Regulating and Predicting the Polyhedral Crystal Morphology in Spirofluorene Molecular Systems
Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed b...
Saved in:
Published in | Chemistry, an Asian journal Vol. 18; no. 18; pp. e202300480 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
15.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1861-4728 1861-471X 1861-471X |
DOI | 10.1002/asia.202300480 |
Cover
Abstract | Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed by spiro[fluorene‐9,9′‐xanthene] (SFX) and spiro[cyclopenta[1,2‐b : 5,4‐b′]dipyridine‐5,9′‐xanthene] (SDAFX) to demonstrate the feasibility of morphology prediction by periodic bond chain (PBC) theory based on interaction energy (IE) values in terms of single point energy. With non‐directional van der Waals forces, only one PBC direction is found in SFX crystal, leading to the irregular 1D rod‐like structure. Compared with SFX, the extra N heteroatoms in SDAFX can bring additional hydrogen bonds and some other interactions into the bulky molecular skeletons, inducing 3‐dimensionally oriented PBCs to form the explicit F‐face network in SDAFX which leads to the final octahedral structure. A simple and accurate method has been provided to quantify PBC vector on the supramolecular level in the organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro‐molecules.
A simple and accurate method has been provided to quantify the PBC vector at the supramolecular level in an organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro‐molecules. The realization of this strategy is key to a specific molecular design and regulation of assembly behavior as well as the foundation of further optoelectronic research. |
---|---|
AbstractList | Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed by spiro[fluorene-9,9'-xanthene] (SFX) and spiro[cyclopenta[1,2-b : 5,4-b']dipyridine-5,9'-xanthene] (SDAFX) to demonstrate the feasibility of morphology prediction by periodic bond chain (PBC) theory based on interaction energy (IE) values in terms of single point energy. With non-directional van der Waals forces, only one PBC direction is found in SFX crystal, leading to the irregular 1D rod-like structure. Compared with SFX, the extra N heteroatoms in SDAFX can bring additional hydrogen bonds and some other interactions into the bulky molecular skeletons, inducing 3-dimensionally oriented PBCs to form the explicit F-face network in SDAFX which leads to the final octahedral structure. A simple and accurate method has been provided to quantify PBC vector on the supramolecular level in the organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro-molecules. Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed by spiro[fluorene-9,9'-xanthene] (SFX) and spiro[cyclopenta[1,2-b : 5,4-b']dipyridine-5,9'-xanthene] (SDAFX) to demonstrate the feasibility of morphology prediction by periodic bond chain (PBC) theory based on interaction energy (IE) values in terms of single point energy. With non-directional van der Waals forces, only one PBC direction is found in SFX crystal, leading to the irregular 1D rod-like structure. Compared with SFX, the extra N heteroatoms in SDAFX can bring additional hydrogen bonds and some other interactions into the bulky molecular skeletons, inducing 3-dimensionally oriented PBCs to form the explicit F-face network in SDAFX which leads to the final octahedral structure. A simple and accurate method has been provided to quantify PBC vector on the supramolecular level in the organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro-molecules.Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed by spiro[fluorene-9,9'-xanthene] (SFX) and spiro[cyclopenta[1,2-b : 5,4-b']dipyridine-5,9'-xanthene] (SDAFX) to demonstrate the feasibility of morphology prediction by periodic bond chain (PBC) theory based on interaction energy (IE) values in terms of single point energy. With non-directional van der Waals forces, only one PBC direction is found in SFX crystal, leading to the irregular 1D rod-like structure. Compared with SFX, the extra N heteroatoms in SDAFX can bring additional hydrogen bonds and some other interactions into the bulky molecular skeletons, inducing 3-dimensionally oriented PBCs to form the explicit F-face network in SDAFX which leads to the final octahedral structure. A simple and accurate method has been provided to quantify PBC vector on the supramolecular level in the organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro-molecules. Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed by spiro[fluorene‐9,9′‐xanthene] (SFX) and spiro[cyclopenta[1,2‐b : 5,4‐b′]dipyridine‐5,9′‐xanthene] (SDAFX) to demonstrate the feasibility of morphology prediction by periodic bond chain (PBC) theory based on interaction energy (IE) values in terms of single point energy. With non‐directional van der Waals forces, only one PBC direction is found in SFX crystal, leading to the irregular 1D rod‐like structure. Compared with SFX, the extra N heteroatoms in SDAFX can bring additional hydrogen bonds and some other interactions into the bulky molecular skeletons, inducing 3‐dimensionally oriented PBCs to form the explicit F‐face network in SDAFX which leads to the final octahedral structure. A simple and accurate method has been provided to quantify PBC vector on the supramolecular level in the organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro‐molecules. A simple and accurate method has been provided to quantify the PBC vector at the supramolecular level in an organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro‐molecules. The realization of this strategy is key to a specific molecular design and regulation of assembly behavior as well as the foundation of further optoelectronic research. |
Author | Kan, Yu‐He Yu, Xiang Xie, Ling‐Hai Wang, Yu‐Cong Huang, Wei Lin, Dong‐Qing Wang, Sha‐Sha Ye, Qiu‐Ting Tang, Yan‐Wei Wan, Zi‐Qian Jin, Ling‐Zhi Zhu, Qin |
Author_xml | – sequence: 1 givenname: Ling‐Zhi surname: Jin fullname: Jin, Ling‐Zhi organization: Nanjing Vocational University of Industry Technology – sequence: 2 givenname: Yan‐Wei surname: Tang fullname: Tang, Yan‐Wei organization: Nanjing University of Posts & Telecommunications (NUPT) – sequence: 3 givenname: Yu‐Cong surname: Wang fullname: Wang, Yu‐Cong organization: Nanjing University of Posts & Telecommunications (NUPT) – sequence: 4 givenname: Xiang surname: Yu fullname: Yu, Xiang organization: Nanjing University of Posts & Telecommunications (NUPT) – sequence: 5 givenname: Qiu‐Ting surname: Ye fullname: Ye, Qiu‐Ting organization: Nanjing University of Posts & Telecommunications (NUPT) – sequence: 6 givenname: Zi‐Qian surname: Wan fullname: Wan, Zi‐Qian organization: Nanjing University of Posts & Telecommunications (NUPT) – sequence: 7 givenname: Dong‐Qing surname: Lin fullname: Lin, Dong‐Qing organization: Nanjing University of Posts & Telecommunications (NUPT) – sequence: 8 givenname: Yu‐He surname: Kan fullname: Kan, Yu‐He organization: Huaiyin Normal University – sequence: 9 givenname: Qin surname: Zhu fullname: Zhu, Qin organization: Nanjing University of Posts & Telecommunications (NUPT) – sequence: 10 givenname: Sha‐Sha orcidid: 0000-0002-8724-4627 surname: Wang fullname: Wang, Sha‐Sha email: iamsswang@njupt.edu.cn organization: Nanjing University of Posts & Telecommunications (NUPT) – sequence: 11 givenname: Ling‐Hai orcidid: 0000-0001-6294-5833 surname: Xie fullname: Xie, Ling‐Hai email: iamlhxie@njupt.edu.cn organization: Nanjing University of Posts & Telecommunications (NUPT) – sequence: 12 givenname: Wei surname: Huang fullname: Huang, Wei email: wei-huang@njtech.edu.cn organization: Northwestern Polytechnical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37370258$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkdFr2zAQxsVoWZpur3schr3sJelJlm35MYSuC7QsNCv0qUaWz4mKImWSTfF_P6VpMyiMPt0d-n2n4_vG5MQ6i4R8oTClAOxCBi2nDFgKwAV8IGdU5HTCC3p_cuyZGJFxCI8AGYNSfCSjtEgLYJk4Iw-3uO6N7LRdJ9I2ydJjo9Xz2G0wWTozbLDx0iRzP4Qu1hvndxtn3HpItE1WO-1da3rn0WJ8M6jiOp-sIozb8ImcttIE_PxSz8ndj8vf85-T619Xi_nseqLiKTCRdcZFU2dpXlIBivOMNlK1KUWGZdFK1irgXAnIClXnvKRQy7xthGpyyDPepufk-2Hvzrs_PYau2uqg0Bhp0fWhYiKFvIBoUkS_vUEfXe9tvC5SOReMZnxPfX2h-nqLTbXzeiv9UL06F4HpAVDeheCxPSIUqn001T6a6hhNFPA3AqW7aLyznZfa_F9WHmRP2uDwzifVbLWY_dP-BTJMozk |
CitedBy_id | crossref_primary_10_1002_adom_202402036 |
Cites_doi | 10.1021/jp112195k 10.1021/acs.jpcc.7b04926 10.1016/j.molstruc.2012.08.010 10.1021/ja0294717 10.1039/c1ee01092a 10.1021/jz900105v 10.1039/c2nr31167d 10.1002/cjoc.201800566 10.1002/cjoc.201400846 10.1016/j.jcrysgro.2017.03.014 10.1021/acs.cgd.0c00920 10.1016/j.jcrysgro.2012.05.001 10.1039/C8NR02956C 10.1021/ol070006u 10.1021/cm900511g 10.1002/smll.201202390 10.1016/0010-4655(91)90040-R 10.1002/asia.200800069 10.1007/s10118-017-1897-6 10.1021/acs.orglett.6b02595 10.1126/science.1102896 10.1002/ceat.201000506 10.1039/C4CE02379J 10.1002/chem.200400031 10.1002/adma.201301280 10.1021/jp052257v 10.1021/ma402585n 10.1039/c2cs35115c 10.1039/c3nr04654k 10.1002/smll.201703151 10.1021/acs.chemrev.6b00558 10.1021/jacs.6b06269 10.1021/cg200529x 10.1038/s41598-020-59261-3 10.1021/nn3011398 10.1021/acs.cgd.5b00605 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH Verlag GmbH. 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH Verlag GmbH. – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/asia.202300480 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1861-471X |
EndPage | n/a |
ExternalDocumentID | 37370258 10_1002_asia_202300480 ASIA202300480 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials funderid: JSKC20022 – fundername: National Natural Science Foundation of China funderid: 22275098 – fundername: State Scholarship Fund of China Scholarship Council funderid: 202008320051; 2009DS690095 – fundername: Project of State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications funderid: GZR2022010008 – fundername: Jiangsu Innovation Program for Graduate Education funderid: 46030CX17758; SJCX21_0251 – fundername: Natural Science Foundation of Nanjing University of Posts and Telecommunications funderid: NY221085; NY222157 – fundername: Science and Technology Innovation Training Program funderid: SZDG2017019 – fundername: Project of State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications grantid: GZR2022010008 – fundername: Natural Science Foundation of Nanjing University of Posts and Telecommunications grantid: NY222157 – fundername: National Natural Science Foundation of China grantid: 22275098 – fundername: Science and Technology Innovation Training Program grantid: SZDG2017019 – fundername: State Scholarship Fund of China Scholarship Council grantid: 202008320051 – fundername: Jiangsu Innovation Program for Graduate Education grantid: SJCX21_0251 – fundername: State Scholarship Fund of China Scholarship Council grantid: 2009DS690095 – fundername: Jiangsu Innovation Program for Graduate Education grantid: 46030CX17758 – fundername: Natural Science Foundation of Nanjing University of Posts and Telecommunications grantid: NY221085 – fundername: Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials grantid: JSKC20022 |
GroupedDBID | --- 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 5GY 6J9 8-1 87K 8UM A00 AAESR AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABDBF ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEUQT AEUYR AFBPY AFFPM AFGKR AFWVQ AHBTC AHMBA AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DRFUL DRSTM EBD EBS F5P G-S HBH HGLYW HHY HHZ HZ~ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ O66 O9- OIG P2W P4E PQQKQ QRW ROL RWI SUPJJ WBKPD WHG WOHZO WXSBR WYJ XSW XV2 ZZTAW ~S- AAYXX AEYWJ AGHNM AGYGG CITATION NPM K9. 7X8 |
ID | FETCH-LOGICAL-c3730-ab548db5369180c4451dacf31e2e97fa2fc044c8057cb64910ba6fd8cd60654f3 |
ISSN | 1861-4728 1861-471X |
IngestDate | Fri Jul 11 04:07:55 EDT 2025 Mon Jun 30 10:13:13 EDT 2025 Thu Apr 03 07:01:16 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Tue Jul 01 00:53:37 EDT 2025 Wed Jan 22 17:15:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Polyhedron Spirofluorene Morphology prediction Organic crystal Crystal regulation |
Language | English |
License | 2023 Wiley-VCH Verlag GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3730-ab548db5369180c4451dacf31e2e97fa2fc044c8057cb64910ba6fd8cd60654f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8724-4627 0000-0001-6294-5833 |
PMID | 37370258 |
PQID | 2864821544 |
PQPubID | 986338 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2830670004 proquest_journals_2864821544 pubmed_primary_37370258 crossref_primary_10_1002_asia_202300480 crossref_citationtrail_10_1002_asia_202300480 wiley_primary_10_1002_asia_202300480_ASIA202300480 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 15, 2023 |
PublicationDateYYYYMMDD | 2023-09-15 |
PublicationDate_xml | – month: 09 year: 2023 text: September 15, 2023 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Chemistry, an Asian journal |
PublicationTitleAlternate | Chem Asian J |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 115 2015; 15 2015; 17 2013; 25 2009; 21 2020; 20 2015; 33 2019; 37 2013; 1032 2014; 47 2011; 11 2011; 34 2008; 3 2020; 10 2011; 4 2016; 18 2004; 306 2017; 117 2013; 9 2004; 10 2012; 353 1991; 64 2017; 35 2007; 9 2005; 109 2016; 138 2017; 121 2012; 6 2003; 125 2012; 4 2009; 1 2018; 10 2014; 6 2017; 467 2012; 41 2018; 14 e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_7_1 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_21_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_43_2 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_17_2 e_1_2_8_18_1 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_35_2 e_1_2_8_13_2 e_1_2_8_14_2 e_1_2_8_15_1 e_1_2_8_37_2 e_1_2_8_36_2 e_1_2_8_31_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_12_1 e_1_2_8_32_2 e_1_2_8_30_1 |
References_xml | – volume: 138 start-page: 12228 year: 2016 end-page: 12233 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2317 year: 2020 publication-title: Sci. Rep. – volume: 33 start-page: 511 year: 2015 end-page: 516 publication-title: Chin. J. Chem. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 4 start-page: 2062 year: 2011 end-page: 2065 publication-title: Energy Environ. Sci. – volume: 9 start-page: 990 year: 2013 end-page: 995 publication-title: Small – volume: 14 year: 2018 publication-title: Small – volume: 3 start-page: 1076 year: 2008 end-page: 1091 publication-title: Chem. Asian J. – volume: 47 start-page: 1001 year: 2014 end-page: 1007 publication-title: Macromolecules – volume: 125 start-page: 4068 year: 2003 end-page: 4069 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1619 year: 2007 end-page: 1622 publication-title: Org. Lett. – volume: 1032 start-page: 147 year: 2013 end-page: 154 publication-title: J. Mol. Struct. – volume: 20 start-page: 6863 year: 2020 end-page: 6876 publication-title: Cryst. Growth Des. – volume: 10 start-page: 3879 year: 2004 end-page: 3890 publication-title: Chem. Eur. J. – volume: 353 start-page: 168 year: 2012 end-page: 173 publication-title: J. Cryst. Growth – volume: 17 start-page: 1448 year: 2015 end-page: 1452 publication-title: CrystEngComm – volume: 1 start-page: 272 year: 2009 end-page: 276 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 13310 year: 2018 end-page: 13314 publication-title: Nanoscale – volume: 117 start-page: 6225 year: 2017 end-page: 6331 publication-title: Chem. Rev. – volume: 25 start-page: 3664 year: 2013 end-page: 3669 publication-title: Adv. Mater. – volume: 6 start-page: 3467 year: 2014 end-page: 3473 publication-title: Nanoscale – volume: 109 start-page: 14795 year: 2005 end-page: 14806 publication-title: J. Phys. Chem. B – volume: 41 start-page: 5969 year: 2012 end-page: 5985 publication-title: Chem. Soc. Rev. – volume: 35 start-page: 155 year: 2017 end-page: 170 publication-title: Chin. J. Polym. Sci. – volume: 11 start-page: 3512 year: 2011 end-page: 3521 publication-title: Cryst. Growth Des. – volume: 15 start-page: 3983 year: 2015 end-page: 3991 publication-title: Cryst. Growth Des. – volume: 64 start-page: 311 year: 1991 end-page: 328 publication-title: Comput. Phys. Commun. – volume: 21 start-page: 2840 year: 2009 end-page: 2845 publication-title: Chem. Mater. – volume: 115 start-page: 7924 year: 2011 end-page: 7927 publication-title: J. Phys. Chem. C – volume: 467 start-page: 47 year: 2017 end-page: 53 publication-title: J. Cryst. Growth – volume: 18 start-page: 6220 year: 2016 end-page: 6223 publication-title: Org. Lett. – volume: 37 start-page: 405 year: 2019 end-page: 416 publication-title: Chin. J. Chem. – volume: 34 start-page: 563 year: 2011 end-page: 570 publication-title: Chem. Eng. Technol. – volume: 121 start-page: 15288 year: 2017 end-page: 15293 publication-title: J. Phys. Chem. C – volume: 6 start-page: 5309 year: 2012 end-page: 5319 publication-title: ACS Nano – volume: 4 start-page: 6102 year: 2012 end-page: 6117 publication-title: Nanoscale – ident: e_1_2_8_20_2 doi: 10.1021/jp112195k – ident: e_1_2_8_9_2 doi: 10.1021/acs.jpcc.7b04926 – ident: e_1_2_8_40_2 doi: 10.1016/j.molstruc.2012.08.010 – ident: e_1_2_8_23_2 doi: 10.1021/ja0294717 – ident: e_1_2_8_11_2 doi: 10.1039/c1ee01092a – ident: e_1_2_8_27_2 doi: 10.1021/jz900105v – ident: e_1_2_8_2_2 doi: 10.1039/c2nr31167d – ident: e_1_2_8_17_2 doi: 10.1002/cjoc.201800566 – ident: e_1_2_8_6_2 doi: 10.1002/cjoc.201400846 – ident: e_1_2_8_22_1 – ident: e_1_2_8_43_2 doi: 10.1016/j.jcrysgro.2017.03.014 – ident: e_1_2_8_36_2 doi: 10.1021/acs.cgd.0c00920 – ident: e_1_2_8_39_2 doi: 10.1016/j.jcrysgro.2012.05.001 – ident: e_1_2_8_33_2 doi: 10.1039/C8NR02956C – ident: e_1_2_8_25_1 doi: 10.1021/ol070006u – ident: e_1_2_8_14_2 doi: 10.1021/cm900511g – ident: e_1_2_8_1_1 – ident: e_1_2_8_24_2 doi: 10.1002/smll.201202390 – ident: e_1_2_8_35_2 doi: 10.1016/0010-4655(91)90040-R – ident: e_1_2_8_5_2 doi: 10.1002/asia.200800069 – ident: e_1_2_8_7_1 – ident: e_1_2_8_29_2 doi: 10.1007/s10118-017-1897-6 – ident: e_1_2_8_45_1 doi: 10.1021/acs.orglett.6b02595 – ident: e_1_2_8_8_2 doi: 10.1126/science.1102896 – ident: e_1_2_8_38_2 doi: 10.1002/ceat.201000506 – ident: e_1_2_8_21_2 doi: 10.1039/C4CE02379J – ident: e_1_2_8_4_2 doi: 10.1002/chem.200400031 – ident: e_1_2_8_31_2 doi: 10.1002/adma.201301280 – ident: e_1_2_8_16_2 doi: 10.1021/jp052257v – ident: e_1_2_8_28_2 doi: 10.1021/ma402585n – ident: e_1_2_8_30_1 – ident: e_1_2_8_3_2 doi: 10.1039/c2cs35115c – ident: e_1_2_8_13_2 doi: 10.1039/c3nr04654k – ident: e_1_2_8_18_1 – ident: e_1_2_8_32_2 doi: 10.1002/smll.201703151 – ident: e_1_2_8_10_2 doi: 10.1021/acs.chemrev.6b00558 – ident: e_1_2_8_42_2 doi: 10.1021/jacs.6b06269 – ident: e_1_2_8_15_1 – ident: e_1_2_8_12_1 – ident: e_1_2_8_37_2 doi: 10.1021/cg200529x – ident: e_1_2_8_44_1 doi: 10.1038/s41598-020-59261-3 – ident: e_1_2_8_19_2 doi: 10.1021/nn3011398 – ident: e_1_2_8_41_2 doi: 10.1021/acs.cgd.5b00605 – ident: e_1_2_8_26_1 – ident: e_1_2_8_34_1 |
SSID | ssj0052098 |
Score | 2.3845284 |
Snippet | Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202300480 |
SubjectTerms | Chemistry Crystal morphology Crystal regulation Crystallization Hydrogen bonds Molecular structure Morphology Morphology prediction Organic chemistry Organic crystal Polyhedron Spirofluorene Van der Waals forces |
Title | Regulating and Predicting the Polyhedral Crystal Morphology in Spirofluorene Molecular Systems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202300480 https://www.ncbi.nlm.nih.gov/pubmed/37370258 https://www.proquest.com/docview/2864821544 https://www.proquest.com/docview/2830670004 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1861-471X dateEnd: 20240929 omitProxy: true ssIdentifier: ssj0052098 issn: 1861-4728 databaseCode: ABDBF dateStart: 20120615 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELage4AXxO8VBjISgieP1PHc5LErqwbaxgStVnggShxni1QlpWsexl_PXWwnRCti8BIljmVbvsv5zvH3HSGvBSzKWmUxQ-45JmBNY2GiB8yHtUAlsQCnGdHIxyfycCY-zvfm7a5SjS5ZJ7vq50Zcyf9IFcpAroiS_QfJNo1CAdyDfOEKEobrjWT82SSSdzjD0xX-dVk7ANRpubi60Cki8Merq0tEPR6XMK2GdSmH73qZgxVeVCXSWsI7myi3w2LuSAxcXjhz2hOkmtsdfDdIPIVj-AggvD1n3y7ydlPA2JOvccHOdFN85oorNi7t-llnCMPCOTR__vuOBPfx-ITBZFojGkiIS4d1KhxYYzaUXbO8VfNg7KjGdmu8-0Yzb2hjEWa626nY5dM--RRNZkdH0fRgPn2z_MEw1Rj-krd5V26TLT6UkvfI1mj__f7ELeB4MKhGULohO65Pj7_rdtn1Za4FKN14p3ZYpvfJPRtp0JFRmwfkli4ekjuNIB-R7636UFAf2qoPBfWhrfpQqz60VR-aF7SjPrRRH2rV5zGZTQ6m40Nm020w5YOdZ3EC0Wua7PkyHASeQua6NFaZP9Bch8Ms5pnyhFABePgqkQL8zCSWGWa_kohQzvwnpFeUhd4mNBQ8zhRPUz8M0OWOZQKteJkKhRaBCPqEuYmLlOWix5Qoi8iwaPMIJzpqJrpP3jb1l4aF5Y81d5wcIvsRXEY8kCLgyDvVJ6-a1zDb-HMsLnRZYR2_hqx5UOepkV_TFUzPEGIDGDavBfqXMUSjLx9GzdOzG3T5nNxtP6Qd0luvKv0CnN118tIq5y8IX6jp |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+and+Predicting+the+Polyhedral+Crystal+Morphology+in+Spirofluorene+Molecular+Systems&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Jin%2C+Ling-Zhi&rft.au=Tang%2C+Yan-Wei&rft.au=Wang%2C+Yu-Cong&rft.au=Yu%2C+Xiang&rft.date=2023-09-15&rft.issn=1861-471X&rft.eissn=1861-471X&rft.volume=18&rft.issue=18&rft.spage=e202300480&rft_id=info:doi/10.1002%2Fasia.202300480&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon |