Data-based structure selection for unified discrete grey prediction model

•A novel discrete grey polynomial model is proposed.•The proposed model unifies the univariate discrete grey models.•An algorithm is presented to select the optimal model structure adaptively.•Matrix decomposition technique is adopted to provide a simpler paradigm for property analysis. Grey models...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 136; pp. 264 - 275
Main Authors Wei, Bao-lei, Xie, Nai-ming, Yang, Ying-jie
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.12.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
1873-6793
DOI10.1016/j.eswa.2019.06.053

Cover

Abstract •A novel discrete grey polynomial model is proposed.•The proposed model unifies the univariate discrete grey models.•An algorithm is presented to select the optimal model structure adaptively.•Matrix decomposition technique is adopted to provide a simpler paradigm for property analysis. Grey models have been reported to be promising for time series prediction with small samples, but the diversity kinds of model structures and modelling assumptions restrains their further applications and developments. In this paper, a novel grey prediction model, named discrete grey polynomial model, is proposed to unify a family of univariate discrete grey models. The proposed model has the capacity to represent most popular homogeneous and non-homogeneous discrete grey models and furthermore, it can induce some other novel models, thereby highlighting the relationship between the models and their structures and assumptions. Based on the proposed model, a data-based algorithm is put forward to select the model structure adaptively. It reduces the requirement for modeler’s knowledge from an expert system perspective. Two numerical experiments with large-scale simulations are conducted and the results show its effectiveness. In the end, two real case tests show that the proposed model benefits from its adaptive structure and produces reliable multi-step ahead predictions.
AbstractList •A novel discrete grey polynomial model is proposed.•The proposed model unifies the univariate discrete grey models.•An algorithm is presented to select the optimal model structure adaptively.•Matrix decomposition technique is adopted to provide a simpler paradigm for property analysis. Grey models have been reported to be promising for time series prediction with small samples, but the diversity kinds of model structures and modelling assumptions restrains their further applications and developments. In this paper, a novel grey prediction model, named discrete grey polynomial model, is proposed to unify a family of univariate discrete grey models. The proposed model has the capacity to represent most popular homogeneous and non-homogeneous discrete grey models and furthermore, it can induce some other novel models, thereby highlighting the relationship between the models and their structures and assumptions. Based on the proposed model, a data-based algorithm is put forward to select the model structure adaptively. It reduces the requirement for modeler’s knowledge from an expert system perspective. Two numerical experiments with large-scale simulations are conducted and the results show its effectiveness. In the end, two real case tests show that the proposed model benefits from its adaptive structure and produces reliable multi-step ahead predictions.
Grey models have been reported to be promising for time series prediction with small samples, but the diversity kinds of model structures and modelling assumptions restrains their further applications and developments. In this paper, a novel grey prediction model, named discrete grey polynomial model, is proposed to unify a family of univariate discrete grey models. The proposed model has the capacity to represent most popular homogeneous and non-homogeneous discrete grey models and furthermore, it can induce some other novel models, thereby highlighting the relationship between the models and their structures and assumptions. Based on the proposed model, a data-based algorithm is put forward to select the model structure adaptively. It reduces the requirement for modeler's knowledge from an expert system perspective. Two numerical experiments with large-scale simulations are conducted and the results show its effectiveness. In the end, two real case tests show that the proposed model benefits from its adaptive structure and produces reliable multi-step ahead predictions.
Author Wei, Bao-lei
Xie, Nai-ming
Yang, Ying-jie
Author_xml – sequence: 1
  givenname: Bao-lei
  orcidid: 0000-0002-8709-4980
  surname: Wei
  fullname: Wei, Bao-lei
  email: weibaolei_2014@163.com
  organization: College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Nai-ming
  orcidid: 0000-0002-7368-1746
  surname: Xie
  fullname: Xie, Nai-ming
  email: xienaiming@nuaa.edu.cn
  organization: College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: Ying-jie
  orcidid: 0000-0003-4525-5624
  surname: Yang
  fullname: Yang, Ying-jie
  email: yyang@dmu.ac.uk
  organization: Institute of Artificial Intelligence, De Montfort University, Leicester, United Kingdom
BookMark eNqNkU1LxDAQhoOs4O7qH_BU8NyapG3SBS-yfi0seNFzSJOJpHTbmqQu--9NqScP4mkO7zwvwzMrtOj6DhC6JjgjmLDbJgN_lBnFZJNhluEyP0NLUvE8ZXyTL9ASb0qeFoQXF2jlfYMx4RjzJdo9yCDTWnrQiQ9uVGF0kHhoQQXbd4npXTJ21tiYa-uVgwDJh4NTMjjQdl469BraS3RuZOvh6meu0fvT49v2Jd2_Pu-29_tU5ZyG1IAqCmJqWrKqBlnVkhhWUG0UVkZSpqDSuWGqUlQqVnKW67JkMapro3kh8zXK596xG-TpKNtWDM4epDsJgsVkQzRisiEmGwIzEW1E6mamBtd_juCDaPrRdfFQQWm1KRmroqg1ovOWcr33Dsz_qqtfkLJBTmKCk7b9G72bUYjCviw44ZWFTkWzLj5A6N7-hX8DEeCcsg
CitedBy_id crossref_primary_10_1016_j_energy_2025_134877
crossref_primary_10_1108_GS_06_2020_0081
crossref_primary_10_1016_j_engfracmech_2022_108666
crossref_primary_10_1016_j_jobe_2024_109287
crossref_primary_10_1016_j_energy_2021_119952
crossref_primary_10_1111_exsy_12868
crossref_primary_10_3390_en14102749
crossref_primary_10_1016_j_cie_2021_107888
crossref_primary_10_1007_s10699_019_09640_5
crossref_primary_10_1016_j_matcom_2022_04_004
crossref_primary_10_1016_j_eswa_2021_115761
crossref_primary_10_1108_GS_07_2021_0114
crossref_primary_10_1016_j_jclepro_2022_133029
crossref_primary_10_1108_GS_03_2020_0034
crossref_primary_10_1016_j_apm_2024_02_037
crossref_primary_10_1007_s42452_024_06455_3
crossref_primary_10_1016_j_eswa_2021_116448
crossref_primary_10_1016_j_eswa_2023_120466
crossref_primary_10_1108_GS_06_2022_0066
crossref_primary_10_1016_j_jclepro_2020_123903
crossref_primary_10_1155_2021_6654324
crossref_primary_10_1108_GS_02_2020_0023
crossref_primary_10_1007_s00170_021_08297_4
crossref_primary_10_1016_j_renene_2024_122052
crossref_primary_10_1016_j_apm_2021_09_008
crossref_primary_10_1016_j_apenergy_2022_119854
crossref_primary_10_1016_j_isatra_2024_02_023
crossref_primary_10_1016_j_apm_2022_11_025
crossref_primary_10_1016_j_energy_2024_131833
crossref_primary_10_1016_j_apenergy_2022_120189
crossref_primary_10_1016_j_measurement_2022_111501
crossref_primary_10_1016_j_cnsns_2020_105665
crossref_primary_10_1108_GS_09_2019_0032
crossref_primary_10_1142_S0218127423501754
crossref_primary_10_21923_jesd_989253
crossref_primary_10_1007_s00170_021_07280_3
crossref_primary_10_1016_j_eswa_2022_118115
crossref_primary_10_3390_systems11060285
crossref_primary_10_3233_JIFS_237479
crossref_primary_10_1080_01605682_2025_2450273
crossref_primary_10_1016_j_cnsns_2022_106250
crossref_primary_10_3390_fractalfract8010025
crossref_primary_10_1016_j_chaos_2021_110778
crossref_primary_10_1016_j_isatra_2020_07_017
crossref_primary_10_1016_j_chaos_2022_112417
crossref_primary_10_1016_j_eswa_2023_121284
crossref_primary_10_1007_s00500_020_05521_3
crossref_primary_10_1007_s11227_021_03713_8
Cites_doi 10.1016/j.physrep.2012.02.006
10.1016/j.apm.2013.10.004
10.1016/j.omega.2011.10.003
10.1016/j.apm.2011.05.022
10.1109/JSEE.2014.00009
10.1016/j.apm.2008.03.017
10.1016/j.engappai.2015.12.011
10.1016/j.apm.2013.01.018
10.1016/j.apm.2012.10.037
10.3969/j.issn.1004-4132.2010.04.011
10.1016/j.ins.2016.01.002
10.1007/s00521-014-1605-1
10.1016/j.apm.2015.12.021
10.1287/mnsc.42.7.1082
10.1109/JSEE.2015.00013
10.1108/GS-12-2013-0039
10.1016/j.ijforecast.2017.10.002
10.1016/j.apm.2008.01.011
10.1016/j.amc.2012.12.015
10.1016/j.eswa.2013.08.006
10.1016/j.ymssp.2014.08.013
10.1016/j.cnsns.2006.08.008
10.1016/j.energy.2017.09.037
10.1002/mma.4862
10.1016/j.cnsns.2012.11.017
10.1016/j.jfranklin.2004.07.008
10.1016/j.cie.2018.04.016
10.1016/j.amc.2014.08.049
10.1016/j.apm.2018.06.035
10.1016/j.ejor.2005.05.016
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Dec 1, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 1, 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1016/j.eswa.2019.06.053
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 275
ExternalDocumentID oai:dora.dmu.ac.uk:2086/18238
10_1016_j_eswa_2019_06_053
S0957417419304531
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c372t-fec441fb2568bea8ba1f642dfc0cfa26ce8d3f6c8c2ac65763d556cfabbfd74a3
IEDL.DBID .~1
ISSN 0957-4174
1873-6793
IngestDate Tue Aug 19 17:56:58 EDT 2025
Sun Oct 05 00:28:10 EDT 2025
Sat Oct 25 05:18:21 EDT 2025
Thu Apr 24 23:05:58 EDT 2025
Fri Feb 23 02:24:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Structure selection
Discrete grey model
Grey system theory
Matrix decomposition
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-fec441fb2568bea8ba1f642dfc0cfa26ce8d3f6c8c2ac65763d556cfabbfd74a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4525-5624
0000-0002-7368-1746
0000-0002-8709-4980
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.dora.dmu.ac.uk/handle/2086/18238
PQID 2289566879
PQPubID 2045477
PageCount 12
ParticipantIDs unpaywall_primary_10_1016_j_eswa_2019_06_053
proquest_journals_2289566879
crossref_primary_10_1016_j_eswa_2019_06_053
crossref_citationtrail_10_1016_j_eswa_2019_06_053
elsevier_sciencedirect_doi_10_1016_j_eswa_2019_06_053
PublicationCentury 2000
PublicationDate 2019-12-01
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wu, Liu, Cui, Liu, Yao (bib0021) 2014; 25
Zeng, Liu, Xie (bib0034) 2010; 21
Zhang, Chen, Zeng (bib0037) 2015; 27
Liu, Xiao, Guo, Mao (bib0008) 2014; 246
Xu, Tan, Tu, Qi (bib0031) 2011; 38
Altay, Iii (bib0001) 2007; 175
Chen, Huang (bib0004) 2013; 219
Xie, Liu, Yang, Yuan (bib0028) 2013; 37
Wu, Liu, Yao, Yan, Liu (bib0024) 2013; 18
Liu, Shyr (bib0009) 2005; 342
Hastie, Tibshirani, Friedman (bib0006) 2013
Zeng, Meng, Tong (bib0035) 2016; 50
Zeng (bib0036) 2018; 41
Shaikh, Ji, Shaikh, Mirjat, Uqaili (bib0015) 2017; 140
Tim, Marcus, William (bib0017) 1996; 42
Wu, Liu, Yang, Ma, Liu (bib0022) 2016; 339
Xiao, Guo, Mao (bib0025) 2014; 38
Wu, Liu, Yao, Yan (bib0023) 2013; 37
Liu, Yang, Forrest (bib0010) 2017
Long, Wei, Long (bib0011) 2014; 4
Xie, Liu (bib0027) 2015; 26
Li, Ma, Yang (bib0007) 2018; 120
Luo, Wei (bib0012) 2017; 29
Tabaszewski, Cempel (bib0016) 2015; 52–53
Wang, Liu, Tang, Cao, Li (bib0018) 2014; 25
L, Medo, Chi, Zhang, Zhang, Zhou (bib0013) 2012; 519
Young (bib0033) 2018; 34
Zhao, Wang, Zhao, Su (bib0038) 2012; 40
Evans (bib0005) 2014; 41
Wang, Hipel, Wang, He (bib0019) 2011; 35
Chen, Chen, Chen (bib0003) 2008; 13
Wei, Xie, Hu (bib0020) 2018; 62
Box, Jenkins, Reinsel (bib0002) 1994
Yao, Liu, Xie (bib0032) 2009; 33
Xie, Wang (bib0029) 2017; 29
Xie, Zhu, Liu, Yang (bib0030) 2013; 25
Ma, Liu (bib0014) 2016; 40
Xie, Liu (bib0026) 2009; 33
Luo (10.1016/j.eswa.2019.06.053_bib0012) 2017; 29
Xie (10.1016/j.eswa.2019.06.053_bib0028) 2013; 37
Evans (10.1016/j.eswa.2019.06.053_bib0005) 2014; 41
Zeng (10.1016/j.eswa.2019.06.053_bib0034) 2010; 21
Wu (10.1016/j.eswa.2019.06.053_bib0024) 2013; 18
Young (10.1016/j.eswa.2019.06.053_bib0033) 2018; 34
Li (10.1016/j.eswa.2019.06.053_bib0007) 2018; 120
L (10.1016/j.eswa.2019.06.053_bib0013) 2012; 519
Wu (10.1016/j.eswa.2019.06.053_bib0021) 2014; 25
Hastie (10.1016/j.eswa.2019.06.053_bib0006) 2013
Xie (10.1016/j.eswa.2019.06.053_bib0026) 2009; 33
Xie (10.1016/j.eswa.2019.06.053_bib0029) 2017; 29
Xu (10.1016/j.eswa.2019.06.053_bib0031) 2011; 38
Xie (10.1016/j.eswa.2019.06.053_bib0030) 2013; 25
Wang (10.1016/j.eswa.2019.06.053_bib0018) 2014; 25
Tim (10.1016/j.eswa.2019.06.053_bib0017) 1996; 42
Wei (10.1016/j.eswa.2019.06.053_bib0020) 2018; 62
Long (10.1016/j.eswa.2019.06.053_bib0011) 2014; 4
Chen (10.1016/j.eswa.2019.06.053_bib0003) 2008; 13
Ma (10.1016/j.eswa.2019.06.053_bib0014) 2016; 40
Liu (10.1016/j.eswa.2019.06.053_bib0009) 2005; 342
Zhang (10.1016/j.eswa.2019.06.053_bib0037) 2015; 27
Tabaszewski (10.1016/j.eswa.2019.06.053_bib0016) 2015; 52–53
Yao (10.1016/j.eswa.2019.06.053_bib0032) 2009; 33
Zeng (10.1016/j.eswa.2019.06.053_bib0036) 2018; 41
Shaikh (10.1016/j.eswa.2019.06.053_bib0015) 2017; 140
Wang (10.1016/j.eswa.2019.06.053_bib0019) 2011; 35
Liu (10.1016/j.eswa.2019.06.053_bib0008) 2014; 246
Box (10.1016/j.eswa.2019.06.053_bib0002) 1994
Chen (10.1016/j.eswa.2019.06.053_bib0004) 2013; 219
Altay (10.1016/j.eswa.2019.06.053_bib0001) 2007; 175
Wu (10.1016/j.eswa.2019.06.053_bib0022) 2016; 339
Liu (10.1016/j.eswa.2019.06.053_bib0010) 2017
Wu (10.1016/j.eswa.2019.06.053_bib0023) 2013; 37
Xiao (10.1016/j.eswa.2019.06.053_bib0025) 2014; 38
Zeng (10.1016/j.eswa.2019.06.053_bib0035) 2016; 50
Zhao (10.1016/j.eswa.2019.06.053_bib0038) 2012; 40
Xie (10.1016/j.eswa.2019.06.053_bib0027) 2015; 26
References_xml – volume: 4
  start-page: 299
  year: 2014
  end-page: 310
  ident: bib0011
  article-title: Discrete verhulst model based on a linear time-varying
  publication-title: Grey Systems: Theory & Application
– volume: 35
  start-page: 5524
  year: 2011
  end-page: 5532
  ident: bib0019
  article-title: An optimized NGBM(1,1) model for forecasting the qualified discharge rate of industrial wastewater in China
  publication-title: Applied Mathematical Modelling
– volume: 38
  start-page: 13961
  year: 2011
  end-page: 13966
  ident: bib0031
  article-title: Improvement of grey models by least squares
  publication-title: Expert Systems with Applications
– volume: 40
  start-page: 4876
  year: 2016
  end-page: 4890
  ident: bib0014
  article-title: Research on the novel recursive discrete multivariate grey prediction model and its applications
  publication-title: Applied Mathematical Modelling
– volume: 27
  start-page: 234
  year: 2015
  end-page: 248
  ident: bib0037
  article-title: Demand forecasting of emergency medicines after the massive earthquake — a grey discrete Verhulst model approach
  publication-title: Journal of Grey System
– volume: 41
  start-page: 1236
  year: 2014
  end-page: 1244
  ident: bib0005
  article-title: An alternative approach to estimating the parameters of a generalised grey verhulst model: An application to steel intensity of use in the UK
  publication-title: Expert Systems with Applications
– volume: 52–53
  start-page: 416
  year: 2015
  end-page: 425
  ident: bib0016
  article-title: Using a set of GM(1,1) models to predict values of diagnostic symptoms
  publication-title: Mechanical Systems & Signal Processing
– volume: 120
  start-page: 53
  year: 2018
  end-page: 67
  ident: bib0007
  article-title: A novel structure-adaptive intelligent grey forecasting model with full-order time power terms and its application
  publication-title: Computers & Industrial Engineering
– volume: 25
  start-page: 1215
  year: 2014
  end-page: 1221
  ident: bib0021
  article-title: Non-homogenous discrete grey model with fractional-order accumulation
  publication-title: Neural Computing & Applications
– year: 2013
  ident: bib0006
  article-title: The elements of statistical learning: Prediction, inference and data mining
– volume: 519
  start-page: 1
  year: 2012
  end-page: 49
  ident: bib0013
  article-title: Recommender systems
  publication-title: Physics Reports
– volume: 342
  start-page: 15
  year: 2005
  end-page: 23
  ident: bib0009
  article-title: Another sufficient condition for the stability of grey discrete-time systems
  publication-title: Journal of the Franklin Institute
– volume: 140
  start-page: 941
  year: 2017
  end-page: 951
  ident: bib0015
  article-title: Forecasting China’s natural gas demand based on optimised nonlinear grey models
  publication-title: Energy
– volume: 37
  start-page: 6577
  year: 2013
  end-page: 6583
  ident: bib0023
  article-title: The effect of sample size on the grey system model
  publication-title: Applied Mathematical Modelling
– volume: 219
  start-page: 6152
  year: 2013
  end-page: 6162
  ident: bib0004
  article-title: The necessary and sufficient condition for GM(1,1) grey prediction model
  publication-title: Applied Mathematics & Computation
– volume: 18
  start-page: 1775
  year: 2013
  end-page: 1785
  ident: bib0024
  article-title: Grey system model with the fractional order accumulation
  publication-title: Communications in Nonlinear Science & Numerical Simulation
– volume: 37
  start-page: 5059
  year: 2013
  end-page: 5068
  ident: bib0028
  article-title: On novel grey forecasting model based on non-homogeneous index sequence
  publication-title: Applied Mathematical Modelling
– volume: 13
  start-page: 1194
  year: 2008
  end-page: 1204
  ident: bib0003
  article-title: Forecasting of foreign exchange rates of taiwan’s major trading partners by novel nonlinear Grey Bernoulli model NGBM(1,1)
  publication-title: Communications in Nonlinear Science & Numerical Simulation
– volume: 21
  start-page: 598
  year: 2010
  end-page: 603
  ident: bib0034
  article-title: Prediction model of interval grey number based on DGM(1,1)
  publication-title: Journal of Systems Engineering & Electronics
– volume: 42
  start-page: 1082
  year: 1996
  end-page: 1092
  ident: bib0017
  article-title: Neural network models for time series forecasts
  publication-title: Management Science
– volume: 26
  start-page: 96
  year: 2015
  end-page: 102
  ident: bib0027
  article-title: Interval grey number sequence prediction by using non-homogenous exponential discrete grey forecasting model
  publication-title: Journal of Systems Engineering & Electronics
– volume: 246
  start-page: 648
  year: 2014
  end-page: 660
  ident: bib0008
  article-title: Error and its upper bound estimation between the solutions of GM(1,1) grey forecasting models
  publication-title: Applied Mathematics & Computation
– volume: 40
  start-page: 525
  year: 2012
  end-page: 532
  ident: bib0038
  article-title: Using a grey model optimized by differential evolution algorithm to forecast the per capita annual net income of rural households in China
  publication-title: Omega
– volume: 25
  start-page: 77
  year: 2014
  end-page: 82
  ident: bib0018
  article-title: Optimization approach of background value and initial item for improving prediction precision of GM(1,1) model
  publication-title: Journal of Systems Engineering & Electronics
– volume: 33
  start-page: 1173
  year: 2009
  end-page: 1186
  ident: bib0026
  article-title: Discrete grey forecasting model and its optimization
  publication-title: Applied Mathematical Modelling
– volume: 34
  start-page: 314
  year: 2018
  end-page: 335
  ident: bib0033
  article-title: Data-based mechanistic modelling and forecasting globally averaged surface temperature
  publication-title: International Journal of Forecasting
– volume: 339
  start-page: 98
  year: 2016
  end-page: 107
  ident: bib0022
  article-title: Multi-variable weakening buffer operator and its application
  publication-title: Information Sciences
– year: 1994
  ident: bib0002
  article-title: Time series analysis: Forecasting and control
– volume: 29
  start-page: 58
  year: 2017
  end-page: 69
  ident: bib0012
  article-title: Grey forecasting model with polynomial term and its optimization
  publication-title: Journal of Grey System
– volume: 62
  start-page: 717
  year: 2018
  end-page: 727
  ident: bib0020
  article-title: Optimal solution for novel grey polynomial prediction model
  publication-title: Applied Mathematical Modelling
– volume: 33
  start-page: 1894
  year: 2009
  end-page: 1903
  ident: bib0032
  article-title: On the properties of small sample of GM(1,1) model
  publication-title: Applied Mathematical Modelling
– volume: 29
  start-page: 1
  year: 2017
  end-page: 29
  ident: bib0029
  article-title: A historic review of grey forecasting models
  publication-title: Journal of Grey System
– year: 2017
  ident: bib0010
  article-title: Grey data analysis: Methods, models and applications
– volume: 175
  start-page: 475
  year: 2007
  end-page: 493
  ident: bib0001
  article-title: OR/MS research in disaster operations management
  publication-title: European Journal of Operational Research
– volume: 38
  start-page: 1896
  year: 2014
  end-page: 1910
  ident: bib0025
  article-title: The modeling mechanism, extension and optimization of grey GM(1,1) model
  publication-title: Applied Mathematical Modelling
– volume: 50
  start-page: 236
  year: 2016
  end-page: 244
  ident: bib0035
  article-title: A self-adaptive intelligence grey predictive model with alterable structure and its application
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 25
  start-page: 1
  year: 2013
  end-page: 18
  ident: bib0030
  article-title: On discrete grey system forecasting model corresponding with polynomial time-vary sequence
  publication-title: Journal of Grey System
– volume: 41
  start-page: 1
  year: 2018
  end-page: 14
  ident: bib0036
  article-title: A gray model for increasing sequences with nonhomogeneous index trends based on fractionalâorder accumulation
  publication-title: Mathematical Methods in the Applied Sciences
– year: 2013
  ident: 10.1016/j.eswa.2019.06.053_bib0006
– volume: 519
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2019.06.053_bib0013
  article-title: Recommender systems
  publication-title: Physics Reports
  doi: 10.1016/j.physrep.2012.02.006
– volume: 38
  start-page: 1896
  issue: 5â6
  year: 2014
  ident: 10.1016/j.eswa.2019.06.053_bib0025
  article-title: The modeling mechanism, extension and optimization of grey GM(1,1) model
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2013.10.004
– year: 2017
  ident: 10.1016/j.eswa.2019.06.053_bib0010
– volume: 40
  start-page: 525
  issue: 5
  year: 2012
  ident: 10.1016/j.eswa.2019.06.053_bib0038
  article-title: Using a grey model optimized by differential evolution algorithm to forecast the per capita annual net income of rural households in China
  publication-title: Omega
  doi: 10.1016/j.omega.2011.10.003
– volume: 35
  start-page: 5524
  issue: 12
  year: 2011
  ident: 10.1016/j.eswa.2019.06.053_bib0019
  article-title: An optimized NGBM(1,1) model for forecasting the qualified discharge rate of industrial wastewater in China
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2011.05.022
– volume: 38
  start-page: 13961
  issue: 11
  year: 2011
  ident: 10.1016/j.eswa.2019.06.053_bib0031
  article-title: Improvement of grey models by least squares
  publication-title: Expert Systems with Applications
– volume: 25
  start-page: 77
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2019.06.053_bib0018
  article-title: Optimization approach of background value and initial item for improving prediction precision of GM(1,1) model
  publication-title: Journal of Systems Engineering & Electronics
  doi: 10.1109/JSEE.2014.00009
– volume: 33
  start-page: 1894
  issue: 4
  year: 2009
  ident: 10.1016/j.eswa.2019.06.053_bib0032
  article-title: On the properties of small sample of GM(1,1) model
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2008.03.017
– year: 1994
  ident: 10.1016/j.eswa.2019.06.053_bib0002
– volume: 50
  start-page: 236
  year: 2016
  ident: 10.1016/j.eswa.2019.06.053_bib0035
  article-title: A self-adaptive intelligence grey predictive model with alterable structure and its application
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2015.12.011
– volume: 37
  start-page: 6577
  issue: 9
  year: 2013
  ident: 10.1016/j.eswa.2019.06.053_bib0023
  article-title: The effect of sample size on the grey system model
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2013.01.018
– volume: 37
  start-page: 5059
  issue: 7
  year: 2013
  ident: 10.1016/j.eswa.2019.06.053_bib0028
  article-title: On novel grey forecasting model based on non-homogeneous index sequence
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2012.10.037
– volume: 21
  start-page: 598
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2019.06.053_bib0034
  article-title: Prediction model of interval grey number based on DGM(1,1)
  publication-title: Journal of Systems Engineering & Electronics
  doi: 10.3969/j.issn.1004-4132.2010.04.011
– volume: 339
  start-page: 98
  issue: C
  year: 2016
  ident: 10.1016/j.eswa.2019.06.053_bib0022
  article-title: Multi-variable weakening buffer operator and its application
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.01.002
– volume: 25
  start-page: 1215
  issue: 5
  year: 2014
  ident: 10.1016/j.eswa.2019.06.053_bib0021
  article-title: Non-homogenous discrete grey model with fractional-order accumulation
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-014-1605-1
– volume: 40
  start-page: 4876
  issue: 7–8
  year: 2016
  ident: 10.1016/j.eswa.2019.06.053_bib0014
  article-title: Research on the novel recursive discrete multivariate grey prediction model and its applications
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2015.12.021
– volume: 42
  start-page: 1082
  issue: 7
  year: 1996
  ident: 10.1016/j.eswa.2019.06.053_bib0017
  article-title: Neural network models for time series forecasts
  publication-title: Management Science
  doi: 10.1287/mnsc.42.7.1082
– volume: 26
  start-page: 96
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2019.06.053_bib0027
  article-title: Interval grey number sequence prediction by using non-homogenous exponential discrete grey forecasting model
  publication-title: Journal of Systems Engineering & Electronics
  doi: 10.1109/JSEE.2015.00013
– volume: 4
  start-page: 299
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2019.06.053_bib0011
  article-title: Discrete verhulst model based on a linear time-varying
  publication-title: Grey Systems: Theory & Application
  doi: 10.1108/GS-12-2013-0039
– volume: 34
  start-page: 314
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2019.06.053_bib0033
  article-title: Data-based mechanistic modelling and forecasting globally averaged surface temperature
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2017.10.002
– volume: 33
  start-page: 1173
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2019.06.053_bib0026
  article-title: Discrete grey forecasting model and its optimization
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2008.01.011
– volume: 219
  start-page: 6152
  issue: 11
  year: 2013
  ident: 10.1016/j.eswa.2019.06.053_bib0004
  article-title: The necessary and sufficient condition for GM(1,1) grey prediction model
  publication-title: Applied Mathematics & Computation
  doi: 10.1016/j.amc.2012.12.015
– volume: 41
  start-page: 1236
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2019.06.053_bib0005
  article-title: An alternative approach to estimating the parameters of a generalised grey verhulst model: An application to steel intensity of use in the UK
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.08.006
– volume: 52–53
  start-page: 416
  issue: 52
  year: 2015
  ident: 10.1016/j.eswa.2019.06.053_bib0016
  article-title: Using a set of GM(1,1) models to predict values of diagnostic symptoms
  publication-title: Mechanical Systems & Signal Processing
  doi: 10.1016/j.ymssp.2014.08.013
– volume: 29
  start-page: 1
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2019.06.053_bib0029
  article-title: A historic review of grey forecasting models
  publication-title: Journal of Grey System
– volume: 13
  start-page: 1194
  issue: 6
  year: 2008
  ident: 10.1016/j.eswa.2019.06.053_bib0003
  article-title: Forecasting of foreign exchange rates of taiwan’s major trading partners by novel nonlinear Grey Bernoulli model NGBM(1,1)
  publication-title: Communications in Nonlinear Science & Numerical Simulation
  doi: 10.1016/j.cnsns.2006.08.008
– volume: 140
  start-page: 941
  year: 2017
  ident: 10.1016/j.eswa.2019.06.053_bib0015
  article-title: Forecasting China’s natural gas demand based on optimised nonlinear grey models
  publication-title: Energy
  doi: 10.1016/j.energy.2017.09.037
– volume: 41
  start-page: 1
  issue: 10
  year: 2018
  ident: 10.1016/j.eswa.2019.06.053_bib0036
  article-title: A gray model for increasing sequences with nonhomogeneous index trends based on fractionalâorder accumulation
  publication-title: Mathematical Methods in the Applied Sciences
  doi: 10.1002/mma.4862
– volume: 18
  start-page: 1775
  issue: 7
  year: 2013
  ident: 10.1016/j.eswa.2019.06.053_bib0024
  article-title: Grey system model with the fractional order accumulation
  publication-title: Communications in Nonlinear Science & Numerical Simulation
  doi: 10.1016/j.cnsns.2012.11.017
– volume: 342
  start-page: 15
  issue: 1
  year: 2005
  ident: 10.1016/j.eswa.2019.06.053_bib0009
  article-title: Another sufficient condition for the stability of grey discrete-time systems
  publication-title: Journal of the Franklin Institute
  doi: 10.1016/j.jfranklin.2004.07.008
– volume: 120
  start-page: 53
  year: 2018
  ident: 10.1016/j.eswa.2019.06.053_bib0007
  article-title: A novel structure-adaptive intelligent grey forecasting model with full-order time power terms and its application
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.04.016
– volume: 246
  start-page: 648
  issue: C
  year: 2014
  ident: 10.1016/j.eswa.2019.06.053_bib0008
  article-title: Error and its upper bound estimation between the solutions of GM(1,1) grey forecasting models
  publication-title: Applied Mathematics & Computation
  doi: 10.1016/j.amc.2014.08.049
– volume: 27
  start-page: 234
  issue: 3
  year: 2015
  ident: 10.1016/j.eswa.2019.06.053_bib0037
  article-title: Demand forecasting of emergency medicines after the massive earthquake — a grey discrete Verhulst model approach
  publication-title: Journal of Grey System
– volume: 62
  start-page: 717
  year: 2018
  ident: 10.1016/j.eswa.2019.06.053_bib0020
  article-title: Optimal solution for novel grey polynomial prediction model
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2018.06.035
– volume: 25
  start-page: 1
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2019.06.053_bib0030
  article-title: On discrete grey system forecasting model corresponding with polynomial time-vary sequence
  publication-title: Journal of Grey System
– volume: 175
  start-page: 475
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2019.06.053_bib0001
  article-title: OR/MS research in disaster operations management
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2005.05.016
– volume: 29
  start-page: 58
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2019.06.053_bib0012
  article-title: Grey forecasting model with polynomial term and its optimization
  publication-title: Journal of Grey System
SSID ssj0017007
Score 2.505317
Snippet •A novel discrete grey polynomial model is proposed.•The proposed model unifies the univariate discrete grey models.•An algorithm is presented to select the...
Grey models have been reported to be promising for time series prediction with small samples, but the diversity kinds of model structures and modelling...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 264
SubjectTerms Adaptive structures
Algorithms
Computer simulation
Discrete grey model
Expert systems
Grey prediction
Grey system theory
Matrix decomposition
Polynomials
Structure selection
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LSyQxEIcLdzx4Wh_rsiMqOXjTHu3OozNH8YEKiocd0FNIqhPY3dneYR6I_vVWOt0iguKeO4GEqqS-oiu_AtgLQjpuS5-hK0ImsKB7EEUedW8td0MhsGnad32jLkbi6k7eLcFB9xYmllVWtPlB9beTzE9yA5Sla3VINMz1F1hWksi7B8ujm9vj-ySnV2YiiS7nuuSZIr9r38ikci4_e4gyQ_mwkeuU_L049IozVxb1xD4-2PH4Vcg5X4XrbrGp0uTPYDF3A3x6o-P42d2swdeWPdlxcpZ1WPL1Bqx2fR1Ye8y_weWpndssxreKJX3ZxdSzWdMxh8zIiHPZov4ViF5ZfNU7JfBmlLc_ssk0_vdpBjUtdjZhdH728-Qia1suZMjLYp4Fj8RHwREIaeetdjYPlKFUAY8w2EKh1xUPCjUWFhXlKrySUtEn50JVCsu_Q6_-V_sfwJSTyhalUw49RUB0w6MgOGqpQ0E3cNWHvDOAwVaPPLbFGJuu8Oy3iUYz0WgmVt9J3of9lzmTpMbx4WjZ2dW0PJE4wVC4-HDeducEpj3RM1NQZkroq8thHw5eHOMTq9j6v-Hb0CPD-h1CnbnbbT38GSlB_ws
  priority: 102
  providerName: Unpaywall
Title Data-based structure selection for unified discrete grey prediction model
URI https://dx.doi.org/10.1016/j.eswa.2019.06.053
https://www.proquest.com/docview/2289566879
https://www.dora.dmu.ac.uk/handle/2086/18238
UnpaywallVersion submittedVersion
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvTiW6zWkoM3Xdtukn0cS7W0ikXQQj2FJJtApaylD0ov_nYnu9lSDxYRFpbdzUKYSWa-ITPfIHRtKJNEhNpT0jceVT7YQUWblvdWEBlTqrKmfc_9oDugj0M2LKF2UQtj0yqd7c9temat3Zu6k2Z9MhrVXwEcgDuEK7anfVktNaWh7WJw97VO87D0c2HOtxd6drQrnMlzvPRsabmHmnHG4cnIb85pA3zuLtKJWC3FeLzhhzqHaN8BSNzK53iESjo9RgdFcwbs9uoJ6t2LufCsk0pwThK7mGo8y9regC4wgFW8SEcGICi2pblTQM8Ygu8Vnkzt4U02KOuTc4oGnYe3dtdzfRM8RUJ_7hmtAOQYCWgmklpEUjQNhBmJUQ1lhB8oHSXEBCpSvlABBBwkYSyAT1KaJKSCnKFy-pnqc4QDyQLhhzKQSoMbUzJuGEpUxCLjgxlNKqhZCIwrRypue1uMeZE99sGtkLkVMrcpdIxU0M36n0lOqbF1NCv0wH8sDA42f-t_1UJp3G3LGfchvAT8GoVxBd2uFfmHWVz8cxaXaM8-5fkvVVQGdesrQDFzWcuWaQ3ttHpP3T7cB_2X1vs3P_D0YA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FD_XiW6xWzcGbrrV57OMo1dJq68UWegtJNoFKWUsfiBd_u5PdbNGDRYQ9bRIIM8nMN2TmG4QuLeOKysgEWhEbME3ADmrWdLy3kqqEMZ037es_h50hexzxUQW1yloYl1bpbX9h03Nr7f80vDQb0_G48QLgANwhfIl77XO11JuMk8hFYDefqzwPxz8XFYR7UeCm-8qZIsnLzN8d-VAzyUk8Of3NO31Dn9VlNpUf73Iy-eaI2rto2yNIfFdscg9VTLaPdsruDNhf1gPUvZcLGTgvleKCJXY5M3ie970BZWBAq3iZjS1gUOxqc2cAnzFE3x94OnOvN_mkvFHOIRq2HwatTuAbJwSaRmQRWKMB5VgFcCZWRsZKNi3EGanVt9pKEmoTp9SGOtZE6hAiDppyHsKQUjaNmKRHaCN7y8wxwqHioSSRCpU24Me0Sm4tozrmsSVgR9MaapYCE9qzirvmFhNRpo-9Cidk4YQsXA4dpzV0tVozLTg11s7mpR7Ej5MhwOivXVcvlSb8vZwLAvElANg4SmroeqXIP-zi5J-7uEDVzqDfE73u89Mp2nIjRTJMHW2A6s0ZQJqFOs-P7BdEC_RF
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LSyQxEIcLdzx4Wh_rsiMqOXjTHu3OozNH8YEKiocd0FNIqhPY3dneYR6I_vVWOt0iguKeO4GEqqS-oiu_AtgLQjpuS5-hK0ImsKB7EEUedW8td0MhsGnad32jLkbi6k7eLcFB9xYmllVWtPlB9beTzE9yA5Sla3VINMz1F1hWksi7B8ujm9vj-ySnV2YiiS7nuuSZIr9r38ikci4_e4gyQ_mwkeuU_L049IozVxb1xD4-2PH4Vcg5X4XrbrGp0uTPYDF3A3x6o-P42d2swdeWPdlxcpZ1WPL1Bqx2fR1Ye8y_weWpndssxreKJX3ZxdSzWdMxh8zIiHPZov4ViF5ZfNU7JfBmlLc_ssk0_vdpBjUtdjZhdH728-Qia1suZMjLYp4Fj8RHwREIaeetdjYPlKFUAY8w2EKh1xUPCjUWFhXlKrySUtEn50JVCsu_Q6_-V_sfwJSTyhalUw49RUB0w6MgOGqpQ0E3cNWHvDOAwVaPPLbFGJuu8Oy3iUYz0WgmVt9J3of9lzmTpMbx4WjZ2dW0PJE4wVC4-HDeducEpj3RM1NQZkroq8thHw5eHOMTq9j6v-Hb0CPD-h1CnbnbbT38GSlB_ws
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-based+structure+selection+for+unified+discrete+grey+prediction+model&rft.jtitle=Expert+systems+with+applications&rft.au=Wei%2C+Bao-lei&rft.au=Xie%2C+Nai-ming&rft.au=Yang%2C+Ying-jie&rft.date=2019-12-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=136&rft.spage=264&rft_id=info:doi/10.1016%2Fj.eswa.2019.06.053&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon