Data-based structure selection for unified discrete grey prediction model
•A novel discrete grey polynomial model is proposed.•The proposed model unifies the univariate discrete grey models.•An algorithm is presented to select the optimal model structure adaptively.•Matrix decomposition technique is adopted to provide a simpler paradigm for property analysis. Grey models...
        Saved in:
      
    
          | Published in | Expert systems with applications Vol. 136; pp. 264 - 275 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Elsevier Ltd
    
        01.12.2019
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0957-4174 1873-6793 1873-6793  | 
| DOI | 10.1016/j.eswa.2019.06.053 | 
Cover
| Abstract | •A novel discrete grey polynomial model is proposed.•The proposed model unifies the univariate discrete grey models.•An algorithm is presented to select the optimal model structure adaptively.•Matrix decomposition technique is adopted to provide a simpler paradigm for property analysis.
Grey models have been reported to be promising for time series prediction with small samples, but the diversity kinds of model structures and modelling assumptions restrains their further applications and developments. In this paper, a novel grey prediction model, named discrete grey polynomial model, is proposed to unify a family of univariate discrete grey models. The proposed model has the capacity to represent most popular homogeneous and non-homogeneous discrete grey models and furthermore, it can induce some other novel models, thereby highlighting the relationship between the models and their structures and assumptions. Based on the proposed model, a data-based algorithm is put forward to select the model structure adaptively. It reduces the requirement for modeler’s knowledge from an expert system perspective. Two numerical experiments with large-scale simulations are conducted and the results show its effectiveness. In the end, two real case tests show that the proposed model benefits from its adaptive structure and produces reliable multi-step ahead predictions. | 
    
|---|---|
| AbstractList | •A novel discrete grey polynomial model is proposed.•The proposed model unifies the univariate discrete grey models.•An algorithm is presented to select the optimal model structure adaptively.•Matrix decomposition technique is adopted to provide a simpler paradigm for property analysis.
Grey models have been reported to be promising for time series prediction with small samples, but the diversity kinds of model structures and modelling assumptions restrains their further applications and developments. In this paper, a novel grey prediction model, named discrete grey polynomial model, is proposed to unify a family of univariate discrete grey models. The proposed model has the capacity to represent most popular homogeneous and non-homogeneous discrete grey models and furthermore, it can induce some other novel models, thereby highlighting the relationship between the models and their structures and assumptions. Based on the proposed model, a data-based algorithm is put forward to select the model structure adaptively. It reduces the requirement for modeler’s knowledge from an expert system perspective. Two numerical experiments with large-scale simulations are conducted and the results show its effectiveness. In the end, two real case tests show that the proposed model benefits from its adaptive structure and produces reliable multi-step ahead predictions. Grey models have been reported to be promising for time series prediction with small samples, but the diversity kinds of model structures and modelling assumptions restrains their further applications and developments. In this paper, a novel grey prediction model, named discrete grey polynomial model, is proposed to unify a family of univariate discrete grey models. The proposed model has the capacity to represent most popular homogeneous and non-homogeneous discrete grey models and furthermore, it can induce some other novel models, thereby highlighting the relationship between the models and their structures and assumptions. Based on the proposed model, a data-based algorithm is put forward to select the model structure adaptively. It reduces the requirement for modeler's knowledge from an expert system perspective. Two numerical experiments with large-scale simulations are conducted and the results show its effectiveness. In the end, two real case tests show that the proposed model benefits from its adaptive structure and produces reliable multi-step ahead predictions.  | 
    
| Author | Wei, Bao-lei Xie, Nai-ming Yang, Ying-jie  | 
    
| Author_xml | – sequence: 1 givenname: Bao-lei orcidid: 0000-0002-8709-4980 surname: Wei fullname: Wei, Bao-lei email: weibaolei_2014@163.com organization: College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 2 givenname: Nai-ming orcidid: 0000-0002-7368-1746 surname: Xie fullname: Xie, Nai-ming email: xienaiming@nuaa.edu.cn organization: College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 3 givenname: Ying-jie orcidid: 0000-0003-4525-5624 surname: Yang fullname: Yang, Ying-jie email: yyang@dmu.ac.uk organization: Institute of Artificial Intelligence, De Montfort University, Leicester, United Kingdom  | 
    
| BookMark | eNqNkU1LxDAQhoOs4O7qH_BU8NyapG3SBS-yfi0seNFzSJOJpHTbmqQu--9NqScP4mkO7zwvwzMrtOj6DhC6JjgjmLDbJgN_lBnFZJNhluEyP0NLUvE8ZXyTL9ASb0qeFoQXF2jlfYMx4RjzJdo9yCDTWnrQiQ9uVGF0kHhoQQXbd4npXTJ21tiYa-uVgwDJh4NTMjjQdl469BraS3RuZOvh6meu0fvT49v2Jd2_Pu-29_tU5ZyG1IAqCmJqWrKqBlnVkhhWUG0UVkZSpqDSuWGqUlQqVnKW67JkMapro3kh8zXK596xG-TpKNtWDM4epDsJgsVkQzRisiEmGwIzEW1E6mamBtd_juCDaPrRdfFQQWm1KRmroqg1ovOWcr33Dsz_qqtfkLJBTmKCk7b9G72bUYjCviw44ZWFTkWzLj5A6N7-hX8DEeCcsg | 
    
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_134877 crossref_primary_10_1108_GS_06_2020_0081 crossref_primary_10_1016_j_engfracmech_2022_108666 crossref_primary_10_1016_j_jobe_2024_109287 crossref_primary_10_1016_j_energy_2021_119952 crossref_primary_10_1111_exsy_12868 crossref_primary_10_3390_en14102749 crossref_primary_10_1016_j_cie_2021_107888 crossref_primary_10_1007_s10699_019_09640_5 crossref_primary_10_1016_j_matcom_2022_04_004 crossref_primary_10_1016_j_eswa_2021_115761 crossref_primary_10_1108_GS_07_2021_0114 crossref_primary_10_1016_j_jclepro_2022_133029 crossref_primary_10_1108_GS_03_2020_0034 crossref_primary_10_1016_j_apm_2024_02_037 crossref_primary_10_1007_s42452_024_06455_3 crossref_primary_10_1016_j_eswa_2021_116448 crossref_primary_10_1016_j_eswa_2023_120466 crossref_primary_10_1108_GS_06_2022_0066 crossref_primary_10_1016_j_jclepro_2020_123903 crossref_primary_10_1155_2021_6654324 crossref_primary_10_1108_GS_02_2020_0023 crossref_primary_10_1007_s00170_021_08297_4 crossref_primary_10_1016_j_renene_2024_122052 crossref_primary_10_1016_j_apm_2021_09_008 crossref_primary_10_1016_j_apenergy_2022_119854 crossref_primary_10_1016_j_isatra_2024_02_023 crossref_primary_10_1016_j_apm_2022_11_025 crossref_primary_10_1016_j_energy_2024_131833 crossref_primary_10_1016_j_apenergy_2022_120189 crossref_primary_10_1016_j_measurement_2022_111501 crossref_primary_10_1016_j_cnsns_2020_105665 crossref_primary_10_1108_GS_09_2019_0032 crossref_primary_10_1142_S0218127423501754 crossref_primary_10_21923_jesd_989253 crossref_primary_10_1007_s00170_021_07280_3 crossref_primary_10_1016_j_eswa_2022_118115 crossref_primary_10_3390_systems11060285 crossref_primary_10_3233_JIFS_237479 crossref_primary_10_1080_01605682_2025_2450273 crossref_primary_10_1016_j_cnsns_2022_106250 crossref_primary_10_3390_fractalfract8010025 crossref_primary_10_1016_j_chaos_2021_110778 crossref_primary_10_1016_j_isatra_2020_07_017 crossref_primary_10_1016_j_chaos_2022_112417 crossref_primary_10_1016_j_eswa_2023_121284 crossref_primary_10_1007_s00500_020_05521_3 crossref_primary_10_1007_s11227_021_03713_8  | 
    
| Cites_doi | 10.1016/j.physrep.2012.02.006 10.1016/j.apm.2013.10.004 10.1016/j.omega.2011.10.003 10.1016/j.apm.2011.05.022 10.1109/JSEE.2014.00009 10.1016/j.apm.2008.03.017 10.1016/j.engappai.2015.12.011 10.1016/j.apm.2013.01.018 10.1016/j.apm.2012.10.037 10.3969/j.issn.1004-4132.2010.04.011 10.1016/j.ins.2016.01.002 10.1007/s00521-014-1605-1 10.1016/j.apm.2015.12.021 10.1287/mnsc.42.7.1082 10.1109/JSEE.2015.00013 10.1108/GS-12-2013-0039 10.1016/j.ijforecast.2017.10.002 10.1016/j.apm.2008.01.011 10.1016/j.amc.2012.12.015 10.1016/j.eswa.2013.08.006 10.1016/j.ymssp.2014.08.013 10.1016/j.cnsns.2006.08.008 10.1016/j.energy.2017.09.037 10.1002/mma.4862 10.1016/j.cnsns.2012.11.017 10.1016/j.jfranklin.2004.07.008 10.1016/j.cie.2018.04.016 10.1016/j.amc.2014.08.049 10.1016/j.apm.2018.06.035 10.1016/j.ejor.2005.05.016  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Dec 1, 2019  | 
    
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Dec 1, 2019  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| DOI | 10.1016/j.eswa.2019.06.053 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1873-6793 | 
    
| EndPage | 275 | 
    
| ExternalDocumentID | oai:dora.dmu.ac.uk:2086/18238 10_1016_j_eswa_2019_06_053 S0957417419304531  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D ADTOC AGCQF UNPAY  | 
    
| ID | FETCH-LOGICAL-c372t-fec441fb2568bea8ba1f642dfc0cfa26ce8d3f6c8c2ac65763d556cfabbfd74a3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0957-4174 1873-6793  | 
    
| IngestDate | Tue Aug 19 17:56:58 EDT 2025 Sun Oct 05 00:28:10 EDT 2025 Sat Oct 25 05:18:21 EDT 2025 Thu Apr 24 23:05:58 EDT 2025 Fri Feb 23 02:24:27 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Structure selection Discrete grey model Grey system theory Matrix decomposition  | 
    
| Language | English | 
    
| License | cc-by-nc | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c372t-fec441fb2568bea8ba1f642dfc0cfa26ce8d3f6c8c2ac65763d556cfabbfd74a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-4525-5624 0000-0002-7368-1746 0000-0002-8709-4980  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.dora.dmu.ac.uk/handle/2086/18238 | 
    
| PQID | 2289566879 | 
    
| PQPubID | 2045477 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_eswa_2019_06_053 proquest_journals_2289566879 crossref_primary_10_1016_j_eswa_2019_06_053 crossref_citationtrail_10_1016_j_eswa_2019_06_053 elsevier_sciencedirect_doi_10_1016_j_eswa_2019_06_053  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-12-01 2019-12-00 20191201  | 
    
| PublicationDateYYYYMMDD | 2019-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Expert systems with applications | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Wu, Liu, Cui, Liu, Yao (bib0021) 2014; 25 Zeng, Liu, Xie (bib0034) 2010; 21 Zhang, Chen, Zeng (bib0037) 2015; 27 Liu, Xiao, Guo, Mao (bib0008) 2014; 246 Xu, Tan, Tu, Qi (bib0031) 2011; 38 Altay, Iii (bib0001) 2007; 175 Chen, Huang (bib0004) 2013; 219 Xie, Liu, Yang, Yuan (bib0028) 2013; 37 Wu, Liu, Yao, Yan, Liu (bib0024) 2013; 18 Liu, Shyr (bib0009) 2005; 342 Hastie, Tibshirani, Friedman (bib0006) 2013 Zeng, Meng, Tong (bib0035) 2016; 50 Zeng (bib0036) 2018; 41 Shaikh, Ji, Shaikh, Mirjat, Uqaili (bib0015) 2017; 140 Tim, Marcus, William (bib0017) 1996; 42 Wu, Liu, Yang, Ma, Liu (bib0022) 2016; 339 Xiao, Guo, Mao (bib0025) 2014; 38 Wu, Liu, Yao, Yan (bib0023) 2013; 37 Liu, Yang, Forrest (bib0010) 2017 Long, Wei, Long (bib0011) 2014; 4 Xie, Liu (bib0027) 2015; 26 Li, Ma, Yang (bib0007) 2018; 120 Luo, Wei (bib0012) 2017; 29 Tabaszewski, Cempel (bib0016) 2015; 52–53 Wang, Liu, Tang, Cao, Li (bib0018) 2014; 25 L, Medo, Chi, Zhang, Zhang, Zhou (bib0013) 2012; 519 Young (bib0033) 2018; 34 Zhao, Wang, Zhao, Su (bib0038) 2012; 40 Evans (bib0005) 2014; 41 Wang, Hipel, Wang, He (bib0019) 2011; 35 Chen, Chen, Chen (bib0003) 2008; 13 Wei, Xie, Hu (bib0020) 2018; 62 Box, Jenkins, Reinsel (bib0002) 1994 Yao, Liu, Xie (bib0032) 2009; 33 Xie, Wang (bib0029) 2017; 29 Xie, Zhu, Liu, Yang (bib0030) 2013; 25 Ma, Liu (bib0014) 2016; 40 Xie, Liu (bib0026) 2009; 33 Luo (10.1016/j.eswa.2019.06.053_bib0012) 2017; 29 Xie (10.1016/j.eswa.2019.06.053_bib0028) 2013; 37 Evans (10.1016/j.eswa.2019.06.053_bib0005) 2014; 41 Zeng (10.1016/j.eswa.2019.06.053_bib0034) 2010; 21 Wu (10.1016/j.eswa.2019.06.053_bib0024) 2013; 18 Young (10.1016/j.eswa.2019.06.053_bib0033) 2018; 34 Li (10.1016/j.eswa.2019.06.053_bib0007) 2018; 120 L (10.1016/j.eswa.2019.06.053_bib0013) 2012; 519 Wu (10.1016/j.eswa.2019.06.053_bib0021) 2014; 25 Hastie (10.1016/j.eswa.2019.06.053_bib0006) 2013 Xie (10.1016/j.eswa.2019.06.053_bib0026) 2009; 33 Xie (10.1016/j.eswa.2019.06.053_bib0029) 2017; 29 Xu (10.1016/j.eswa.2019.06.053_bib0031) 2011; 38 Xie (10.1016/j.eswa.2019.06.053_bib0030) 2013; 25 Wang (10.1016/j.eswa.2019.06.053_bib0018) 2014; 25 Tim (10.1016/j.eswa.2019.06.053_bib0017) 1996; 42 Wei (10.1016/j.eswa.2019.06.053_bib0020) 2018; 62 Long (10.1016/j.eswa.2019.06.053_bib0011) 2014; 4 Chen (10.1016/j.eswa.2019.06.053_bib0003) 2008; 13 Ma (10.1016/j.eswa.2019.06.053_bib0014) 2016; 40 Liu (10.1016/j.eswa.2019.06.053_bib0009) 2005; 342 Zhang (10.1016/j.eswa.2019.06.053_bib0037) 2015; 27 Tabaszewski (10.1016/j.eswa.2019.06.053_bib0016) 2015; 52–53 Yao (10.1016/j.eswa.2019.06.053_bib0032) 2009; 33 Zeng (10.1016/j.eswa.2019.06.053_bib0036) 2018; 41 Shaikh (10.1016/j.eswa.2019.06.053_bib0015) 2017; 140 Wang (10.1016/j.eswa.2019.06.053_bib0019) 2011; 35 Liu (10.1016/j.eswa.2019.06.053_bib0008) 2014; 246 Box (10.1016/j.eswa.2019.06.053_bib0002) 1994 Chen (10.1016/j.eswa.2019.06.053_bib0004) 2013; 219 Altay (10.1016/j.eswa.2019.06.053_bib0001) 2007; 175 Wu (10.1016/j.eswa.2019.06.053_bib0022) 2016; 339 Liu (10.1016/j.eswa.2019.06.053_bib0010) 2017 Wu (10.1016/j.eswa.2019.06.053_bib0023) 2013; 37 Xiao (10.1016/j.eswa.2019.06.053_bib0025) 2014; 38 Zeng (10.1016/j.eswa.2019.06.053_bib0035) 2016; 50 Zhao (10.1016/j.eswa.2019.06.053_bib0038) 2012; 40 Xie (10.1016/j.eswa.2019.06.053_bib0027) 2015; 26  | 
    
| References_xml | – volume: 4 start-page: 299 year: 2014 end-page: 310 ident: bib0011 article-title: Discrete verhulst model based on a linear time-varying publication-title: Grey Systems: Theory & Application – volume: 35 start-page: 5524 year: 2011 end-page: 5532 ident: bib0019 article-title: An optimized NGBM(1,1) model for forecasting the qualified discharge rate of industrial wastewater in China publication-title: Applied Mathematical Modelling – volume: 38 start-page: 13961 year: 2011 end-page: 13966 ident: bib0031 article-title: Improvement of grey models by least squares publication-title: Expert Systems with Applications – volume: 40 start-page: 4876 year: 2016 end-page: 4890 ident: bib0014 article-title: Research on the novel recursive discrete multivariate grey prediction model and its applications publication-title: Applied Mathematical Modelling – volume: 27 start-page: 234 year: 2015 end-page: 248 ident: bib0037 article-title: Demand forecasting of emergency medicines after the massive earthquake — a grey discrete Verhulst model approach publication-title: Journal of Grey System – volume: 41 start-page: 1236 year: 2014 end-page: 1244 ident: bib0005 article-title: An alternative approach to estimating the parameters of a generalised grey verhulst model: An application to steel intensity of use in the UK publication-title: Expert Systems with Applications – volume: 52–53 start-page: 416 year: 2015 end-page: 425 ident: bib0016 article-title: Using a set of GM(1,1) models to predict values of diagnostic symptoms publication-title: Mechanical Systems & Signal Processing – volume: 120 start-page: 53 year: 2018 end-page: 67 ident: bib0007 article-title: A novel structure-adaptive intelligent grey forecasting model with full-order time power terms and its application publication-title: Computers & Industrial Engineering – volume: 25 start-page: 1215 year: 2014 end-page: 1221 ident: bib0021 article-title: Non-homogenous discrete grey model with fractional-order accumulation publication-title: Neural Computing & Applications – year: 2013 ident: bib0006 article-title: The elements of statistical learning: Prediction, inference and data mining – volume: 519 start-page: 1 year: 2012 end-page: 49 ident: bib0013 article-title: Recommender systems publication-title: Physics Reports – volume: 342 start-page: 15 year: 2005 end-page: 23 ident: bib0009 article-title: Another sufficient condition for the stability of grey discrete-time systems publication-title: Journal of the Franklin Institute – volume: 140 start-page: 941 year: 2017 end-page: 951 ident: bib0015 article-title: Forecasting China’s natural gas demand based on optimised nonlinear grey models publication-title: Energy – volume: 37 start-page: 6577 year: 2013 end-page: 6583 ident: bib0023 article-title: The effect of sample size on the grey system model publication-title: Applied Mathematical Modelling – volume: 219 start-page: 6152 year: 2013 end-page: 6162 ident: bib0004 article-title: The necessary and sufficient condition for GM(1,1) grey prediction model publication-title: Applied Mathematics & Computation – volume: 18 start-page: 1775 year: 2013 end-page: 1785 ident: bib0024 article-title: Grey system model with the fractional order accumulation publication-title: Communications in Nonlinear Science & Numerical Simulation – volume: 37 start-page: 5059 year: 2013 end-page: 5068 ident: bib0028 article-title: On novel grey forecasting model based on non-homogeneous index sequence publication-title: Applied Mathematical Modelling – volume: 13 start-page: 1194 year: 2008 end-page: 1204 ident: bib0003 article-title: Forecasting of foreign exchange rates of taiwan’s major trading partners by novel nonlinear Grey Bernoulli model NGBM(1,1) publication-title: Communications in Nonlinear Science & Numerical Simulation – volume: 21 start-page: 598 year: 2010 end-page: 603 ident: bib0034 article-title: Prediction model of interval grey number based on DGM(1,1) publication-title: Journal of Systems Engineering & Electronics – volume: 42 start-page: 1082 year: 1996 end-page: 1092 ident: bib0017 article-title: Neural network models for time series forecasts publication-title: Management Science – volume: 26 start-page: 96 year: 2015 end-page: 102 ident: bib0027 article-title: Interval grey number sequence prediction by using non-homogenous exponential discrete grey forecasting model publication-title: Journal of Systems Engineering & Electronics – volume: 246 start-page: 648 year: 2014 end-page: 660 ident: bib0008 article-title: Error and its upper bound estimation between the solutions of GM(1,1) grey forecasting models publication-title: Applied Mathematics & Computation – volume: 40 start-page: 525 year: 2012 end-page: 532 ident: bib0038 article-title: Using a grey model optimized by differential evolution algorithm to forecast the per capita annual net income of rural households in China publication-title: Omega – volume: 25 start-page: 77 year: 2014 end-page: 82 ident: bib0018 article-title: Optimization approach of background value and initial item for improving prediction precision of GM(1,1) model publication-title: Journal of Systems Engineering & Electronics – volume: 33 start-page: 1173 year: 2009 end-page: 1186 ident: bib0026 article-title: Discrete grey forecasting model and its optimization publication-title: Applied Mathematical Modelling – volume: 34 start-page: 314 year: 2018 end-page: 335 ident: bib0033 article-title: Data-based mechanistic modelling and forecasting globally averaged surface temperature publication-title: International Journal of Forecasting – volume: 339 start-page: 98 year: 2016 end-page: 107 ident: bib0022 article-title: Multi-variable weakening buffer operator and its application publication-title: Information Sciences – year: 1994 ident: bib0002 article-title: Time series analysis: Forecasting and control – volume: 29 start-page: 58 year: 2017 end-page: 69 ident: bib0012 article-title: Grey forecasting model with polynomial term and its optimization publication-title: Journal of Grey System – volume: 62 start-page: 717 year: 2018 end-page: 727 ident: bib0020 article-title: Optimal solution for novel grey polynomial prediction model publication-title: Applied Mathematical Modelling – volume: 33 start-page: 1894 year: 2009 end-page: 1903 ident: bib0032 article-title: On the properties of small sample of GM(1,1) model publication-title: Applied Mathematical Modelling – volume: 29 start-page: 1 year: 2017 end-page: 29 ident: bib0029 article-title: A historic review of grey forecasting models publication-title: Journal of Grey System – year: 2017 ident: bib0010 article-title: Grey data analysis: Methods, models and applications – volume: 175 start-page: 475 year: 2007 end-page: 493 ident: bib0001 article-title: OR/MS research in disaster operations management publication-title: European Journal of Operational Research – volume: 38 start-page: 1896 year: 2014 end-page: 1910 ident: bib0025 article-title: The modeling mechanism, extension and optimization of grey GM(1,1) model publication-title: Applied Mathematical Modelling – volume: 50 start-page: 236 year: 2016 end-page: 244 ident: bib0035 article-title: A self-adaptive intelligence grey predictive model with alterable structure and its application publication-title: Engineering Applications of Artificial Intelligence – volume: 25 start-page: 1 year: 2013 end-page: 18 ident: bib0030 article-title: On discrete grey system forecasting model corresponding with polynomial time-vary sequence publication-title: Journal of Grey System – volume: 41 start-page: 1 year: 2018 end-page: 14 ident: bib0036 article-title: A gray model for increasing sequences with nonhomogeneous index trends based on fractionalâorder accumulation publication-title: Mathematical Methods in the Applied Sciences – year: 2013 ident: 10.1016/j.eswa.2019.06.053_bib0006 – volume: 519 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.eswa.2019.06.053_bib0013 article-title: Recommender systems publication-title: Physics Reports doi: 10.1016/j.physrep.2012.02.006 – volume: 38 start-page: 1896 issue: 5â6 year: 2014 ident: 10.1016/j.eswa.2019.06.053_bib0025 article-title: The modeling mechanism, extension and optimization of grey GM(1,1) model publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2013.10.004 – year: 2017 ident: 10.1016/j.eswa.2019.06.053_bib0010 – volume: 40 start-page: 525 issue: 5 year: 2012 ident: 10.1016/j.eswa.2019.06.053_bib0038 article-title: Using a grey model optimized by differential evolution algorithm to forecast the per capita annual net income of rural households in China publication-title: Omega doi: 10.1016/j.omega.2011.10.003 – volume: 35 start-page: 5524 issue: 12 year: 2011 ident: 10.1016/j.eswa.2019.06.053_bib0019 article-title: An optimized NGBM(1,1) model for forecasting the qualified discharge rate of industrial wastewater in China publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2011.05.022 – volume: 38 start-page: 13961 issue: 11 year: 2011 ident: 10.1016/j.eswa.2019.06.053_bib0031 article-title: Improvement of grey models by least squares publication-title: Expert Systems with Applications – volume: 25 start-page: 77 issue: 1 year: 2014 ident: 10.1016/j.eswa.2019.06.053_bib0018 article-title: Optimization approach of background value and initial item for improving prediction precision of GM(1,1) model publication-title: Journal of Systems Engineering & Electronics doi: 10.1109/JSEE.2014.00009 – volume: 33 start-page: 1894 issue: 4 year: 2009 ident: 10.1016/j.eswa.2019.06.053_bib0032 article-title: On the properties of small sample of GM(1,1) model publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2008.03.017 – year: 1994 ident: 10.1016/j.eswa.2019.06.053_bib0002 – volume: 50 start-page: 236 year: 2016 ident: 10.1016/j.eswa.2019.06.053_bib0035 article-title: A self-adaptive intelligence grey predictive model with alterable structure and its application publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2015.12.011 – volume: 37 start-page: 6577 issue: 9 year: 2013 ident: 10.1016/j.eswa.2019.06.053_bib0023 article-title: The effect of sample size on the grey system model publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2013.01.018 – volume: 37 start-page: 5059 issue: 7 year: 2013 ident: 10.1016/j.eswa.2019.06.053_bib0028 article-title: On novel grey forecasting model based on non-homogeneous index sequence publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2012.10.037 – volume: 21 start-page: 598 issue: 4 year: 2010 ident: 10.1016/j.eswa.2019.06.053_bib0034 article-title: Prediction model of interval grey number based on DGM(1,1) publication-title: Journal of Systems Engineering & Electronics doi: 10.3969/j.issn.1004-4132.2010.04.011 – volume: 339 start-page: 98 issue: C year: 2016 ident: 10.1016/j.eswa.2019.06.053_bib0022 article-title: Multi-variable weakening buffer operator and its application publication-title: Information Sciences doi: 10.1016/j.ins.2016.01.002 – volume: 25 start-page: 1215 issue: 5 year: 2014 ident: 10.1016/j.eswa.2019.06.053_bib0021 article-title: Non-homogenous discrete grey model with fractional-order accumulation publication-title: Neural Computing & Applications doi: 10.1007/s00521-014-1605-1 – volume: 40 start-page: 4876 issue: 7–8 year: 2016 ident: 10.1016/j.eswa.2019.06.053_bib0014 article-title: Research on the novel recursive discrete multivariate grey prediction model and its applications publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2015.12.021 – volume: 42 start-page: 1082 issue: 7 year: 1996 ident: 10.1016/j.eswa.2019.06.053_bib0017 article-title: Neural network models for time series forecasts publication-title: Management Science doi: 10.1287/mnsc.42.7.1082 – volume: 26 start-page: 96 issue: 1 year: 2015 ident: 10.1016/j.eswa.2019.06.053_bib0027 article-title: Interval grey number sequence prediction by using non-homogenous exponential discrete grey forecasting model publication-title: Journal of Systems Engineering & Electronics doi: 10.1109/JSEE.2015.00013 – volume: 4 start-page: 299 issue: 2 year: 2014 ident: 10.1016/j.eswa.2019.06.053_bib0011 article-title: Discrete verhulst model based on a linear time-varying publication-title: Grey Systems: Theory & Application doi: 10.1108/GS-12-2013-0039 – volume: 34 start-page: 314 issue: 2 year: 2018 ident: 10.1016/j.eswa.2019.06.053_bib0033 article-title: Data-based mechanistic modelling and forecasting globally averaged surface temperature publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2017.10.002 – volume: 33 start-page: 1173 issue: 2 year: 2009 ident: 10.1016/j.eswa.2019.06.053_bib0026 article-title: Discrete grey forecasting model and its optimization publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2008.01.011 – volume: 219 start-page: 6152 issue: 11 year: 2013 ident: 10.1016/j.eswa.2019.06.053_bib0004 article-title: The necessary and sufficient condition for GM(1,1) grey prediction model publication-title: Applied Mathematics & Computation doi: 10.1016/j.amc.2012.12.015 – volume: 41 start-page: 1236 issue: 4 year: 2014 ident: 10.1016/j.eswa.2019.06.053_bib0005 article-title: An alternative approach to estimating the parameters of a generalised grey verhulst model: An application to steel intensity of use in the UK publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.08.006 – volume: 52–53 start-page: 416 issue: 52 year: 2015 ident: 10.1016/j.eswa.2019.06.053_bib0016 article-title: Using a set of GM(1,1) models to predict values of diagnostic symptoms publication-title: Mechanical Systems & Signal Processing doi: 10.1016/j.ymssp.2014.08.013 – volume: 29 start-page: 1 issue: 4 year: 2017 ident: 10.1016/j.eswa.2019.06.053_bib0029 article-title: A historic review of grey forecasting models publication-title: Journal of Grey System – volume: 13 start-page: 1194 issue: 6 year: 2008 ident: 10.1016/j.eswa.2019.06.053_bib0003 article-title: Forecasting of foreign exchange rates of taiwan’s major trading partners by novel nonlinear Grey Bernoulli model NGBM(1,1) publication-title: Communications in Nonlinear Science & Numerical Simulation doi: 10.1016/j.cnsns.2006.08.008 – volume: 140 start-page: 941 year: 2017 ident: 10.1016/j.eswa.2019.06.053_bib0015 article-title: Forecasting China’s natural gas demand based on optimised nonlinear grey models publication-title: Energy doi: 10.1016/j.energy.2017.09.037 – volume: 41 start-page: 1 issue: 10 year: 2018 ident: 10.1016/j.eswa.2019.06.053_bib0036 article-title: A gray model for increasing sequences with nonhomogeneous index trends based on fractionalâorder accumulation publication-title: Mathematical Methods in the Applied Sciences doi: 10.1002/mma.4862 – volume: 18 start-page: 1775 issue: 7 year: 2013 ident: 10.1016/j.eswa.2019.06.053_bib0024 article-title: Grey system model with the fractional order accumulation publication-title: Communications in Nonlinear Science & Numerical Simulation doi: 10.1016/j.cnsns.2012.11.017 – volume: 342 start-page: 15 issue: 1 year: 2005 ident: 10.1016/j.eswa.2019.06.053_bib0009 article-title: Another sufficient condition for the stability of grey discrete-time systems publication-title: Journal of the Franklin Institute doi: 10.1016/j.jfranklin.2004.07.008 – volume: 120 start-page: 53 year: 2018 ident: 10.1016/j.eswa.2019.06.053_bib0007 article-title: A novel structure-adaptive intelligent grey forecasting model with full-order time power terms and its application publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.04.016 – volume: 246 start-page: 648 issue: C year: 2014 ident: 10.1016/j.eswa.2019.06.053_bib0008 article-title: Error and its upper bound estimation between the solutions of GM(1,1) grey forecasting models publication-title: Applied Mathematics & Computation doi: 10.1016/j.amc.2014.08.049 – volume: 27 start-page: 234 issue: 3 year: 2015 ident: 10.1016/j.eswa.2019.06.053_bib0037 article-title: Demand forecasting of emergency medicines after the massive earthquake — a grey discrete Verhulst model approach publication-title: Journal of Grey System – volume: 62 start-page: 717 year: 2018 ident: 10.1016/j.eswa.2019.06.053_bib0020 article-title: Optimal solution for novel grey polynomial prediction model publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2018.06.035 – volume: 25 start-page: 1 issue: 4 year: 2013 ident: 10.1016/j.eswa.2019.06.053_bib0030 article-title: On discrete grey system forecasting model corresponding with polynomial time-vary sequence publication-title: Journal of Grey System – volume: 175 start-page: 475 issue: 1 year: 2007 ident: 10.1016/j.eswa.2019.06.053_bib0001 article-title: OR/MS research in disaster operations management publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2005.05.016 – volume: 29 start-page: 58 issue: 3 year: 2017 ident: 10.1016/j.eswa.2019.06.053_bib0012 article-title: Grey forecasting model with polynomial term and its optimization publication-title: Journal of Grey System  | 
    
| SSID | ssj0017007 | 
    
| Score | 2.505317 | 
    
| Snippet | •A novel discrete grey polynomial model is proposed.•The proposed model unifies the univariate discrete grey models.•An algorithm is presented to select the... Grey models have been reported to be promising for time series prediction with small samples, but the diversity kinds of model structures and modelling...  | 
    
| SourceID | unpaywall proquest crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 264 | 
    
| SubjectTerms | Adaptive structures Algorithms Computer simulation Discrete grey model Expert systems Grey prediction Grey system theory Matrix decomposition Polynomials Structure selection  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LSyQxEIcLdzx4Wh_rsiMqOXjTHu3OozNH8YEKiocd0FNIqhPY3dneYR6I_vVWOt0iguKeO4GEqqS-oiu_AtgLQjpuS5-hK0ImsKB7EEUedW8td0MhsGnad32jLkbi6k7eLcFB9xYmllVWtPlB9beTzE9yA5Sla3VINMz1F1hWksi7B8ujm9vj-ySnV2YiiS7nuuSZIr9r38ikci4_e4gyQ_mwkeuU_L049IozVxb1xD4-2PH4Vcg5X4XrbrGp0uTPYDF3A3x6o-P42d2swdeWPdlxcpZ1WPL1Bqx2fR1Ye8y_weWpndssxreKJX3ZxdSzWdMxh8zIiHPZov4ViF5ZfNU7JfBmlLc_ssk0_vdpBjUtdjZhdH728-Qia1suZMjLYp4Fj8RHwREIaeetdjYPlKFUAY8w2EKh1xUPCjUWFhXlKrySUtEn50JVCsu_Q6_-V_sfwJSTyhalUw49RUB0w6MgOGqpQ0E3cNWHvDOAwVaPPLbFGJuu8Oy3iUYz0WgmVt9J3of9lzmTpMbx4WjZ2dW0PJE4wVC4-HDeducEpj3RM1NQZkroq8thHw5eHOMTq9j6v-Hb0CPD-h1CnbnbbT38GSlB_ws priority: 102 providerName: Unpaywall  | 
    
| Title | Data-based structure selection for unified discrete grey prediction model | 
    
| URI | https://dx.doi.org/10.1016/j.eswa.2019.06.053 https://www.proquest.com/docview/2289566879 https://www.dora.dmu.ac.uk/handle/2086/18238  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 136 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvTiW6zWkoM3Xdtukn0cS7W0ikXQQj2FJJtApaylD0ov_nYnu9lSDxYRFpbdzUKYSWa-ITPfIHRtKJNEhNpT0jceVT7YQUWblvdWEBlTqrKmfc_9oDugj0M2LKF2UQtj0yqd7c9temat3Zu6k2Z9MhrVXwEcgDuEK7anfVktNaWh7WJw97VO87D0c2HOtxd6drQrnMlzvPRsabmHmnHG4cnIb85pA3zuLtKJWC3FeLzhhzqHaN8BSNzK53iESjo9RgdFcwbs9uoJ6t2LufCsk0pwThK7mGo8y9regC4wgFW8SEcGICi2pblTQM8Ygu8Vnkzt4U02KOuTc4oGnYe3dtdzfRM8RUJ_7hmtAOQYCWgmklpEUjQNhBmJUQ1lhB8oHSXEBCpSvlABBBwkYSyAT1KaJKSCnKFy-pnqc4QDyQLhhzKQSoMbUzJuGEpUxCLjgxlNKqhZCIwrRypue1uMeZE99sGtkLkVMrcpdIxU0M36n0lOqbF1NCv0wH8sDA42f-t_1UJp3G3LGfchvAT8GoVxBd2uFfmHWVz8cxaXaM8-5fkvVVQGdesrQDFzWcuWaQ3ttHpP3T7cB_2X1vs3P_D0YA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FD_XiW6xWzcGbrrV57OMo1dJq68UWegtJNoFKWUsfiBd_u5PdbNGDRYQ9bRIIM8nMN2TmG4QuLeOKysgEWhEbME3ADmrWdLy3kqqEMZ037es_h50hexzxUQW1yloYl1bpbX9h03Nr7f80vDQb0_G48QLgANwhfIl77XO11JuMk8hFYDefqzwPxz8XFYR7UeCm-8qZIsnLzN8d-VAzyUk8Of3NO31Dn9VlNpUf73Iy-eaI2rto2yNIfFdscg9VTLaPdsruDNhf1gPUvZcLGTgvleKCJXY5M3ie970BZWBAq3iZjS1gUOxqc2cAnzFE3x94OnOvN_mkvFHOIRq2HwatTuAbJwSaRmQRWKMB5VgFcCZWRsZKNi3EGanVt9pKEmoTp9SGOtZE6hAiDppyHsKQUjaNmKRHaCN7y8wxwqHioSSRCpU24Me0Sm4tozrmsSVgR9MaapYCE9qzirvmFhNRpo-9Cidk4YQsXA4dpzV0tVozLTg11s7mpR7Ej5MhwOivXVcvlSb8vZwLAvElANg4SmroeqXIP-zi5J-7uEDVzqDfE73u89Mp2nIjRTJMHW2A6s0ZQJqFOs-P7BdEC_RF | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LSyQxEIcLdzx4Wh_rsiMqOXjTHu3OozNH8YEKiocd0FNIqhPY3dneYR6I_vVWOt0iguKeO4GEqqS-oiu_AtgLQjpuS5-hK0ImsKB7EEUedW8td0MhsGnad32jLkbi6k7eLcFB9xYmllVWtPlB9beTzE9yA5Sla3VINMz1F1hWksi7B8ujm9vj-ySnV2YiiS7nuuSZIr9r38ikci4_e4gyQ_mwkeuU_L049IozVxb1xD4-2PH4Vcg5X4XrbrGp0uTPYDF3A3x6o-P42d2swdeWPdlxcpZ1WPL1Bqx2fR1Ye8y_weWpndssxreKJX3ZxdSzWdMxh8zIiHPZov4ViF5ZfNU7JfBmlLc_ssk0_vdpBjUtdjZhdH728-Qia1suZMjLYp4Fj8RHwREIaeetdjYPlKFUAY8w2EKh1xUPCjUWFhXlKrySUtEn50JVCsu_Q6_-V_sfwJSTyhalUw49RUB0w6MgOGqpQ0E3cNWHvDOAwVaPPLbFGJuu8Oy3iUYz0WgmVt9J3of9lzmTpMbx4WjZ2dW0PJE4wVC4-HDeducEpj3RM1NQZkroq8thHw5eHOMTq9j6v-Hb0CPD-h1CnbnbbT38GSlB_ws | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-based+structure+selection+for+unified+discrete+grey+prediction+model&rft.jtitle=Expert+systems+with+applications&rft.au=Wei%2C+Bao-lei&rft.au=Xie%2C+Nai-ming&rft.au=Yang%2C+Ying-jie&rft.date=2019-12-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=136&rft.spage=264&rft_id=info:doi/10.1016%2Fj.eswa.2019.06.053&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |