Regulating and Predicting the Polyhedral Crystal Morphology in Spirofluorene Molecular Systems

Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed b...

Full description

Saved in:
Bibliographic Details
Published inChemistry, an Asian journal Vol. 18; no. 18; pp. e202300480 - n/a
Main Authors Jin, Ling‐Zhi, Tang, Yan‐Wei, Wang, Yu‐Cong, Yu, Xiang, Ye, Qiu‐Ting, Wan, Zi‐Qian, Lin, Dong‐Qing, Kan, Yu‐He, Zhu, Qin, Wang, Sha‐Sha, Xie, Ling‐Hai, Huang, Wei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 15.09.2023
Subjects
Online AccessGet full text
ISSN1861-4728
1861-471X
1861-471X
DOI10.1002/asia.202300480

Cover

Abstract Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed by spiro[fluorene‐9,9′‐xanthene] (SFX) and spiro[cyclopenta[1,2‐b : 5,4‐b′]dipyridine‐5,9′‐xanthene] (SDAFX) to demonstrate the feasibility of morphology prediction by periodic bond chain (PBC) theory based on interaction energy (IE) values in terms of single point energy. With non‐directional van der Waals forces, only one PBC direction is found in SFX crystal, leading to the irregular 1D rod‐like structure. Compared with SFX, the extra N heteroatoms in SDAFX can bring additional hydrogen bonds and some other interactions into the bulky molecular skeletons, inducing 3‐dimensionally oriented PBCs to form the explicit F‐face network in SDAFX which leads to the final octahedral structure. A simple and accurate method has been provided to quantify PBC vector on the supramolecular level in the organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro‐molecules. A simple and accurate method has been provided to quantify the PBC vector at the supramolecular level in an organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro‐molecules. The realization of this strategy is key to a specific molecular design and regulation of assembly behavior as well as the foundation of further optoelectronic research.
AbstractList Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed by spiro[fluorene-9,9'-xanthene] (SFX) and spiro[cyclopenta[1,2-b : 5,4-b']dipyridine-5,9'-xanthene] (SDAFX) to demonstrate the feasibility of morphology prediction by periodic bond chain (PBC) theory based on interaction energy (IE) values in terms of single point energy. With non-directional van der Waals forces, only one PBC direction is found in SFX crystal, leading to the irregular 1D rod-like structure. Compared with SFX, the extra N heteroatoms in SDAFX can bring additional hydrogen bonds and some other interactions into the bulky molecular skeletons, inducing 3-dimensionally oriented PBCs to form the explicit F-face network in SDAFX which leads to the final octahedral structure. A simple and accurate method has been provided to quantify PBC vector on the supramolecular level in the organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro-molecules.
Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed by spiro[fluorene-9,9'-xanthene] (SFX) and spiro[cyclopenta[1,2-b : 5,4-b']dipyridine-5,9'-xanthene] (SDAFX) to demonstrate the feasibility of morphology prediction by periodic bond chain (PBC) theory based on interaction energy (IE) values in terms of single point energy. With non-directional van der Waals forces, only one PBC direction is found in SFX crystal, leading to the irregular 1D rod-like structure. Compared with SFX, the extra N heteroatoms in SDAFX can bring additional hydrogen bonds and some other interactions into the bulky molecular skeletons, inducing 3-dimensionally oriented PBCs to form the explicit F-face network in SDAFX which leads to the final octahedral structure. A simple and accurate method has been provided to quantify PBC vector on the supramolecular level in the organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro-molecules.Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed by spiro[fluorene-9,9'-xanthene] (SFX) and spiro[cyclopenta[1,2-b : 5,4-b']dipyridine-5,9'-xanthene] (SDAFX) to demonstrate the feasibility of morphology prediction by periodic bond chain (PBC) theory based on interaction energy (IE) values in terms of single point energy. With non-directional van der Waals forces, only one PBC direction is found in SFX crystal, leading to the irregular 1D rod-like structure. Compared with SFX, the extra N heteroatoms in SDAFX can bring additional hydrogen bonds and some other interactions into the bulky molecular skeletons, inducing 3-dimensionally oriented PBCs to form the explicit F-face network in SDAFX which leads to the final octahedral structure. A simple and accurate method has been provided to quantify PBC vector on the supramolecular level in the organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro-molecules.
Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed by spiro[fluorene‐9,9′‐xanthene] (SFX) and spiro[cyclopenta[1,2‐b : 5,4‐b′]dipyridine‐5,9′‐xanthene] (SDAFX) to demonstrate the feasibility of morphology prediction by periodic bond chain (PBC) theory based on interaction energy (IE) values in terms of single point energy. With non‐directional van der Waals forces, only one PBC direction is found in SFX crystal, leading to the irregular 1D rod‐like structure. Compared with SFX, the extra N heteroatoms in SDAFX can bring additional hydrogen bonds and some other interactions into the bulky molecular skeletons, inducing 3‐dimensionally oriented PBCs to form the explicit F‐face network in SDAFX which leads to the final octahedral structure. A simple and accurate method has been provided to quantify PBC vector on the supramolecular level in the organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro‐molecules. A simple and accurate method has been provided to quantify the PBC vector at the supramolecular level in an organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro‐molecules. The realization of this strategy is key to a specific molecular design and regulation of assembly behavior as well as the foundation of further optoelectronic research.
Author Kan, Yu‐He
Yu, Xiang
Xie, Ling‐Hai
Wang, Yu‐Cong
Huang, Wei
Lin, Dong‐Qing
Wang, Sha‐Sha
Ye, Qiu‐Ting
Tang, Yan‐Wei
Wan, Zi‐Qian
Jin, Ling‐Zhi
Zhu, Qin
Author_xml – sequence: 1
  givenname: Ling‐Zhi
  surname: Jin
  fullname: Jin, Ling‐Zhi
  organization: Nanjing Vocational University of Industry Technology
– sequence: 2
  givenname: Yan‐Wei
  surname: Tang
  fullname: Tang, Yan‐Wei
  organization: Nanjing University of Posts & Telecommunications (NUPT)
– sequence: 3
  givenname: Yu‐Cong
  surname: Wang
  fullname: Wang, Yu‐Cong
  organization: Nanjing University of Posts & Telecommunications (NUPT)
– sequence: 4
  givenname: Xiang
  surname: Yu
  fullname: Yu, Xiang
  organization: Nanjing University of Posts & Telecommunications (NUPT)
– sequence: 5
  givenname: Qiu‐Ting
  surname: Ye
  fullname: Ye, Qiu‐Ting
  organization: Nanjing University of Posts & Telecommunications (NUPT)
– sequence: 6
  givenname: Zi‐Qian
  surname: Wan
  fullname: Wan, Zi‐Qian
  organization: Nanjing University of Posts & Telecommunications (NUPT)
– sequence: 7
  givenname: Dong‐Qing
  surname: Lin
  fullname: Lin, Dong‐Qing
  organization: Nanjing University of Posts & Telecommunications (NUPT)
– sequence: 8
  givenname: Yu‐He
  surname: Kan
  fullname: Kan, Yu‐He
  organization: Huaiyin Normal University
– sequence: 9
  givenname: Qin
  surname: Zhu
  fullname: Zhu, Qin
  organization: Nanjing University of Posts & Telecommunications (NUPT)
– sequence: 10
  givenname: Sha‐Sha
  orcidid: 0000-0002-8724-4627
  surname: Wang
  fullname: Wang, Sha‐Sha
  email: iamsswang@njupt.edu.cn
  organization: Nanjing University of Posts & Telecommunications (NUPT)
– sequence: 11
  givenname: Ling‐Hai
  orcidid: 0000-0001-6294-5833
  surname: Xie
  fullname: Xie, Ling‐Hai
  email: iamlhxie@njupt.edu.cn
  organization: Nanjing University of Posts & Telecommunications (NUPT)
– sequence: 12
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
  email: wei-huang@njtech.edu.cn
  organization: Northwestern Polytechnical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37370258$$D View this record in MEDLINE/PubMed
BookMark eNqFkdFr2zAQxsVoWZpur3schr3sJelJlm35MYSuC7QsNCv0qUaWz4mKImWSTfF_P6VpMyiMPt0d-n2n4_vG5MQ6i4R8oTClAOxCBi2nDFgKwAV8IGdU5HTCC3p_cuyZGJFxCI8AGYNSfCSjtEgLYJk4Iw-3uO6N7LRdJ9I2ydJjo9Xz2G0wWTozbLDx0iRzP4Qu1hvndxtn3HpItE1WO-1da3rn0WJ8M6jiOp-sIozb8ImcttIE_PxSz8ndj8vf85-T619Xi_nseqLiKTCRdcZFU2dpXlIBivOMNlK1KUWGZdFK1irgXAnIClXnvKRQy7xthGpyyDPepufk-2Hvzrs_PYau2uqg0Bhp0fWhYiKFvIBoUkS_vUEfXe9tvC5SOReMZnxPfX2h-nqLTbXzeiv9UL06F4HpAVDeheCxPSIUqn001T6a6hhNFPA3AqW7aLyznZfa_F9WHmRP2uDwzifVbLWY_dP-BTJMozk
CitedBy_id crossref_primary_10_1002_adom_202402036
Cites_doi 10.1021/jp112195k
10.1021/acs.jpcc.7b04926
10.1016/j.molstruc.2012.08.010
10.1021/ja0294717
10.1039/c1ee01092a
10.1021/jz900105v
10.1039/c2nr31167d
10.1002/cjoc.201800566
10.1002/cjoc.201400846
10.1016/j.jcrysgro.2017.03.014
10.1021/acs.cgd.0c00920
10.1016/j.jcrysgro.2012.05.001
10.1039/C8NR02956C
10.1021/ol070006u
10.1021/cm900511g
10.1002/smll.201202390
10.1016/0010-4655(91)90040-R
10.1002/asia.200800069
10.1007/s10118-017-1897-6
10.1021/acs.orglett.6b02595
10.1126/science.1102896
10.1002/ceat.201000506
10.1039/C4CE02379J
10.1002/chem.200400031
10.1002/adma.201301280
10.1021/jp052257v
10.1021/ma402585n
10.1039/c2cs35115c
10.1039/c3nr04654k
10.1002/smll.201703151
10.1021/acs.chemrev.6b00558
10.1021/jacs.6b06269
10.1021/cg200529x
10.1038/s41598-020-59261-3
10.1021/nn3011398
10.1021/acs.cgd.5b00605
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH Verlag GmbH.
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH Verlag GmbH.
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/asia.202300480
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1861-471X
EndPage n/a
ExternalDocumentID 37370258
10_1002_asia_202300480
ASIA202300480
Genre article
Journal Article
GrantInformation_xml – fundername: Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials
  funderid: JSKC20022
– fundername: National Natural Science Foundation of China
  funderid: 22275098
– fundername: State Scholarship Fund of China Scholarship Council
  funderid: 202008320051; 2009DS690095
– fundername: Project of State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications
  funderid: GZR2022010008
– fundername: Jiangsu Innovation Program for Graduate Education
  funderid: 46030CX17758; SJCX21_0251
– fundername: Natural Science Foundation of Nanjing University of Posts and Telecommunications
  funderid: NY221085; NY222157
– fundername: Science and Technology Innovation Training Program
  funderid: SZDG2017019
– fundername: Project of State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications
  grantid: GZR2022010008
– fundername: Natural Science Foundation of Nanjing University of Posts and Telecommunications
  grantid: NY222157
– fundername: National Natural Science Foundation of China
  grantid: 22275098
– fundername: Science and Technology Innovation Training Program
  grantid: SZDG2017019
– fundername: State Scholarship Fund of China Scholarship Council
  grantid: 202008320051
– fundername: Jiangsu Innovation Program for Graduate Education
  grantid: SJCX21_0251
– fundername: State Scholarship Fund of China Scholarship Council
  grantid: 2009DS690095
– fundername: Jiangsu Innovation Program for Graduate Education
  grantid: 46030CX17758
– fundername: Natural Science Foundation of Nanjing University of Posts and Telecommunications
  grantid: NY221085
– fundername: Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials
  grantid: JSKC20022
GroupedDBID ---
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
5GY
6J9
8-1
87K
8UM
A00
AAESR
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AHBTC
AHMBA
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBD
EBS
F5P
G-S
HBH
HGLYW
HHY
HHZ
HZ~
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2W
P4E
PQQKQ
QRW
ROL
RWI
SUPJJ
WBKPD
WHG
WOHZO
WXSBR
WYJ
XSW
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
K9.
7X8
ID FETCH-LOGICAL-c3730-ab548db5369180c4451dacf31e2e97fa2fc044c8057cb64910ba6fd8cd60654f3
ISSN 1861-4728
1861-471X
IngestDate Fri Jul 11 04:07:55 EDT 2025
Mon Jun 30 10:13:13 EDT 2025
Thu Apr 03 07:01:16 EDT 2025
Thu Apr 24 23:00:09 EDT 2025
Tue Jul 01 00:53:37 EDT 2025
Wed Jan 22 17:15:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Polyhedron
Spirofluorene
Morphology prediction
Organic crystal
Crystal regulation
Language English
License 2023 Wiley-VCH Verlag GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3730-ab548db5369180c4451dacf31e2e97fa2fc044c8057cb64910ba6fd8cd60654f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8724-4627
0000-0001-6294-5833
PMID 37370258
PQID 2864821544
PQPubID 986338
PageCount 5
ParticipantIDs proquest_miscellaneous_2830670004
proquest_journals_2864821544
pubmed_primary_37370258
crossref_primary_10_1002_asia_202300480
crossref_citationtrail_10_1002_asia_202300480
wiley_primary_10_1002_asia_202300480_ASIA202300480
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 15, 2023
PublicationDateYYYYMMDD 2023-09-15
PublicationDate_xml – month: 09
  year: 2023
  text: September 15, 2023
  day: 15
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemistry, an Asian journal
PublicationTitleAlternate Chem Asian J
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 115
2015; 15
2015; 17
2013; 25
2009; 21
2020; 20
2015; 33
2019; 37
2013; 1032
2014; 47
2011; 11
2011; 34
2008; 3
2020; 10
2011; 4
2016; 18
2004; 306
2017; 117
2013; 9
2004; 10
2012; 353
1991; 64
2017; 35
2007; 9
2005; 109
2016; 138
2017; 121
2012; 6
2003; 125
2012; 4
2009; 1
2018; 10
2014; 6
2017; 467
2012; 41
2018; 14
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_7_1
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_21_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_43_2
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_17_2
e_1_2_8_18_1
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_35_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_1
e_1_2_8_37_2
e_1_2_8_36_2
e_1_2_8_31_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_12_1
e_1_2_8_32_2
e_1_2_8_30_1
References_xml – volume: 138
  start-page: 12228
  year: 2016
  end-page: 12233
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2317
  year: 2020
  publication-title: Sci. Rep.
– volume: 33
  start-page: 511
  year: 2015
  end-page: 516
  publication-title: Chin. J. Chem.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 4
  start-page: 2062
  year: 2011
  end-page: 2065
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 990
  year: 2013
  end-page: 995
  publication-title: Small
– volume: 14
  year: 2018
  publication-title: Small
– volume: 3
  start-page: 1076
  year: 2008
  end-page: 1091
  publication-title: Chem. Asian J.
– volume: 47
  start-page: 1001
  year: 2014
  end-page: 1007
  publication-title: Macromolecules
– volume: 125
  start-page: 4068
  year: 2003
  end-page: 4069
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1619
  year: 2007
  end-page: 1622
  publication-title: Org. Lett.
– volume: 1032
  start-page: 147
  year: 2013
  end-page: 154
  publication-title: J. Mol. Struct.
– volume: 20
  start-page: 6863
  year: 2020
  end-page: 6876
  publication-title: Cryst. Growth Des.
– volume: 10
  start-page: 3879
  year: 2004
  end-page: 3890
  publication-title: Chem. Eur. J.
– volume: 353
  start-page: 168
  year: 2012
  end-page: 173
  publication-title: J. Cryst. Growth
– volume: 17
  start-page: 1448
  year: 2015
  end-page: 1452
  publication-title: CrystEngComm
– volume: 1
  start-page: 272
  year: 2009
  end-page: 276
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 13310
  year: 2018
  end-page: 13314
  publication-title: Nanoscale
– volume: 117
  start-page: 6225
  year: 2017
  end-page: 6331
  publication-title: Chem. Rev.
– volume: 25
  start-page: 3664
  year: 2013
  end-page: 3669
  publication-title: Adv. Mater.
– volume: 6
  start-page: 3467
  year: 2014
  end-page: 3473
  publication-title: Nanoscale
– volume: 109
  start-page: 14795
  year: 2005
  end-page: 14806
  publication-title: J. Phys. Chem. B
– volume: 41
  start-page: 5969
  year: 2012
  end-page: 5985
  publication-title: Chem. Soc. Rev.
– volume: 35
  start-page: 155
  year: 2017
  end-page: 170
  publication-title: Chin. J. Polym. Sci.
– volume: 11
  start-page: 3512
  year: 2011
  end-page: 3521
  publication-title: Cryst. Growth Des.
– volume: 15
  start-page: 3983
  year: 2015
  end-page: 3991
  publication-title: Cryst. Growth Des.
– volume: 64
  start-page: 311
  year: 1991
  end-page: 328
  publication-title: Comput. Phys. Commun.
– volume: 21
  start-page: 2840
  year: 2009
  end-page: 2845
  publication-title: Chem. Mater.
– volume: 115
  start-page: 7924
  year: 2011
  end-page: 7927
  publication-title: J. Phys. Chem. C
– volume: 467
  start-page: 47
  year: 2017
  end-page: 53
  publication-title: J. Cryst. Growth
– volume: 18
  start-page: 6220
  year: 2016
  end-page: 6223
  publication-title: Org. Lett.
– volume: 37
  start-page: 405
  year: 2019
  end-page: 416
  publication-title: Chin. J. Chem.
– volume: 34
  start-page: 563
  year: 2011
  end-page: 570
  publication-title: Chem. Eng. Technol.
– volume: 121
  start-page: 15288
  year: 2017
  end-page: 15293
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 5309
  year: 2012
  end-page: 5319
  publication-title: ACS Nano
– volume: 4
  start-page: 6102
  year: 2012
  end-page: 6117
  publication-title: Nanoscale
– ident: e_1_2_8_20_2
  doi: 10.1021/jp112195k
– ident: e_1_2_8_9_2
  doi: 10.1021/acs.jpcc.7b04926
– ident: e_1_2_8_40_2
  doi: 10.1016/j.molstruc.2012.08.010
– ident: e_1_2_8_23_2
  doi: 10.1021/ja0294717
– ident: e_1_2_8_11_2
  doi: 10.1039/c1ee01092a
– ident: e_1_2_8_27_2
  doi: 10.1021/jz900105v
– ident: e_1_2_8_2_2
  doi: 10.1039/c2nr31167d
– ident: e_1_2_8_17_2
  doi: 10.1002/cjoc.201800566
– ident: e_1_2_8_6_2
  doi: 10.1002/cjoc.201400846
– ident: e_1_2_8_22_1
– ident: e_1_2_8_43_2
  doi: 10.1016/j.jcrysgro.2017.03.014
– ident: e_1_2_8_36_2
  doi: 10.1021/acs.cgd.0c00920
– ident: e_1_2_8_39_2
  doi: 10.1016/j.jcrysgro.2012.05.001
– ident: e_1_2_8_33_2
  doi: 10.1039/C8NR02956C
– ident: e_1_2_8_25_1
  doi: 10.1021/ol070006u
– ident: e_1_2_8_14_2
  doi: 10.1021/cm900511g
– ident: e_1_2_8_1_1
– ident: e_1_2_8_24_2
  doi: 10.1002/smll.201202390
– ident: e_1_2_8_35_2
  doi: 10.1016/0010-4655(91)90040-R
– ident: e_1_2_8_5_2
  doi: 10.1002/asia.200800069
– ident: e_1_2_8_7_1
– ident: e_1_2_8_29_2
  doi: 10.1007/s10118-017-1897-6
– ident: e_1_2_8_45_1
  doi: 10.1021/acs.orglett.6b02595
– ident: e_1_2_8_8_2
  doi: 10.1126/science.1102896
– ident: e_1_2_8_38_2
  doi: 10.1002/ceat.201000506
– ident: e_1_2_8_21_2
  doi: 10.1039/C4CE02379J
– ident: e_1_2_8_4_2
  doi: 10.1002/chem.200400031
– ident: e_1_2_8_31_2
  doi: 10.1002/adma.201301280
– ident: e_1_2_8_16_2
  doi: 10.1021/jp052257v
– ident: e_1_2_8_28_2
  doi: 10.1021/ma402585n
– ident: e_1_2_8_30_1
– ident: e_1_2_8_3_2
  doi: 10.1039/c2cs35115c
– ident: e_1_2_8_13_2
  doi: 10.1039/c3nr04654k
– ident: e_1_2_8_18_1
– ident: e_1_2_8_32_2
  doi: 10.1002/smll.201703151
– ident: e_1_2_8_10_2
  doi: 10.1021/acs.chemrev.6b00558
– ident: e_1_2_8_42_2
  doi: 10.1021/jacs.6b06269
– ident: e_1_2_8_15_1
– ident: e_1_2_8_12_1
– ident: e_1_2_8_37_2
  doi: 10.1021/cg200529x
– ident: e_1_2_8_44_1
  doi: 10.1038/s41598-020-59261-3
– ident: e_1_2_8_19_2
  doi: 10.1021/nn3011398
– ident: e_1_2_8_41_2
  doi: 10.1021/acs.cgd.5b00605
– ident: e_1_2_8_26_1
– ident: e_1_2_8_34_1
SSID ssj0052098
Score 2.3845284
Snippet Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202300480
SubjectTerms Chemistry
Crystal morphology
Crystal regulation
Crystallization
Hydrogen bonds
Molecular structure
Morphology
Morphology prediction
Organic chemistry
Organic crystal
Polyhedron
Spirofluorene
Van der Waals forces
Title Regulating and Predicting the Polyhedral Crystal Morphology in Spirofluorene Molecular Systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202300480
https://www.ncbi.nlm.nih.gov/pubmed/37370258
https://www.proquest.com/docview/2864821544
https://www.proquest.com/docview/2830670004
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1861-471X
  dateEnd: 20240929
  omitProxy: true
  ssIdentifier: ssj0052098
  issn: 1861-4728
  databaseCode: ABDBF
  dateStart: 20120615
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELage4AXxO8VBjISgieP1PHc5LErqwbaxgStVnggShxni1QlpWsexl_PXWwnRCti8BIljmVbvsv5zvH3HSGvBSzKWmUxQ-45JmBNY2GiB8yHtUAlsQCnGdHIxyfycCY-zvfm7a5SjS5ZJ7vq50Zcyf9IFcpAroiS_QfJNo1CAdyDfOEKEobrjWT82SSSdzjD0xX-dVk7ANRpubi60Cki8Merq0tEPR6XMK2GdSmH73qZgxVeVCXSWsI7myi3w2LuSAxcXjhz2hOkmtsdfDdIPIVj-AggvD1n3y7ydlPA2JOvccHOdFN85oorNi7t-llnCMPCOTR__vuOBPfx-ITBZFojGkiIS4d1KhxYYzaUXbO8VfNg7KjGdmu8-0Yzb2hjEWa626nY5dM--RRNZkdH0fRgPn2z_MEw1Rj-krd5V26TLT6UkvfI1mj__f7ELeB4MKhGULohO65Pj7_rdtn1Za4FKN14p3ZYpvfJPRtp0JFRmwfkli4ekjuNIB-R7636UFAf2qoPBfWhrfpQqz60VR-aF7SjPrRRH2rV5zGZTQ6m40Nm020w5YOdZ3EC0Wua7PkyHASeQua6NFaZP9Bch8Ms5pnyhFABePgqkQL8zCSWGWa_kohQzvwnpFeUhd4mNBQ8zhRPUz8M0OWOZQKteJkKhRaBCPqEuYmLlOWix5Qoi8iwaPMIJzpqJrpP3jb1l4aF5Y81d5wcIvsRXEY8kCLgyDvVJ6-a1zDb-HMsLnRZYR2_hqx5UOepkV_TFUzPEGIDGDavBfqXMUSjLx9GzdOzG3T5nNxtP6Qd0luvKv0CnN118tIq5y8IX6jp
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+and+Predicting+the+Polyhedral+Crystal+Morphology+in+Spirofluorene+Molecular+Systems&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Jin%2C+Ling-Zhi&rft.au=Tang%2C+Yan-Wei&rft.au=Wang%2C+Yu-Cong&rft.au=Yu%2C+Xiang&rft.date=2023-09-15&rft.issn=1861-471X&rft.eissn=1861-471X&rft.volume=18&rft.issue=18&rft.spage=e202300480&rft_id=info:doi/10.1002%2Fasia.202300480&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon