Cyber acoustic analysis of additively manufactured objects
The potential for intellectual property theft has been shown in the additive manufacturing industry using acoustic side-channel attacks lately. This paper aims to discuss the rate of success for recreating the G-Code of an object from the acoustic features and further elaborates on regression model...
Saved in:
| Published in | International journal of advanced manufacturing technology Vol. 96; no. 1-4; pp. 581 - 586 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.04.2018
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0268-3768 1433-3015 |
| DOI | 10.1007/s00170-018-1603-z |
Cover
| Abstract | The potential for intellectual property theft has been shown in the additive manufacturing industry using acoustic side-channel attacks lately. This paper aims to discuss the rate of success for recreating the G-Code of an object from the acoustic features and further elaborates on regression model analysis that provides the G-Code. Acoustic and G-Code data was analyzed in a training phase and an attack phase. In the training phase, a supervised machine learning algorithm was trained using Python, which is an interpreted, object-oriented, high-level programming language. During the attack phase, the created algorithm was used to process new acoustic data and to reconstruct the G-Code. The accuracy of the classification models and the regression models were determined. The classification accuracy was determined with k-fold cross validation, and the regression model accuracy was determined by scoring the regression models within the algorithm. Although classification and regression algorithms developed showed promising results, lower model accuracy was observed when the
X
and
Y
motors moved together. In the future, the team hopes to further increase the model accuracy so that an unknown shape can be replicated successfully. While security measures for cyber-security have previously been investigated, very little research has considered acoustic side-channel attacks on their ability to reconstruct G-Code and steal intellectual property. The findings of this novel research project showed some promising preliminary results on a sample case study. |
|---|---|
| AbstractList | The potential for intellectual property theft has been shown in the additive manufacturing industry using acoustic side-channel attacks lately. This paper aims to discuss the rate of success for recreating the G-Code of an object from the acoustic features and further elaborates on regression model analysis that provides the G-Code. Acoustic and G-Code data was analyzed in a training phase and an attack phase. In the training phase, a supervised machine learning algorithm was trained using Python, which is an interpreted, object-oriented, high-level programming language. During the attack phase, the created algorithm was used to process new acoustic data and to reconstruct the G-Code. The accuracy of the classification models and the regression models were determined. The classification accuracy was determined with k-fold cross validation, and the regression model accuracy was determined by scoring the regression models within the algorithm. Although classification and regression algorithms developed showed promising results, lower model accuracy was observed when the X and Y motors moved together. In the future, the team hopes to further increase the model accuracy so that an unknown shape can be replicated successfully. While security measures for cyber-security have previously been investigated, very little research has considered acoustic side-channel attacks on their ability to reconstruct G-Code and steal intellectual property. The findings of this novel research project showed some promising preliminary results on a sample case study. The potential for intellectual property theft has been shown in the additive manufacturing industry using acoustic side-channel attacks lately. This paper aims to discuss the rate of success for recreating the G-Code of an object from the acoustic features and further elaborates on regression model analysis that provides the G-Code. Acoustic and G-Code data was analyzed in a training phase and an attack phase. In the training phase, a supervised machine learning algorithm was trained using Python, which is an interpreted, object-oriented, high-level programming language. During the attack phase, the created algorithm was used to process new acoustic data and to reconstruct the G-Code. The accuracy of the classification models and the regression models were determined. The classification accuracy was determined with k-fold cross validation, and the regression model accuracy was determined by scoring the regression models within the algorithm. Although classification and regression algorithms developed showed promising results, lower model accuracy was observed when the X and Y motors moved together. In the future, the team hopes to further increase the model accuracy so that an unknown shape can be replicated successfully. While security measures for cyber-security have previously been investigated, very little research has considered acoustic side-channel attacks on their ability to reconstruct G-Code and steal intellectual property. The findings of this novel research project showed some promising preliminary results on a sample case study. |
| Author | Fidan, Ismail Mativo, Thomas Fritz, Colleen |
| Author_xml | – sequence: 1 givenname: Thomas surname: Mativo fullname: Mativo, Thomas organization: University of Dayton – sequence: 2 givenname: Colleen surname: Fritz fullname: Fritz, Colleen organization: University of Alabama – sequence: 3 givenname: Ismail surname: Fidan fullname: Fidan, Ismail email: ifidan@tntech.edu organization: Tennessee Tech University |
| BookMark | eNp9kE1LAzEQQIMo2FZ_gLcFz9HJxyZZb1L8goIXPYdsNpGUdrcmWWH7692ygiDY01zemxneHJ22XesQuiJwQwDkbQIgEjAQhYkAhvcnaEY4Y5gBKU_RDKhQmEmhztE8pfVICyLUDN0th9rFwtiuTznYwrRmM6SQis4XpmlCDl9uMxRb0_be2NxH1xRdvXY2pwt05s0mucufuUDvjw9vy2e8en16Wd6vsGWSZuxFzeuyVGAEYc4YTrxiVDQOHNQNrbmwlDcl8bTiZc0t9RX3DbdiPM-FMmyBrqe9u9h99i5lve76OP6ZNOUVKF5yJY9SVFBSSlWJoxSQSnEhmRopOVE2dilF57UN2eTQtTmasNEE9CG6nqLrMbo-RNf70SR_zF0MWxOHow6dnDSy7YeLvz_9L30DUlyU-A |
| CitedBy_id | crossref_primary_10_1016_j_compind_2023_104037 crossref_primary_10_1007_s10845_021_01879_9 crossref_primary_10_1007_s10845_022_02017_9 crossref_primary_10_1109_TIFS_2018_2818659 crossref_primary_10_1109_TEM_2021_3084687 crossref_primary_10_3390_inventions8010024 crossref_primary_10_3390_electronics12224641 |
| Cites_doi | 10.1109/MDAT.2017.2682225 10.1061/(ASCE)WR.1943-5452.0000749 10.1145/2976749.2978300 10.1016/j.jmsy.2017.05.007 10.5437/08956308X5705256 10.1109/ICUAS.2016.7502663 10.1109/IMCEC.2016.7867489 10.1109/ICCPS.2016.7479068 10.1111/risa.12362 10.1016/j.ijpe.2015.02.020 10.1016/j.matdes.2017.04.078 10.1007/s10522-017-9683-y |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London Ltd., part of Springer Nature 2018 Copyright Springer Science & Business Media 2018 The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2018). All Rights Reserved. Springer-Verlag London Ltd., part of Springer Nature 2018. |
| Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2018 – notice: Copyright Springer Science & Business Media 2018 – notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2018). All Rights Reserved. – notice: Springer-Verlag London Ltd., part of Springer Nature 2018. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00170-018-1603-z |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central ProQuest Technology Collection (LUT) ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database Engineering Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1433-3015 |
| EndPage | 586 |
| ExternalDocumentID | 10_1007_s00170_018_1603_z |
| GrantInformation_xml | – fundername: National Science Foundation grantid: 1601587; 1461179 funderid: http://dx.doi.org/10.13039/100000001 |
| GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c372t-f6b4b5580a613eaa41f8326de0e0bd2b46c24d51f2945b4c2f94fd4c6add468a3 |
| IEDL.DBID | U2A |
| ISSN | 0268-3768 |
| IngestDate | Fri Jul 25 11:08:32 EDT 2025 Fri Jul 25 11:07:03 EDT 2025 Fri Jul 25 11:18:01 EDT 2025 Thu Apr 24 23:09:34 EDT 2025 Wed Oct 01 00:52:54 EDT 2025 Fri Feb 21 02:30:54 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-4 |
| Keywords | Cyber-security Supervised machine learning Additive manufacturing Intellectual property Python |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-f6b4b5580a613eaa41f8326de0e0bd2b46c24d51f2945b4c2f94fd4c6add468a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2262157896 |
| PQPubID | 2044010 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_2490845487 proquest_journals_2262157896 proquest_journals_2019846738 crossref_citationtrail_10_1007_s00170_018_1603_z crossref_primary_10_1007_s00170_018_1603_z springer_journals_10_1007_s00170_018_1603_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-01 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | International journal of advanced manufacturing technology |
| PublicationTitleAbbrev | Int J Adv Manuf Technol |
| PublicationYear | 2018 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | KurfessTCassWRethinking additive manufacturing and intellectual property protectionRes Technol Manag2014575354210.5437/08956308X5705256 “Welcome to Python.org”. (n.d.). Python.org, available at: https://www.python.org/ (accessed 10 October 2017) Fabris F, Magalhaes J, Freitas A (2017) A review of supervised machine learning applied to ageing research. Biogerontology 2:171 Mohammad Abdullah Al Faruque, Sujit Rokka Chhetri, Arquimedes Canedo, and Jiang Wan, (2016). Acoustic side-channel attacks on additive manufacturing systems. In Proceedings of the 7th International Conference on Cyber-Physical Systems (ICCPS '16). IEEE Press, Piscataway, NJ, USA, Article 19 Petnga Leonard & Xu Huan. (2016). Security of unmanned aerial vehicles: dynamic state estimation under cyber-physical attacks. pp. 811–819. International Conference on Unmanned Aircraft Systems (ICUAS), Unmanned Aircraft Systems (ICUAS), https://doi.org/10.1109/ICUAS.2016.7502663 Rokka Chhetri Sujit & Al Faruque Mohammad Abdullah. (2017). Side-channels of cyber-physical systems: case study in additive manufacturing. IEEE Design Test 18, PP. 1–1. https://doi.org/10.1109/MDAT.2017.2682225, 4, 25 SturmLWilliamsCCamelioJWhiteJParkerRCyber-physical vulnerabilities in additive manufacturing systems: a case study attack on the .STL file with human subjectsJ Manuf Syst201744Part 115416410.1016/j.jmsy.2017.05.007 Xu Hongwei, Jing Weihua, Li Minjuan, Li Wei (2016). A slicing model algorithm based on STL model for additive manufacturing processes. 1607–1610. https://doi.org/10.1109/IMCEC.2016.7867489 “Zoom H1 Handy Recorder”. (2017), Zoom, 23 June, available at: https://www.zoom-na.com/products/field-video-recording/field-recording/zoom-h1-handy-recorder (accessed 10 October 2017) “GCodeSimulator for PC and Android”. (n.d.). GCodeSimulator, available at: http://3dprintapps.de/gcodesimulator.html (accessed 10 October 2017) Taormina, R, Galelli, S, Tippenhauer, N, Salomons, E, & Ostfeld, A, (2017). 'Characterizing cyber-physical attacks on water distribution systems', J Water Resour Plan Manag, 5 WellerCKleerRPillerFEconomic implications of 3D printing: market structure models in light of additive manufacturing revisitedInt J Prod Econ2015164435610.1016/j.ijpe.2015.02.020 ChenFMacGGuptaNSecurity features embedded in computer aided design (CAD) solid models for additive manufacturingMater Des201712818219410.1016/j.matdes.2017.04.078 “Dynamism - Ultimaker 2 Extended ”. (n.d.). Dynamism.com, next-Generation technology, available at: http://www.dynamism.com/3d-printers/ultimaker-2-extended-plus.shtml?APC=P4500&gclid=CjsKDwjw5arMBRDz9cK2uen9ORIkAAqmJewXdeu7lwT8tQ0U22o5n-l95VHsgt8WyC6oiWCD83ohGgLH9vD_BwE (accessed 10 October 2017) Song, C, Lin, F, Ba, Z, Ren, K, Zhou, C, & Xu, W, (2016). My smartphone knows what you print. Conf Comput Commun Secur, p 895 RaoNPooleSMaCHeFZhuangJYauDDefense of cyber infrastructures against cyber-physical attacks using game-theoretic modelsRisk Anal: Int J201636469471010.1111/risa.12362 1603_CR10 C Weller (1603_CR2) 2015; 164 F Chen (1603_CR4) 2017; 128 1603_CR12 1603_CR11 1603_CR1 1603_CR14 1603_CR13 1603_CR16 1603_CR15 N Rao (1603_CR5) 2016; 36 L Sturm (1603_CR3) 2017; 44 1603_CR7 T Kurfess (1603_CR9) 2014; 57 1603_CR6 1603_CR8 |
| References_xml | – reference: KurfessTCassWRethinking additive manufacturing and intellectual property protectionRes Technol Manag2014575354210.5437/08956308X5705256 – reference: Taormina, R, Galelli, S, Tippenhauer, N, Salomons, E, & Ostfeld, A, (2017). 'Characterizing cyber-physical attacks on water distribution systems', J Water Resour Plan Manag, 5 – reference: Fabris F, Magalhaes J, Freitas A (2017) A review of supervised machine learning applied to ageing research. Biogerontology 2:171 – reference: Mohammad Abdullah Al Faruque, Sujit Rokka Chhetri, Arquimedes Canedo, and Jiang Wan, (2016). Acoustic side-channel attacks on additive manufacturing systems. In Proceedings of the 7th International Conference on Cyber-Physical Systems (ICCPS '16). IEEE Press, Piscataway, NJ, USA, Article 19 – reference: “Welcome to Python.org”. (n.d.). Python.org, available at: https://www.python.org/ (accessed 10 October 2017) – reference: Rokka Chhetri Sujit & Al Faruque Mohammad Abdullah. (2017). Side-channels of cyber-physical systems: case study in additive manufacturing. IEEE Design Test 18, PP. 1–1. https://doi.org/10.1109/MDAT.2017.2682225, 4, 25 – reference: Song, C, Lin, F, Ba, Z, Ren, K, Zhou, C, & Xu, W, (2016). My smartphone knows what you print. Conf Comput Commun Secur, p 895 – reference: RaoNPooleSMaCHeFZhuangJYauDDefense of cyber infrastructures against cyber-physical attacks using game-theoretic modelsRisk Anal: Int J201636469471010.1111/risa.12362 – reference: Petnga Leonard & Xu Huan. (2016). Security of unmanned aerial vehicles: dynamic state estimation under cyber-physical attacks. pp. 811–819. International Conference on Unmanned Aircraft Systems (ICUAS), Unmanned Aircraft Systems (ICUAS), https://doi.org/10.1109/ICUAS.2016.7502663 – reference: SturmLWilliamsCCamelioJWhiteJParkerRCyber-physical vulnerabilities in additive manufacturing systems: a case study attack on the .STL file with human subjectsJ Manuf Syst201744Part 115416410.1016/j.jmsy.2017.05.007 – reference: WellerCKleerRPillerFEconomic implications of 3D printing: market structure models in light of additive manufacturing revisitedInt J Prod Econ2015164435610.1016/j.ijpe.2015.02.020 – reference: ChenFMacGGuptaNSecurity features embedded in computer aided design (CAD) solid models for additive manufacturingMater Des201712818219410.1016/j.matdes.2017.04.078 – reference: “Dynamism - Ultimaker 2 Extended ”. (n.d.). Dynamism.com, next-Generation technology, available at: http://www.dynamism.com/3d-printers/ultimaker-2-extended-plus.shtml?APC=P4500&gclid=CjsKDwjw5arMBRDz9cK2uen9ORIkAAqmJewXdeu7lwT8tQ0U22o5n-l95VHsgt8WyC6oiWCD83ohGgLH9vD_BwE (accessed 10 October 2017) – reference: Xu Hongwei, Jing Weihua, Li Minjuan, Li Wei (2016). A slicing model algorithm based on STL model for additive manufacturing processes. 1607–1610. https://doi.org/10.1109/IMCEC.2016.7867489 – reference: “Zoom H1 Handy Recorder”. (2017), Zoom, 23 June, available at: https://www.zoom-na.com/products/field-video-recording/field-recording/zoom-h1-handy-recorder (accessed 10 October 2017) – reference: “GCodeSimulator for PC and Android”. (n.d.). GCodeSimulator, available at: http://3dprintapps.de/gcodesimulator.html (accessed 10 October 2017) – ident: 1603_CR8 doi: 10.1109/MDAT.2017.2682225 – ident: 1603_CR7 doi: 10.1061/(ASCE)WR.1943-5452.0000749 – ident: 1603_CR11 doi: 10.1145/2976749.2978300 – volume: 44 start-page: 154 issue: Part 1 year: 2017 ident: 1603_CR3 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2017.05.007 – volume: 57 start-page: 35 issue: 5 year: 2014 ident: 1603_CR9 publication-title: Res Technol Manag doi: 10.5437/08956308X5705256 – ident: 1603_CR6 doi: 10.1109/ICUAS.2016.7502663 – ident: 1603_CR10 doi: 10.1109/IMCEC.2016.7867489 – ident: 1603_CR1 doi: 10.1109/ICCPS.2016.7479068 – volume: 36 start-page: 694 issue: 4 year: 2016 ident: 1603_CR5 publication-title: Risk Anal: Int J doi: 10.1111/risa.12362 – volume: 164 start-page: 43 year: 2015 ident: 1603_CR2 publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2015.02.020 – volume: 128 start-page: 182 year: 2017 ident: 1603_CR4 publication-title: Mater Des doi: 10.1016/j.matdes.2017.04.078 – ident: 1603_CR12 – ident: 1603_CR14 doi: 10.1007/s10522-017-9683-y – ident: 1603_CR13 – ident: 1603_CR16 – ident: 1603_CR15 |
| SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
| Score | 2.2804382 |
| Snippet | The potential for intellectual property theft has been shown in the additive manufacturing industry using acoustic side-channel attacks lately. This paper aims... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 581 |
| SubjectTerms | Accuracy Acoustic properties Acoustics Additive manufacturing Algorithms CAE) and Design Classification Computer-Aided Engineering (CAD Cybersecurity Engineering G codes High level languages Industrial and Production Engineering Intellectual property Machine learning Mechanical Engineering Media Management Model accuracy Motors Object oriented programming Object-oriented languages Original Article Programming languages Regression analysis Regression models Research projects Theft Training |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7M7aIH8SdOp_TgSSmmSZqmgojKRASHiANvJUmTk246t4P-9eZl7aYyPaeh5fXLey_vJd8HcJgxKx1JVcyZJVi6IXFuWRZzq9NMae0nYb3jridu-vz2KX1qQK--C4PHKmufGBx1OTRYIz_xaYKPTpnMxfnrW4yqUdhdrSU0VCWtUJ4FirElaFFkxmpC67Lbu3-oEZbkGapkzhBIc5SmnyOc8ZRN-15VH0Ik4TKd36hIXIqy7ouSQEMaRFsSvwsThMWfPyPbPF391WENget6DVarjDO6mEJkHRp2sAEr33gIN-H06kPbUeSdY9D2ilTFVBINXYQHjtAlPn9EL2owwYsQk5Eto6HGCs77FvSvu49XN3ElqhAbltFx7ITmOk0lUT6QW6V44vyiFqUlluiSai4M5WWaOJrzVHNDXc5dyY3wr-NCKrYNzcFwYHcg8vHPEqMNUX5KpqQ01CTSJs65TFqTtIHUBilMxTiOwhfPxYwrOdiw8DYs0IbFZxuOZlNep3Qb_z3cqa1cVCvvvfAJTY45FZOLh2cwWjyMfVCOu7g2HNf_bT7856fs_v-uPVimCJRw4qcDzfFoYvd9MjPWBxVCvwDZo-s9 priority: 102 providerName: ProQuest |
| Title | Cyber acoustic analysis of additively manufactured objects |
| URI | https://link.springer.com/article/10.1007/s00170-018-1603-z https://www.proquest.com/docview/2019846738 https://www.proquest.com/docview/2262157896 https://www.proquest.com/docview/2490845487 |
| Volume | 96 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3015 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: ABDBF dateStart: 20030501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3015 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: ADMLS dateStart: 19850901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3015 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3015 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4BvcBhxWtFWahy4MQqkuNXnL21qAWBqBDaSuUU2Y59YlvUx6H8-vWkSQuoIHHywbYcTT57ZjyebwAuUuaUJ0LHnDmCVzckzhxLY-6MSLUxYRLed9z35c2A3w7FsMrjntav3euQZHlSr5LdSqqX4PoGr0cSFr9uQ0Mgm1cA8YC2axAlWYqFMFcgoxlWn1-DmHHBlqGtKtQgkzJfLvgiCnebqkOfm5Z8r7zWFumHIGqpm3r78KMyKqP2EgUHsOVGh7D3hmrwCP5cLYybROH8K8t3RboiI4nGPsI3RXjqPS-if3o0x1yH-cQV0djgJc30GAa97t-rm7iqmxBbltJZ7KXhRghFdNDVTmue-LBvZeGII6aghktLeSESTzMuDLfUZ9wX3MqwHJdKs5-wMxqP3AlEQcU5Yo0lOkxJtVKW2kS5xHufKmeTJpBaILmtSMWxtsVzvqJDLmWYBxnmKMP8tQmXqykvS0aNrwaf1VLOq801zYPNkqHZxNTmbiqDHZOqTG7uxlAnR0etCb_r_7bu_vRTTr81-hfsUsRN-cbnDHZmk7k7D-bLzLRgW_WuW9Bo9zqdPrbXT3fd0Ha6_YfHVgnm_6Kk5zM |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE-xbQEf4AKKcGzHdpAqBKXVlrYrhFqpt2A79qnsln0IbX8cv42x19kFVHrr2XESjec9nvkAXirudaCVKQT3NKZuaFF7rgrhbaWMtbgp5juOB7J_Kj6fVWdr8KvrhYnXKjudmBR1O3IxR_4W3QS0TkrX8v3FjyKiRsXqagehYTK0QruTRozlxo5DP_-JIdxk5-ATnvcrxvb3Tnb7RUYZKBxXbFoEaYWtKk0NWjZvjCgDcrlsPfXUtswK6ZhoqzKwWlRWOBZqEVrhJGoGIbXh-N5bsCG4qDH42_i4N_jytePoslYRlXPJ8axGB0etJIqLii_qbLnuIcvUvIeBkY6ir7s6LE1jTxNITIlRn6S8uPzbkq7c438quslQ7t-He9nDJR8WLPkA1vzwIdz9Y-7hI3i3O7d-TFAZJywxYvJkFDIKJF5wiir4fE6-m-EsNl7Mxr4lIxszRpPHcHoj5H0C68PR0D8FgvbWU2cdNbhFGa0dc6X2ZQhBae_KHtCOII3LE84j0MZ5s5zNnGjYIA2bSMPmsgevl1suFuM9rnt4u6NykyV90qADVUcfjuurl5dse_VyrLuKGDX24E13bqvl__7K5vXfegG3-yfHR83RweBwC-6wyDTpttE2rE_HM_8MHampfZ65lcC3mxaQ3zaQKQw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFMUCmRgAkV1bMdx2KpCVV4VA5W6RbZjTyWt-hjaX48vTVpABYnZthxdPvvufHffIXQdUSMsDqXPqMHwdIP92NDIZ0aFkVTKLYL3jtcOb3fZUy_sFX1Ox2W2exmSXNQ0AEtTNqkPU1tfFr7ltC_ODXYeEMfUn2-iLQY8CQ7QXdIoARXEETTFXAKOxNCJfgVoykK6CHMVYQce5LVzzi8RcPJEGQZdt-V3RbayTn8EVHM91dpHe4WB6TUWiDhAGyY7RLtfaAeP0F1zpszIc3dh3srLkwUxiTewHuQXwQ3Yn3kfMptC3cN0ZFJvoODBZnyMuq2H92bbL3oo-JpGZOJbrpgKQ4Gl09tGShZYd4Z5arDBKiWKcU1YGgaWxCxUTBMbM5syzd12jAtJT1AlG2TmFHlO3RmslcbSLYmkEJroQJjAWhsJo4MqwqVAEl0QjEOfi36ypEbOZZg4GSYgw2ReRTfLJcMFu8Zfk2ullJPioI0TZ7_EYEJRsX6YcIeKSMR8_TCEPRk4bVV0W_631fCvn3L2r9lXaPvtvpW8PHaez9EOAQjlqT81VJmMpubCWTUTdZkj9xMaoejL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyber+acoustic+analysis+of+additively+manufactured+objects&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Mativo%2C+Thomas&rft.au=Fritz%2C+Colleen&rft.au=Fidan%2C+Ismail&rft.date=2018-04-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=96&rft.issue=1-4&rft.spage=581&rft.epage=586&rft_id=info:doi/10.1007%2Fs00170-018-1603-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_018_1603_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |