Transportation scheduling optimization by a collaborative strategy in supply chain management with TPL using chemical reaction optimization

Optimization of supply chain management is a way of ensuring the usability of resources and related technologies at the best possible way. Transportation scheduling of vehicle and transportation nodes in supply chain management is an important factor in order to create a stable chained network by en...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 32; no. 8; pp. 3649 - 3674
Main Authors Islam, Md. Rafiqul, Mahmud, Md. Riaz, Pritom, Rayhan Morshed
Format Journal Article
LanguageEnglish
Published London Springer London 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-019-04218-5

Cover

Abstract Optimization of supply chain management is a way of ensuring the usability of resources and related technologies at the best possible way. Transportation scheduling of vehicle and transportation nodes in supply chain management is an important factor in order to create a stable chained network by ensuring the highest amount of product distribution and lowest logistics cost. In recent years, a number of programming models like linear programming, heuristics and meta-heuristics optimization approaches are proposed by the researchers to solve this combinatorial NP-hard problem. In this paper, we have studied and analyzed the nature of transportation vehicle scheduling problem in a supply chain network with the help of third-party logistics enterprise by using a meta-heuristic algorithm called chemical reaction optimization (CRO). At first, we have classified all the transportation nodes into three distinct classifications. Then, a collaborative transportation scheduling strategy is used which is based on two significant kinds of transportation nodes. For the first two kinds of nodes, we have randomly created a large number of combined transportation routes, and the vehicle scheduling for the last standalone nodes is created by a random matrix generation. Then, we have proposed a CRO algorithm using four reaction operators with an additional repair operator to find out the best transportation routes within shortest computing time. We named our proposed algorithm as chemical reaction optimization for supply chain management (CRO-SCM). The proposed CRO-SCM algorithm is analyzed with the standard dataset from the proposed model using modified ACO-NSO algorithm which is the state of the art. In addition, a random dataset of different scales of transportation nodes is considered to evaluate the efficiency of the algorithm. Moreover, six different scales of problem sets consisting different number of nodes are adopted to analyze the performance of the proposed CRO algorithm. The simulation results demonstrate that the proposed approach is practical and efficient than existing ACO-based solutions and the experimental results are more efficient and optimal.
AbstractList Optimization of supply chain management is a way of ensuring the usability of resources and related technologies at the best possible way. Transportation scheduling of vehicle and transportation nodes in supply chain management is an important factor in order to create a stable chained network by ensuring the highest amount of product distribution and lowest logistics cost. In recent years, a number of programming models like linear programming, heuristics and meta-heuristics optimization approaches are proposed by the researchers to solve this combinatorial NP-hard problem. In this paper, we have studied and analyzed the nature of transportation vehicle scheduling problem in a supply chain network with the help of third-party logistics enterprise by using a meta-heuristic algorithm called chemical reaction optimization (CRO). At first, we have classified all the transportation nodes into three distinct classifications. Then, a collaborative transportation scheduling strategy is used which is based on two significant kinds of transportation nodes. For the first two kinds of nodes, we have randomly created a large number of combined transportation routes, and the vehicle scheduling for the last standalone nodes is created by a random matrix generation. Then, we have proposed a CRO algorithm using four reaction operators with an additional repair operator to find out the best transportation routes within shortest computing time. We named our proposed algorithm as chemical reaction optimization for supply chain management (CRO-SCM). The proposed CRO-SCM algorithm is analyzed with the standard dataset from the proposed model using modified ACO-NSO algorithm which is the state of the art. In addition, a random dataset of different scales of transportation nodes is considered to evaluate the efficiency of the algorithm. Moreover, six different scales of problem sets consisting different number of nodes are adopted to analyze the performance of the proposed CRO algorithm. The simulation results demonstrate that the proposed approach is practical and efficient than existing ACO-based solutions and the experimental results are more efficient and optimal.
Author Mahmud, Md. Riaz
Pritom, Rayhan Morshed
Islam, Md. Rafiqul
Author_xml – sequence: 1
  givenname: Md. Rafiqul
  surname: Islam
  fullname: Islam, Md. Rafiqul
  email: dmri1978@cseku.ac.bd
  organization: Computer Science and Engineering Discipline, Khulna University
– sequence: 2
  givenname: Md. Riaz
  surname: Mahmud
  fullname: Mahmud, Md. Riaz
  organization: Computer Science and Engineering Discipline, Khulna University
– sequence: 3
  givenname: Rayhan Morshed
  surname: Pritom
  fullname: Pritom, Rayhan Morshed
  organization: Computer Science and Engineering Discipline, Khulna University
BookMark eNp9kMtKxDAUhoMoOF5ewFXAdTX3tEsRbzCgi3Ed0jSdibRJTVplfAVf2mgFxYWrJCfn-8_hOwC7PngLwAlGZxgheZ4Q4gQXCFcFYgSXBd8BC8woLSji5S5YoIrlb8HoPjhI6QkhxETJF-B9FbVPQ4ijHl3wMJmNbabO-TUMw-h69zbX6y3U0ISu03WIufRiYRrzxa630GVsGoZuC81G50evvV7b3voRvrpxA1cPSzilz8gc3jujOxitNl-5v4ccgb1Wd8kef5-H4PH6anV5Wyzvb-4uL5aFoZKMRavrxkgpOa-M4ZJiQkzNaoErZDVva6xxTURDGtFqSVqGpSTMiBaJqipZQ-ghOJ1zhxieJ5tG9RSm6PNIRWgphKyELHMXmbtMDClF26ohul7HrcJIfUpXs3SVpasv6YpnqPwDGTebzbJc9z9KZzTlOX5t489W_1AfZTecOg
CitedBy_id crossref_primary_10_1016_j_compbiolchem_2020_107327
crossref_primary_10_3390_su16156310
crossref_primary_10_1016_j_heliyon_2022_e11283
crossref_primary_10_1007_s00521_022_07262_w
crossref_primary_10_1016_j_ins_2023_119762
crossref_primary_10_1051_ro_2024049
crossref_primary_10_1007_s00170_025_15010_2
crossref_primary_10_1007_s12065_020_00444_2
crossref_primary_10_1007_s10489_021_02336_z
crossref_primary_10_1007_s12597_023_00654_z
crossref_primary_10_1007_s00500_020_05334_4
crossref_primary_10_1108_BIJ_12_2021_0755
crossref_primary_10_1109_ACCESS_2024_3462470
crossref_primary_10_1155_2022_3277750
crossref_primary_10_1155_2023_9640807
crossref_primary_10_1038_s41598_022_26385_7
crossref_primary_10_3390_electronics11223769
Cites_doi 10.4172/2169-0316.1000e114
10.1109/TPDS.2011.35
10.1016/j.eswa.2016.11.016
10.1007/s12293-012-0075-1
10.1016/j.eswa.2011.04.126
10.1007/s00500-018-3200-3
10.1016/j.asoc.2012.11.048
10.1109/TEVC.2009.2033580
10.1007/s10489-018-1281-4
10.1016/j.cie.2006.07.011
10.1016/j.cie.2006.02.006
10.1287/opre.35.2.254
10.1109/TEVC.2012.2227973
10.1016/j.compbiolchem.2016.05.004
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-019-04218-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 3674
ExternalDocumentID 10_1007_s00521_019_04218_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c372t-fabdc777559cc573122cb4b6190ea5fb1a1b26d2d6fa72f417724c6f069984d23
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Sun Jul 13 04:42:34 EDT 2025
Wed Oct 01 02:25:55 EDT 2025
Thu Apr 24 22:58:46 EDT 2025
Fri Feb 21 02:35:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Collaborative transportation scheduling
Supply chain management
Third-party logistics
Random matrix generation
Chemical reaction optimization
Meta-heuristics algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-fabdc777559cc573122cb4b6190ea5fb1a1b26d2d6fa72f417724c6f069984d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2386679678
PQPubID 2043988
PageCount 26
ParticipantIDs proquest_journals_2386679678
crossref_primary_10_1007_s00521_019_04218_5
crossref_citationtrail_10_1007_s00521_019_04218_5
springer_journals_10_1007_s00521_019_04218_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References LeeYHJungJWLeeKMVehicle routing scheduling for cross-docking in the supply chainComput Ind Eng200651224725610.1016/j.cie.2006.02.006
SaifullahCKIslamMRChemical reaction optimization for solving shortest common supersequence problemComput Biol Chem201664829310.1016/j.compbiolchem.2016.05.004
Wu B (2016) Bi-objective integrated supply chain network design under supply and demand uncertainties. Thesis, Industrial Engineering and Operations Research, Pennsylvania State University, Graduate School, College of Engineering. https://etda.libraries.psu.edu/files/final_submissions/12438
XuJLamAYLiVOChemical reaction optimization for task scheduling in grid computingIEEE Transa Parallel Distrib Syst201122101624163110.1109/TPDS.2011.35
LamAYLiVOChemical-reaction-inspired metaheuristic for optimizationIEEE Trans Evol Comput201014338139910.1109/TEVC.2009.2033580
HabibARahmanNAlamJJoarderAHaqueMA genetic algorithm based approach for cost worthy route selection in complex supply chain architectureInt J Adv Stud Comput Sci Eng2016581
NicolescuLGalalaeCVoicuASolving a supply chain management problem to near optimality using ant colony optimization, in an international contextAmfiteatru Econ201315338
Sitek P, Wikarek J (2012) Cost optimization of supply chain with multimodal transport. In: Computer science and information systems (FedCSIS), 2012 federated conference on. IEEE, pp 1111–1118
LamAYLiVOChemical reaction optimization: a tutorialMemet Comput20124131710.1007/s12293-012-0075-1
KabirRIslamRChemical reaction optimization for RNA structure predictionAppl Intell201949235237510.1007/s10489-018-1281-4
LamAYLiVOXuJOn the convergence of chemical reaction optimization for combinatorial optimizationIEEE Trans Evol Comput201317560562010.1109/TEVC.2012.2227973
XuSLiuYChenMOptimisation of partial collaborative transportation scheduling in supply chain management with 3PL using ACOExpert Syst Appl20177117319110.1016/j.eswa.2016.11.016
RadhakrishnanPPrasadVGopalanMInventory optimization in supply chain management using genetic algorithmInt J Comput Sci Netw Secur2009913340
Khan MA (2014) Transportation cost optimization using linear programming. In: International conference on mechanical, industrial and energy engineering
BarhamRShariehASlietAChemical reaction optimization for max flow problemInt J Adv Comput Sci Appl201678189196
Mittal AK, Thaker CS, Sutaria GN (2011) Multi-objective supply chain model through an ant colony optimization approach. In: International conference on computer communication and networks CSI-COMNET-2011
RajeshwarSKOptimization solution to supply chain network architecture using new-PSO algorithmInd Eng Manage201323e11410.4172/2169-0316.1000e114
UzorhAInnocentNSupply chain management optimization problemInt J Eng Sci (IJES)2014319
SolomonMMAlgorithms for the vehicle routing and scheduling problems with time window constraintsOper Res198735225426590742110.1287/opre.35.2.254
AltiparmakFGenMLinLPaksoyTA genetic algorithm approach for multi-objective optimization of supply chain networksComput Ind Eng200651119621510.1016/j.cie.2006.07.011
AlatasBACROA: artificial chemical reaction optimization algorithm for global optimizationExpert Syst Appl20113810131701318010.1016/j.eswa.2011.04.126
IslamMRSaifullahCKAshaZTAhamedRChemical reaction optimization for solving longest common subsequence problem for multiple stringSoft Comput201810.1007/s00500-018-3200-3
KirályAVargaTAbonyiJConstrained particle swarm optimization of supply chainsWorld Acad Sci Eng Technol201267867196731
TruongTKLiKXuYChemical reaction optimization with greedy strategy for the 0–1 knapsack problemAppl Soft Comput20131341774178010.1016/j.asoc.2012.11.048
S Xu (4218_CR5) 2017; 71
J Xu (4218_CR14) 2011; 22
F Altiparmak (4218_CR8) 2006; 51
AY Lam (4218_CR22) 2012; 4
AY Lam (4218_CR21) 2010; 14
A Király (4218_CR19) 2012; 67
SK Rajeshwar (4218_CR3) 2013; 2
AY Lam (4218_CR23) 2013; 17
A Uzorh (4218_CR2) 2014; 3
A Habib (4218_CR6) 2016; 5
4218_CR18
P Radhakrishnan (4218_CR4) 2009; 9
L Nicolescu (4218_CR17) 2013; 15
YH Lee (4218_CR9) 2006; 51
R Kabir (4218_CR15) 2019; 49
MR Islam (4218_CR16) 2018
TK Truong (4218_CR11) 2013; 13
R Barham (4218_CR13) 2016; 7
B Alatas (4218_CR12) 2011; 38
MM Solomon (4218_CR24) 1987; 35
4218_CR1
CK Saifullah (4218_CR10) 2016; 64
4218_CR20
4218_CR7
References_xml – reference: RadhakrishnanPPrasadVGopalanMInventory optimization in supply chain management using genetic algorithmInt J Comput Sci Netw Secur2009913340
– reference: AlatasBACROA: artificial chemical reaction optimization algorithm for global optimizationExpert Syst Appl20113810131701318010.1016/j.eswa.2011.04.126
– reference: SolomonMMAlgorithms for the vehicle routing and scheduling problems with time window constraintsOper Res198735225426590742110.1287/opre.35.2.254
– reference: XuJLamAYLiVOChemical reaction optimization for task scheduling in grid computingIEEE Transa Parallel Distrib Syst201122101624163110.1109/TPDS.2011.35
– reference: NicolescuLGalalaeCVoicuASolving a supply chain management problem to near optimality using ant colony optimization, in an international contextAmfiteatru Econ201315338
– reference: AltiparmakFGenMLinLPaksoyTA genetic algorithm approach for multi-objective optimization of supply chain networksComput Ind Eng200651119621510.1016/j.cie.2006.07.011
– reference: Mittal AK, Thaker CS, Sutaria GN (2011) Multi-objective supply chain model through an ant colony optimization approach. In: International conference on computer communication and networks CSI-COMNET-2011
– reference: TruongTKLiKXuYChemical reaction optimization with greedy strategy for the 0–1 knapsack problemAppl Soft Comput20131341774178010.1016/j.asoc.2012.11.048
– reference: KabirRIslamRChemical reaction optimization for RNA structure predictionAppl Intell201949235237510.1007/s10489-018-1281-4
– reference: Wu B (2016) Bi-objective integrated supply chain network design under supply and demand uncertainties. Thesis, Industrial Engineering and Operations Research, Pennsylvania State University, Graduate School, College of Engineering. https://etda.libraries.psu.edu/files/final_submissions/12438
– reference: Khan MA (2014) Transportation cost optimization using linear programming. In: International conference on mechanical, industrial and energy engineering
– reference: KirályAVargaTAbonyiJConstrained particle swarm optimization of supply chainsWorld Acad Sci Eng Technol201267867196731
– reference: IslamMRSaifullahCKAshaZTAhamedRChemical reaction optimization for solving longest common subsequence problem for multiple stringSoft Comput201810.1007/s00500-018-3200-3
– reference: Sitek P, Wikarek J (2012) Cost optimization of supply chain with multimodal transport. In: Computer science and information systems (FedCSIS), 2012 federated conference on. IEEE, pp 1111–1118
– reference: UzorhAInnocentNSupply chain management optimization problemInt J Eng Sci (IJES)2014319
– reference: SaifullahCKIslamMRChemical reaction optimization for solving shortest common supersequence problemComput Biol Chem201664829310.1016/j.compbiolchem.2016.05.004
– reference: HabibARahmanNAlamJJoarderAHaqueMA genetic algorithm based approach for cost worthy route selection in complex supply chain architectureInt J Adv Stud Comput Sci Eng2016581
– reference: LamAYLiVOXuJOn the convergence of chemical reaction optimization for combinatorial optimizationIEEE Trans Evol Comput201317560562010.1109/TEVC.2012.2227973
– reference: RajeshwarSKOptimization solution to supply chain network architecture using new-PSO algorithmInd Eng Manage201323e11410.4172/2169-0316.1000e114
– reference: LeeYHJungJWLeeKMVehicle routing scheduling for cross-docking in the supply chainComput Ind Eng200651224725610.1016/j.cie.2006.02.006
– reference: LamAYLiVOChemical reaction optimization: a tutorialMemet Comput20124131710.1007/s12293-012-0075-1
– reference: XuSLiuYChenMOptimisation of partial collaborative transportation scheduling in supply chain management with 3PL using ACOExpert Syst Appl20177117319110.1016/j.eswa.2016.11.016
– reference: BarhamRShariehASlietAChemical reaction optimization for max flow problemInt J Adv Comput Sci Appl201678189196
– reference: LamAYLiVOChemical-reaction-inspired metaheuristic for optimizationIEEE Trans Evol Comput201014338139910.1109/TEVC.2009.2033580
– volume: 9
  start-page: 33
  issue: 1
  year: 2009
  ident: 4218_CR4
  publication-title: Int J Comput Sci Netw Secur
– volume: 2
  start-page: e114
  issue: 3
  year: 2013
  ident: 4218_CR3
  publication-title: Ind Eng Manage
  doi: 10.4172/2169-0316.1000e114
– volume: 5
  start-page: 1
  issue: 8
  year: 2016
  ident: 4218_CR6
  publication-title: Int J Adv Stud Comput Sci Eng
– volume: 22
  start-page: 1624
  issue: 10
  year: 2011
  ident: 4218_CR14
  publication-title: IEEE Transa Parallel Distrib Syst
  doi: 10.1109/TPDS.2011.35
– volume: 71
  start-page: 173
  year: 2017
  ident: 4218_CR5
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.11.016
– volume: 4
  start-page: 3
  issue: 1
  year: 2012
  ident: 4218_CR22
  publication-title: Memet Comput
  doi: 10.1007/s12293-012-0075-1
– volume: 3
  start-page: 1
  year: 2014
  ident: 4218_CR2
  publication-title: Int J Eng Sci (IJES)
– volume: 38
  start-page: 13170
  issue: 10
  year: 2011
  ident: 4218_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.126
– year: 2018
  ident: 4218_CR16
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3200-3
– ident: 4218_CR7
– volume: 13
  start-page: 1774
  issue: 4
  year: 2013
  ident: 4218_CR11
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.11.048
– ident: 4218_CR20
– volume: 7
  start-page: 189
  issue: 8
  year: 2016
  ident: 4218_CR13
  publication-title: Int J Adv Comput Sci Appl
– volume: 67
  start-page: 6719
  issue: 8
  year: 2012
  ident: 4218_CR19
  publication-title: World Acad Sci Eng Technol
– volume: 14
  start-page: 381
  issue: 3
  year: 2010
  ident: 4218_CR21
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2009.2033580
– volume: 15
  start-page: 8
  issue: 33
  year: 2013
  ident: 4218_CR17
  publication-title: Amfiteatru Econ
– ident: 4218_CR18
– volume: 49
  start-page: 352
  issue: 2
  year: 2019
  ident: 4218_CR15
  publication-title: Appl Intell
  doi: 10.1007/s10489-018-1281-4
– ident: 4218_CR1
– volume: 51
  start-page: 196
  issue: 1
  year: 2006
  ident: 4218_CR8
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2006.07.011
– volume: 51
  start-page: 247
  issue: 2
  year: 2006
  ident: 4218_CR9
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2006.02.006
– volume: 35
  start-page: 254
  issue: 2
  year: 1987
  ident: 4218_CR24
  publication-title: Oper Res
  doi: 10.1287/opre.35.2.254
– volume: 17
  start-page: 605
  issue: 5
  year: 2013
  ident: 4218_CR23
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2012.2227973
– volume: 64
  start-page: 82
  year: 2016
  ident: 4218_CR10
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2016.05.004
SSID ssj0004685
Score 2.328148
Snippet Optimization of supply chain management is a way of ensuring the usability of resources and related technologies at the best possible way. Transportation...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3649
SubjectTerms Algorithms
Ant colony optimization
Artificial Intelligence
Chemical reactions
Collaboration
Combinatorial analysis
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer simulation
Computing time
Data Mining and Knowledge Discovery
Datasets
Heuristic methods
Image Processing and Computer Vision
Linear programming
Logistics management
Nodes
Optimization
Original Article
Probability and Statistics in Computer Science
Resource management
Route planning
Scheduling
Supply chain management
Supply chains
Transportation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB5qvXjxLVar5OBNF3ez2U17EFGpFJEiYqG3JcluVLAPbRX6G_zTzqTZVgU9Ltlkl0we8yUz3wdwJLWNG6loBmHeCBGgGFwHDU48xVNrw4KTDBxFW3TSdlfc9JJeBTplLgyFVZZroluo86GhM_JT3FpSOvOQjfPRa0CqUXS7WkpoKC-tkJ85irElWObEjFWF5ctW5-7-W6akE-lETEPxPiL2aTQumY5OSAla02UB_mOQ_NyqFv7nrytTtxNdr8OqdyHZxczmG1ApBpuwVsozMD9bt-BzTlzuep8hjsV9hdLP2RAXir7PwGR6yhT7Nh4-CjaecdZO2TNWI93PKTNPCh_682gZRie47OHullHo_COWz5gHGHqhLlfix0e2oXvderhqB157ITCx5JPAKp0bKSUCDmMSGUecGy00wq2wUInVkYo0T3Oep1ZJbkWEXrowqQ1TxG8i5_EOVAfDQbELjDcUscw3YysKoa3UiU3o8lVHArFKYmoQld2cGU9MTvoYL9mcUtmZJkPTZM40WVKD43md0YyW49-366X1Mj9Fx9liQNXgpLToovjv1vb-b20fVjhhchfdU4fq5O29OEDHZaIP_Wj8Aluy60Y
  priority: 102
  providerName: ProQuest
Title Transportation scheduling optimization by a collaborative strategy in supply chain management with TPL using chemical reaction optimization
URI https://link.springer.com/article/10.1007/s00521-019-04218-5
https://www.proquest.com/docview/2386679678
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest One Academic
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5se_HiW6zWkoM3XdjNJpvtsUofqJQiLdTTssluVLCt2Cr0N_innaS7aysqeFpCHguZPOabzHwDcCak9sOANRw3CV0EKArPQYUbL6aB1m5KTRo4423RC7pDdj3ioywobJZ7u-dPkvakLoLdjAXTQF9jzMcxHF6CCjd0XriKh7S5Eg1pE3EibjE-PczPQmV-HmP9OvrSMb89i9rbpr0DW5maSJpLue7CRjrZg-08BQPJduQ-fBTk5HaGCWJVvDtMiDmZ4mEwzqIsiVyQmKzI_D0lsyUv7YI8YTeT23NB1GOMhXHhEUOMlZYM-rfEuMc_YP2SXYCgpmnjIdZ-cgDDdmtw1XWy_AqO8gWdOzqWiRJCIKhQigvfo1RJJhFSuWnMtfRiT9IgoUmgY0E181ATZyrQboAYjSXUP4TyZDpJj4DQMDZM8g1fs5RJLSTX3DywSo8hHuGqCl4-zZHKyMdNDoznqKBNtqKJUDSRFU3Eq3Be9HlZUm_82bqWSy_KtuEsQn0kMIYyEVbhIpfoV_Xvox3_r_kJbFKDw61HTw3K89e39BSVlbmsQylsd-pQaXbub1r4vWz1-nd1u2I_Aa7x5Yg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB1F5EAvpYVWDQ1lD-2ptWqv197kECFoQUkJEaoSKTd3d-1tkSChTQDlN_Cf-G3MbNYJIJVbjpa_JM96Zt7szHsAH6W2cSMVzSDMGyECFIN-0OCPp3hqbVhwkoGjbote2h6IH8NkWIG7chaG2ipLn-gcdT42VCP_iqElpZqHbOxd_g1INYp2V0sJDeWlFfKWoxjzgx3HxewGIdyk1fmO9v7E-dFh_1s78CoDgYklnwZW6dxIKTG1NiaRccS50UIjsAgLlVgdqUjzNOd5apXkVkSYjwqT2jBFpCJyIj7AEFAVsWgi-KseHPZOfz6YzHSioIihqL9IxH5sxw3vUUWWoDxtTuA3CZLHoXGZ7z7ZonWR7-gVvPQpK9ufr7HXUClGm7BRykEw7x224HZBlO6szRA3YxyjcXc2Rsd04Sc-mZ4xxR6sv-uCTeYcuTN2hreRzuiMmT8KDy4W3TmMKsasf9pl1Kr_G8_PmQ4YZr1uNuPRS97AYCVWeAtro_GoeAeMNxSx2jdjKwqhrdSJTWizV0cCsVFiahCVnzkzngid9DjOswWFszNNhqbJnGmypAafF_dczmlAnr26Xlov8y5hki0XcA2-lBZdnv7_07aff9ourLf7J92s2-kdv4cXnOoBrrOoDmvTf1fFDiZNU_3Br0wGv1b9M9wDaAgoEw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QXzxLk6n5sE3LWvTtNkehzqmjrGHDfZWmrRRwXXDVWG_wT_tOellm6jgY8mlkJPL-ZLzfYeQSyG12_B507Kjhg0ARcE-qGDhhczX2o4ZpoHDaIue3xnyh5E3WmLxm2j34kky4zSgSlOS1qeRrpfEN7zNRBiMF_vQn-Wtkw2OQgkwo4estcSMNEk5AcNgfA93c9rMz32sHk0Lf_PbE6k5edq7ZDt3GWkrs_EeWYuTfbJTpGOg-eo8IJ-lULkZbQq4Fc4RpJvTCWwM45xxSeWchnTJ_h8xnWUatXP6As0wz-ecqucQPsZldAzFG1s66Hcphso_QXmmNEDB6zTciJWfHJJh-25w07HyXAuWcgVLLR3KSAkhAGAo5QnXYUxJLgFe2XHoaemEjmR-xCJfh4Jp7oBXzpWvbR_wGo-Ye0QqySSJjwlljRBV5Zuu5jGXWkhPe_jYKh0O2MRTVeIUwxyoXIgc82G8BqWEsjFNAKYJjGkCr0quyjbTTIbjz9q1wnpBviRnAfgmPl6aiUaVXBcWXRT_3tvJ_6pfkM3-bTvo3vceT8kWQ3huAn1qpJK-vcdn4MOk8txM0y8Aheic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transportation+scheduling+optimization+by+a+collaborative+strategy+in+supply+chain+management+with+TPL+using+chemical+reaction+optimization&rft.jtitle=Neural+computing+%26+applications&rft.au=Islam%2C+Md.+Rafiqul&rft.au=Mahmud%2C+Md.+Riaz&rft.au=Pritom%2C+Rayhan+Morshed&rft.date=2020-04-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=8&rft.spage=3649&rft.epage=3674&rft_id=info:doi/10.1007%2Fs00521-019-04218-5&rft.externalDocID=10_1007_s00521_019_04218_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon