Soluble Hyperbranched Porous Organic Polymers
Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymer...
Saved in:
Published in | Macromolecular rapid communications. Vol. 39; no. 21; pp. e1800441 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1022-1336 1521-3927 1521-3927 |
DOI | 10.1002/marc.201800441 |
Cover
Abstract | Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymers with rigid building blocks. By using this facile, one‐step strategy, a class of novel SPOPs which possess surface areas up to 646 m2 g−1 have been synthesized. The extended π‐conjugated backbone affords the polymers bright fluorescence under UV irradiation. Interestingly, after dissolution in a suitable solvent that was slowly evaporated, the polymers retain a large extent of porosity. The SPOPs are potential candidates for gas storage and separation, photovoltaic, and biological applications. In particular, due to the presence of an internal porous structure and open conformations, they show high drug loading efficiency (1.91 g of ibuprofen per gram), which is considerably higher than conventional porous organic polymers.
A new concept for the construction of soluble porous organic polymers (SPOPs) is presented via the combination of unique topological structure of hyperbranched polymers with rigid building blocks. The resulting SPOPs exhibit good porous and fluorescence properties no matter in solid or solution form, which is promising in separation, photovoltaic, and biomaterial field. |
---|---|
AbstractList | Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymers with rigid building blocks. By using this facile, one-step strategy, a class of novel SPOPs which possess surface areas up to 646 m2 g-1 have been synthesized. The extended π-conjugated backbone affords the polymers bright fluorescence under UV irradiation. Interestingly, after dissolution in a suitable solvent that was slowly evaporated, the polymers retain a large extent of porosity. The SPOPs are potential candidates for gas storage and separation, photovoltaic, and biological applications. In particular, due to the presence of an internal porous structure and open conformations, they show high drug loading efficiency (1.91 g of ibuprofen per gram), which is considerably higher than conventional porous organic polymers.Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymers with rigid building blocks. By using this facile, one-step strategy, a class of novel SPOPs which possess surface areas up to 646 m2 g-1 have been synthesized. The extended π-conjugated backbone affords the polymers bright fluorescence under UV irradiation. Interestingly, after dissolution in a suitable solvent that was slowly evaporated, the polymers retain a large extent of porosity. The SPOPs are potential candidates for gas storage and separation, photovoltaic, and biological applications. In particular, due to the presence of an internal porous structure and open conformations, they show high drug loading efficiency (1.91 g of ibuprofen per gram), which is considerably higher than conventional porous organic polymers. Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymers with rigid building blocks. By using this facile, one‐step strategy, a class of novel SPOPs which possess surface areas up to 646 m2 g−1 have been synthesized. The extended π‐conjugated backbone affords the polymers bright fluorescence under UV irradiation. Interestingly, after dissolution in a suitable solvent that was slowly evaporated, the polymers retain a large extent of porosity. The SPOPs are potential candidates for gas storage and separation, photovoltaic, and biological applications. In particular, due to the presence of an internal porous structure and open conformations, they show high drug loading efficiency (1.91 g of ibuprofen per gram), which is considerably higher than conventional porous organic polymers. Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymers with rigid building blocks. By using this facile, one‐step strategy, a class of novel SPOPs which possess surface areas up to 646 m 2 g −1 have been synthesized. The extended π‐conjugated backbone affords the polymers bright fluorescence under UV irradiation. Interestingly, after dissolution in a suitable solvent that was slowly evaporated, the polymers retain a large extent of porosity. The SPOPs are potential candidates for gas storage and separation, photovoltaic, and biological applications. In particular, due to the presence of an internal porous structure and open conformations, they show high drug loading efficiency (1.91 g of ibuprofen per gram), which is considerably higher than conventional porous organic polymers. Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymers with rigid building blocks. By using this facile, one-step strategy, a class of novel SPOPs which possess surface areas up to 646 m g have been synthesized. The extended π-conjugated backbone affords the polymers bright fluorescence under UV irradiation. Interestingly, after dissolution in a suitable solvent that was slowly evaporated, the polymers retain a large extent of porosity. The SPOPs are potential candidates for gas storage and separation, photovoltaic, and biological applications. In particular, due to the presence of an internal porous structure and open conformations, they show high drug loading efficiency (1.91 g of ibuprofen per gram), which is considerably higher than conventional porous organic polymers. Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble counterparts. Here, a new concept for the construction of SPOPs is presented, which combines the unique topological structure of hyperbranched polymers with rigid building blocks. By using this facile, one‐step strategy, a class of novel SPOPs which possess surface areas up to 646 m2 g−1 have been synthesized. The extended π‐conjugated backbone affords the polymers bright fluorescence under UV irradiation. Interestingly, after dissolution in a suitable solvent that was slowly evaporated, the polymers retain a large extent of porosity. The SPOPs are potential candidates for gas storage and separation, photovoltaic, and biological applications. In particular, due to the presence of an internal porous structure and open conformations, they show high drug loading efficiency (1.91 g of ibuprofen per gram), which is considerably higher than conventional porous organic polymers. A new concept for the construction of soluble porous organic polymers (SPOPs) is presented via the combination of unique topological structure of hyperbranched polymers with rigid building blocks. The resulting SPOPs exhibit good porous and fluorescence properties no matter in solid or solution form, which is promising in separation, photovoltaic, and biomaterial field. |
Author | Yang, Yuwan Ren, Jun Su, Li Wood, Colin Feng, Lingyun Jin, Shangbin Liu, Yunfei Tan, Bien |
Author_xml | – sequence: 1 givenname: Yuwan surname: Yang fullname: Yang, Yuwan organization: Huazhong University of Science and Technology – sequence: 2 givenname: Lingyun surname: Feng fullname: Feng, Lingyun organization: Huazhong University of Science and Technology – sequence: 3 givenname: Jun surname: Ren fullname: Ren, Jun organization: Huazhong University of Science and Technology – sequence: 4 givenname: Yunfei surname: Liu fullname: Liu, Yunfei organization: Huazhong University of Science and Technology – sequence: 5 givenname: Shangbin surname: Jin fullname: Jin, Shangbin organization: Huazhong University of Science and Technology – sequence: 6 givenname: Li surname: Su fullname: Su, Li organization: Huazhong University of Science and Technology – sequence: 7 givenname: Colin surname: Wood fullname: Wood, Colin organization: Commonwealth Scientific and Industrial Research Organization – sequence: 8 givenname: Bien orcidid: 0000-0001-7181-347X surname: Tan fullname: Tan, Bien email: bien.tan@mail.hust.edu.cn organization: Huazhong University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30091827$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtLw0AQgBdR7EOvHqXgxUvqzL6yOZaiVqhUfJyXTbLRlDSpuw3Sf--WtgoF8bSz8H3D8PXIcd3UlpALhCEC0JuFcdmQAioAzvGIdFFQjFhC4-MwA6URMiY7pOf9HAAUB3pKOgwgQUXjLolemqpNKzuYrJfWpc7U2YfNB0-Na1o_mLl3U5dZ-FbrhXX-jJwUpvL2fPf2ydvd7et4Ek1n9w_j0TTKWMwwEnmcSqAJAqZcomQ5z0UqYmsLI41S0lDJMbeFZSKRIi0UGKMEz5ElyCVjfXK93bt0zWdr_UovSp_ZqjK1DXdpCkpSkVAUAb06QOdN6-pwnaZIEyUhQIG63FFturC5XroylFvrfYgA8C2QucZ7ZwudlSuzKpt65UxZaQS96a03vfVP76AND7T95j-FZCt8lZVd_0Prx9Hz-Nf9BumNj4s |
CitedBy_id | crossref_primary_10_1002_macp_201900302 crossref_primary_10_1007_s11426_022_1475_x crossref_primary_10_1134_S156009042004003X crossref_primary_10_1039_C9RA10384H crossref_primary_10_1177_0954008320987290 crossref_primary_10_1016_j_jtice_2022_104404 crossref_primary_10_1016_j_jcis_2022_03_109 crossref_primary_10_1039_C9TA04594E crossref_primary_10_1039_D2CS00123C crossref_primary_10_1016_j_cej_2021_132350 crossref_primary_10_1016_j_seppur_2024_128177 crossref_primary_10_1002_smll_202406001 crossref_primary_10_1021_acsapm_4c03568 crossref_primary_10_1039_D3OB02054A crossref_primary_10_1039_C8PY01730A crossref_primary_10_1016_j_micromeso_2021_111069 |
Cites_doi | 10.1002/anie.201709492 10.1021/acs.chemmater.6b00691 10.1021/ma200656h 10.1039/b311764b 10.1021/cr900068q 10.1021/cm040346z 10.1002/anie.201205521 10.1039/C3PY00854A 10.1126/science.251.4996.887 10.1039/c1cc00084e 10.1002/adma.200801971 10.1007/s11095-004-7670-x 10.1002/adma.200306053 10.1021/cm070356a 10.1002/anie.200702580 10.1002/anie.201407387 10.1039/C5PY00235D 10.1002/anie.201108985 10.1016/S0378-5173(03)00225-4 10.1039/c2cs35157a 10.1016/j.micromeso.2016.01.003 10.1039/C6CS00851H 10.1002/1099-0518(20000715)38:14<2505::AID-POLA10>3.0.CO;2-8 10.1021/bm800371n 10.1016/j.polymer.2015.02.006 10.1021/acsami.6b15005 10.1002/adma.201000369 10.1070/MC2006v016n02ABEH002224 10.1038/srep31359 10.1021/j150275a014 10.1002/anie.201702303 10.1002/anie.201502578 10.1021/ja908206a 10.1002/adma.201403299 10.1002/adma.201700665 10.1021/ja00197a053 10.1002/marc.200700346 10.1039/C6CC08903H 10.1002/adfm.201401001 10.1021/ja037836x 10.1002/anie.200705710 10.1038/srep02128 10.1039/b711509a 10.1002/ppsc.200400923 10.1039/C6CC07421A 10.1039/C7TA05232D 10.1021/jp201899u 10.1126/science.1139915 10.1021/acsami.6b08331 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.201800441 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | 30091827 10_1002_marc_201800441 MARC201800441 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21474033 – fundername: International S&T Cooperation Program of China funderid: 2016YFE 0124400 – fundername: Program for HUST Interdisciplinary Innovation Team funderid: 2016JCTD104 – fundername: Program for HUST Interdisciplinary Innovation Team grantid: 2016JCTD104 – fundername: International S&T Cooperation Program of China grantid: 2016YFE 0124400 – fundername: National Natural Science Foundation of China grantid: 21474033 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c3731-5d7b6029101b46163d4d5b57eefa6a886a2641defe35965bf80aa854d13914633 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Fri Jul 11 03:03:17 EDT 2025 Sun Jul 13 04:51:35 EDT 2025 Mon Jul 21 05:59:16 EDT 2025 Thu Apr 24 22:51:06 EDT 2025 Tue Jul 01 03:31:39 EDT 2025 Wed Jan 22 17:00:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | soluble drug delivery fluorescence hyperbranched polymers porous organic polymers |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3731-5d7b6029101b46163d4d5b57eefa6a886a2641defe35965bf80aa854d13914633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7181-347X |
PMID | 30091827 |
PQID | 2129860153 |
PQPubID | 1016394 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2086259215 proquest_journals_2129860153 pubmed_primary_30091827 crossref_citationtrail_10_1002_marc_201800441 crossref_primary_10_1002_marc_201800441 wiley_primary_10_1002_marc_201800441_MARC201800441 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2018 2018-11-00 2018-Nov 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol Rapid Commun |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2007; 17 2004; 21 2011; 115 2007; 19 1991; 251 2015; 6 2013; 3 2009; 21 2003; 259 1926; 31 2006; 16 2017; 46 2015; 54 1989; 111 2008; 9 2016; 52 2014; 24 2004; 0 2017; 29 2009; 131 2016; 224 2017; 9 2012; 51 2007; 28 2010; 22 2017; 53 2016; 6 2007; 316 2014; 5 2015; 27 2000; 38 2004; 16 2015; 64 2017; 56 2008; 47 2011; 44 2011; 47 2016; 28 2003; 125 2009; 109 2007; 46 2016; 8 2012; 41 2018; 57 2014; 53 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_50_1 |
References_xml | – volume: 6 start-page: 31359 year: 2016 publication-title: Sci. Rep. – volume: 224 start-page: 294 year: 2016 publication-title: Microporous Mesoporous Mater. – volume: 21 start-page: 2185 year: 2004 publication-title: Pharm. Res. – volume: 31 start-page: 764 year: 1926 publication-title: J. Phys. Chem. – volume: 125 start-page: 15474 year: 2003 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 7067 year: 2011 publication-title: Macromolecules – volume: 47 start-page: 6389 year: 2011 publication-title: Chem. Commun. – volume: 21 start-page: 1291 year: 2009 publication-title: Adv. Mater. – volume: 22 start-page: 4567 year: 2010 publication-title: Adv. Mater. – volume: 46 start-page: 8164 year: 2007 publication-title: Angew. Chem. Int. Ed. – volume: 53 start-page: 14144 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 2578 year: 2008 publication-title: Biomacromolecules – volume: 19 start-page: 2034 year: 2007 publication-title: Chem. Mater. – volume: 38 start-page: 2505 year: 2000 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 6 start-page: 3775 year: 2015 publication-title: Polym. Chem. – volume: 16 start-page: 5357 year: 2004 publication-title: Chem. Mater. – volume: 56 start-page: 6859 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 47 start-page: 3450 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 109 start-page: 5924 year: 2009 publication-title: Chem. Rev. – volume: 131 start-page: 18075 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2543 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 28 start-page: 1871 year: 2007 publication-title: Macromol. Rapid Commun. – volume: 24 start-page: 5219 year: 2014 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 3778 year: 2016 publication-title: Chem. Mater. – volume: 8 start-page: 27669 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 1257 year: 2017 publication-title: Chem. Commun. – volume: 9 start-page: 5793 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 456 year: 2004 publication-title: Adv. Mater. – volume: 27 start-page: 234 year: 2015 publication-title: Adv. Mater. – volume: 57 start-page: 516 year: 2018 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 2128 year: 2013 publication-title: Sci. Rep. – volume: 21 start-page: 71 year: 2004 publication-title: Part. Part. Syst. Charact. – volume: 52 start-page: 12881 year: 2016 publication-title: Chem. Commun. – volume: 29 start-page: 1700665 year: 2017 publication-title: Adv. Mater. – volume: 51 start-page: 12727 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 115 start-page: 14778 year: 2011 publication-title: J. Phys. Chem. C – volume: 54 start-page: 7631 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 16 start-page: 79 year: 2006 publication-title: Mendeleev Commun. – volume: 251 start-page: 887 year: 1991 publication-title: Science – volume: 259 start-page: 143 year: 2003 publication-title: Int. J. Pharm. – volume: 316 start-page: 268 year: 2007 publication-title: Science – volume: 41 start-page: 6010 year: 2012 publication-title: Chem. Soc. Rev. – volume: 17 start-page: 4989 year: 2007 publication-title: J. Mater. Chem. – volume: 64 start-page: 216 year: 2015 publication-title: Polymer – volume: 5 start-page: 614 year: 2014 publication-title: Polym. Chem. – volume: 0 start-page: 230 year: 2004 publication-title: Chem. Commun. – volume: 111 start-page: 5845 year: 1989 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 18752 year: 2017 publication-title: J. Mater. Chem. A – volume: 46 start-page: 3322 year: 2017 publication-title: Chem. Soc. Rev. – ident: e_1_2_5_12_1 doi: 10.1002/anie.201709492 – ident: e_1_2_5_33_1 doi: 10.1021/acs.chemmater.6b00691 – ident: e_1_2_5_7_1 doi: 10.1021/ma200656h – ident: e_1_2_5_24_1 doi: 10.1039/b311764b – ident: e_1_2_5_2_1 doi: 10.1021/cr900068q – ident: e_1_2_5_8_1 doi: 10.1021/cm040346z – ident: e_1_2_5_26_1 doi: 10.1002/anie.201205521 – ident: e_1_2_5_40_1 doi: 10.1039/C3PY00854A – ident: e_1_2_5_34_1 doi: 10.1126/science.251.4996.887 – ident: e_1_2_5_50_1 doi: 10.1039/c1cc00084e – ident: e_1_2_5_16_1 doi: 10.1002/adma.200801971 – ident: e_1_2_5_46_1 doi: 10.1007/s11095-004-7670-x – ident: e_1_2_5_13_1 doi: 10.1002/adma.200306053 – ident: e_1_2_5_31_1 doi: 10.1021/cm070356a – ident: e_1_2_5_9_1 doi: 10.1002/anie.200702580 – ident: e_1_2_5_28_1 doi: 10.1002/anie.201407387 – ident: e_1_2_5_22_1 doi: 10.1039/C5PY00235D – ident: e_1_2_5_3_1 doi: 10.1002/anie.201108985 – ident: e_1_2_5_47_1 doi: 10.1016/S0378-5173(03)00225-4 – ident: e_1_2_5_17_1 doi: 10.1039/c2cs35157a – ident: e_1_2_5_39_1 doi: 10.1016/j.micromeso.2016.01.003 – ident: e_1_2_5_18_1 doi: 10.1039/C6CS00851H – ident: e_1_2_5_5_1 doi: 10.1002/1099-0518(20000715)38:14<2505::AID-POLA10>3.0.CO;2-8 – ident: e_1_2_5_10_1 doi: 10.1021/bm800371n – ident: e_1_2_5_29_1 doi: 10.1016/j.polymer.2015.02.006 – ident: e_1_2_5_11_1 doi: 10.1021/acsami.6b15005 – ident: e_1_2_5_4_1 doi: 10.1002/adma.201000369 – ident: e_1_2_5_36_1 doi: 10.1070/MC2006v016n02ABEH002224 – ident: e_1_2_5_49_1 doi: 10.1038/srep31359 – ident: e_1_2_5_32_1 doi: 10.1021/j150275a014 – ident: e_1_2_5_20_1 doi: 10.1002/anie.201702303 – ident: e_1_2_5_35_1 doi: 10.1002/anie.201502578 – ident: e_1_2_5_6_1 doi: 10.1021/ja908206a – ident: e_1_2_5_21_1 doi: 10.1002/adma.201403299 – ident: e_1_2_5_19_1 doi: 10.1002/adma.201700665 – ident: e_1_2_5_43_1 doi: 10.1021/ja00197a053 – ident: e_1_2_5_25_1 doi: 10.1002/marc.200700346 – ident: e_1_2_5_37_1 doi: 10.1039/C6CC08903H – ident: e_1_2_5_27_1 doi: 10.1002/adfm.201401001 – ident: e_1_2_5_44_1 doi: 10.1021/ja037836x – ident: e_1_2_5_15_1 doi: 10.1002/anie.200705710 – ident: e_1_2_5_48_1 doi: 10.1038/srep02128 – ident: e_1_2_5_30_1 doi: 10.1039/b711509a – ident: e_1_2_5_38_1 doi: 10.1002/ppsc.200400923 – ident: e_1_2_5_42_1 doi: 10.1039/C6CC07421A – ident: e_1_2_5_23_1 doi: 10.1039/C7TA05232D – ident: e_1_2_5_45_1 doi: 10.1021/jp201899u – ident: e_1_2_5_14_1 doi: 10.1126/science.1139915 – ident: e_1_2_5_41_1 doi: 10.1021/acsami.6b08331 |
SSID | ssj0008402 |
Score | 2.342883 |
Snippet | Soluble porous organic polymers (SPOPs) are currently the subject of extensive investigation due to the enhanced processability compared to insoluble... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1800441 |
SubjectTerms | Adsorption Chemical synthesis Construction drug delivery Fluorescence hyperbranched polymers Ibuprofen Irradiation Molecular Structure Particle Size Photovoltaics Polymers Polymers - chemistry Porosity porous organic polymers Solubility soluble Surface Properties Ultraviolet radiation Ultraviolet Rays |
Title | Soluble Hyperbranched Porous Organic Polymers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201800441 https://www.ncbi.nlm.nih.gov/pubmed/30091827 https://www.proquest.com/docview/2129860153 https://www.proquest.com/docview/2086259215 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1521-3927 dateEnd: 20240930 omitProxy: false ssIdentifier: ssj0008402 issn: 1022-1336 databaseCode: ADMLS dateStart: 20120614 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1022-1336 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3927 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008402 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kL3rx_agvKgiests2TZoel8VlERQRBW8laacILruyj4P-eifNtrqKCHpraNKmkyb5vkzyDcB5qWkAyFPOME00izGUTCdGM6u8LolioKyklK5v5OAhvnoUj59O8Tt9iGbBzfaMary2HVybaedDNNRKPditWcr6JC3_Cbmo_LR3H_pRxF6cu5MYF5ExWas2BlFnufjyrPQNai4j12rq6W-Arivtdpw8t-cz087fvug5_uerNmF9gUv9rvuRtmAFR9uw2qvDwe0AswtoZoj-gJjrxNh4HE9Y-LfjyXg-9d2RzpySw1e7Er4LD_3L-96ALWItsJwnPGSiSIwMIgIPoYklgbQiLoQRCWKppVZKakJOYYElcpFKYUoVaK1EXBCCpMGW8z1ojcYjPAA_kciJ5kUYIMYmVaqUZShlWiY5F2WgPWC1rbN8IURu42EMMyehHGXWCFljBA8umvwvToLjx5zHddNli644zWhuThXVR3APzprbZDzrGdEjJCPRE5TlgQR_PNh3Td68ihMKJRKWeBBVDfdLHbLr7l2vSR3-pdARrNlrd-LxGFqzyRxPCPrMzGn1e78DVST3Dw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1VcIALpZSPlK8gVerJkMSx4xzRUrQtLKoQSNwiO5kIidUuWnYP7a9nJt4EbSuERI9J7MQZe-z3xvYzwNfaUgdQ5lJgnlmRYqyFzZwVrLyuiWKgbqSUBle6f5v-vFPtakLeC-P1IbqAG3tG01-zg3NA-uRFNZS1HnhtluFJSSJAyzxJx755dv2iIEX8xU94EuciOqZb3cYoOVnMvzgu_QM2F7FrM_icfwTXFtuvOXk4nk3dcfnnL0XH__qvdVibQ9Pw1LelT_ABRxuw0mtPhPsMgmNobohhn8jrxPGRHPdYhb_Gk_HsKfS7Oku6HP7mYPgm3J5_v-n1xfy4BVHKTMZCVZnTUUL4IXapJpxWpZVyKkOsrbbGaEvgKa6wRqlyrVxtImuNSisCkdTfSrkFS6PxCHcgzDRKYnoJRoipy42pdR1rnddZKVUd2QBEa-yinGuR85EYw8KrKCcFG6HojBDAty79o1fheDXlXlt3xdwbnwoannND5VEygKPuMRmPJ0fsCMlI9AbDVJAQUADbvs67T0kCosTDsgCSpubeKEMxOL3udVdf3pPpEFb6N4PL4vLH1cUurPJ9vwFyD5amkxnuExKauoOmrT8D3Jf7Kw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ji9swFH6UFDq9dF_cph0XCj0piSNLlo8hbUinTQhhArkZyX5iYEISshw6v36erNhpWoaB9ihbsqWn7fu0fA_gs9U0AOQpZ5gmmsUYSaYTo5lTXpdEMVCWUkqjsRzO4ou5mP92i9_rQ9QLbq5nlOO16-DrwraPoqFO6sEdzVJuT5L4z8NYEsVysGh6FJAi-uL3O4lyERuTlWxjp9s-TX86Lf2FNU-hazn3DJ6CrnLtj5xct_Y708pv_hB0_J9iPYMnB2Aa9nxLeg4PcPkCzvqVP7iXwNwKmllgOCTqujHOIccVFuFktVntt6G_05lTcPHLLYW_gtng22V_yA7OFljOEx4xUSSGDEjoITKxJJRWxIUwIkG0WmqlpCboFBVokYtUCmNVR2sl4oIgJI22nL-GxnK1xLcQJhI58bwudhBjkyplpY2kTG2Sc2E7OgBW2TrLD0rkziHGIvMayt3MGSGrjRDAlzr-2mtw3BmzWVVdduiL24wm51RRfgQP4FP9mozntkb0EslI9AXliCDhnwDe-Cqvf8UJhhILSwLolhV3Tx6yUW_ar0Pv_iXROTyafB1kP7-Pf7yHx-6xv_3YhMZus8cPBIN25mPZ0m8B4Ej52g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soluble+Hyperbranched+Porous+Organic+Polymers&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Yang%2C+Yuwan&rft.au=Feng%2C+Lingyun&rft.au=Ren%2C+Jun&rft.au=Liu%2C+Yunfei&rft.date=2018-11-01&rft.issn=1521-3927&rft.eissn=1521-3927&rft.volume=39&rft.issue=21&rft.spage=e1800441&rft_id=info:doi/10.1002%2Fmarc.201800441&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |