Cyber acoustic analysis of additively manufactured objects

The potential for intellectual property theft has been shown in the additive manufacturing industry using acoustic side-channel attacks lately. This paper aims to discuss the rate of success for recreating the G-Code of an object from the acoustic features and further elaborates on regression model...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 96; no. 1-4; pp. 581 - 586
Main Authors Mativo, Thomas, Fritz, Colleen, Fidan, Ismail
Format Journal Article
LanguageEnglish
Published London Springer London 01.04.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0268-3768
1433-3015
DOI10.1007/s00170-018-1603-z

Cover

Abstract The potential for intellectual property theft has been shown in the additive manufacturing industry using acoustic side-channel attacks lately. This paper aims to discuss the rate of success for recreating the G-Code of an object from the acoustic features and further elaborates on regression model analysis that provides the G-Code. Acoustic and G-Code data was analyzed in a training phase and an attack phase. In the training phase, a supervised machine learning algorithm was trained using Python, which is an interpreted, object-oriented, high-level programming language. During the attack phase, the created algorithm was used to process new acoustic data and to reconstruct the G-Code. The accuracy of the classification models and the regression models were determined. The classification accuracy was determined with k-fold cross validation, and the regression model accuracy was determined by scoring the regression models within the algorithm. Although classification and regression algorithms developed showed promising results, lower model accuracy was observed when the X and Y motors moved together. In the future, the team hopes to further increase the model accuracy so that an unknown shape can be replicated successfully. While security measures for cyber-security have previously been investigated, very little research has considered acoustic side-channel attacks on their ability to reconstruct G-Code and steal intellectual property. The findings of this novel research project showed some promising preliminary results on a sample case study.
AbstractList The potential for intellectual property theft has been shown in the additive manufacturing industry using acoustic side-channel attacks lately. This paper aims to discuss the rate of success for recreating the G-Code of an object from the acoustic features and further elaborates on regression model analysis that provides the G-Code. Acoustic and G-Code data was analyzed in a training phase and an attack phase. In the training phase, a supervised machine learning algorithm was trained using Python, which is an interpreted, object-oriented, high-level programming language. During the attack phase, the created algorithm was used to process new acoustic data and to reconstruct the G-Code. The accuracy of the classification models and the regression models were determined. The classification accuracy was determined with k-fold cross validation, and the regression model accuracy was determined by scoring the regression models within the algorithm. Although classification and regression algorithms developed showed promising results, lower model accuracy was observed when the X and Y motors moved together. In the future, the team hopes to further increase the model accuracy so that an unknown shape can be replicated successfully. While security measures for cyber-security have previously been investigated, very little research has considered acoustic side-channel attacks on their ability to reconstruct G-Code and steal intellectual property. The findings of this novel research project showed some promising preliminary results on a sample case study.
The potential for intellectual property theft has been shown in the additive manufacturing industry using acoustic side-channel attacks lately. This paper aims to discuss the rate of success for recreating the G-Code of an object from the acoustic features and further elaborates on regression model analysis that provides the G-Code. Acoustic and G-Code data was analyzed in a training phase and an attack phase. In the training phase, a supervised machine learning algorithm was trained using Python, which is an interpreted, object-oriented, high-level programming language. During the attack phase, the created algorithm was used to process new acoustic data and to reconstruct the G-Code. The accuracy of the classification models and the regression models were determined. The classification accuracy was determined with k-fold cross validation, and the regression model accuracy was determined by scoring the regression models within the algorithm. Although classification and regression algorithms developed showed promising results, lower model accuracy was observed when the X and Y motors moved together. In the future, the team hopes to further increase the model accuracy so that an unknown shape can be replicated successfully. While security measures for cyber-security have previously been investigated, very little research has considered acoustic side-channel attacks on their ability to reconstruct G-Code and steal intellectual property. The findings of this novel research project showed some promising preliminary results on a sample case study.
Author Fidan, Ismail
Mativo, Thomas
Fritz, Colleen
Author_xml – sequence: 1
  givenname: Thomas
  surname: Mativo
  fullname: Mativo, Thomas
  organization: University of Dayton
– sequence: 2
  givenname: Colleen
  surname: Fritz
  fullname: Fritz, Colleen
  organization: University of Alabama
– sequence: 3
  givenname: Ismail
  surname: Fidan
  fullname: Fidan, Ismail
  email: ifidan@tntech.edu
  organization: Tennessee Tech University
BookMark eNp9kE1LAzEQQIMo2FZ_gLcFz9HJxyZZb1L8goIXPYdsNpGUdrcmWWH7692ygiDY01zemxneHJ22XesQuiJwQwDkbQIgEjAQhYkAhvcnaEY4Y5gBKU_RDKhQmEmhztE8pfVICyLUDN0th9rFwtiuTznYwrRmM6SQis4XpmlCDl9uMxRb0_be2NxH1xRdvXY2pwt05s0mucufuUDvjw9vy2e8en16Wd6vsGWSZuxFzeuyVGAEYc4YTrxiVDQOHNQNrbmwlDcl8bTiZc0t9RX3DbdiPM-FMmyBrqe9u9h99i5lve76OP6ZNOUVKF5yJY9SVFBSSlWJoxSQSnEhmRopOVE2dilF57UN2eTQtTmasNEE9CG6nqLrMbo-RNf70SR_zF0MWxOHow6dnDSy7YeLvz_9L30DUlyU-A
CitedBy_id crossref_primary_10_1016_j_compind_2023_104037
crossref_primary_10_1007_s10845_021_01879_9
crossref_primary_10_1007_s10845_022_02017_9
crossref_primary_10_1109_TIFS_2018_2818659
crossref_primary_10_1109_TEM_2021_3084687
crossref_primary_10_3390_inventions8010024
crossref_primary_10_3390_electronics12224641
Cites_doi 10.1109/MDAT.2017.2682225
10.1061/(ASCE)WR.1943-5452.0000749
10.1145/2976749.2978300
10.1016/j.jmsy.2017.05.007
10.5437/08956308X5705256
10.1109/ICUAS.2016.7502663
10.1109/IMCEC.2016.7867489
10.1109/ICCPS.2016.7479068
10.1111/risa.12362
10.1016/j.ijpe.2015.02.020
10.1016/j.matdes.2017.04.078
10.1007/s10522-017-9683-y
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2018). All Rights Reserved.
Springer-Verlag London Ltd., part of Springer Nature 2018.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
– notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2018). All Rights Reserved.
– notice: Springer-Verlag London Ltd., part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-018-1603-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database


Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 586
ExternalDocumentID 10_1007_s00170_018_1603_z
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1601587; 1461179
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c372t-f6b4b5580a613eaa41f8326de0e0bd2b46c24d51f2945b4c2f94fd4c6add468a3
IEDL.DBID U2A
ISSN 0268-3768
IngestDate Fri Jul 25 11:08:32 EDT 2025
Fri Jul 25 11:07:03 EDT 2025
Fri Jul 25 11:18:01 EDT 2025
Thu Apr 24 23:09:34 EDT 2025
Wed Oct 01 00:52:54 EDT 2025
Fri Feb 21 02:30:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-4
Keywords Cyber-security
Supervised machine learning
Additive manufacturing
Intellectual property
Python
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-f6b4b5580a613eaa41f8326de0e0bd2b46c24d51f2945b4c2f94fd4c6add468a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2262157896
PQPubID 2044010
PageCount 6
ParticipantIDs proquest_journals_2490845487
proquest_journals_2262157896
proquest_journals_2019846738
crossref_citationtrail_10_1007_s00170_018_1603_z
crossref_primary_10_1007_s00170_018_1603_z
springer_journals_10_1007_s00170_018_1603_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2018
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References KurfessTCassWRethinking additive manufacturing and intellectual property protectionRes Technol Manag2014575354210.5437/08956308X5705256
“Welcome to Python.org”. (n.d.). Python.org, available at: https://www.python.org/ (accessed 10 October 2017)
Fabris F, Magalhaes J, Freitas A (2017) A review of supervised machine learning applied to ageing research. Biogerontology 2:171
Mohammad Abdullah Al Faruque, Sujit Rokka Chhetri, Arquimedes Canedo, and Jiang Wan, (2016). Acoustic side-channel attacks on additive manufacturing systems. In Proceedings of the 7th International Conference on Cyber-Physical Systems (ICCPS '16). IEEE Press, Piscataway, NJ, USA, Article 19
Petnga Leonard & Xu Huan. (2016). Security of unmanned aerial vehicles: dynamic state estimation under cyber-physical attacks. pp. 811–819. International Conference on Unmanned Aircraft Systems (ICUAS), Unmanned Aircraft Systems (ICUAS), https://doi.org/10.1109/ICUAS.2016.7502663
Rokka Chhetri Sujit & Al Faruque Mohammad Abdullah. (2017). Side-channels of cyber-physical systems: case study in additive manufacturing. IEEE Design Test 18, PP. 1–1. https://doi.org/10.1109/MDAT.2017.2682225, 4, 25
SturmLWilliamsCCamelioJWhiteJParkerRCyber-physical vulnerabilities in additive manufacturing systems: a case study attack on the .STL file with human subjectsJ Manuf Syst201744Part 115416410.1016/j.jmsy.2017.05.007
Xu Hongwei, Jing Weihua, Li Minjuan, Li Wei (2016). A slicing model algorithm based on STL model for additive manufacturing processes. 1607–1610. https://doi.org/10.1109/IMCEC.2016.7867489
“Zoom H1 Handy Recorder”. (2017), Zoom, 23 June, available at: https://www.zoom-na.com/products/field-video-recording/field-recording/zoom-h1-handy-recorder (accessed 10 October 2017)
“GCodeSimulator for PC and Android”. (n.d.). GCodeSimulator, available at: http://3dprintapps.de/gcodesimulator.html (accessed 10 October 2017)
Taormina, R, Galelli, S, Tippenhauer, N, Salomons, E, & Ostfeld, A, (2017). 'Characterizing cyber-physical attacks on water distribution systems', J Water Resour Plan Manag, 5
WellerCKleerRPillerFEconomic implications of 3D printing: market structure models in light of additive manufacturing revisitedInt J Prod Econ2015164435610.1016/j.ijpe.2015.02.020
ChenFMacGGuptaNSecurity features embedded in computer aided design (CAD) solid models for additive manufacturingMater Des201712818219410.1016/j.matdes.2017.04.078
“Dynamism - Ultimaker 2 Extended ”. (n.d.). Dynamism.com, next-Generation technology, available at: http://www.dynamism.com/3d-printers/ultimaker-2-extended-plus.shtml?APC=P4500&gclid=CjsKDwjw5arMBRDz9cK2uen9ORIkAAqmJewXdeu7lwT8tQ0U22o5n-l95VHsgt8WyC6oiWCD83ohGgLH9vD_BwE (accessed 10 October 2017)
Song, C, Lin, F, Ba, Z, Ren, K, Zhou, C, & Xu, W, (2016). My smartphone knows what you print. Conf Comput Commun Secur, p 895
RaoNPooleSMaCHeFZhuangJYauDDefense of cyber infrastructures against cyber-physical attacks using game-theoretic modelsRisk Anal: Int J201636469471010.1111/risa.12362
1603_CR10
C Weller (1603_CR2) 2015; 164
F Chen (1603_CR4) 2017; 128
1603_CR12
1603_CR11
1603_CR1
1603_CR14
1603_CR13
1603_CR16
1603_CR15
N Rao (1603_CR5) 2016; 36
L Sturm (1603_CR3) 2017; 44
1603_CR7
T Kurfess (1603_CR9) 2014; 57
1603_CR6
1603_CR8
References_xml – reference: KurfessTCassWRethinking additive manufacturing and intellectual property protectionRes Technol Manag2014575354210.5437/08956308X5705256
– reference: Taormina, R, Galelli, S, Tippenhauer, N, Salomons, E, & Ostfeld, A, (2017). 'Characterizing cyber-physical attacks on water distribution systems', J Water Resour Plan Manag, 5
– reference: Fabris F, Magalhaes J, Freitas A (2017) A review of supervised machine learning applied to ageing research. Biogerontology 2:171
– reference: Mohammad Abdullah Al Faruque, Sujit Rokka Chhetri, Arquimedes Canedo, and Jiang Wan, (2016). Acoustic side-channel attacks on additive manufacturing systems. In Proceedings of the 7th International Conference on Cyber-Physical Systems (ICCPS '16). IEEE Press, Piscataway, NJ, USA, Article 19
– reference: “Welcome to Python.org”. (n.d.). Python.org, available at: https://www.python.org/ (accessed 10 October 2017)
– reference: Rokka Chhetri Sujit & Al Faruque Mohammad Abdullah. (2017). Side-channels of cyber-physical systems: case study in additive manufacturing. IEEE Design Test 18, PP. 1–1. https://doi.org/10.1109/MDAT.2017.2682225, 4, 25
– reference: Song, C, Lin, F, Ba, Z, Ren, K, Zhou, C, & Xu, W, (2016). My smartphone knows what you print. Conf Comput Commun Secur, p 895
– reference: RaoNPooleSMaCHeFZhuangJYauDDefense of cyber infrastructures against cyber-physical attacks using game-theoretic modelsRisk Anal: Int J201636469471010.1111/risa.12362
– reference: Petnga Leonard & Xu Huan. (2016). Security of unmanned aerial vehicles: dynamic state estimation under cyber-physical attacks. pp. 811–819. International Conference on Unmanned Aircraft Systems (ICUAS), Unmanned Aircraft Systems (ICUAS), https://doi.org/10.1109/ICUAS.2016.7502663
– reference: SturmLWilliamsCCamelioJWhiteJParkerRCyber-physical vulnerabilities in additive manufacturing systems: a case study attack on the .STL file with human subjectsJ Manuf Syst201744Part 115416410.1016/j.jmsy.2017.05.007
– reference: WellerCKleerRPillerFEconomic implications of 3D printing: market structure models in light of additive manufacturing revisitedInt J Prod Econ2015164435610.1016/j.ijpe.2015.02.020
– reference: ChenFMacGGuptaNSecurity features embedded in computer aided design (CAD) solid models for additive manufacturingMater Des201712818219410.1016/j.matdes.2017.04.078
– reference: “Dynamism - Ultimaker 2 Extended ”. (n.d.). Dynamism.com, next-Generation technology, available at: http://www.dynamism.com/3d-printers/ultimaker-2-extended-plus.shtml?APC=P4500&gclid=CjsKDwjw5arMBRDz9cK2uen9ORIkAAqmJewXdeu7lwT8tQ0U22o5n-l95VHsgt8WyC6oiWCD83ohGgLH9vD_BwE (accessed 10 October 2017)
– reference: Xu Hongwei, Jing Weihua, Li Minjuan, Li Wei (2016). A slicing model algorithm based on STL model for additive manufacturing processes. 1607–1610. https://doi.org/10.1109/IMCEC.2016.7867489
– reference: “Zoom H1 Handy Recorder”. (2017), Zoom, 23 June, available at: https://www.zoom-na.com/products/field-video-recording/field-recording/zoom-h1-handy-recorder (accessed 10 October 2017)
– reference: “GCodeSimulator for PC and Android”. (n.d.). GCodeSimulator, available at: http://3dprintapps.de/gcodesimulator.html (accessed 10 October 2017)
– ident: 1603_CR8
  doi: 10.1109/MDAT.2017.2682225
– ident: 1603_CR7
  doi: 10.1061/(ASCE)WR.1943-5452.0000749
– ident: 1603_CR11
  doi: 10.1145/2976749.2978300
– volume: 44
  start-page: 154
  issue: Part 1
  year: 2017
  ident: 1603_CR3
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2017.05.007
– volume: 57
  start-page: 35
  issue: 5
  year: 2014
  ident: 1603_CR9
  publication-title: Res Technol Manag
  doi: 10.5437/08956308X5705256
– ident: 1603_CR6
  doi: 10.1109/ICUAS.2016.7502663
– ident: 1603_CR10
  doi: 10.1109/IMCEC.2016.7867489
– ident: 1603_CR1
  doi: 10.1109/ICCPS.2016.7479068
– volume: 36
  start-page: 694
  issue: 4
  year: 2016
  ident: 1603_CR5
  publication-title: Risk Anal: Int J
  doi: 10.1111/risa.12362
– volume: 164
  start-page: 43
  year: 2015
  ident: 1603_CR2
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2015.02.020
– volume: 128
  start-page: 182
  year: 2017
  ident: 1603_CR4
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.04.078
– ident: 1603_CR12
– ident: 1603_CR14
  doi: 10.1007/s10522-017-9683-y
– ident: 1603_CR13
– ident: 1603_CR16
– ident: 1603_CR15
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.2804382
Snippet The potential for intellectual property theft has been shown in the additive manufacturing industry using acoustic side-channel attacks lately. This paper aims...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 581
SubjectTerms Accuracy
Acoustic properties
Acoustics
Additive manufacturing
Algorithms
CAE) and Design
Classification
Computer-Aided Engineering (CAD
Cybersecurity
Engineering
G codes
High level languages
Industrial and Production Engineering
Intellectual property
Machine learning
Mechanical Engineering
Media Management
Model accuracy
Motors
Object oriented programming
Object-oriented languages
Original Article
Programming languages
Regression analysis
Regression models
Research projects
Theft
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7M7aIH8SdOp_TgSSmmSZqmgojKRASHiANvJUmTk246t4P-9eZl7aYyPaeh5fXLey_vJd8HcJgxKx1JVcyZJVi6IXFuWRZzq9NMae0nYb3jridu-vz2KX1qQK--C4PHKmufGBx1OTRYIz_xaYKPTpnMxfnrW4yqUdhdrSU0VCWtUJ4FirElaFFkxmpC67Lbu3-oEZbkGapkzhBIc5SmnyOc8ZRN-15VH0Ik4TKd36hIXIqy7ouSQEMaRFsSvwsThMWfPyPbPF391WENget6DVarjDO6mEJkHRp2sAEr33gIN-H06kPbUeSdY9D2ilTFVBINXYQHjtAlPn9EL2owwYsQk5Eto6HGCs77FvSvu49XN3ElqhAbltFx7ITmOk0lUT6QW6V44vyiFqUlluiSai4M5WWaOJrzVHNDXc5dyY3wr-NCKrYNzcFwYHcg8vHPEqMNUX5KpqQ01CTSJs65TFqTtIHUBilMxTiOwhfPxYwrOdiw8DYs0IbFZxuOZlNep3Qb_z3cqa1cVCvvvfAJTY45FZOLh2cwWjyMfVCOu7g2HNf_bT7856fs_v-uPVimCJRw4qcDzfFoYvd9MjPWBxVCvwDZo-s9
  priority: 102
  providerName: ProQuest
Title Cyber acoustic analysis of additively manufactured objects
URI https://link.springer.com/article/10.1007/s00170-018-1603-z
https://www.proquest.com/docview/2019846738
https://www.proquest.com/docview/2262157896
https://www.proquest.com/docview/2490845487
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3015
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: ABDBF
  dateStart: 20030501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: ADMLS
  dateStart: 19850901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3015
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4BvcBhxWtFWahy4MQqkuNXnL21qAWBqBDaSuUU2Y59YlvUx6H8-vWkSQuoIHHywbYcTT57ZjyebwAuUuaUJ0LHnDmCVzckzhxLY-6MSLUxYRLed9z35c2A3w7FsMrjntav3euQZHlSr5LdSqqX4PoGr0cSFr9uQ0Mgm1cA8YC2axAlWYqFMFcgoxlWn1-DmHHBlqGtKtQgkzJfLvgiCnebqkOfm5Z8r7zWFumHIGqpm3r78KMyKqP2EgUHsOVGh7D3hmrwCP5cLYybROH8K8t3RboiI4nGPsI3RXjqPS-if3o0x1yH-cQV0djgJc30GAa97t-rm7iqmxBbltJZ7KXhRghFdNDVTmue-LBvZeGII6aghktLeSESTzMuDLfUZ9wX3MqwHJdKs5-wMxqP3AlEQcU5Yo0lOkxJtVKW2kS5xHufKmeTJpBaILmtSMWxtsVzvqJDLmWYBxnmKMP8tQmXqykvS0aNrwaf1VLOq801zYPNkqHZxNTmbiqDHZOqTG7uxlAnR0etCb_r_7bu_vRTTr81-hfsUsRN-cbnDHZmk7k7D-bLzLRgW_WuW9Bo9zqdPrbXT3fd0Ha6_YfHVgnm_6Kk5zM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE-xbQEf4AKKcGzHdpAqBKXVlrYrhFqpt2A79qnsln0IbX8cv42x19kFVHrr2XESjec9nvkAXirudaCVKQT3NKZuaFF7rgrhbaWMtbgp5juOB7J_Kj6fVWdr8KvrhYnXKjudmBR1O3IxR_4W3QS0TkrX8v3FjyKiRsXqagehYTK0QruTRozlxo5DP_-JIdxk5-ATnvcrxvb3Tnb7RUYZKBxXbFoEaYWtKk0NWjZvjCgDcrlsPfXUtswK6ZhoqzKwWlRWOBZqEVrhJGoGIbXh-N5bsCG4qDH42_i4N_jytePoslYRlXPJ8axGB0etJIqLii_qbLnuIcvUvIeBkY6ir7s6LE1jTxNITIlRn6S8uPzbkq7c438quslQ7t-He9nDJR8WLPkA1vzwIdz9Y-7hI3i3O7d-TFAZJywxYvJkFDIKJF5wiir4fE6-m-EsNl7Mxr4lIxszRpPHcHoj5H0C68PR0D8FgvbWU2cdNbhFGa0dc6X2ZQhBae_KHtCOII3LE84j0MZ5s5zNnGjYIA2bSMPmsgevl1suFuM9rnt4u6NykyV90qADVUcfjuurl5dse_VyrLuKGDX24E13bqvl__7K5vXfegG3-yfHR83RweBwC-6wyDTpttE2rE_HM_8MHampfZ65lcC3mxaQ3zaQKQw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgGxFMUCmRgAkV1bMdx2KpCVV4VA5W6RbZjTyWt-hjaX48vTVpABYnZthxdPvvufHffIXQdUSMsDqXPqMHwdIP92NDIZ0aFkVTKLYL3jtcOb3fZUy_sFX1Ox2W2exmSXNQ0AEtTNqkPU1tfFr7ltC_ODXYeEMfUn2-iLQY8CQ7QXdIoARXEETTFXAKOxNCJfgVoykK6CHMVYQce5LVzzi8RcPJEGQZdt-V3RbayTn8EVHM91dpHe4WB6TUWiDhAGyY7RLtfaAeP0F1zpszIc3dh3srLkwUxiTewHuQXwQ3Yn3kfMptC3cN0ZFJvoODBZnyMuq2H92bbL3oo-JpGZOJbrpgKQ4Gl09tGShZYd4Z5arDBKiWKcU1YGgaWxCxUTBMbM5syzd12jAtJT1AlG2TmFHlO3RmslcbSLYmkEJroQJjAWhsJo4MqwqVAEl0QjEOfi36ypEbOZZg4GSYgw2ReRTfLJcMFu8Zfk2ullJPioI0TZ7_EYEJRsX6YcIeKSMR8_TCEPRk4bVV0W_631fCvn3L2r9lXaPvtvpW8PHaez9EOAQjlqT81VJmMpubCWTUTdZkj9xMaoejL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyber+acoustic+analysis+of+additively+manufactured+objects&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Mativo%2C+Thomas&rft.au=Fritz%2C+Colleen&rft.au=Fidan%2C+Ismail&rft.date=2018-04-01&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=96&rft.issue=1-4&rft.spage=581&rft.epage=586&rft_id=info:doi/10.1007%2Fs00170-018-1603-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00170_018_1603_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon