Transportation scheduling optimization by a collaborative strategy in supply chain management with TPL using chemical reaction optimization
Optimization of supply chain management is a way of ensuring the usability of resources and related technologies at the best possible way. Transportation scheduling of vehicle and transportation nodes in supply chain management is an important factor in order to create a stable chained network by en...
Saved in:
| Published in | Neural computing & applications Vol. 32; no. 8; pp. 3649 - 3674 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.04.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-019-04218-5 |
Cover
| Abstract | Optimization of supply chain management is a way of ensuring the usability of resources and related technologies at the best possible way. Transportation scheduling of vehicle and transportation nodes in supply chain management is an important factor in order to create a stable chained network by ensuring the highest amount of product distribution and lowest logistics cost. In recent years, a number of programming models like linear programming, heuristics and meta-heuristics optimization approaches are proposed by the researchers to solve this combinatorial NP-hard problem. In this paper, we have studied and analyzed the nature of transportation vehicle scheduling problem in a supply chain network with the help of third-party logistics enterprise by using a meta-heuristic algorithm called chemical reaction optimization (CRO). At first, we have classified all the transportation nodes into three distinct classifications. Then, a collaborative transportation scheduling strategy is used which is based on two significant kinds of transportation nodes. For the first two kinds of nodes, we have randomly created a large number of combined transportation routes, and the vehicle scheduling for the last standalone nodes is created by a random matrix generation. Then, we have proposed a CRO algorithm using four reaction operators with an additional repair operator to find out the best transportation routes within shortest computing time. We named our proposed algorithm as chemical reaction optimization for supply chain management (CRO-SCM). The proposed CRO-SCM algorithm is analyzed with the standard dataset from the proposed model using modified ACO-NSO algorithm which is the state of the art. In addition, a random dataset of different scales of transportation nodes is considered to evaluate the efficiency of the algorithm. Moreover, six different scales of problem sets consisting different number of nodes are adopted to analyze the performance of the proposed CRO algorithm. The simulation results demonstrate that the proposed approach is practical and efficient than existing ACO-based solutions and the experimental results are more efficient and optimal. |
|---|---|
| AbstractList | Optimization of supply chain management is a way of ensuring the usability of resources and related technologies at the best possible way. Transportation scheduling of vehicle and transportation nodes in supply chain management is an important factor in order to create a stable chained network by ensuring the highest amount of product distribution and lowest logistics cost. In recent years, a number of programming models like linear programming, heuristics and meta-heuristics optimization approaches are proposed by the researchers to solve this combinatorial NP-hard problem. In this paper, we have studied and analyzed the nature of transportation vehicle scheduling problem in a supply chain network with the help of third-party logistics enterprise by using a meta-heuristic algorithm called chemical reaction optimization (CRO). At first, we have classified all the transportation nodes into three distinct classifications. Then, a collaborative transportation scheduling strategy is used which is based on two significant kinds of transportation nodes. For the first two kinds of nodes, we have randomly created a large number of combined transportation routes, and the vehicle scheduling for the last standalone nodes is created by a random matrix generation. Then, we have proposed a CRO algorithm using four reaction operators with an additional repair operator to find out the best transportation routes within shortest computing time. We named our proposed algorithm as chemical reaction optimization for supply chain management (CRO-SCM). The proposed CRO-SCM algorithm is analyzed with the standard dataset from the proposed model using modified ACO-NSO algorithm which is the state of the art. In addition, a random dataset of different scales of transportation nodes is considered to evaluate the efficiency of the algorithm. Moreover, six different scales of problem sets consisting different number of nodes are adopted to analyze the performance of the proposed CRO algorithm. The simulation results demonstrate that the proposed approach is practical and efficient than existing ACO-based solutions and the experimental results are more efficient and optimal. |
| Author | Mahmud, Md. Riaz Pritom, Rayhan Morshed Islam, Md. Rafiqul |
| Author_xml | – sequence: 1 givenname: Md. Rafiqul surname: Islam fullname: Islam, Md. Rafiqul email: dmri1978@cseku.ac.bd organization: Computer Science and Engineering Discipline, Khulna University – sequence: 2 givenname: Md. Riaz surname: Mahmud fullname: Mahmud, Md. Riaz organization: Computer Science and Engineering Discipline, Khulna University – sequence: 3 givenname: Rayhan Morshed surname: Pritom fullname: Pritom, Rayhan Morshed organization: Computer Science and Engineering Discipline, Khulna University |
| BookMark | eNp9kMtKxDAUhoMoOF5ewFXAdTX3tEsRbzCgi3Ed0jSdibRJTVplfAVf2mgFxYWrJCfn-8_hOwC7PngLwAlGZxgheZ4Q4gQXCFcFYgSXBd8BC8woLSji5S5YoIrlb8HoPjhI6QkhxETJF-B9FbVPQ4ijHl3wMJmNbabO-TUMw-h69zbX6y3U0ISu03WIufRiYRrzxa630GVsGoZuC81G50evvV7b3voRvrpxA1cPSzilz8gc3jujOxitNl-5v4ccgb1Wd8kef5-H4PH6anV5Wyzvb-4uL5aFoZKMRavrxkgpOa-M4ZJiQkzNaoErZDVva6xxTURDGtFqSVqGpSTMiBaJqipZQ-ghOJ1zhxieJ5tG9RSm6PNIRWgphKyELHMXmbtMDClF26ohul7HrcJIfUpXs3SVpasv6YpnqPwDGTebzbJc9z9KZzTlOX5t489W_1AfZTecOg |
| CitedBy_id | crossref_primary_10_1016_j_compbiolchem_2020_107327 crossref_primary_10_3390_su16156310 crossref_primary_10_1016_j_heliyon_2022_e11283 crossref_primary_10_1007_s00521_022_07262_w crossref_primary_10_1016_j_ins_2023_119762 crossref_primary_10_1051_ro_2024049 crossref_primary_10_1007_s00170_025_15010_2 crossref_primary_10_1007_s12065_020_00444_2 crossref_primary_10_1007_s10489_021_02336_z crossref_primary_10_1007_s12597_023_00654_z crossref_primary_10_1007_s00500_020_05334_4 crossref_primary_10_1108_BIJ_12_2021_0755 crossref_primary_10_1109_ACCESS_2024_3462470 crossref_primary_10_1155_2022_3277750 crossref_primary_10_1155_2023_9640807 crossref_primary_10_1038_s41598_022_26385_7 crossref_primary_10_3390_electronics11223769 |
| Cites_doi | 10.4172/2169-0316.1000e114 10.1109/TPDS.2011.35 10.1016/j.eswa.2016.11.016 10.1007/s12293-012-0075-1 10.1016/j.eswa.2011.04.126 10.1007/s00500-018-3200-3 10.1016/j.asoc.2012.11.048 10.1109/TEVC.2009.2033580 10.1007/s10489-018-1281-4 10.1016/j.cie.2006.07.011 10.1016/j.cie.2006.02.006 10.1287/opre.35.2.254 10.1109/TEVC.2012.2227973 10.1016/j.compbiolchem.2016.05.004 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Springer-Verlag London Ltd., part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Springer-Verlag London Ltd., part of Springer Nature 2019. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-019-04218-5 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 3674 |
| ExternalDocumentID | 10_1007_s00521_019_04218_5 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c372t-fabdc777559cc573122cb4b6190ea5fb1a1b26d2d6fa72f417724c6f069984d23 |
| IEDL.DBID | U2A |
| ISSN | 0941-0643 |
| IngestDate | Sun Jul 13 04:42:34 EDT 2025 Wed Oct 01 02:25:55 EDT 2025 Thu Apr 24 22:58:46 EDT 2025 Fri Feb 21 02:35:51 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Collaborative transportation scheduling Supply chain management Third-party logistics Random matrix generation Chemical reaction optimization Meta-heuristics algorithms |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-fabdc777559cc573122cb4b6190ea5fb1a1b26d2d6fa72f417724c6f069984d23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2386679678 |
| PQPubID | 2043988 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2386679678 crossref_primary_10_1007_s00521_019_04218_5 crossref_citationtrail_10_1007_s00521_019_04218_5 springer_journals_10_1007_s00521_019_04218_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2020 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | LeeYHJungJWLeeKMVehicle routing scheduling for cross-docking in the supply chainComput Ind Eng200651224725610.1016/j.cie.2006.02.006 SaifullahCKIslamMRChemical reaction optimization for solving shortest common supersequence problemComput Biol Chem201664829310.1016/j.compbiolchem.2016.05.004 Wu B (2016) Bi-objective integrated supply chain network design under supply and demand uncertainties. Thesis, Industrial Engineering and Operations Research, Pennsylvania State University, Graduate School, College of Engineering. https://etda.libraries.psu.edu/files/final_submissions/12438 XuJLamAYLiVOChemical reaction optimization for task scheduling in grid computingIEEE Transa Parallel Distrib Syst201122101624163110.1109/TPDS.2011.35 LamAYLiVOChemical-reaction-inspired metaheuristic for optimizationIEEE Trans Evol Comput201014338139910.1109/TEVC.2009.2033580 HabibARahmanNAlamJJoarderAHaqueMA genetic algorithm based approach for cost worthy route selection in complex supply chain architectureInt J Adv Stud Comput Sci Eng2016581 NicolescuLGalalaeCVoicuASolving a supply chain management problem to near optimality using ant colony optimization, in an international contextAmfiteatru Econ201315338 Sitek P, Wikarek J (2012) Cost optimization of supply chain with multimodal transport. In: Computer science and information systems (FedCSIS), 2012 federated conference on. IEEE, pp 1111–1118 LamAYLiVOChemical reaction optimization: a tutorialMemet Comput20124131710.1007/s12293-012-0075-1 KabirRIslamRChemical reaction optimization for RNA structure predictionAppl Intell201949235237510.1007/s10489-018-1281-4 LamAYLiVOXuJOn the convergence of chemical reaction optimization for combinatorial optimizationIEEE Trans Evol Comput201317560562010.1109/TEVC.2012.2227973 XuSLiuYChenMOptimisation of partial collaborative transportation scheduling in supply chain management with 3PL using ACOExpert Syst Appl20177117319110.1016/j.eswa.2016.11.016 RadhakrishnanPPrasadVGopalanMInventory optimization in supply chain management using genetic algorithmInt J Comput Sci Netw Secur2009913340 Khan MA (2014) Transportation cost optimization using linear programming. In: International conference on mechanical, industrial and energy engineering BarhamRShariehASlietAChemical reaction optimization for max flow problemInt J Adv Comput Sci Appl201678189196 Mittal AK, Thaker CS, Sutaria GN (2011) Multi-objective supply chain model through an ant colony optimization approach. In: International conference on computer communication and networks CSI-COMNET-2011 RajeshwarSKOptimization solution to supply chain network architecture using new-PSO algorithmInd Eng Manage201323e11410.4172/2169-0316.1000e114 UzorhAInnocentNSupply chain management optimization problemInt J Eng Sci (IJES)2014319 SolomonMMAlgorithms for the vehicle routing and scheduling problems with time window constraintsOper Res198735225426590742110.1287/opre.35.2.254 AltiparmakFGenMLinLPaksoyTA genetic algorithm approach for multi-objective optimization of supply chain networksComput Ind Eng200651119621510.1016/j.cie.2006.07.011 AlatasBACROA: artificial chemical reaction optimization algorithm for global optimizationExpert Syst Appl20113810131701318010.1016/j.eswa.2011.04.126 IslamMRSaifullahCKAshaZTAhamedRChemical reaction optimization for solving longest common subsequence problem for multiple stringSoft Comput201810.1007/s00500-018-3200-3 KirályAVargaTAbonyiJConstrained particle swarm optimization of supply chainsWorld Acad Sci Eng Technol201267867196731 TruongTKLiKXuYChemical reaction optimization with greedy strategy for the 0–1 knapsack problemAppl Soft Comput20131341774178010.1016/j.asoc.2012.11.048 S Xu (4218_CR5) 2017; 71 J Xu (4218_CR14) 2011; 22 F Altiparmak (4218_CR8) 2006; 51 AY Lam (4218_CR22) 2012; 4 AY Lam (4218_CR21) 2010; 14 A Király (4218_CR19) 2012; 67 SK Rajeshwar (4218_CR3) 2013; 2 AY Lam (4218_CR23) 2013; 17 A Uzorh (4218_CR2) 2014; 3 A Habib (4218_CR6) 2016; 5 4218_CR18 P Radhakrishnan (4218_CR4) 2009; 9 L Nicolescu (4218_CR17) 2013; 15 YH Lee (4218_CR9) 2006; 51 R Kabir (4218_CR15) 2019; 49 MR Islam (4218_CR16) 2018 TK Truong (4218_CR11) 2013; 13 R Barham (4218_CR13) 2016; 7 B Alatas (4218_CR12) 2011; 38 MM Solomon (4218_CR24) 1987; 35 4218_CR1 CK Saifullah (4218_CR10) 2016; 64 4218_CR20 4218_CR7 |
| References_xml | – reference: RadhakrishnanPPrasadVGopalanMInventory optimization in supply chain management using genetic algorithmInt J Comput Sci Netw Secur2009913340 – reference: AlatasBACROA: artificial chemical reaction optimization algorithm for global optimizationExpert Syst Appl20113810131701318010.1016/j.eswa.2011.04.126 – reference: SolomonMMAlgorithms for the vehicle routing and scheduling problems with time window constraintsOper Res198735225426590742110.1287/opre.35.2.254 – reference: XuJLamAYLiVOChemical reaction optimization for task scheduling in grid computingIEEE Transa Parallel Distrib Syst201122101624163110.1109/TPDS.2011.35 – reference: NicolescuLGalalaeCVoicuASolving a supply chain management problem to near optimality using ant colony optimization, in an international contextAmfiteatru Econ201315338 – reference: AltiparmakFGenMLinLPaksoyTA genetic algorithm approach for multi-objective optimization of supply chain networksComput Ind Eng200651119621510.1016/j.cie.2006.07.011 – reference: Mittal AK, Thaker CS, Sutaria GN (2011) Multi-objective supply chain model through an ant colony optimization approach. In: International conference on computer communication and networks CSI-COMNET-2011 – reference: TruongTKLiKXuYChemical reaction optimization with greedy strategy for the 0–1 knapsack problemAppl Soft Comput20131341774178010.1016/j.asoc.2012.11.048 – reference: KabirRIslamRChemical reaction optimization for RNA structure predictionAppl Intell201949235237510.1007/s10489-018-1281-4 – reference: Wu B (2016) Bi-objective integrated supply chain network design under supply and demand uncertainties. Thesis, Industrial Engineering and Operations Research, Pennsylvania State University, Graduate School, College of Engineering. https://etda.libraries.psu.edu/files/final_submissions/12438 – reference: Khan MA (2014) Transportation cost optimization using linear programming. In: International conference on mechanical, industrial and energy engineering – reference: KirályAVargaTAbonyiJConstrained particle swarm optimization of supply chainsWorld Acad Sci Eng Technol201267867196731 – reference: IslamMRSaifullahCKAshaZTAhamedRChemical reaction optimization for solving longest common subsequence problem for multiple stringSoft Comput201810.1007/s00500-018-3200-3 – reference: Sitek P, Wikarek J (2012) Cost optimization of supply chain with multimodal transport. In: Computer science and information systems (FedCSIS), 2012 federated conference on. IEEE, pp 1111–1118 – reference: UzorhAInnocentNSupply chain management optimization problemInt J Eng Sci (IJES)2014319 – reference: SaifullahCKIslamMRChemical reaction optimization for solving shortest common supersequence problemComput Biol Chem201664829310.1016/j.compbiolchem.2016.05.004 – reference: HabibARahmanNAlamJJoarderAHaqueMA genetic algorithm based approach for cost worthy route selection in complex supply chain architectureInt J Adv Stud Comput Sci Eng2016581 – reference: LamAYLiVOXuJOn the convergence of chemical reaction optimization for combinatorial optimizationIEEE Trans Evol Comput201317560562010.1109/TEVC.2012.2227973 – reference: RajeshwarSKOptimization solution to supply chain network architecture using new-PSO algorithmInd Eng Manage201323e11410.4172/2169-0316.1000e114 – reference: LeeYHJungJWLeeKMVehicle routing scheduling for cross-docking in the supply chainComput Ind Eng200651224725610.1016/j.cie.2006.02.006 – reference: LamAYLiVOChemical reaction optimization: a tutorialMemet Comput20124131710.1007/s12293-012-0075-1 – reference: XuSLiuYChenMOptimisation of partial collaborative transportation scheduling in supply chain management with 3PL using ACOExpert Syst Appl20177117319110.1016/j.eswa.2016.11.016 – reference: BarhamRShariehASlietAChemical reaction optimization for max flow problemInt J Adv Comput Sci Appl201678189196 – reference: LamAYLiVOChemical-reaction-inspired metaheuristic for optimizationIEEE Trans Evol Comput201014338139910.1109/TEVC.2009.2033580 – volume: 9 start-page: 33 issue: 1 year: 2009 ident: 4218_CR4 publication-title: Int J Comput Sci Netw Secur – volume: 2 start-page: e114 issue: 3 year: 2013 ident: 4218_CR3 publication-title: Ind Eng Manage doi: 10.4172/2169-0316.1000e114 – volume: 5 start-page: 1 issue: 8 year: 2016 ident: 4218_CR6 publication-title: Int J Adv Stud Comput Sci Eng – volume: 22 start-page: 1624 issue: 10 year: 2011 ident: 4218_CR14 publication-title: IEEE Transa Parallel Distrib Syst doi: 10.1109/TPDS.2011.35 – volume: 71 start-page: 173 year: 2017 ident: 4218_CR5 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.11.016 – volume: 4 start-page: 3 issue: 1 year: 2012 ident: 4218_CR22 publication-title: Memet Comput doi: 10.1007/s12293-012-0075-1 – volume: 3 start-page: 1 year: 2014 ident: 4218_CR2 publication-title: Int J Eng Sci (IJES) – volume: 38 start-page: 13170 issue: 10 year: 2011 ident: 4218_CR12 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.126 – year: 2018 ident: 4218_CR16 publication-title: Soft Comput doi: 10.1007/s00500-018-3200-3 – ident: 4218_CR7 – volume: 13 start-page: 1774 issue: 4 year: 2013 ident: 4218_CR11 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.11.048 – ident: 4218_CR20 – volume: 7 start-page: 189 issue: 8 year: 2016 ident: 4218_CR13 publication-title: Int J Adv Comput Sci Appl – volume: 67 start-page: 6719 issue: 8 year: 2012 ident: 4218_CR19 publication-title: World Acad Sci Eng Technol – volume: 14 start-page: 381 issue: 3 year: 2010 ident: 4218_CR21 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2009.2033580 – volume: 15 start-page: 8 issue: 33 year: 2013 ident: 4218_CR17 publication-title: Amfiteatru Econ – ident: 4218_CR18 – volume: 49 start-page: 352 issue: 2 year: 2019 ident: 4218_CR15 publication-title: Appl Intell doi: 10.1007/s10489-018-1281-4 – ident: 4218_CR1 – volume: 51 start-page: 196 issue: 1 year: 2006 ident: 4218_CR8 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2006.07.011 – volume: 51 start-page: 247 issue: 2 year: 2006 ident: 4218_CR9 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2006.02.006 – volume: 35 start-page: 254 issue: 2 year: 1987 ident: 4218_CR24 publication-title: Oper Res doi: 10.1287/opre.35.2.254 – volume: 17 start-page: 605 issue: 5 year: 2013 ident: 4218_CR23 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2012.2227973 – volume: 64 start-page: 82 year: 2016 ident: 4218_CR10 publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2016.05.004 |
| SSID | ssj0004685 |
| Score | 2.328148 |
| Snippet | Optimization of supply chain management is a way of ensuring the usability of resources and related technologies at the best possible way. Transportation... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3649 |
| SubjectTerms | Algorithms Ant colony optimization Artificial Intelligence Chemical reactions Collaboration Combinatorial analysis Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computer simulation Computing time Data Mining and Knowledge Discovery Datasets Heuristic methods Image Processing and Computer Vision Linear programming Logistics management Nodes Optimization Original Article Probability and Statistics in Computer Science Resource management Route planning Scheduling Supply chain management Supply chains Transportation |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5qvXjxLVar5OBNF3ez2U17EFGpFJEiYqG3JcluVLAPbRX6G_zTzqTZVgU9Ltlkl0we8yUz3wdwJLWNG6loBmHeCBGgGFwHDU48xVNrw4KTDBxFW3TSdlfc9JJeBTplLgyFVZZroluo86GhM_JT3FpSOvOQjfPRa0CqUXS7WkpoKC-tkJ85irElWObEjFWF5ctW5-7-W6akE-lETEPxPiL2aTQumY5OSAla02UB_mOQ_NyqFv7nrytTtxNdr8OqdyHZxczmG1ApBpuwVsozMD9bt-BzTlzuep8hjsV9hdLP2RAXir7PwGR6yhT7Nh4-CjaecdZO2TNWI93PKTNPCh_682gZRie47OHullHo_COWz5gHGHqhLlfix0e2oXvderhqB157ITCx5JPAKp0bKSUCDmMSGUecGy00wq2wUInVkYo0T3Oep1ZJbkWEXrowqQ1TxG8i5_EOVAfDQbELjDcUscw3YysKoa3UiU3o8lVHArFKYmoQld2cGU9MTvoYL9mcUtmZJkPTZM40WVKD43md0YyW49-366X1Mj9Fx9liQNXgpLToovjv1vb-b20fVjhhchfdU4fq5O29OEDHZaIP_Wj8Aluy60Y priority: 102 providerName: ProQuest |
| Title | Transportation scheduling optimization by a collaborative strategy in supply chain management with TPL using chemical reaction optimization |
| URI | https://link.springer.com/article/10.1007/s00521-019-04218-5 https://www.proquest.com/docview/2386679678 |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest One Academic customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5se_HiW6zWkoM3XdjNJpvtsUofqJQiLdTTssluVLCt2Cr0N_innaS7aysqeFpCHguZPOabzHwDcCak9sOANRw3CV0EKArPQYUbL6aB1m5KTRo4423RC7pDdj3ioywobJZ7u-dPkvakLoLdjAXTQF9jzMcxHF6CCjd0XriKh7S5Eg1pE3EibjE-PczPQmV-HmP9OvrSMb89i9rbpr0DW5maSJpLue7CRjrZg-08BQPJduQ-fBTk5HaGCWJVvDtMiDmZ4mEwzqIsiVyQmKzI_D0lsyUv7YI8YTeT23NB1GOMhXHhEUOMlZYM-rfEuMc_YP2SXYCgpmnjIdZ-cgDDdmtw1XWy_AqO8gWdOzqWiRJCIKhQigvfo1RJJhFSuWnMtfRiT9IgoUmgY0E181ATZyrQboAYjSXUP4TyZDpJj4DQMDZM8g1fs5RJLSTX3DywSo8hHuGqCl4-zZHKyMdNDoznqKBNtqKJUDSRFU3Eq3Be9HlZUm_82bqWSy_KtuEsQn0kMIYyEVbhIpfoV_Xvox3_r_kJbFKDw61HTw3K89e39BSVlbmsQylsd-pQaXbub1r4vWz1-nd1u2I_Aa7x5Yg |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB1F5EAvpYVWDQ1lD-2ptWqv197kECFoQUkJEaoSKTd3d-1tkSChTQDlN_Cf-G3MbNYJIJVbjpa_JM96Zt7szHsAH6W2cSMVzSDMGyECFIN-0OCPp3hqbVhwkoGjbote2h6IH8NkWIG7chaG2ipLn-gcdT42VCP_iqElpZqHbOxd_g1INYp2V0sJDeWlFfKWoxjzgx3HxewGIdyk1fmO9v7E-dFh_1s78CoDgYklnwZW6dxIKTG1NiaRccS50UIjsAgLlVgdqUjzNOd5apXkVkSYjwqT2jBFpCJyIj7AEFAVsWgi-KseHPZOfz6YzHSioIihqL9IxH5sxw3vUUWWoDxtTuA3CZLHoXGZ7z7ZonWR7-gVvPQpK9ufr7HXUClGm7BRykEw7x224HZBlO6szRA3YxyjcXc2Rsd04Sc-mZ4xxR6sv-uCTeYcuTN2hreRzuiMmT8KDy4W3TmMKsasf9pl1Kr_G8_PmQ4YZr1uNuPRS97AYCVWeAtro_GoeAeMNxSx2jdjKwqhrdSJTWizV0cCsVFiahCVnzkzngid9DjOswWFszNNhqbJnGmypAafF_dczmlAnr26Xlov8y5hki0XcA2-lBZdnv7_07aff9ourLf7J92s2-kdv4cXnOoBrrOoDmvTf1fFDiZNU_3Br0wGv1b9M9wDaAgoEw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QXzxLk6n5sE3LWvTtNkehzqmjrGHDfZWmrRRwXXDVWG_wT_tOellm6jgY8mlkJPL-ZLzfYeQSyG12_B507Kjhg0ARcE-qGDhhczX2o4ZpoHDaIue3xnyh5E3WmLxm2j34kky4zSgSlOS1qeRrpfEN7zNRBiMF_vQn-Wtkw2OQgkwo4estcSMNEk5AcNgfA93c9rMz32sHk0Lf_PbE6k5edq7ZDt3GWkrs_EeWYuTfbJTpGOg-eo8IJ-lULkZbQq4Fc4RpJvTCWwM45xxSeWchnTJ_h8xnWUatXP6As0wz-ecqucQPsZldAzFG1s66Hcphso_QXmmNEDB6zTciJWfHJJh-25w07HyXAuWcgVLLR3KSAkhAGAo5QnXYUxJLgFe2XHoaemEjmR-xCJfh4Jp7oBXzpWvbR_wGo-Ye0QqySSJjwlljRBV5Zuu5jGXWkhPe_jYKh0O2MRTVeIUwxyoXIgc82G8BqWEsjFNAKYJjGkCr0quyjbTTIbjz9q1wnpBviRnAfgmPl6aiUaVXBcWXRT_3tvJ_6pfkM3-bTvo3vceT8kWQ3huAn1qpJK-vcdn4MOk8txM0y8Aheic |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transportation+scheduling+optimization+by+a+collaborative+strategy+in+supply+chain+management+with+TPL+using+chemical+reaction+optimization&rft.jtitle=Neural+computing+%26+applications&rft.au=Islam%2C+Md.+Rafiqul&rft.au=Mahmud%2C+Md.+Riaz&rft.au=Pritom%2C+Rayhan+Morshed&rft.date=2020-04-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=8&rft.spage=3649&rft.epage=3674&rft_id=info:doi/10.1007%2Fs00521-019-04218-5&rft.externalDocID=10_1007_s00521_019_04218_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |