Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals

•Gaussian mixture modeling is used to fit the probability density function of heartbeats.•Expectation maximization algorithm estimates the parameters of statistical model.•Skewness, kurtosis and 5th moment of ECG signals express the shape parameters.•RR interval information represents the time-domai...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 70; pp. 45 - 51
Main Authors Ghorbani Afkhami, Rashid, Azarnia, Ghanbar, Tinati, Mohammad Ali
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2016
Subjects
Online AccessGet full text
ISSN0167-8655
1872-7344
DOI10.1016/j.patrec.2015.11.018

Cover

Abstract •Gaussian mixture modeling is used to fit the probability density function of heartbeats.•Expectation maximization algorithm estimates the parameters of statistical model.•Skewness, kurtosis and 5th moment of ECG signals express the shape parameters.•RR interval information represents the time-domain characteristics of ECG signals.•An ensemble of decision trees are used to perform the final classification. In this paper we propose a novel method for accurate classification of cardiac arrhythmias. Morphological and statistical features of individual heartbeats are used to train a classifier. Two RR interval features as the exemplars of time-domain information are utilized in this study. Gaussian mixture modeling (GMM) with an enhanced expectation maximization (EM) solution is used to fit the probability density function of heartbeats. Parameters of GMM together with shape parameters such as skewness, kurtosis and 5th moment are also included in feature vector. These features are then used to train an ensemble of decision trees. MIT-BIH arrhythmia database containing various types of common arrhythmias is employed to test the algorithm. The overall accuracy of 99.70% in “class-oriented” scheme and 96.15% in “subject-oriented” scheme is achieved. Both cases express a significant improvement of accuracy compared to other methods.
AbstractList •Gaussian mixture modeling is used to fit the probability density function of heartbeats.•Expectation maximization algorithm estimates the parameters of statistical model.•Skewness, kurtosis and 5th moment of ECG signals express the shape parameters.•RR interval information represents the time-domain characteristics of ECG signals.•An ensemble of decision trees are used to perform the final classification. In this paper we propose a novel method for accurate classification of cardiac arrhythmias. Morphological and statistical features of individual heartbeats are used to train a classifier. Two RR interval features as the exemplars of time-domain information are utilized in this study. Gaussian mixture modeling (GMM) with an enhanced expectation maximization (EM) solution is used to fit the probability density function of heartbeats. Parameters of GMM together with shape parameters such as skewness, kurtosis and 5th moment are also included in feature vector. These features are then used to train an ensemble of decision trees. MIT-BIH arrhythmia database containing various types of common arrhythmias is employed to test the algorithm. The overall accuracy of 99.70% in “class-oriented” scheme and 96.15% in “subject-oriented” scheme is achieved. Both cases express a significant improvement of accuracy compared to other methods.
Author Tinati, Mohammad Ali
Azarnia, Ghanbar
Ghorbani Afkhami, Rashid
Author_xml – sequence: 1
  givenname: Rashid
  surname: Ghorbani Afkhami
  fullname: Ghorbani Afkhami, Rashid
  email: r.ghorbani91@ms.tabrizu.ac.ir, ghorbani.rashid@gmail.com
– sequence: 2
  givenname: Ghanbar
  surname: Azarnia
  fullname: Azarnia, Ghanbar
– sequence: 3
  givenname: Mohammad Ali
  surname: Tinati
  fullname: Tinati, Mohammad Ali
BookMark eNqFkEtLAzEUhYNUsK3-Axf5AzPmziPJuBCk1CoU3Og6xjzalHmUJBX7781YVy50dbiH8x24Z4Ym_dAbhK6B5ECA3uzyvYzeqLwgUOcAOQF-hqbAWZGxsqomaJpiLOO0ri_QLIQdIYSWDZ-it4X02kmFpffbY9x2TmLVyhCcdUpGN_T4EFy_wSGmK8Rktlj2GnfuMx68wd2gTTsGrJGjEfBg8XKxwsFtetmGS3Ruk5irH52j14fly-IxWz-vnhb360yVrIiZrWtFGw2VsqapNKVVU7BCNUAth6KomKGlZUYqrpRmtOHvpa4Js8nlDBoo5-j21Kv8EII3VigXvx-IXrpWABHjVmInTluJcSsBINJWCa5-wXvvOumP_2F3J8ykxz6c8SIoZ3pltEvRKPTg_i74Agw0iY0
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105480
crossref_primary_10_1007_s13042_020_01128_0
crossref_primary_10_1109_TIM_2020_3033072
crossref_primary_10_3390_app9040702
crossref_primary_10_1088_2057_1976_adb58a
crossref_primary_10_1515_bams_2018_0037
crossref_primary_10_1088_1361_6579_ac7695
crossref_primary_10_1016_j_bspc_2024_106211
crossref_primary_10_1142_S0218001417580046
crossref_primary_10_1007_s12652_020_02259_6
crossref_primary_10_1155_2021_9946596
crossref_primary_10_3390_s22145080
crossref_primary_10_1007_s13042_017_0677_5
crossref_primary_10_26599_TST_2023_9010162
crossref_primary_10_1007_s12046_022_02027_6
crossref_primary_10_3389_fphys_2023_1118360
crossref_primary_10_1109_ACCESS_2024_3387041
crossref_primary_10_1088_2057_1976_acf222
crossref_primary_10_4018_IJEHMC_2018010103
crossref_primary_10_1109_ACCESS_2023_3322925
crossref_primary_10_1109_ACCESS_2018_2794346
crossref_primary_10_1109_ACCESS_2020_2979256
crossref_primary_10_1371_journal_pone_0243615
crossref_primary_10_1371_journal_pone_0297551
crossref_primary_10_1007_s13534_017_0043_2
crossref_primary_10_1007_s13246_019_00722_z
crossref_primary_10_1177_09287329241303727
crossref_primary_10_3390_e18080285
crossref_primary_10_3390_s22124450
crossref_primary_10_1007_s00607_023_01243_0
crossref_primary_10_1109_JSEN_2019_2910853
crossref_primary_10_1109_TBME_2021_3129306
crossref_primary_10_1155_2022_9475162
crossref_primary_10_1007_s10586_017_0957_6
crossref_primary_10_32604_cmc_2021_016534
crossref_primary_10_1016_j_jksuci_2023_101568
crossref_primary_10_1016_j_bspc_2018_03_003
crossref_primary_10_3390_math8122125
crossref_primary_10_1007_s12539_021_00416_9
crossref_primary_10_1088_1361_6579_ad5cc0
crossref_primary_10_1007_s00500_020_05191_1
crossref_primary_10_1007_s00500_023_07861_2
crossref_primary_10_1145_3550307
crossref_primary_10_2174_1573405619666230309103435
crossref_primary_10_1007_s13042_021_01389_3
crossref_primary_10_1016_j_bspc_2019_101593
crossref_primary_10_1155_2021_8811837
crossref_primary_10_1016_j_cmpb_2018_11_005
crossref_primary_10_1016_j_future_2019_03_025
crossref_primary_10_1016_j_bspc_2017_12_004
crossref_primary_10_1007_s42600_021_00165_0
crossref_primary_10_1016_j_jelectrocard_2019_11_046
crossref_primary_10_3390_a13040075
crossref_primary_10_1016_j_bspc_2022_103649
crossref_primary_10_1109_TAI_2021_3083689
crossref_primary_10_1155_2018_2694768
crossref_primary_10_3390_healthcare11071000
crossref_primary_10_1109_JSEN_2024_3392017
crossref_primary_10_1109_ACCESS_2021_3071273
crossref_primary_10_3390_ijms24010293
crossref_primary_10_7717_peerj_cs_2295
crossref_primary_10_1109_JSEN_2021_3062395
crossref_primary_10_3390_bios12040185
crossref_primary_10_3390_s23020597
crossref_primary_10_1007_s12652_018_0867_3
crossref_primary_10_1038_s41598_022_18664_0
crossref_primary_10_3390_ijms231810381
crossref_primary_10_1016_j_artmed_2020_101856
crossref_primary_10_1016_j_bspc_2023_105437
crossref_primary_10_1108_IJPCC_03_2021_0080
crossref_primary_10_1007_s11517_023_02858_3
crossref_primary_10_3390_math11081833
crossref_primary_10_2174_1574362417666220518120229
crossref_primary_10_1209_0295_5075_ac9b89
crossref_primary_10_1109_TAI_2023_3324627
crossref_primary_10_3390_computers11060093
crossref_primary_10_1016_j_bspc_2019_101690
crossref_primary_10_1016_j_asoc_2019_04_007
crossref_primary_10_1007_s11633_019_1219_2
crossref_primary_10_1016_j_eswa_2023_119561
crossref_primary_10_1088_1361_6579_ab87b4
crossref_primary_10_1016_j_bspc_2023_105552
crossref_primary_10_1109_JSEN_2017_2772031
crossref_primary_10_3390_info14070377
crossref_primary_10_3390_app10144741
crossref_primary_10_1016_j_measurement_2020_107858
crossref_primary_10_35940_ijeat_F4262_0812623
crossref_primary_10_1016_j_irbm_2019_12_001
crossref_primary_10_1016_j_bdr_2021_100271
crossref_primary_10_1016_j_cvdhj_2020_04_001
crossref_primary_10_1109_ACCESS_2022_3225899
crossref_primary_10_1016_j_bspc_2023_105780
crossref_primary_10_1155_2021_9913127
crossref_primary_10_1109_ACCESS_2018_2870689
crossref_primary_10_1007_s12065_020_00454_0
crossref_primary_10_1007_s40031_021_00606_5
crossref_primary_10_1142_S0219519421500251
crossref_primary_10_1016_j_bspc_2023_104697
crossref_primary_10_1016_j_bbe_2022_05_004
crossref_primary_10_1007_s00521_022_06889_z
crossref_primary_10_1371_journal_pone_0206593
crossref_primary_10_1007_s12652_020_02003_0
crossref_primary_10_1016_j_neunet_2018_08_023
crossref_primary_10_1007_s11280_019_00776_9
crossref_primary_10_1016_j_ins_2020_10_014
crossref_primary_10_1016_j_bspc_2017_07_020
crossref_primary_10_1007_s00521_019_04081_4
crossref_primary_10_1166_jctn_2020_9453
crossref_primary_10_1186_s13634_024_01187_3
crossref_primary_10_1016_j_swevo_2017_10_002
crossref_primary_10_1108_DTA_03_2020_0076
crossref_primary_10_1007_s42600_020_00057_9
crossref_primary_10_1063_10_0019678
crossref_primary_10_1007_s00034_019_01196_w
crossref_primary_10_1080_03091902_2017_1394386
crossref_primary_10_3390_s17020234
crossref_primary_10_1007_s11042_022_14302_z
crossref_primary_10_1109_TIM_2025_3547091
crossref_primary_10_1371_journal_pone_0284791
crossref_primary_10_1002_ima_22940
crossref_primary_10_1016_j_patcog_2018_11_019
crossref_primary_10_1155_2022_7654666
crossref_primary_10_1016_j_cmpb_2021_106321
crossref_primary_10_3389_fphy_2019_00103
crossref_primary_10_1109_ACCESS_2019_2904095
crossref_primary_10_1093_jigpal_jzae102
crossref_primary_10_1142_S0219467820500369
crossref_primary_10_1016_j_eswa_2017_09_022
crossref_primary_10_1007_s10462_021_09999_7
crossref_primary_10_1016_j_cmpb_2018_08_008
Cites_doi 10.1016/S0167-9473(02)00163-9
10.1109/GSIS.2009.5408165
10.1109/10.846677
10.1109/TBME.2012.2213253
10.1109/ICSSE.2011.5961921
10.1109/TENCON.2006.343781
10.1109/TNN.2007.900239
10.1109/TBME.2009.2013934
10.1613/jair.614
10.1109/IEMBS.2011.6090487
10.1109/IEMBS.2011.6091235
10.1109/TBME.2010.2068048
10.1109/TENCONSpring.2013.6584412
10.1109/TBME.2004.827359
10.1109/ICECENG.2011.6057059
10.1109/TBME.2004.824138
10.1109/TITB.2004.838369
10.1109/EMS.2013.45
10.1109/TBME.2011.2171037
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.patrec.2015.11.018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 51
ExternalDocumentID 10_1016_j_patrec_2015_11_018
S0167865515004043
GroupedDBID --M
.DC
.~1
0R~
123
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
WH7
XPP
ZMT
~G-
--K
1B1
29O
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADMXK
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
IHE
R2-
RPZ
SBC
SDS
SEW
VOH
WUQ
Y6R
~HD
ID FETCH-LOGICAL-c372t-f55c69d14cfe94d6649272c916f812247e63f7eac8ccd7698b3d507f63f871913
IEDL.DBID .~1
ISSN 0167-8655
IngestDate Mon Oct 27 04:16:45 EDT 2025
Thu Apr 24 22:59:10 EDT 2025
Fri Feb 23 02:26:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Expectation maximization
Decision tree
Gaussian mixture model
Heartbeat classification
Higher order statistics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-f55c69d14cfe94d6649272c916f812247e63f7eac8ccd7698b3d507f63f871913
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_patrec_2015_11_018
crossref_primary_10_1016_j_patrec_2015_11_018
elsevier_sciencedirect_doi_10_1016_j_patrec_2015_11_018
PublicationCentury 2000
PublicationDate 2016-01-15
PublicationDateYYYYMMDD 2016-01-15
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-15
  day: 15
PublicationDecade 2010
PublicationTitle Pattern recognition letters
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References de Lannoy, Francois, Delbeke, Verleysen (bib0007) 2012; 59
Lagerholm, Peterson, Braccini, Edenbrandt (bib0014) 2002; 47
[Accessed February 2015].
Ye, Kumar, Coimbra (bib0025) 2012; 59
X.D. Zeng, S. Chao & F. Wong, 2011. Ensemble learning on heartbeat type classification. Macao, s.n.
Anon., 1987. Recommended practice for testing and reporting performance results of ventricular arrhythmia detection algorithms, s.l.: Association for the Advancement of Medical Instrumentation.
S. Yang, & H. Shen, 2013. Heartbeat classification using discrete wavelet transform and kernel principal component analysis. Sydney, NSW, s.n., pp. 34–38.
A. Awodeyi, S. Alty, & M. Ghavami, 2013. Median filter approach for removal of baseline wander in photoplethysmography signals. Manchester, s.n., pp. 261–264.
R. Mark & G. Moody, 1997. MIT-BIH database and software catalog. [Online] Available at
R. Martis, R. Acharya & A. Ray, 2011. Application of higher order cumulants to ECG signals for the cardiac health diagnosis. Boston, s.n.
D. Jenkins & S. Gerred, 2015 n.d. Normal ECG. [Online] Available at
Llamedo, Martinez (bib0015) 2011; 58
Rodriguez, Goñi, Illarramendi (bib0022) 2005; 9
Ince, Kiranyaz, Gabbouj (bib0010) 2009; 56
S. Zaunseder, R. Huhle & H. Malberg, 2011. CinC challenge - assessing the usability of ECG by ensemble decision trees. Hangzhou,s.n., pp. 277–280.
Jiang, Kong (bib0012) 2007; 18
L. de Oliveira, R. Andreao & M. Sarcinelli-Filho, 2011. Premature ventricular beat classification using a dynamic Bayesian network. Boston, MA, s.n.
Maimon, Rokach (bib0016) 2010
A. Ebrahimzadeh & A. Khazaee, 2011. Higher order statistics for automated classification of ECG beats. Yichang, s.n.
L. Breiman, J. Friedman, C.J. Stone, & R. Olshen, 1984. Classification and regression trees. s.l.: Chapman and Hall/CRC.
Biernackia, Celeuxb, Govaertc (bib0004) 2003; 41
Osowski, Hoai, Markiewicz (bib0020) 2004; 51
Opitz, Maclin (bib0019) 1999; 11
Anon., 1998. Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms, s.l.: Association for the Advancement of Medical Instrumentation.
de Chazal, O'Dwyer, Reilly (bib0006) 2004; 51
Prasad, Sahambi (bib0021) 2003; 1
X. Jiang, L. Zhang, Q. Zhao, & S. Albayrak, 2006. ECG arrhythmias recognition system based on independent component analysis feature extraction. Hong Kong, s.n.
H. Wang, Y. Jiang & H. Wang, 2009. Stock return prediction based on Bagging-decision tree. Nanjing, s.n.
10.1016/j.patrec.2015.11.018_bib0013
Lagerholm (10.1016/j.patrec.2015.11.018_bib0014) 2002; 47
Rodriguez (10.1016/j.patrec.2015.11.018_bib0022) 2005; 9
Ye (10.1016/j.patrec.2015.11.018_bib0025) 2012; 59
10.1016/j.patrec.2015.11.018_bib0011
Jiang (10.1016/j.patrec.2015.11.018_bib0012) 2007; 18
10.1016/j.patrec.2015.11.018_bib0018
10.1016/j.patrec.2015.11.018_bib0017
Biernackia (10.1016/j.patrec.2015.11.018_bib0004) 2003; 41
Prasad (10.1016/j.patrec.2015.11.018_bib0021) 2003; 1
de Chazal (10.1016/j.patrec.2015.11.018_bib0006) 2004; 51
de Lannoy (10.1016/j.patrec.2015.11.018_bib0007) 2012; 59
Osowski (10.1016/j.patrec.2015.11.018_bib0020) 2004; 51
10.1016/j.patrec.2015.11.018_bib0003
10.1016/j.patrec.2015.11.018_bib0002
10.1016/j.patrec.2015.11.018_bib0024
10.1016/j.patrec.2015.11.018_bib0001
10.1016/j.patrec.2015.11.018_bib0023
10.1016/j.patrec.2015.11.018_bib0005
10.1016/j.patrec.2015.11.018_bib0027
10.1016/j.patrec.2015.11.018_bib0026
10.1016/j.patrec.2015.11.018_bib0009
10.1016/j.patrec.2015.11.018_bib0008
Maimon (10.1016/j.patrec.2015.11.018_bib0016) 2010
Opitz (10.1016/j.patrec.2015.11.018_bib0019) 1999; 11
Ince (10.1016/j.patrec.2015.11.018_bib0010) 2009; 56
Llamedo (10.1016/j.patrec.2015.11.018_bib0015) 2011; 58
References_xml – reference: A. Ebrahimzadeh & A. Khazaee, 2011. Higher order statistics for automated classification of ECG beats. Yichang, s.n.
– volume: 56
  start-page: 1415
  year: 2009
  end-page: 1426
  ident: bib0010
  article-title: A generic and robust system for automated patient-specific classification of ECG signals
  publication-title: IEEE Trans. Biomed. Eng.
– reference: X. Jiang, L. Zhang, Q. Zhao, & S. Albayrak, 2006. ECG arrhythmias recognition system based on independent component analysis feature extraction. Hong Kong, s.n.
– volume: 1
  start-page: 227
  year: 2003
  end-page: 231
  ident: bib0021
  article-title: Classification of ECG arrhythmias using multi-resolution analysis and neural networks
  publication-title: Conference on Convergent Technologies for the Asia-Pacific Region, TENCON
– volume: 18
  start-page: 1750
  year: 2007
  end-page: 1761
  ident: bib0012
  article-title: Block-based neural networks for personalized ECG signal classification
  publication-title: IEEE Trans. Neural Netw.
– reference: L. Breiman, J. Friedman, C.J. Stone, & R. Olshen, 1984. Classification and regression trees. s.l.: Chapman and Hall/CRC.
– volume: 47
  start-page: 838
  year: 2002
  end-page: 848
  ident: bib0014
  article-title: Clustering ECG complexes using Hermite functions and self-organizing maps
  publication-title: IEEE Trans. Biomed. Eng.
– reference: D. Jenkins & S. Gerred, 2015 n.d. Normal ECG. [Online] Available at:
– reference: R. Mark & G. Moody, 1997. MIT-BIH database and software catalog. [Online] Available at:
– reference: H. Wang, Y. Jiang & H. Wang, 2009. Stock return prediction based on Bagging-decision tree. Nanjing, s.n.
– volume: 51
  start-page: 1196
  year: 2004
  end-page: 1206
  ident: bib0006
  article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 58
  start-page: 616
  year: 2011
  end-page: 625
  ident: bib0015
  article-title: Heartbeat classification using feature selection driven by database generalization criteria
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 41
  start-page: 561
  year: 2003
  end-page: 575
  ident: bib0004
  article-title: Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models
  publication-title: Comput. Stat. Data Anal.
– reference: R. Martis, R. Acharya & A. Ray, 2011. Application of higher order cumulants to ECG signals for the cardiac health diagnosis. Boston, s.n.
– reference: S. Zaunseder, R. Huhle & H. Malberg, 2011. CinC challenge - assessing the usability of ECG by ensemble decision trees. Hangzhou,s.n., pp. 277–280.
– reference: L. de Oliveira, R. Andreao & M. Sarcinelli-Filho, 2011. Premature ventricular beat classification using a dynamic Bayesian network. Boston, MA, s.n.
– volume: 59
  start-page: 241
  year: 2012
  end-page: 247
  ident: bib0007
  article-title: Weighted conditional random fields for supervised interpatient heartbeat classification
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2010
  ident: bib0016
  article-title: Data Mining and Knowledge Discovery Handbook
– volume: 11
  start-page: 169
  year: 1999
  end-page: 198
  ident: bib0019
  article-title: Popular ensemble methods: An empirical study
  publication-title: J. Artif. Intell. Res.
– reference: Anon., 1987. Recommended practice for testing and reporting performance results of ventricular arrhythmia detection algorithms, s.l.: Association for the Advancement of Medical Instrumentation.
– reference: [Accessed February 2015].
– reference: Anon., 1998. Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms, s.l.: Association for the Advancement of Medical Instrumentation.
– reference: A. Awodeyi, S. Alty, & M. Ghavami, 2013. Median filter approach for removal of baseline wander in photoplethysmography signals. Manchester, s.n., pp. 261–264.
– reference: X.D. Zeng, S. Chao & F. Wong, 2011. Ensemble learning on heartbeat type classification. Macao, s.n.
– volume: 51
  start-page: 582
  year: 2004
  end-page: 589
  ident: bib0020
  article-title: Support vector machine-based expert system for reliable heartbeat recognition
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 9
  start-page: 23
  year: 2005
  end-page: 34
  ident: bib0022
  article-title: Real-time classification of ECGs on a PDA
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– reference: S. Yang, & H. Shen, 2013. Heartbeat classification using discrete wavelet transform and kernel principal component analysis. Sydney, NSW, s.n., pp. 34–38.
– volume: 59
  start-page: 2930
  year: 2012
  end-page: 2941
  ident: bib0025
  article-title: Heartbeat classification using morphological and dynamic features of ECG signals
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 41
  start-page: 561
  issue: 3
  year: 2003
  ident: 10.1016/j.patrec.2015.11.018_bib0004
  article-title: Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(02)00163-9
– ident: 10.1016/j.patrec.2015.11.018_bib0023
  doi: 10.1109/GSIS.2009.5408165
– year: 2010
  ident: 10.1016/j.patrec.2015.11.018_bib0016
– volume: 47
  start-page: 838
  issue: 7
  year: 2002
  ident: 10.1016/j.patrec.2015.11.018_bib0014
  article-title: Clustering ECG complexes using Hermite functions and self-organizing maps
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.846677
– volume: 59
  start-page: 2930
  issue: 10
  year: 2012
  ident: 10.1016/j.patrec.2015.11.018_bib0025
  article-title: Heartbeat classification using morphological and dynamic features of ECG signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2213253
– ident: 10.1016/j.patrec.2015.11.018_bib0027
  doi: 10.1109/ICSSE.2011.5961921
– ident: 10.1016/j.patrec.2015.11.018_bib0013
  doi: 10.1109/TENCON.2006.343781
– volume: 18
  start-page: 1750
  issue: 6
  year: 2007
  ident: 10.1016/j.patrec.2015.11.018_bib0012
  article-title: Block-based neural networks for personalized ECG signal classification
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2007.900239
– volume: 56
  start-page: 1415
  issue: 5
  year: 2009
  ident: 10.1016/j.patrec.2015.11.018_bib0010
  article-title: A generic and robust system for automated patient-specific classification of ECG signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2013934
– volume: 11
  start-page: 169
  year: 1999
  ident: 10.1016/j.patrec.2015.11.018_bib0019
  article-title: Popular ensemble methods: An empirical study
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.614
– ident: 10.1016/j.patrec.2015.11.018_bib0018
  doi: 10.1109/IEMBS.2011.6090487
– volume: 1
  start-page: 227
  year: 2003
  ident: 10.1016/j.patrec.2015.11.018_bib0021
  article-title: Classification of ECG arrhythmias using multi-resolution analysis and neural networks
– ident: 10.1016/j.patrec.2015.11.018_bib0008
  doi: 10.1109/IEMBS.2011.6091235
– volume: 58
  start-page: 616
  issue: 3
  year: 2011
  ident: 10.1016/j.patrec.2015.11.018_bib0015
  article-title: Heartbeat classification using feature selection driven by database generalization criteria
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2068048
– ident: 10.1016/j.patrec.2015.11.018_bib0002
– ident: 10.1016/j.patrec.2015.11.018_bib0024
  doi: 10.1109/TENCONSpring.2013.6584412
– volume: 51
  start-page: 1196
  issue: 7
  year: 2004
  ident: 10.1016/j.patrec.2015.11.018_bib0006
  article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827359
– ident: 10.1016/j.patrec.2015.11.018_bib0009
  doi: 10.1109/ICECENG.2011.6057059
– ident: 10.1016/j.patrec.2015.11.018_bib0011
– volume: 51
  start-page: 582
  issue: 4
  year: 2004
  ident: 10.1016/j.patrec.2015.11.018_bib0020
  article-title: Support vector machine-based expert system for reliable heartbeat recognition
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.824138
– volume: 9
  start-page: 23
  issue: 1
  year: 2005
  ident: 10.1016/j.patrec.2015.11.018_bib0022
  article-title: Real-time classification of ECGs on a PDA
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2004.838369
– ident: 10.1016/j.patrec.2015.11.018_bib0017
– ident: 10.1016/j.patrec.2015.11.018_bib0005
– ident: 10.1016/j.patrec.2015.11.018_bib0003
  doi: 10.1109/EMS.2013.45
– ident: 10.1016/j.patrec.2015.11.018_bib0001
– ident: 10.1016/j.patrec.2015.11.018_bib0026
– volume: 59
  start-page: 241
  issue: 1
  year: 2012
  ident: 10.1016/j.patrec.2015.11.018_bib0007
  article-title: Weighted conditional random fields for supervised interpatient heartbeat classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2171037
SSID ssj0006398
Score 2.5396879
Snippet •Gaussian mixture modeling is used to fit the probability density function of heartbeats.•Expectation maximization algorithm estimates the parameters of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 45
SubjectTerms Decision tree
Expectation maximization
Gaussian mixture model
Heartbeat classification
Higher order statistics
Title Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals
URI https://dx.doi.org/10.1016/j.patrec.2015.11.018
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AKRWK
  dateStart: 19821001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjBB2rEB9mD10JL293ukRAQNXJREm613YdgpBCsiV787c4srWJiNPHYzW7azGznsfvNN4Scu4lhOmCJ47rKhQRFMCcF1TuCK89A-gAxAN7o3gzZYBRcjcNxhXTLWhiEVRa2f2XTrbUuRlqFNFuL6bR1iwB6LKuEkMZFjhisYA84djFovn_BPMADRyW_N84uy-csxgvPmzUSGXphE7k8sfXHT-5pzeX0d8l2ESvSzupz9khFZzWyU_ZhoMVvWSNba6SC--S-a5UuabJcTt7yyWyaUIkxMoKCrB4ogt0fKNYSWZpmeEeSKTqbvuJ1ArXNcXCC0Zb185nODe11LyhiPWC3HpBRv3fXHThFHwVH-rydOyYMJRPKC6TRIlCMBaLN2xICQxPhxRrXzDccLHAkpeJMRKmvIEw0MArplPD8Q1LN5pk-IlRDvBd6qRIsRVYcV6hQKx4Z5ftuEoWiTvxSfLEsSMax18VTXKLJHuOV0GMUOuQfMQi9TpzPVYsVycYf83mpmfjbZonBD_y68vjfK0_IJjzZ0xcvPCXVfPmizyAeydOG3XANstG5vB4MPwBZdd_B
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHIADO6KsPnBNm9WOj6gCytJeaKXeQuKFBkGpSpHgwrczkyYsEgKJq2Ur0diZeRO_eQNw5KaWm5CnjutqFxMUyZ0Mt96RQnsW0wfEAHSj2-7wVi-86Ef9GWhWtTBEqyx9_9SnF966HGmU1myM8rxxTQR6KqtESOOSRswszIeRLygDq7998jwwBMeVwDdNr-rnCpIX_XA2pGToRXUS86TeHz_Fpy8x53QVlkuwyI6n77MGM2a4DitVIwZWfpfrsPRFVXADbprFriuWjseD18ngIU-ZIpBMrKBiIxix3W8ZFRMVOs34jHSo2UP-QvcJrOiOQxOsKWQ_n9ijZSfNM0ZkDzyum9A7Pek2W07ZSMFRgfAnjo0ixaX2QmWNDDXnofSFrxAZ2phu1oThgRXogmOltOAyzgKNONHiKOZT0gu2YG74ODTbwAwCvsjLtOQZyeK4UkdGi9jqIHDTOJI1CCrzJapUGadmF_dJRSe7S6ZGT8jomIAkaPQaOB-rRlOVjT_mi2pnkm-nJcFA8OvKnX-vPISFVrd9lVyddy53YdGnMgiSxo33YG4yfjb7CE4m2UFx-N4BoTXhXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiac+arrhythmia+classification+using+statistical+and+mixture+modeling+features+of+ECG+signals&rft.jtitle=Pattern+recognition+letters&rft.au=Ghorbani+Afkhami%2C+Rashid&rft.au=Azarnia%2C+Ghanbar&rft.au=Tinati%2C+Mohammad+Ali&rft.date=2016-01-15&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=70&rft.spage=45&rft.epage=51&rft_id=info:doi/10.1016%2Fj.patrec.2015.11.018&rft.externalDocID=S0167865515004043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon