Poly(dimethylsiloxane)‐block‐PM6 Polymer Donors for High‐Performance and Mechanically Robust Polymer Solar Cells

High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack‐onset strain (...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 35; no. 24; pp. e2300230 - n/a
Main Authors Seo, Soodeok, Lee, Jin‐Woo, Kim, Dong Jun, Lee, Dongchan, Phan, Tan Ngoc‐Lan, Park, Jinseok, Tan, Zhengping, Cho, Shinuk, Kim, Taek‐Soo, Kim, Bumjoon J.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202300230

Cover

Abstract High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack‐onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6‐b‐PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6‐b‐PDMS19k:L8‐BO PSC exhibits a high PCE (18%) and 9‐times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8‐BO‐based PSC. However, the PM6:L8‐BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6‐b‐PDMS19k:L8‐BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8‐BO blend (PCE80% at 12% strain) and the PM6:L8‐BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs. Polymer solar cells (PSCs) with high‐performance and ‐stretchability are developed by designing block copolymer donors comprising PM6 and elastomeric PDMS blocks (PM6‐b‐PDMS). High power conversion efficiency (PCE ≈ 18%) and stretchability (crack onset point > 18%) are demonstrated for the PM6‐b‐PDMS19k‐based PSC. The PM6‐b‐PDMS19k‐based intrinsically stretchable PSCs show superior mechanical stability (PCE retention > 80% at 32% strain) than the PM6‐based and PM6:PDMS‐blend‐based devices.
AbstractList High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack‐onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6‐b‐PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6‐b‐PDMS19k:L8‐BO PSC exhibits a high PCE (18%) and 9‐times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8‐BO‐based PSC. However, the PM6:L8‐BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6‐b‐PDMS19k:L8‐BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8‐BO blend (PCE80% at 12% strain) and the PM6:L8‐BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs. Polymer solar cells (PSCs) with high‐performance and ‐stretchability are developed by designing block copolymer donors comprising PM6 and elastomeric PDMS blocks (PM6‐b‐PDMS). High power conversion efficiency (PCE ≈ 18%) and stretchability (crack onset point > 18%) are demonstrated for the PM6‐b‐PDMS19k‐based PSC. The PM6‐b‐PDMS19k‐based intrinsically stretchable PSCs show superior mechanical stability (PCE retention > 80% at 32% strain) than the PM6‐based and PM6:PDMS‐blend‐based devices.
High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack-onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6-b-PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6-b-PDMS :L8-BO PSC exhibits a high PCE (18%) and 9-times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8-BO-based PSC. However, the PM6:L8-BO:PDMS ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6-b-PDMS :L8-BO blend exhibits significantly greater mechanical stability PCE ((80% of the initial PCE) at 36% strain) than those of the PM6:L8-BO blend (PCE at 12% strain) and the PM6:L8-BO:PDMS ternary blend (PCE at 4% strain). This study suggests an effective design strategy of BCP P to achieve stretchable and efficient PSCs.
High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack-onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6-b-PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6-b-PDMS19k :L8-BO PSC exhibits a high PCE (18%) and 9-times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8-BO-based PSC. However, the PM6:L8-BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6-b-PDMS19k :L8-BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8-BO blend (PCE80% at 12% strain) and the PM6:L8-BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs.High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack-onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6-b-PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6-b-PDMS19k :L8-BO PSC exhibits a high PCE (18%) and 9-times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8-BO-based PSC. However, the PM6:L8-BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6-b-PDMS19k :L8-BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8-BO blend (PCE80% at 12% strain) and the PM6:L8-BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs.
High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack‐onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6‐ b ‐PDMS x ( x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6‐ b ‐PDMS 19k :L8‐BO PSC exhibits a high PCE (18%) and 9‐times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8‐BO‐based PSC. However, the PM6:L8‐BO:PDMS 12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6‐ b ‐PDMS 19k :L8‐BO blend exhibits significantly greater mechanical stability PCE 80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8‐BO blend (PCE 80% at 12% strain) and the PM6:L8‐BO:PDMS ternary blend (PCE 80% at 4% strain). This study suggests an effective design strategy of BCP P D to achieve stretchable and efficient PSCs.
High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack‐onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6‐b‐PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6‐b‐PDMS19k:L8‐BO PSC exhibits a high PCE (18%) and 9‐times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8‐BO‐based PSC. However, the PM6:L8‐BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6‐b‐PDMS19k:L8‐BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8‐BO blend (PCE80% at 12% strain) and the PM6:L8‐BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs.
Author Lee, Jin‐Woo
Lee, Dongchan
Seo, Soodeok
Kim, Bumjoon J.
Kim, Taek‐Soo
Kim, Dong Jun
Cho, Shinuk
Phan, Tan Ngoc‐Lan
Tan, Zhengping
Park, Jinseok
Author_xml – sequence: 1
  givenname: Soodeok
  surname: Seo
  fullname: Seo, Soodeok
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 2
  givenname: Jin‐Woo
  surname: Lee
  fullname: Lee, Jin‐Woo
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 3
  givenname: Dong Jun
  surname: Kim
  fullname: Kim, Dong Jun
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 4
  givenname: Dongchan
  surname: Lee
  fullname: Lee, Dongchan
  organization: University of Ulsan
– sequence: 5
  givenname: Tan Ngoc‐Lan
  surname: Phan
  fullname: Phan, Tan Ngoc‐Lan
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 6
  givenname: Jinseok
  orcidid: 0000-0002-0389-9707
  surname: Park
  fullname: Park, Jinseok
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 7
  givenname: Zhengping
  surname: Tan
  fullname: Tan, Zhengping
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 8
  givenname: Shinuk
  surname: Cho
  fullname: Cho, Shinuk
  organization: University of Ulsan
– sequence: 9
  givenname: Taek‐Soo
  surname: Kim
  fullname: Kim, Taek‐Soo
  organization: Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 10
  givenname: Bumjoon J.
  orcidid: 0000-0001-7783-9689
  surname: Kim
  fullname: Kim, Bumjoon J.
  email: bumjoonkim@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology (KAIST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36929364$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAQgC1URLcLV44oEpdyyHZir-31cbUtFKmrVvycLcdxWBfHLnZCyY1H4Bl5EhxtW6RKiIM18vj7RuOZI3TggzcIvaxgUQHgE9V0aoEBE5jOEzSrKK7KJQh6gGYgCC0FW64O0VFK1wAgGLBn6JAwgQVhyxn6fhXceNzYzvS70SXrwg_lzZvfP3_VLuivOV5tWTFBnYnFafAhpqINsTi3X3bTq4n51imvTaF8U2yN3ilvtXJuLD6Eekj9g_0xOBWLjXEuPUdPW-WSeXEX5-jz27NPm_Py4vLd-836otSEEygp5g02nIq6MbwRzLSmZhSM4Ji3jYCGCAJ1TnFVM80pXbGWgWKMU65Vy8gcHe_r3sTwbTCpl51NOneQPxmGJPEKuNgPb45eP0KvwxB97i5TmHKoKFll6tUdNdSdaeRNtJ2Ko7yfaAaWe0DHkFI0rdS2V70Nvo_KOlmBnBYnp8XJh8VlbfFIu6_8T0HshVvrzPgfWq5Pt-u_7h8r262m
CitedBy_id crossref_primary_10_1002_adfm_202404569
crossref_primary_10_1002_ange_202415440
crossref_primary_10_1016_j_porgcoat_2024_108276
crossref_primary_10_1002_marc_202400637
crossref_primary_10_1016_j_mser_2024_100916
crossref_primary_10_1002_smll_202407147
crossref_primary_10_1039_D3CS00492A
crossref_primary_10_1039_D3SC02289G
crossref_primary_10_1021_acsami_4c07014
crossref_primary_10_1002_adma_202307278
crossref_primary_10_1002_adfm_202407681
crossref_primary_10_1002_adfm_202316550
crossref_primary_10_1016_j_progpolymsci_2024_101899
crossref_primary_10_1021_acs_chemmater_3c00485
crossref_primary_10_1002_adfm_202402974
crossref_primary_10_1021_acs_chemmater_3c01970
crossref_primary_10_1002_smll_202401966
crossref_primary_10_1002_adma_202313074
crossref_primary_10_1002_adma_202311170
crossref_primary_10_1021_acsnano_3c10033
crossref_primary_10_1039_D4EE04208E
crossref_primary_10_1021_acsenergylett_3c01490
crossref_primary_10_1039_D5EE00002E
crossref_primary_10_1021_acsmaterialslett_4c00188
crossref_primary_10_1002_solr_202300982
crossref_primary_10_1002_adma_202307280
crossref_primary_10_1002_adfm_202312289
crossref_primary_10_1002_adma_202408988
crossref_primary_10_1002_ange_202308307
crossref_primary_10_1016_j_nanoen_2024_109541
crossref_primary_10_1039_D4TA00117F
crossref_primary_10_1039_D4PY00180J
crossref_primary_10_26599_NRE_2022_9120088
crossref_primary_10_1002_ange_202407040
crossref_primary_10_1002_adma_202411449
crossref_primary_10_1002_adfm_202400702
crossref_primary_10_1002_aenm_202404233
crossref_primary_10_1126_science_adp9709
crossref_primary_10_1002_adfm_202408993
crossref_primary_10_1007_s10118_025_3265_2
crossref_primary_10_1039_D4TA02429J
crossref_primary_10_1021_acsami_4c14562
crossref_primary_10_3390_polym15194005
crossref_primary_10_1016_j_orgel_2024_107075
crossref_primary_10_1002_sus2_70005
crossref_primary_10_1021_acs_chemmater_4c01516
crossref_primary_10_1002_anie_202415440
crossref_primary_10_1002_anie_202407040
crossref_primary_10_1002_marc_202400603
crossref_primary_10_1002_anie_202308307
crossref_primary_10_1002_aenm_202401191
crossref_primary_10_1039_D3CS00895A
crossref_primary_10_1016_j_joule_2024_11_009
crossref_primary_10_1002_adma_202313532
crossref_primary_10_1002_adma_202414080
crossref_primary_10_1002_adma_202305562
crossref_primary_10_1002_aenm_202304286
crossref_primary_10_1016_j_nanoen_2024_109338
crossref_primary_10_1039_D3TA03935H
crossref_primary_10_1002_adma_202312805
crossref_primary_10_1002_aenm_202303872
crossref_primary_10_26599_NRE_2023_9120088
crossref_primary_10_1021_acsaem_3c02581
Cites_doi 10.1002/adma.202102420
10.1002/anie.202201844
10.1007/BF00654172
10.1021/acs.macromol.0c02496
10.1039/D2EE02523J
10.1039/D0TA11320D
10.1039/C7TA03980H
10.1016/j.progpolymsci.2013.07.009
10.1021/acs.chemmater.0c03019
10.1016/j.joule.2020.03.019
10.1016/j.matt.2021.12.002
10.1002/adfm.202003654
10.1002/aenm.201200377
10.1021/acs.macromol.7b00128
10.1021/acsapm.1c00213
10.1021/acsami.9b05537
10.1002/pol.1966.110040503
10.1039/D1EE02320A
10.1002/adma.202005416
10.1021/acsnano.1c07471
10.1021/acs.macromol.8b00795
10.1016/j.joule.2019.10.007
10.1002/adfm.200601248
10.1002/aenm.202103239
10.1021/jacs.2c00072
10.1002/aenm.202003367
10.1021/ma8016794
10.1038/ncomms3520
10.1016/j.joule.2021.06.017
10.1021/jacsau.1c00064
10.1002/adma.202201623
10.1021/acs.macromol.8b00846
10.1016/j.joule.2021.04.007
10.3390/polym9100494
10.1103/PhysRevB.82.245207
10.1002/aelm.201500250
10.1016/j.joule.2019.01.004
10.1021/acsenergylett.1c00829
10.1021/cr3001109
10.1002/adma.202205009
10.1021/acs.chemmater.9b01011
10.1021/ja2035317
10.1002/adma.202105301
10.1002/aenm.202200887
10.1002/adma.202003155
10.1002/adma.200601093
10.1002/adma.202102635
10.1039/D1EE01062J
10.1002/adma.202107361
10.1016/j.joule.2020.01.014
10.1016/j.scib.2020.01.001
10.1002/adma.202207544
10.1002/adma.201004311
10.1039/C8RA07003B
10.1021/acs.chemmater.8b05114
10.1002/cphc.202100725
10.1002/adma.202106732
10.1016/j.joule.2021.02.003
10.1021/acs.chemrev.9b00044
10.1039/D0TA02865G
10.1016/j.joule.2022.02.006
10.1103/PhysRevB.70.235207
10.1002/aenm.201500577
10.1002/adma.201404388
10.1038/s41563-022-01244-y
10.1002/adma.202100830
10.1038/natrevmats.2018.3
10.1038/s41560-021-00820-x
10.1016/0032-3861(85)90140-5
10.1002/anie.201807513
10.1021/acs.macromol.1c01481
10.1021/acs.chemmater.0c00055
10.1007/978-3-540-68331-5
10.1021/ma00095a001
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202300230
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 36929364
10_1002_adma_202300230
ADMA202300230
Genre article
Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 2022R1A2B5B03001761; 2020M3D1A2102869
– fundername: National Research Foundation of Korea
  grantid: 2022R1A2B5B03001761
– fundername: National Research Foundation of Korea
  grantid: 2020M3D1A2102869
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3730-527d2e759bde7d96efeb650e9727fd90d3930bb657ab6c75586f60a66757caf63
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 12:28:41 EDT 2025
Fri Jul 25 05:27:56 EDT 2025
Mon Jul 21 06:06:17 EDT 2025
Wed Oct 01 03:14:29 EDT 2025
Thu Apr 24 22:59:27 EDT 2025
Wed Jan 22 16:22:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords intrinsically stretchable solar cells
polymer solar cells
mechanical robustness
poly(dimethylsiloxane)
block copolymer donors
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3730-527d2e759bde7d96efeb650e9727fd90d3930bb657ab6c75586f60a66757caf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7783-9689
0000-0002-0389-9707
PMID 36929364
PQID 2825701538
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_2807923002
proquest_journals_2825701538
pubmed_primary_36929364
crossref_citationtrail_10_1002_adma_202300230
crossref_primary_10_1002_adma_202300230
wiley_primary_10_1002_adma_202300230_ADMA202300230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 17
1966; 4
2013 2015; 3 27
2007; 19
2021 2021 2021 2022 2021; 33 14 14 34 15
2015 2021 2021 2019; 5 33 54 11
2022; 23
2021 2022; 6 12
2022 2020 2021 2022 2020 2022 2020 2021; 144 4 3 34 4 34 30 1
1997 2021 2016; 33 2
2022 2021 2021 2022; 34 11 9 5
2010; 82
2020 2021 2020 2021 2021 2022 2021 2019 2018 2021 2022 2021 2021 2022 2017; 65 5 8 5 5 6 33 3 3 33 21 6 33 61 5
2017; 50
2018; 8
2018 2011 2021; 51 133 33
2004; 70
2012; 112
2008 1994 1985 1994; 41 27 26 272
2022; 12
2013 2022; 4 15
2011; 23
2013 2021 2019 2019; 38 54 31 31
2020 2020; 4 32
2020 2018; 32 51
2019 2017; 119 9
2018; 57
e_1_2_7_1_6
e_1_2_7_3_4
e_1_2_7_1_5
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_1_9
e_1_2_7_9_1
e_1_2_7_1_8
e_1_2_7_1_7
e_1_2_7_3_5
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_1_10
e_1_2_7_17_1
e_1_2_7_1_11
e_1_2_7_1_2
e_1_2_7_1_12
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_1_13
e_1_2_7_11_4
e_1_2_7_1_14
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_1_15
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_26_3
e_1_2_7_26_4
e_1_2_7_25_1
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_4_7
e_1_2_7_4_6
e_1_2_7_8_2
e_1_2_7_4_5
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_4_8
e_1_2_7_22_4
e_1_2_7_24_2
e_1_2_7_22_3
e_1_2_7_24_1
e_1_2_7_22_2
e_1_2_7_20_3
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 38 54 31 31
  start-page: 1978 5124 3163
  year: 2013 2021 2019 2019
  publication-title: Prog. Polym. Sci. Macromolecules Chem. Mater. Chem. Mater.
– volume: 119 9
  start-page: 8028 494
  year: 2019 2017
  publication-title: Chem. Rev. Polymers
– volume: 4
  start-page: 317
  year: 1966
  publication-title: J. Polym. Sci., Part B: Polym. Lett.
– volume: 23
  start-page: 1670
  year: 2011
  publication-title: Adv. Mater.
– volume: 33 14 14 34 15
  start-page: 4067 5968
  year: 2021 2021 2021 2022 2021
  publication-title: Adv. Mater. Energy Environ. Sci. Energy Environ. Sci. Adv. Mater. ACS Nano
– volume: 65 5 8 5 5 6 33 3 3 33 21 6 33 61 5
  start-page: 272 931 1548 2395 647 1140 656 605
  year: 2020 2021 2020 2021 2021 2022 2021 2019 2018 2021 2022 2021 2021 2022 2017
  publication-title: Sci. Bull. Joule J. Mater. Chem. A Joule Joule Joule Adv. Mater. Joule Nat. Rev. Mater. Adv. Mater. Nat. Mater. Nat. Energy Adv. Mater. Angew. Chem., Int. Ed. J. Mater. Chem. A
– volume: 8
  year: 2018
  publication-title: RSC Adv.
– volume: 82
  year: 2010
  publication-title: Phys. Rev. B
– volume: 50
  start-page: 1902
  year: 2017
  publication-title: Macromolecules
– volume: 33 2
  year: 1997 2021 2016
  publication-title: Adv. Mater. Adv. Electron. Mater.
– volume: 3 27
  start-page: 65 1105
  year: 2013 2015
  publication-title: Adv. Energy Mater. Adv. Mater.
– volume: 5 33 54 11
  start-page: 53
  year: 2015 2021 2021 2019
  publication-title: Adv. Energy Mater. Adv. Mater. Macromolecules ACS Appl. Mater. Interfaces
– volume: 144 4 3 34 4 34 30 1
  start-page: 4699 128 3028 658 612
  year: 2022 2020 2021 2022 2020 2022 2020 2021
  publication-title: J. Am. Chem. Soc. Joule ACS Appl Polym Mater Adv. Mater. Joule Adv. Mater. Adv. Funct. Mater. JACS Au
– volume: 70
  year: 2004
  publication-title: Phys. Rev. B
– volume: 23
  year: 2022
  publication-title: ChemPhysChem
– volume: 6 12
  start-page: 2512
  year: 2021 2022
  publication-title: ACS Energy Lett. Adv. Energy Mater.
– volume: 4 32
  start-page: 1070 2572
  year: 2020 2020
  publication-title: Joule Chem. Mater.
– volume: 32 51
  start-page: 7582 5944
  year: 2020 2018
  publication-title: Chem. Mater. Macromolecules
– volume: 112
  start-page: 5488
  year: 2012
  publication-title: Chem. Rev.
– volume: 51 133 33
  start-page: 4077 9270
  year: 2018 2011 2021
  publication-title: Macromolecules J. Am. Chem. Soc. Adv. Mater.
– volume: 17
  start-page: 2674
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 41 27 26 272
  start-page: 9335 4639 930 1420
  year: 2008 1994 1985 1994
  publication-title: Macromolecules Macromolecules Polymer Colloid Polym. Sci.
– volume: 34 11 9 5
  start-page: 2775 725
  year: 2022 2021 2021 2022
  publication-title: Adv. Mater. Adv. Energy Mater. J. Mater. Chem. A Matter
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 19
  start-page: 1551
  year: 2007
  publication-title: Adv. Mater.
– volume: 4 15
  start-page: 2520 4672
  year: 2013 2022
  publication-title: Nat. Commun. Energy Environ. Sci.
– ident: e_1_2_7_1_10
  doi: 10.1002/adma.202102420
– ident: e_1_2_7_1_14
  doi: 10.1002/anie.202201844
– ident: e_1_2_7_11_4
  doi: 10.1007/BF00654172
– ident: e_1_2_7_26_3
  doi: 10.1021/acs.macromol.0c02496
– ident: e_1_2_7_19_2
  doi: 10.1039/D2EE02523J
– ident: e_1_2_7_2_3
  doi: 10.1039/D0TA11320D
– ident: e_1_2_7_1_15
  doi: 10.1039/C7TA03980H
– ident: e_1_2_7_22_1
  doi: 10.1016/j.progpolymsci.2013.07.009
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.chemmater.0c03019
– ident: e_1_2_7_24_1
  doi: 10.1016/j.joule.2020.03.019
– ident: e_1_2_7_2_4
  doi: 10.1016/j.matt.2021.12.002
– ident: e_1_2_7_4_7
  doi: 10.1002/adfm.202003654
– ident: e_1_2_7_23_1
  doi: 10.1002/aenm.201200377
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.macromol.7b00128
– ident: e_1_2_7_4_3
  doi: 10.1021/acsapm.1c00213
– ident: e_1_2_7_26_4
  doi: 10.1021/acsami.9b05537
– ident: e_1_2_7_21_1
  doi: 10.1002/pol.1966.110040503
– ident: e_1_2_7_3_3
  doi: 10.1039/D1EE02320A
– ident: e_1_2_7_12_3
  doi: 10.1002/adma.202005416
– ident: e_1_2_7_3_5
  doi: 10.1021/acsnano.1c07471
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.macromol.8b00795
– ident: e_1_2_7_4_2
  doi: 10.1016/j.joule.2019.10.007
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.200601248
– ident: e_1_2_7_16_1
  doi: 10.1002/aenm.202103239
– ident: e_1_2_7_4_1
  doi: 10.1021/jacs.2c00072
– ident: e_1_2_7_2_2
  doi: 10.1002/aenm.202003367
– ident: e_1_2_7_11_1
  doi: 10.1021/ma8016794
– ident: e_1_2_7_19_1
  doi: 10.1038/ncomms3520
– ident: e_1_2_7_1_5
  doi: 10.1016/j.joule.2021.06.017
– ident: e_1_2_7_4_8
  doi: 10.1021/jacsau.1c00064
– ident: e_1_2_7_4_4
  doi: 10.1002/adma.202201623
– ident: e_1_2_7_8_2
  doi: 10.1021/acs.macromol.8b00846
– ident: e_1_2_7_1_4
  doi: 10.1016/j.joule.2021.04.007
– ident: e_1_2_7_10_2
  doi: 10.3390/polym9100494
– ident: e_1_2_7_17_1
  doi: 10.1103/PhysRevB.82.245207
– ident: e_1_2_7_20_3
  doi: 10.1002/aelm.201500250
– ident: e_1_2_7_1_8
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_7_27_1
  doi: 10.1021/acsenergylett.1c00829
– ident: e_1_2_7_25_1
  doi: 10.1021/cr3001109
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.202205009
– ident: e_1_2_7_22_3
  doi: 10.1021/acs.chemmater.9b01011
– ident: e_1_2_7_12_2
  doi: 10.1021/ja2035317
– ident: e_1_2_7_1_7
  doi: 10.1002/adma.202105301
– ident: e_1_2_7_27_2
  doi: 10.1002/aenm.202200887
– ident: e_1_2_7_20_2
  doi: 10.1002/adma.202003155
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.200601093
– ident: e_1_2_7_26_2
  doi: 10.1002/adma.202102635
– ident: e_1_2_7_3_2
  doi: 10.1039/D1EE01062J
– ident: e_1_2_7_4_6
  doi: 10.1002/adma.202107361
– ident: e_1_2_7_4_5
  doi: 10.1016/j.joule.2020.01.014
– ident: e_1_2_7_1_1
  doi: 10.1016/j.scib.2020.01.001
– ident: e_1_2_7_3_4
  doi: 10.1002/adma.202207544
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201004311
– ident: e_1_2_7_5_1
  doi: 10.1039/C8RA07003B
– ident: e_1_2_7_22_4
  doi: 10.1021/acs.chemmater.8b05114
– ident: e_1_2_7_7_1
  doi: 10.1002/cphc.202100725
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.202106732
– ident: e_1_2_7_1_2
  doi: 10.1016/j.joule.2021.02.003
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.chemrev.9b00044
– ident: e_1_2_7_1_3
  doi: 10.1039/D0TA02865G
– ident: e_1_2_7_1_6
  doi: 10.1016/j.joule.2022.02.006
– ident: e_1_2_7_15_1
  doi: 10.1103/PhysRevB.70.235207
– ident: e_1_2_7_26_1
  doi: 10.1002/aenm.201500577
– ident: e_1_2_7_23_2
  doi: 10.1002/adma.201404388
– ident: e_1_2_7_1_11
  doi: 10.1038/s41563-022-01244-y
– ident: e_1_2_7_1_13
  doi: 10.1002/adma.202100830
– ident: e_1_2_7_1_9
  doi: 10.1038/natrevmats.2018.3
– ident: e_1_2_7_1_12
  doi: 10.1038/s41560-021-00820-x
– ident: e_1_2_7_11_3
  doi: 10.1016/0032-3861(85)90140-5
– ident: e_1_2_7_6_1
  doi: 10.1002/anie.201807513
– ident: e_1_2_7_22_2
  doi: 10.1021/acs.macromol.1c01481
– ident: e_1_2_7_24_2
  doi: 10.1021/acs.chemmater.0c00055
– ident: e_1_2_7_20_1
  doi: 10.1007/978-3-540-68331-5
– ident: e_1_2_7_11_2
  doi: 10.1021/ma00095a001
SSID ssj0009606
Score 2.6258862
Snippet High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2300230
SubjectTerms block copolymer donors
Block copolymers
Energy conversion efficiency
intrinsically stretchable solar cells
Materials science
mechanical robustness
Photovoltaic cells
poly(dimethylsiloxane)
Polydimethylsiloxane
polymer solar cells
Polymers
Robustness
Solar cells
Strain
Stretchability
Title Poly(dimethylsiloxane)‐block‐PM6 Polymer Donors for High‐Performance and Mechanically Robust Polymer Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202300230
https://www.ncbi.nlm.nih.gov/pubmed/36929364
https://www.proquest.com/docview/2825701538
https://www.proquest.com/docview/2807923002
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 20241002
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: ADMLS
  dateStart: 20120605
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0935-9648
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_QgUZCQk4JDWjWMnPq5aqgppUVWo1Fvkx0SqGhK02a26nPoT-hv7SzqT7Ga7IIQEhygP24njzHi-iT2fGXtHTk8OPonB0DBjLkNs0-BinZgdQBHKRUdgOv6iD47Tzyfq5FYUf88PMfxwI83o-mtScOva7RVpqA0dbxBCaNqwE96RqhunPVrxRxE878j2pIqNTvMla6NItteLr1ul36DmOnLtTM_-A2aXle5nnJxtzaZuy__8hc_xf97qIbu_wKV81AvSI3YH6sfs3i22wifs_LCp5h_CKS06Pa_a06q5sDV8vL68cmgRz3B_ONacMn2HCd9r6mbScsTEnOaSUOoqRoHbOvAxUNQxCUk150eNm7XTofRX8rj5LlRV-5Qd73_6tnsQL5ZtiL3E_gJd2ywkkCnjAmTBaCjBIQ4Eg1CpDEYEaaRweCmzTvtMqVyXWliNrkvmbanlM7ZRNzW8YNz53CJ-URJUmTodrHJ5qaAURqQevIxYvPxshV9wmtPSGlXRszEnBbVnMbRnxN4P-X_0bB5_zLm5lIJiodVtQXG-mSAbEbG3QzLqIw2yYIs3M8ojiJIRbxKx5730DI-SGsGo1GnEkk4G_lKHYrQ3Hg1nL_-l0Ct2l477uW2bbGM6mcFrRFFT96bTlBt9vRWG
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAH3qWBAkZCAg5pTRw78XHVpVqgqarSStwivyJVDUm12UUsJ34Cv5FfgifZZFkQQoJDFMUZJ44z4_n8mM8Az7DTkzoThU7iNGPKbKhiq0MRyVfOq1BKWwLT7FBMTuO3H3i_mhBjYTp-iGHADS2jba_RwHFAenfFGqpsSxzkMTQel-EKTtKhbY6PVwxSCNBbuj3GQynitOdtpNHuev51v_Qb2FzHrq3z2b8Jui92t-bkfGc-0zvmyy-Mjv_1XbfgxhKaklGnS7fhkqvuwPWfCAvvwqejuly8sGe47_SibM7K-rOq3MvvX79p7xTP_fkoEwSFPropGddVPW2Ih8UEl5Pg3VWYAlGVJZnDwGPUk3JBjms9b2ZD7vfY6SZ7riybe3C6__pkbxIud24IDfNNhu_dJjZyCZfausRK4QqnPRR00qOlwkpqmWRU-6REaWESzlNRCKqE770kRhWCbcJGVVduC4g2qfIQhjPHi1gLq7hOC-4KKmlsnGEBhP1_y82S1hx31yjzjpA5yrE-86E-A3g-yF90hB5_lNzu1SBfGnaTY6hvQtFNBPB0uO1NEudZfI3Xc5ShyMroHxLA_U59hlcx4fEoE3EAUasEfylDPhpno-Hqwb9kegJXJyfZQX7w5vDdQ7iG6d1St23YmE3n7pEHVTP9uDWbH8mvGaI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceD8CBYyEBBzSmjhx4uOqy6o8tloVKvUW-TGRqoak2uwilhM_gd_IL8GT7Ga7IIQEhyiKH4njzHi-iT2fAZ6R05OhjUJUNM2YCRfq2JlQRuoVehHKeEtgOj6Q-0fx2-Pk-FwUf8cP0f9wI81ox2tS8DNX7K5JQ7VreYM8hKbjIlyKpXexCBYdrgmkCJ-3bHsiCZWMsxVtI492N-tvmqXfsOYmdG1tz-g66FWruyUnpzvzmdmxX38hdPyf17oB15bAlA06SboJF7C6BVfP0RXehs-Tuly8cCe06_SibE7K-ouu8OWPb9-NN4mn_jwZS0aFPuGUDeuqnjbMg2JGi0kodx2kwHTl2Bgp7JikpFyww9rMm1lf-wO53GwPy7K5A0ej1x_39sPlvg2hFX7A8L5t6iJME2Ucpk5JLNB4IIjKY6XCKe6EEtz4pFQbadMkyWQhuZbed0mtLqS4C1tVXeF9YMZm2gOYRGBSxEY6nZisSLDgiscWrQggXH223C5JzWlvjTLv6JijnPoz7_szgOd9-bOOzuOPJbdXUpAv1brJKdA35WQkAnjaZ3uFpFkW3-P1nMpw4mT0NwngXic9_aOE9GhUyDiAqJWBv7QhHwzHg_7qwb9UegKXJ8NR_v7NwbuHcIWSu3Vu27A1m87xkUdUM_O4VZqfaJQYUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poly%28dimethylsiloxane%29%E2%80%90block%E2%80%90PM6+Polymer+Donors+for+High%E2%80%90Performance+and+Mechanically+Robust+Polymer+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Seo%2C+Soodeok&rft.au=Lee%2C+Jin%E2%80%90Woo&rft.au=Kim%2C+Dong+Jun&rft.au=Lee%2C+Dongchan&rft.date=2023-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=24&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202300230&rft.externalDBID=10.1002%252Fadma.202300230&rft.externalDocID=ADMA202300230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon