marc_201800441_MARC201800441
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2018
2018-11-00
2018-Nov
20181101
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: November 2018
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2007; 17
2004; 21
2011; 115
2007; 19
1991; 251
2015; 6
2013; 3
2009; 21
2003; 259
1926; 31
2006; 16
2017; 46
2015; 54
1989; 111
2008; 9
2016; 52
2014; 24
2004; 0
2017; 29
2009; 131
2016; 224
2017; 9
2012; 51
2007; 28
2010; 22
2017; 53
2016; 6
2007; 316
2014; 5
2015; 27
2000; 38
2004; 16
2015; 64
2017; 56
2008; 47
2011; 44
2011; 47
2016; 28
2003; 125
2009; 109
2007; 46
2016; 8
2012; 41
2018; 57
2014; 53
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_50_1
References_xml – volume: 6
  start-page: 31359
  year: 2016
  publication-title: Sci. Rep.
– volume: 224
  start-page: 294
  year: 2016
  publication-title: Microporous Mesoporous Mater.
– volume: 21
  start-page: 2185
  year: 2004
  publication-title: Pharm. Res.
– volume: 31
  start-page: 764
  year: 1926
  publication-title: J. Phys. Chem.
– volume: 125
  start-page: 15474
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 7067
  year: 2011
  publication-title: Macromolecules
– volume: 47
  start-page: 6389
  year: 2011
  publication-title: Chem. Commun.
– volume: 21
  start-page: 1291
  year: 2009
  publication-title: Adv. Mater.
– volume: 22
  start-page: 4567
  year: 2010
  publication-title: Adv. Mater.
– volume: 46
  start-page: 8164
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
– volume: 53
  start-page: 14144
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 2578
  year: 2008
  publication-title: Biomacromolecules
– volume: 19
  start-page: 2034
  year: 2007
  publication-title: Chem. Mater.
– volume: 38
  start-page: 2505
  year: 2000
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 6
  start-page: 3775
  year: 2015
  publication-title: Polym. Chem.
– volume: 16
  start-page: 5357
  year: 2004
  publication-title: Chem. Mater.
– volume: 56
  start-page: 6859
  year: 2017
  publication-title: Angew. Chem. Int. Ed.
– volume: 47
  start-page: 3450
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 109
  start-page: 5924
  year: 2009
  publication-title: Chem. Rev.
– volume: 131
  start-page: 18075
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2543
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 28
  start-page: 1871
  year: 2007
  publication-title: Macromol. Rapid Commun.
– volume: 24
  start-page: 5219
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 3778
  year: 2016
  publication-title: Chem. Mater.
– volume: 8
  start-page: 27669
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 1257
  year: 2017
  publication-title: Chem. Commun.
– volume: 9
  start-page: 5793
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 456
  year: 2004
  publication-title: Adv. Mater.
– volume: 27
  start-page: 234
  year: 2015
  publication-title: Adv. Mater.
– volume: 57
  start-page: 516
  year: 2018
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 2128
  year: 2013
  publication-title: Sci. Rep.
– volume: 21
  start-page: 71
  year: 2004
  publication-title: Part. Part. Syst. Charact.
– volume: 52
  start-page: 12881
  year: 2016
  publication-title: Chem. Commun.
– volume: 29
  start-page: 1700665
  year: 2017
  publication-title: Adv. Mater.
– volume: 51
  start-page: 12727
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 115
  start-page: 14778
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 54
  start-page: 7631
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 16
  start-page: 79
  year: 2006
  publication-title: Mendeleev Commun.
– volume: 251
  start-page: 887
  year: 1991
  publication-title: Science
– volume: 259
  start-page: 143
  year: 2003
  publication-title: Int. J. Pharm.
– volume: 316
  start-page: 268
  year: 2007
  publication-title: Science
– volume: 41
  start-page: 6010
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 17
  start-page: 4989
  year: 2007
  publication-title: J. Mater. Chem.
– volume: 64
  start-page: 216
  year: 2015
  publication-title: Polymer
– volume: 5
  start-page: 614
  year: 2014
  publication-title: Polym. Chem.
– volume: 0
  start-page: 230
  year: 2004
  publication-title: Chem. Commun.
– volume: 111
  start-page: 5845
  year: 1989
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 18752
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 3322
  year: 2017
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_5_12_1
  doi: 10.1002/anie.201709492
– ident: e_1_2_5_33_1
  doi: 10.1021/acs.chemmater.6b00691
– ident: e_1_2_5_7_1
  doi: 10.1021/ma200656h
– ident: e_1_2_5_24_1
  doi: 10.1039/b311764b
– ident: e_1_2_5_2_1
  doi: 10.1021/cr900068q
– ident: e_1_2_5_8_1
  doi: 10.1021/cm040346z
– ident: e_1_2_5_26_1
  doi: 10.1002/anie.201205521
– ident: e_1_2_5_40_1
  doi: 10.1039/C3PY00854A
– ident: e_1_2_5_34_1
  doi: 10.1126/science.251.4996.887
– ident: e_1_2_5_50_1
  doi: 10.1039/c1cc00084e
– ident: e_1_2_5_16_1
  doi: 10.1002/adma.200801971
– ident: e_1_2_5_46_1
  doi: 10.1007/s11095-004-7670-x
– ident: e_1_2_5_13_1
  doi: 10.1002/adma.200306053
– ident: e_1_2_5_31_1
  doi: 10.1021/cm070356a
– ident: e_1_2_5_9_1
  doi: 10.1002/anie.200702580
– ident: e_1_2_5_28_1
  doi: 10.1002/anie.201407387
– ident: e_1_2_5_22_1
  doi: 10.1039/C5PY00235D
– ident: e_1_2_5_3_1
  doi: 10.1002/anie.201108985
– ident: e_1_2_5_47_1
  doi: 10.1016/S0378-5173(03)00225-4
– ident: e_1_2_5_17_1
  doi: 10.1039/c2cs35157a
– ident: e_1_2_5_39_1
  doi: 10.1016/j.micromeso.2016.01.003
– ident: e_1_2_5_18_1
  doi: 10.1039/C6CS00851H
– ident: e_1_2_5_5_1
  doi: 10.1002/1099-0518(20000715)38:14<2505::AID-POLA10>3.0.CO;2-8
– ident: e_1_2_5_10_1
  doi: 10.1021/bm800371n
– ident: e_1_2_5_29_1
  doi: 10.1016/j.polymer.2015.02.006
– ident: e_1_2_5_11_1
  doi: 10.1021/acsami.6b15005
– ident: e_1_2_5_4_1
  doi: 10.1002/adma.201000369
– ident: e_1_2_5_36_1
  doi: 10.1070/MC2006v016n02ABEH002224
– ident: e_1_2_5_49_1
  doi: 10.1038/srep31359
– ident: e_1_2_5_32_1
  doi: 10.1021/j150275a014
– ident: e_1_2_5_20_1
  doi: 10.1002/anie.201702303
– ident: e_1_2_5_35_1
  doi: 10.1002/anie.201502578
– ident: e_1_2_5_6_1
  doi: 10.1021/ja908206a
– ident: e_1_2_5_21_1
  doi: 10.1002/adma.201403299
– ident: e_1_2_5_19_1
  doi: 10.1002/adma.201700665
– ident: e_1_2_5_43_1
  doi: 10.1021/ja00197a053
– ident: e_1_2_5_25_1
  doi: 10.1002/marc.200700346
– ident: e_1_2_5_37_1
  doi: 10.1039/C6CC08903H
– ident: e_1_2_5_27_1
  doi: 10.1002/adfm.201401001
– ident: e_1_2_5_44_1
  doi: 10.1021/ja037836x
– ident: e_1_2_5_15_1
  doi: 10.1002/anie.200705710
– ident: e_1_2_5_48_1
  doi: 10.1038/srep02128
– ident: e_1_2_5_30_1
  doi: 10.1039/b711509a
– ident: e_1_2_5_38_1
  doi: 10.1002/ppsc.200400923
– ident: e_1_2_5_42_1
  doi: 10.1039/C6CC07421A
– ident: e_1_2_5_23_1
  doi: 10.1039/C7TA05232D
– ident: e_1_2_5_45_1
  doi: 10.1021/jp201899u
– ident: e_1_2_5_14_1
  doi: 10.1126/science.1139915
– ident: e_1_2_5_41_1
  doi: 10.1021/acsami.6b08331
SSID ssj0008402
Score 2.342883
Snippet Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800441
SubjectTerms Adsorption
Chemical synthesis
Construction
drug delivery
Fluorescence
hyperbranched polymers
Ibuprofen
Irradiation
Molecular Structure
Particle Size
Photovoltaics
Polymers
Polymers - chemistry
Porosity
porous organic polymers
Solubility
soluble
Surface Properties
Ultraviolet radiation
Ultraviolet Rays
Title Soluble Hyperbranched Porous Organic Polymers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201800441
https://www.ncbi.nlm.nih.gov/pubmed/30091827
https://www.proquest.com/docview/2129860153
https://www.proquest.com/docview/2086259215
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-3927
  dateEnd: 20240930
  omitProxy: false
  ssIdentifier: ssj0008402
  issn: 1022-1336
  databaseCode: ADMLS
  dateStart: 20120614
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1022-1336
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-3927
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008402
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kL3rx_agvKgiests2TZoel8VlERQRBW8laacILruyj4P-eifNtrqKCHpraNKmkyb5vkzyDcB5qWkAyFPOME00izGUTCdGM6u8LolioKyklK5v5OAhvnoUj59O8Tt9iGbBzfaMary2HVybaedDNNRKPditWcr6JC3_Cbmo_LR3H_pRxF6cu5MYF5ExWas2BlFnufjyrPQNai4j12rq6W-Arivtdpw8t-cz087fvug5_uerNmF9gUv9rvuRtmAFR9uw2qvDwe0AswtoZoj-gJjrxNh4HE9Y-LfjyXg-9d2RzpySw1e7Er4LD_3L-96ALWItsJwnPGSiSIwMIgIPoYklgbQiLoQRCWKppVZKakJOYYElcpFKYUoVaK1EXBCCpMGW8z1ojcYjPAA_kciJ5kUYIMYmVaqUZShlWiY5F2WgPWC1rbN8IURu42EMMyehHGXWCFljBA8umvwvToLjx5zHddNli644zWhuThXVR3APzprbZDzrGdEjJCPRE5TlgQR_PNh3Td68ihMKJRKWeBBVDfdLHbLr7l2vSR3-pdARrNlrd-LxGFqzyRxPCPrMzGn1e78DVST3Dw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1VcIALpZSPlK8gVerJkMSx4xzRUrQtLKoQSNwiO5kIidUuWnYP7a9nJt4EbSuERI9J7MQZe-z3xvYzwNfaUgdQ5lJgnlmRYqyFzZwVrLyuiWKgbqSUBle6f5v-vFPtakLeC-P1IbqAG3tG01-zg3NA-uRFNZS1HnhtluFJSSJAyzxJx755dv2iIEX8xU94EuciOqZb3cYoOVnMvzgu_QM2F7FrM_icfwTXFtuvOXk4nk3dcfnnL0XH__qvdVibQ9Pw1LelT_ABRxuw0mtPhPsMgmNobohhn8jrxPGRHPdYhb_Gk_HsKfS7Oku6HP7mYPgm3J5_v-n1xfy4BVHKTMZCVZnTUUL4IXapJpxWpZVyKkOsrbbGaEvgKa6wRqlyrVxtImuNSisCkdTfSrkFS6PxCHcgzDRKYnoJRoipy42pdR1rnddZKVUd2QBEa-yinGuR85EYw8KrKCcFG6HojBDAty79o1fheDXlXlt3xdwbnwoannND5VEygKPuMRmPJ0fsCMlI9AbDVJAQUADbvs67T0kCosTDsgCSpubeKEMxOL3udVdf3pPpEFb6N4PL4vLH1cUurPJ9vwFyD5amkxnuExKauoOmrT8D3Jf7Kw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ji9swFH6UFDq9dF_cph0XCj0piSNLlo8hbUinTQhhArkZyX5iYEISshw6v36erNhpWoaB9ihbsqWn7fu0fA_gs9U0AOQpZ5gmmsUYSaYTo5lTXpdEMVCWUkqjsRzO4ou5mP92i9_rQ9QLbq5nlOO16-DrwraPoqFO6sEdzVJuT5L4z8NYEsVysGh6FJAi-uL3O4lyERuTlWxjp9s-TX86Lf2FNU-hazn3DJ6CrnLtj5xct_Y708pv_hB0_J9iPYMnB2Aa9nxLeg4PcPkCzvqVP7iXwNwKmllgOCTqujHOIccVFuFktVntt6G_05lTcPHLLYW_gtng22V_yA7OFljOEx4xUSSGDEjoITKxJJRWxIUwIkG0WmqlpCboFBVokYtUCmNVR2sl4oIgJI22nL-GxnK1xLcQJhI58bwudhBjkyplpY2kTG2Sc2E7OgBW2TrLD0rkziHGIvMayt3MGSGrjRDAlzr-2mtw3BmzWVVdduiL24wm51RRfgQP4FP9mozntkb0EslI9AXliCDhnwDe-Cqvf8UJhhILSwLolhV3Tx6yUW_ar0Pv_iXROTyafB1kP7-Pf7yHx-6xv_3YhMZus8cPBIN25mPZ0m8B4Ej52g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soluble+Hyperbranched+Porous+Organic+Polymers&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Yang%2C+Yuwan&rft.au=Feng%2C+Lingyun&rft.au=Ren%2C+Jun&rft.au=Liu%2C+Yunfei&rft.date=2018-11-01&rft.issn=1521-3927&rft.eissn=1521-3927&rft.volume=39&rft.issue=21&rft.spage=e1800441&rft_id=info:doi/10.1002%2Fmarc.201800441&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon