Poly(dimethylsiloxane)‐block‐PM6 Polymer Donors for High‐Performance and Mechanically Robust Polymer Solar Cells
High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack‐onset strain (...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 35; no. 24; pp. e2300230 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202300230 |
Cover
Abstract | High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack‐onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6‐b‐PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6‐b‐PDMS19k:L8‐BO PSC exhibits a high PCE (18%) and 9‐times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8‐BO‐based PSC. However, the PM6:L8‐BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6‐b‐PDMS19k:L8‐BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8‐BO blend (PCE80% at 12% strain) and the PM6:L8‐BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs.
Polymer solar cells (PSCs) with high‐performance and ‐stretchability are developed by designing block copolymer donors comprising PM6 and elastomeric PDMS blocks (PM6‐b‐PDMS). High power conversion efficiency (PCE ≈ 18%) and stretchability (crack onset point > 18%) are demonstrated for the PM6‐b‐PDMS19k‐based PSC. The PM6‐b‐PDMS19k‐based intrinsically stretchable PSCs show superior mechanical stability (PCE retention > 80% at 32% strain) than the PM6‐based and PM6:PDMS‐blend‐based devices. |
---|---|
AbstractList | High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack‐onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6‐b‐PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6‐b‐PDMS19k:L8‐BO PSC exhibits a high PCE (18%) and 9‐times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8‐BO‐based PSC. However, the PM6:L8‐BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6‐b‐PDMS19k:L8‐BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8‐BO blend (PCE80% at 12% strain) and the PM6:L8‐BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs.
Polymer solar cells (PSCs) with high‐performance and ‐stretchability are developed by designing block copolymer donors comprising PM6 and elastomeric PDMS blocks (PM6‐b‐PDMS). High power conversion efficiency (PCE ≈ 18%) and stretchability (crack onset point > 18%) are demonstrated for the PM6‐b‐PDMS19k‐based PSC. The PM6‐b‐PDMS19k‐based intrinsically stretchable PSCs show superior mechanical stability (PCE retention > 80% at 32% strain) than the PM6‐based and PM6:PDMS‐blend‐based devices. High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack-onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6-b-PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6-b-PDMS :L8-BO PSC exhibits a high PCE (18%) and 9-times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8-BO-based PSC. However, the PM6:L8-BO:PDMS ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6-b-PDMS :L8-BO blend exhibits significantly greater mechanical stability PCE ((80% of the initial PCE) at 36% strain) than those of the PM6:L8-BO blend (PCE at 12% strain) and the PM6:L8-BO:PDMS ternary blend (PCE at 4% strain). This study suggests an effective design strategy of BCP P to achieve stretchable and efficient PSCs. High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack-onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6-b-PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6-b-PDMS19k :L8-BO PSC exhibits a high PCE (18%) and 9-times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8-BO-based PSC. However, the PM6:L8-BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6-b-PDMS19k :L8-BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8-BO blend (PCE80% at 12% strain) and the PM6:L8-BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs.High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack-onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6-b-PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6-b-PDMS19k :L8-BO PSC exhibits a high PCE (18%) and 9-times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8-BO-based PSC. However, the PM6:L8-BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6-b-PDMS19k :L8-BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8-BO blend (PCE80% at 12% strain) and the PM6:L8-BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs. High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack‐onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6‐ b ‐PDMS x ( x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6‐ b ‐PDMS 19k :L8‐BO PSC exhibits a high PCE (18%) and 9‐times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8‐BO‐based PSC. However, the PM6:L8‐BO:PDMS 12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6‐ b ‐PDMS 19k :L8‐BO blend exhibits significantly greater mechanical stability PCE 80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8‐BO blend (PCE 80% at 12% strain) and the PM6:L8‐BO:PDMS ternary blend (PCE 80% at 4% strain). This study suggests an effective design strategy of BCP P D to achieve stretchable and efficient PSCs. High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack‐onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6‐b‐PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6‐b‐PDMS19k:L8‐BO PSC exhibits a high PCE (18%) and 9‐times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8‐BO‐based PSC. However, the PM6:L8‐BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6‐b‐PDMS19k:L8‐BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8‐BO blend (PCE80% at 12% strain) and the PM6:L8‐BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs. |
Author | Lee, Jin‐Woo Lee, Dongchan Seo, Soodeok Kim, Bumjoon J. Kim, Taek‐Soo Kim, Dong Jun Cho, Shinuk Phan, Tan Ngoc‐Lan Tan, Zhengping Park, Jinseok |
Author_xml | – sequence: 1 givenname: Soodeok surname: Seo fullname: Seo, Soodeok organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 2 givenname: Jin‐Woo surname: Lee fullname: Lee, Jin‐Woo organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 3 givenname: Dong Jun surname: Kim fullname: Kim, Dong Jun organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 4 givenname: Dongchan surname: Lee fullname: Lee, Dongchan organization: University of Ulsan – sequence: 5 givenname: Tan Ngoc‐Lan surname: Phan fullname: Phan, Tan Ngoc‐Lan organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 6 givenname: Jinseok orcidid: 0000-0002-0389-9707 surname: Park fullname: Park, Jinseok organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 7 givenname: Zhengping surname: Tan fullname: Tan, Zhengping organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 8 givenname: Shinuk surname: Cho fullname: Cho, Shinuk organization: University of Ulsan – sequence: 9 givenname: Taek‐Soo surname: Kim fullname: Kim, Taek‐Soo organization: Korea Advanced Institute of Science and Technology (KAIST) – sequence: 10 givenname: Bumjoon J. orcidid: 0000-0001-7783-9689 surname: Kim fullname: Kim, Bumjoon J. email: bumjoonkim@kaist.ac.kr organization: Korea Advanced Institute of Science and Technology (KAIST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36929364$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAQgC1URLcLV44oEpdyyHZir-31cbUtFKmrVvycLcdxWBfHLnZCyY1H4Bl5EhxtW6RKiIM18vj7RuOZI3TggzcIvaxgUQHgE9V0aoEBE5jOEzSrKK7KJQh6gGYgCC0FW64O0VFK1wAgGLBn6JAwgQVhyxn6fhXceNzYzvS70SXrwg_lzZvfP3_VLuivOV5tWTFBnYnFafAhpqINsTi3X3bTq4n51imvTaF8U2yN3ilvtXJuLD6Eekj9g_0xOBWLjXEuPUdPW-WSeXEX5-jz27NPm_Py4vLd-836otSEEygp5g02nIq6MbwRzLSmZhSM4Ji3jYCGCAJ1TnFVM80pXbGWgWKMU65Vy8gcHe_r3sTwbTCpl51NOneQPxmGJPEKuNgPb45eP0KvwxB97i5TmHKoKFll6tUdNdSdaeRNtJ2Ko7yfaAaWe0DHkFI0rdS2V70Nvo_KOlmBnBYnp8XJh8VlbfFIu6_8T0HshVvrzPgfWq5Pt-u_7h8r262m |
CitedBy_id | crossref_primary_10_1002_adfm_202404569 crossref_primary_10_1002_ange_202415440 crossref_primary_10_1016_j_porgcoat_2024_108276 crossref_primary_10_1002_marc_202400637 crossref_primary_10_1016_j_mser_2024_100916 crossref_primary_10_1002_smll_202407147 crossref_primary_10_1039_D3CS00492A crossref_primary_10_1039_D3SC02289G crossref_primary_10_1021_acsami_4c07014 crossref_primary_10_1002_adma_202307278 crossref_primary_10_1002_adfm_202407681 crossref_primary_10_1002_adfm_202316550 crossref_primary_10_1016_j_progpolymsci_2024_101899 crossref_primary_10_1021_acs_chemmater_3c00485 crossref_primary_10_1002_adfm_202402974 crossref_primary_10_1021_acs_chemmater_3c01970 crossref_primary_10_1002_smll_202401966 crossref_primary_10_1002_adma_202313074 crossref_primary_10_1002_adma_202311170 crossref_primary_10_1021_acsnano_3c10033 crossref_primary_10_1039_D4EE04208E crossref_primary_10_1021_acsenergylett_3c01490 crossref_primary_10_1039_D5EE00002E crossref_primary_10_1021_acsmaterialslett_4c00188 crossref_primary_10_1002_solr_202300982 crossref_primary_10_1002_adma_202307280 crossref_primary_10_1002_adfm_202312289 crossref_primary_10_1002_adma_202408988 crossref_primary_10_1002_ange_202308307 crossref_primary_10_1016_j_nanoen_2024_109541 crossref_primary_10_1039_D4TA00117F crossref_primary_10_1039_D4PY00180J crossref_primary_10_26599_NRE_2022_9120088 crossref_primary_10_1002_ange_202407040 crossref_primary_10_1002_adma_202411449 crossref_primary_10_1002_adfm_202400702 crossref_primary_10_1002_aenm_202404233 crossref_primary_10_1126_science_adp9709 crossref_primary_10_1002_adfm_202408993 crossref_primary_10_1007_s10118_025_3265_2 crossref_primary_10_1039_D4TA02429J crossref_primary_10_1021_acsami_4c14562 crossref_primary_10_3390_polym15194005 crossref_primary_10_1016_j_orgel_2024_107075 crossref_primary_10_1002_sus2_70005 crossref_primary_10_1021_acs_chemmater_4c01516 crossref_primary_10_1002_anie_202415440 crossref_primary_10_1002_anie_202407040 crossref_primary_10_1002_marc_202400603 crossref_primary_10_1002_anie_202308307 crossref_primary_10_1002_aenm_202401191 crossref_primary_10_1039_D3CS00895A crossref_primary_10_1016_j_joule_2024_11_009 crossref_primary_10_1002_adma_202313532 crossref_primary_10_1002_adma_202414080 crossref_primary_10_1002_adma_202305562 crossref_primary_10_1002_aenm_202304286 crossref_primary_10_1016_j_nanoen_2024_109338 crossref_primary_10_1039_D3TA03935H crossref_primary_10_1002_adma_202312805 crossref_primary_10_1002_aenm_202303872 crossref_primary_10_26599_NRE_2023_9120088 crossref_primary_10_1021_acsaem_3c02581 |
Cites_doi | 10.1002/adma.202102420 10.1002/anie.202201844 10.1007/BF00654172 10.1021/acs.macromol.0c02496 10.1039/D2EE02523J 10.1039/D0TA11320D 10.1039/C7TA03980H 10.1016/j.progpolymsci.2013.07.009 10.1021/acs.chemmater.0c03019 10.1016/j.joule.2020.03.019 10.1016/j.matt.2021.12.002 10.1002/adfm.202003654 10.1002/aenm.201200377 10.1021/acs.macromol.7b00128 10.1021/acsapm.1c00213 10.1021/acsami.9b05537 10.1002/pol.1966.110040503 10.1039/D1EE02320A 10.1002/adma.202005416 10.1021/acsnano.1c07471 10.1021/acs.macromol.8b00795 10.1016/j.joule.2019.10.007 10.1002/adfm.200601248 10.1002/aenm.202103239 10.1021/jacs.2c00072 10.1002/aenm.202003367 10.1021/ma8016794 10.1038/ncomms3520 10.1016/j.joule.2021.06.017 10.1021/jacsau.1c00064 10.1002/adma.202201623 10.1021/acs.macromol.8b00846 10.1016/j.joule.2021.04.007 10.3390/polym9100494 10.1103/PhysRevB.82.245207 10.1002/aelm.201500250 10.1016/j.joule.2019.01.004 10.1021/acsenergylett.1c00829 10.1021/cr3001109 10.1002/adma.202205009 10.1021/acs.chemmater.9b01011 10.1021/ja2035317 10.1002/adma.202105301 10.1002/aenm.202200887 10.1002/adma.202003155 10.1002/adma.200601093 10.1002/adma.202102635 10.1039/D1EE01062J 10.1002/adma.202107361 10.1016/j.joule.2020.01.014 10.1016/j.scib.2020.01.001 10.1002/adma.202207544 10.1002/adma.201004311 10.1039/C8RA07003B 10.1021/acs.chemmater.8b05114 10.1002/cphc.202100725 10.1002/adma.202106732 10.1016/j.joule.2021.02.003 10.1021/acs.chemrev.9b00044 10.1039/D0TA02865G 10.1016/j.joule.2022.02.006 10.1103/PhysRevB.70.235207 10.1002/aenm.201500577 10.1002/adma.201404388 10.1038/s41563-022-01244-y 10.1002/adma.202100830 10.1038/natrevmats.2018.3 10.1038/s41560-021-00820-x 10.1016/0032-3861(85)90140-5 10.1002/anie.201807513 10.1021/acs.macromol.1c01481 10.1021/acs.chemmater.0c00055 10.1007/978-3-540-68331-5 10.1021/ma00095a001 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202300230 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 36929364 10_1002_adma_202300230 ADMA202300230 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 2022R1A2B5B03001761; 2020M3D1A2102869 – fundername: National Research Foundation of Korea grantid: 2022R1A2B5B03001761 – fundername: National Research Foundation of Korea grantid: 2020M3D1A2102869 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c3730-527d2e759bde7d96efeb650e9727fd90d3930bb657ab6c75586f60a66757caf63 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 12:28:41 EDT 2025 Fri Jul 25 05:27:56 EDT 2025 Mon Jul 21 06:06:17 EDT 2025 Wed Oct 01 03:14:29 EDT 2025 Thu Apr 24 22:59:27 EDT 2025 Wed Jan 22 16:22:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | intrinsically stretchable solar cells polymer solar cells mechanical robustness poly(dimethylsiloxane) block copolymer donors |
Language | English |
License | 2023 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3730-527d2e759bde7d96efeb650e9727fd90d3930bb657ab6c75586f60a66757caf63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7783-9689 0000-0002-0389-9707 |
PMID | 36929364 |
PQID | 2825701538 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2807923002 proquest_journals_2825701538 pubmed_primary_36929364 crossref_citationtrail_10_1002_adma_202300230 crossref_primary_10_1002_adma_202300230 wiley_primary_10_1002_adma_202300230_ADMA202300230 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 17 1966; 4 2013 2015; 3 27 2007; 19 2021 2021 2021 2022 2021; 33 14 14 34 15 2015 2021 2021 2019; 5 33 54 11 2022; 23 2021 2022; 6 12 2022 2020 2021 2022 2020 2022 2020 2021; 144 4 3 34 4 34 30 1 1997 2021 2016; 33 2 2022 2021 2021 2022; 34 11 9 5 2010; 82 2020 2021 2020 2021 2021 2022 2021 2019 2018 2021 2022 2021 2021 2022 2017; 65 5 8 5 5 6 33 3 3 33 21 6 33 61 5 2017; 50 2018; 8 2018 2011 2021; 51 133 33 2004; 70 2012; 112 2008 1994 1985 1994; 41 27 26 272 2022; 12 2013 2022; 4 15 2011; 23 2013 2021 2019 2019; 38 54 31 31 2020 2020; 4 32 2020 2018; 32 51 2019 2017; 119 9 2018; 57 e_1_2_7_1_6 e_1_2_7_3_4 e_1_2_7_1_5 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_1_9 e_1_2_7_9_1 e_1_2_7_1_8 e_1_2_7_1_7 e_1_2_7_3_5 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_19_1 e_1_2_7_1_10 e_1_2_7_17_1 e_1_2_7_1_11 e_1_2_7_1_2 e_1_2_7_1_12 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_1_13 e_1_2_7_11_4 e_1_2_7_1_14 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_1_15 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_26_3 e_1_2_7_26_4 e_1_2_7_25_1 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_4_7 e_1_2_7_4_6 e_1_2_7_8_2 e_1_2_7_4_5 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_4_8 e_1_2_7_22_4 e_1_2_7_24_2 e_1_2_7_22_3 e_1_2_7_24_1 e_1_2_7_22_2 e_1_2_7_20_3 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 38 54 31 31 start-page: 1978 5124 3163 year: 2013 2021 2019 2019 publication-title: Prog. Polym. Sci. Macromolecules Chem. Mater. Chem. Mater. – volume: 119 9 start-page: 8028 494 year: 2019 2017 publication-title: Chem. Rev. Polymers – volume: 4 start-page: 317 year: 1966 publication-title: J. Polym. Sci., Part B: Polym. Lett. – volume: 23 start-page: 1670 year: 2011 publication-title: Adv. Mater. – volume: 33 14 14 34 15 start-page: 4067 5968 year: 2021 2021 2021 2022 2021 publication-title: Adv. Mater. Energy Environ. Sci. Energy Environ. Sci. Adv. Mater. ACS Nano – volume: 65 5 8 5 5 6 33 3 3 33 21 6 33 61 5 start-page: 272 931 1548 2395 647 1140 656 605 year: 2020 2021 2020 2021 2021 2022 2021 2019 2018 2021 2022 2021 2021 2022 2017 publication-title: Sci. Bull. Joule J. Mater. Chem. A Joule Joule Joule Adv. Mater. Joule Nat. Rev. Mater. Adv. Mater. Nat. Mater. Nat. Energy Adv. Mater. Angew. Chem., Int. Ed. J. Mater. Chem. A – volume: 8 year: 2018 publication-title: RSC Adv. – volume: 82 year: 2010 publication-title: Phys. Rev. B – volume: 50 start-page: 1902 year: 2017 publication-title: Macromolecules – volume: 33 2 year: 1997 2021 2016 publication-title: Adv. Mater. Adv. Electron. Mater. – volume: 3 27 start-page: 65 1105 year: 2013 2015 publication-title: Adv. Energy Mater. Adv. Mater. – volume: 5 33 54 11 start-page: 53 year: 2015 2021 2021 2019 publication-title: Adv. Energy Mater. Adv. Mater. Macromolecules ACS Appl. Mater. Interfaces – volume: 144 4 3 34 4 34 30 1 start-page: 4699 128 3028 658 612 year: 2022 2020 2021 2022 2020 2022 2020 2021 publication-title: J. Am. Chem. Soc. Joule ACS Appl Polym Mater Adv. Mater. Joule Adv. Mater. Adv. Funct. Mater. JACS Au – volume: 70 year: 2004 publication-title: Phys. Rev. B – volume: 23 year: 2022 publication-title: ChemPhysChem – volume: 6 12 start-page: 2512 year: 2021 2022 publication-title: ACS Energy Lett. Adv. Energy Mater. – volume: 4 32 start-page: 1070 2572 year: 2020 2020 publication-title: Joule Chem. Mater. – volume: 32 51 start-page: 7582 5944 year: 2020 2018 publication-title: Chem. Mater. Macromolecules – volume: 112 start-page: 5488 year: 2012 publication-title: Chem. Rev. – volume: 51 133 33 start-page: 4077 9270 year: 2018 2011 2021 publication-title: Macromolecules J. Am. Chem. Soc. Adv. Mater. – volume: 17 start-page: 2674 year: 2007 publication-title: Adv. Funct. Mater. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 41 27 26 272 start-page: 9335 4639 930 1420 year: 2008 1994 1985 1994 publication-title: Macromolecules Macromolecules Polymer Colloid Polym. Sci. – volume: 34 11 9 5 start-page: 2775 725 year: 2022 2021 2021 2022 publication-title: Adv. Mater. Adv. Energy Mater. J. Mater. Chem. A Matter – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 19 start-page: 1551 year: 2007 publication-title: Adv. Mater. – volume: 4 15 start-page: 2520 4672 year: 2013 2022 publication-title: Nat. Commun. Energy Environ. Sci. – ident: e_1_2_7_1_10 doi: 10.1002/adma.202102420 – ident: e_1_2_7_1_14 doi: 10.1002/anie.202201844 – ident: e_1_2_7_11_4 doi: 10.1007/BF00654172 – ident: e_1_2_7_26_3 doi: 10.1021/acs.macromol.0c02496 – ident: e_1_2_7_19_2 doi: 10.1039/D2EE02523J – ident: e_1_2_7_2_3 doi: 10.1039/D0TA11320D – ident: e_1_2_7_1_15 doi: 10.1039/C7TA03980H – ident: e_1_2_7_22_1 doi: 10.1016/j.progpolymsci.2013.07.009 – ident: e_1_2_7_8_1 doi: 10.1021/acs.chemmater.0c03019 – ident: e_1_2_7_24_1 doi: 10.1016/j.joule.2020.03.019 – ident: e_1_2_7_2_4 doi: 10.1016/j.matt.2021.12.002 – ident: e_1_2_7_4_7 doi: 10.1002/adfm.202003654 – ident: e_1_2_7_23_1 doi: 10.1002/aenm.201200377 – ident: e_1_2_7_13_1 doi: 10.1021/acs.macromol.7b00128 – ident: e_1_2_7_4_3 doi: 10.1021/acsapm.1c00213 – ident: e_1_2_7_26_4 doi: 10.1021/acsami.9b05537 – ident: e_1_2_7_21_1 doi: 10.1002/pol.1966.110040503 – ident: e_1_2_7_3_3 doi: 10.1039/D1EE02320A – ident: e_1_2_7_12_3 doi: 10.1002/adma.202005416 – ident: e_1_2_7_3_5 doi: 10.1021/acsnano.1c07471 – ident: e_1_2_7_12_1 doi: 10.1021/acs.macromol.8b00795 – ident: e_1_2_7_4_2 doi: 10.1016/j.joule.2019.10.007 – ident: e_1_2_7_9_1 doi: 10.1002/adfm.200601248 – ident: e_1_2_7_16_1 doi: 10.1002/aenm.202103239 – ident: e_1_2_7_4_1 doi: 10.1021/jacs.2c00072 – ident: e_1_2_7_2_2 doi: 10.1002/aenm.202003367 – ident: e_1_2_7_11_1 doi: 10.1021/ma8016794 – ident: e_1_2_7_19_1 doi: 10.1038/ncomms3520 – ident: e_1_2_7_1_5 doi: 10.1016/j.joule.2021.06.017 – ident: e_1_2_7_4_8 doi: 10.1021/jacsau.1c00064 – ident: e_1_2_7_4_4 doi: 10.1002/adma.202201623 – ident: e_1_2_7_8_2 doi: 10.1021/acs.macromol.8b00846 – ident: e_1_2_7_1_4 doi: 10.1016/j.joule.2021.04.007 – ident: e_1_2_7_10_2 doi: 10.3390/polym9100494 – ident: e_1_2_7_17_1 doi: 10.1103/PhysRevB.82.245207 – ident: e_1_2_7_20_3 doi: 10.1002/aelm.201500250 – ident: e_1_2_7_1_8 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_7_27_1 doi: 10.1021/acsenergylett.1c00829 – ident: e_1_2_7_25_1 doi: 10.1021/cr3001109 – ident: e_1_2_7_2_1 doi: 10.1002/adma.202205009 – ident: e_1_2_7_22_3 doi: 10.1021/acs.chemmater.9b01011 – ident: e_1_2_7_12_2 doi: 10.1021/ja2035317 – ident: e_1_2_7_1_7 doi: 10.1002/adma.202105301 – ident: e_1_2_7_27_2 doi: 10.1002/aenm.202200887 – ident: e_1_2_7_20_2 doi: 10.1002/adma.202003155 – ident: e_1_2_7_14_1 doi: 10.1002/adma.200601093 – ident: e_1_2_7_26_2 doi: 10.1002/adma.202102635 – ident: e_1_2_7_3_2 doi: 10.1039/D1EE01062J – ident: e_1_2_7_4_6 doi: 10.1002/adma.202107361 – ident: e_1_2_7_4_5 doi: 10.1016/j.joule.2020.01.014 – ident: e_1_2_7_1_1 doi: 10.1016/j.scib.2020.01.001 – ident: e_1_2_7_3_4 doi: 10.1002/adma.202207544 – ident: e_1_2_7_18_1 doi: 10.1002/adma.201004311 – ident: e_1_2_7_5_1 doi: 10.1039/C8RA07003B – ident: e_1_2_7_22_4 doi: 10.1021/acs.chemmater.8b05114 – ident: e_1_2_7_7_1 doi: 10.1002/cphc.202100725 – ident: e_1_2_7_3_1 doi: 10.1002/adma.202106732 – ident: e_1_2_7_1_2 doi: 10.1016/j.joule.2021.02.003 – ident: e_1_2_7_10_1 doi: 10.1021/acs.chemrev.9b00044 – ident: e_1_2_7_1_3 doi: 10.1039/D0TA02865G – ident: e_1_2_7_1_6 doi: 10.1016/j.joule.2022.02.006 – ident: e_1_2_7_15_1 doi: 10.1103/PhysRevB.70.235207 – ident: e_1_2_7_26_1 doi: 10.1002/aenm.201500577 – ident: e_1_2_7_23_2 doi: 10.1002/adma.201404388 – ident: e_1_2_7_1_11 doi: 10.1038/s41563-022-01244-y – ident: e_1_2_7_1_13 doi: 10.1002/adma.202100830 – ident: e_1_2_7_1_9 doi: 10.1038/natrevmats.2018.3 – ident: e_1_2_7_1_12 doi: 10.1038/s41560-021-00820-x – ident: e_1_2_7_11_3 doi: 10.1016/0032-3861(85)90140-5 – ident: e_1_2_7_6_1 doi: 10.1002/anie.201807513 – ident: e_1_2_7_22_2 doi: 10.1021/acs.macromol.1c01481 – ident: e_1_2_7_24_2 doi: 10.1021/acs.chemmater.0c00055 – ident: e_1_2_7_20_1 doi: 10.1007/978-3-540-68331-5 – ident: e_1_2_7_11_2 doi: 10.1021/ma00095a001 |
SSID | ssj0009606 |
Score | 2.6258862 |
Snippet | High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2300230 |
SubjectTerms | block copolymer donors Block copolymers Energy conversion efficiency intrinsically stretchable solar cells Materials science mechanical robustness Photovoltaic cells poly(dimethylsiloxane) Polydimethylsiloxane polymer solar cells Polymers Robustness Solar cells Strain Stretchability |
Title | Poly(dimethylsiloxane)‐block‐PM6 Polymer Donors for High‐Performance and Mechanically Robust Polymer Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202300230 https://www.ncbi.nlm.nih.gov/pubmed/36929364 https://www.proquest.com/docview/2825701538 https://www.proquest.com/docview/2807923002 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1521-4095 dateEnd: 20241002 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: ADMLS dateStart: 20120605 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0935-9648 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_QgUZCQk4JDWjWMnPq5aqgppUVWo1Fvkx0SqGhK02a26nPoT-hv7SzqT7Ga7IIQEhygP24njzHi-iT2fGXtHTk8OPonB0DBjLkNs0-BinZgdQBHKRUdgOv6iD47Tzyfq5FYUf88PMfxwI83o-mtScOva7RVpqA0dbxBCaNqwE96RqhunPVrxRxE878j2pIqNTvMla6NItteLr1ul36DmOnLtTM_-A2aXle5nnJxtzaZuy__8hc_xf97qIbu_wKV81AvSI3YH6sfs3i22wifs_LCp5h_CKS06Pa_a06q5sDV8vL68cmgRz3B_ONacMn2HCd9r6mbScsTEnOaSUOoqRoHbOvAxUNQxCUk150eNm7XTofRX8rj5LlRV-5Qd73_6tnsQL5ZtiL3E_gJd2ywkkCnjAmTBaCjBIQ4Eg1CpDEYEaaRweCmzTvtMqVyXWliNrkvmbanlM7ZRNzW8YNz53CJ-URJUmTodrHJ5qaAURqQevIxYvPxshV9wmtPSGlXRszEnBbVnMbRnxN4P-X_0bB5_zLm5lIJiodVtQXG-mSAbEbG3QzLqIw2yYIs3M8ojiJIRbxKx5730DI-SGsGo1GnEkk4G_lKHYrQ3Hg1nL_-l0Ct2l477uW2bbGM6mcFrRFFT96bTlBt9vRWG |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAH3qWBAkZCAg5pTRw78XHVpVqgqarSStwivyJVDUm12UUsJ34Cv5FfgifZZFkQQoJDFMUZJ44z4_n8mM8Az7DTkzoThU7iNGPKbKhiq0MRyVfOq1BKWwLT7FBMTuO3H3i_mhBjYTp-iGHADS2jba_RwHFAenfFGqpsSxzkMTQel-EKTtKhbY6PVwxSCNBbuj3GQynitOdtpNHuev51v_Qb2FzHrq3z2b8Jui92t-bkfGc-0zvmyy-Mjv_1XbfgxhKaklGnS7fhkqvuwPWfCAvvwqejuly8sGe47_SibM7K-rOq3MvvX79p7xTP_fkoEwSFPropGddVPW2Ih8UEl5Pg3VWYAlGVJZnDwGPUk3JBjms9b2ZD7vfY6SZ7riybe3C6__pkbxIud24IDfNNhu_dJjZyCZfausRK4QqnPRR00qOlwkpqmWRU-6REaWESzlNRCKqE770kRhWCbcJGVVduC4g2qfIQhjPHi1gLq7hOC-4KKmlsnGEBhP1_y82S1hx31yjzjpA5yrE-86E-A3g-yF90hB5_lNzu1SBfGnaTY6hvQtFNBPB0uO1NEudZfI3Xc5ShyMroHxLA_U59hlcx4fEoE3EAUasEfylDPhpno-Hqwb9kegJXJyfZQX7w5vDdQ7iG6d1St23YmE3n7pEHVTP9uDWbH8mvGaI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceD8CBYyEBBzSmjhx4uOqy6o8tloVKvUW-TGRqoak2uwilhM_gd_IL8GT7Ga7IIQEhyiKH4njzHi-iT2fAZ6R05OhjUJUNM2YCRfq2JlQRuoVehHKeEtgOj6Q-0fx2-Pk-FwUf8cP0f9wI81ox2tS8DNX7K5JQ7VreYM8hKbjIlyKpXexCBYdrgmkCJ-3bHsiCZWMsxVtI492N-tvmqXfsOYmdG1tz-g66FWruyUnpzvzmdmxX38hdPyf17oB15bAlA06SboJF7C6BVfP0RXehs-Tuly8cCe06_SibE7K-ouu8OWPb9-NN4mn_jwZS0aFPuGUDeuqnjbMg2JGi0kodx2kwHTl2Bgp7JikpFyww9rMm1lf-wO53GwPy7K5A0ej1x_39sPlvg2hFX7A8L5t6iJME2Ucpk5JLNB4IIjKY6XCKe6EEtz4pFQbadMkyWQhuZbed0mtLqS4C1tVXeF9YMZm2gOYRGBSxEY6nZisSLDgiscWrQggXH223C5JzWlvjTLv6JijnPoz7_szgOd9-bOOzuOPJbdXUpAv1brJKdA35WQkAnjaZ3uFpFkW3-P1nMpw4mT0NwngXic9_aOE9GhUyDiAqJWBv7QhHwzHg_7qwb9UegKXJ8NR_v7NwbuHcIWSu3Vu27A1m87xkUdUM_O4VZqfaJQYUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly%28dimethylsiloxane%29%E2%80%90block%E2%80%90PM6+Polymer+Donors+for+High%E2%80%90Performance+and+Mechanically+Robust+Polymer+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Seo%2C+Soodeok&rft.au=Lee%2C+Jin%E2%80%90Woo&rft.au=Kim%2C+Dong+Jun&rft.au=Lee%2C+Dongchan&rft.date=2023-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202300230&rft.externalDBID=10.1002%252Fadma.202300230&rft.externalDocID=ADMA202300230 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |