In Situ Synthesis of Amorphous GeSe/CNT Composite via Defective‐carbon‐mediated Chemical Bonding for Ultrastable Na Ion Storage
Herein, we report the in‐situ synthesis of amorphous GeSe/CNT composite via defective‐carbon‐mediated chemical bonding for ultrastable Na‐ion storage. Structural defects in CNTs play a crucial role in the chemical bonding and bonding strength in GeSe/CNTs composites. Specifically, the bonding streng...
Saved in:
Published in | Chemistry, an Asian journal Vol. 18; no. 11; pp. e202300280 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1861-4728 1861-471X 1861-471X |
DOI | 10.1002/asia.202300280 |
Cover
Summary: | Herein, we report the in‐situ synthesis of amorphous GeSe/CNT composite via defective‐carbon‐mediated chemical bonding for ultrastable Na‐ion storage. Structural defects in CNTs play a crucial role in the chemical bonding and bonding strength in GeSe/CNTs composites. Specifically, the bonding strength tends to increase with increasing defect concentrations of CNTs. Remarkably, the strong chemical bonding between GeSe and CNTs significantly weakens Ge−Se bonds and promotes amorphization of GeSe, thus facilitating a reversible conversion reaction and enhancing Na‐ion diffusion. Consequently, GeSe/CNTs composite exhibits outstanding cyclability of 87.9% even after 1000 cycles at 1 A g−1 and a high‐rate capability of 288.3 mA h g−1 at 10 A g−1. Our work presents a promising approach for the amorphization of electrode materials enabled by the defective‐carbon‐mediated strong chemical bonding for Li‐, Na‐, and K‐ion batteries.
Structural defects in CNTs play a crucial role in the chemical bonding and bonding strength in GeSe/CNTs composites. Remarkably, the strong chemical bonding between GeSe and CNTs significantly weakens Ge−Se bonds and promotes amorphization of GeSe, thus facilitating a reversible conversion reaction and enhancing Na‐ion diffusion. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1861-4728 1861-471X 1861-471X |
DOI: | 10.1002/asia.202300280 |