Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals
•Gaussian mixture modeling is used to fit the probability density function of heartbeats.•Expectation maximization algorithm estimates the parameters of statistical model.•Skewness, kurtosis and 5th moment of ECG signals express the shape parameters.•RR interval information represents the time-domai...
Saved in:
| Published in | Pattern recognition letters Vol. 70; pp. 45 - 51 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
15.01.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-8655 1872-7344 |
| DOI | 10.1016/j.patrec.2015.11.018 |
Cover
| Abstract | •Gaussian mixture modeling is used to fit the probability density function of heartbeats.•Expectation maximization algorithm estimates the parameters of statistical model.•Skewness, kurtosis and 5th moment of ECG signals express the shape parameters.•RR interval information represents the time-domain characteristics of ECG signals.•An ensemble of decision trees are used to perform the final classification.
In this paper we propose a novel method for accurate classification of cardiac arrhythmias. Morphological and statistical features of individual heartbeats are used to train a classifier. Two RR interval features as the exemplars of time-domain information are utilized in this study. Gaussian mixture modeling (GMM) with an enhanced expectation maximization (EM) solution is used to fit the probability density function of heartbeats. Parameters of GMM together with shape parameters such as skewness, kurtosis and 5th moment are also included in feature vector. These features are then used to train an ensemble of decision trees. MIT-BIH arrhythmia database containing various types of common arrhythmias is employed to test the algorithm. The overall accuracy of 99.70% in “class-oriented” scheme and 96.15% in “subject-oriented” scheme is achieved. Both cases express a significant improvement of accuracy compared to other methods. |
|---|---|
| AbstractList | •Gaussian mixture modeling is used to fit the probability density function of heartbeats.•Expectation maximization algorithm estimates the parameters of statistical model.•Skewness, kurtosis and 5th moment of ECG signals express the shape parameters.•RR interval information represents the time-domain characteristics of ECG signals.•An ensemble of decision trees are used to perform the final classification.
In this paper we propose a novel method for accurate classification of cardiac arrhythmias. Morphological and statistical features of individual heartbeats are used to train a classifier. Two RR interval features as the exemplars of time-domain information are utilized in this study. Gaussian mixture modeling (GMM) with an enhanced expectation maximization (EM) solution is used to fit the probability density function of heartbeats. Parameters of GMM together with shape parameters such as skewness, kurtosis and 5th moment are also included in feature vector. These features are then used to train an ensemble of decision trees. MIT-BIH arrhythmia database containing various types of common arrhythmias is employed to test the algorithm. The overall accuracy of 99.70% in “class-oriented” scheme and 96.15% in “subject-oriented” scheme is achieved. Both cases express a significant improvement of accuracy compared to other methods. |
| Author | Tinati, Mohammad Ali Azarnia, Ghanbar Ghorbani Afkhami, Rashid |
| Author_xml | – sequence: 1 givenname: Rashid surname: Ghorbani Afkhami fullname: Ghorbani Afkhami, Rashid email: r.ghorbani91@ms.tabrizu.ac.ir, ghorbani.rashid@gmail.com – sequence: 2 givenname: Ghanbar surname: Azarnia fullname: Azarnia, Ghanbar – sequence: 3 givenname: Mohammad Ali surname: Tinati fullname: Tinati, Mohammad Ali |
| BookMark | eNqFkEtLAzEUhYNUsK3-Axf5AzPmziPJuBCk1CoU3Og6xjzalHmUJBX7781YVy50dbiH8x24Z4Ym_dAbhK6B5ECA3uzyvYzeqLwgUOcAOQF-hqbAWZGxsqomaJpiLOO0ri_QLIQdIYSWDZ-it4X02kmFpffbY9x2TmLVyhCcdUpGN_T4EFy_wSGmK8Rktlj2GnfuMx68wd2gTTsGrJGjEfBg8XKxwsFtetmGS3Ruk5irH52j14fly-IxWz-vnhb360yVrIiZrWtFGw2VsqapNKVVU7BCNUAth6KomKGlZUYqrpRmtOHvpa4Js8nlDBoo5-j21Kv8EII3VigXvx-IXrpWABHjVmInTluJcSsBINJWCa5-wXvvOumP_2F3J8ykxz6c8SIoZ3pltEvRKPTg_i74Agw0iY0 |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2023_105480 crossref_primary_10_1007_s13042_020_01128_0 crossref_primary_10_1109_TIM_2020_3033072 crossref_primary_10_3390_app9040702 crossref_primary_10_1088_2057_1976_adb58a crossref_primary_10_1515_bams_2018_0037 crossref_primary_10_1088_1361_6579_ac7695 crossref_primary_10_1016_j_bspc_2024_106211 crossref_primary_10_1142_S0218001417580046 crossref_primary_10_1007_s12652_020_02259_6 crossref_primary_10_1155_2021_9946596 crossref_primary_10_3390_s22145080 crossref_primary_10_1007_s13042_017_0677_5 crossref_primary_10_26599_TST_2023_9010162 crossref_primary_10_1007_s12046_022_02027_6 crossref_primary_10_3389_fphys_2023_1118360 crossref_primary_10_1109_ACCESS_2024_3387041 crossref_primary_10_1088_2057_1976_acf222 crossref_primary_10_4018_IJEHMC_2018010103 crossref_primary_10_1109_ACCESS_2023_3322925 crossref_primary_10_1109_ACCESS_2018_2794346 crossref_primary_10_1109_ACCESS_2020_2979256 crossref_primary_10_1371_journal_pone_0243615 crossref_primary_10_1371_journal_pone_0297551 crossref_primary_10_1007_s13534_017_0043_2 crossref_primary_10_1007_s13246_019_00722_z crossref_primary_10_1177_09287329241303727 crossref_primary_10_3390_e18080285 crossref_primary_10_3390_s22124450 crossref_primary_10_1007_s00607_023_01243_0 crossref_primary_10_1109_JSEN_2019_2910853 crossref_primary_10_1109_TBME_2021_3129306 crossref_primary_10_1155_2022_9475162 crossref_primary_10_1007_s10586_017_0957_6 crossref_primary_10_32604_cmc_2021_016534 crossref_primary_10_1016_j_jksuci_2023_101568 crossref_primary_10_1016_j_bspc_2018_03_003 crossref_primary_10_3390_math8122125 crossref_primary_10_1007_s12539_021_00416_9 crossref_primary_10_1088_1361_6579_ad5cc0 crossref_primary_10_1007_s00500_020_05191_1 crossref_primary_10_1007_s00500_023_07861_2 crossref_primary_10_1145_3550307 crossref_primary_10_2174_1573405619666230309103435 crossref_primary_10_1007_s13042_021_01389_3 crossref_primary_10_1016_j_bspc_2019_101593 crossref_primary_10_1155_2021_8811837 crossref_primary_10_1016_j_cmpb_2018_11_005 crossref_primary_10_1016_j_future_2019_03_025 crossref_primary_10_1016_j_bspc_2017_12_004 crossref_primary_10_1007_s42600_021_00165_0 crossref_primary_10_1016_j_jelectrocard_2019_11_046 crossref_primary_10_3390_a13040075 crossref_primary_10_1016_j_bspc_2022_103649 crossref_primary_10_1109_TAI_2021_3083689 crossref_primary_10_1155_2018_2694768 crossref_primary_10_3390_healthcare11071000 crossref_primary_10_1109_JSEN_2024_3392017 crossref_primary_10_1109_ACCESS_2021_3071273 crossref_primary_10_3390_ijms24010293 crossref_primary_10_7717_peerj_cs_2295 crossref_primary_10_1109_JSEN_2021_3062395 crossref_primary_10_3390_bios12040185 crossref_primary_10_3390_s23020597 crossref_primary_10_1007_s12652_018_0867_3 crossref_primary_10_1038_s41598_022_18664_0 crossref_primary_10_3390_ijms231810381 crossref_primary_10_1016_j_artmed_2020_101856 crossref_primary_10_1016_j_bspc_2023_105437 crossref_primary_10_1108_IJPCC_03_2021_0080 crossref_primary_10_1007_s11517_023_02858_3 crossref_primary_10_3390_math11081833 crossref_primary_10_2174_1574362417666220518120229 crossref_primary_10_1209_0295_5075_ac9b89 crossref_primary_10_1109_TAI_2023_3324627 crossref_primary_10_3390_computers11060093 crossref_primary_10_1016_j_bspc_2019_101690 crossref_primary_10_1016_j_asoc_2019_04_007 crossref_primary_10_1007_s11633_019_1219_2 crossref_primary_10_1016_j_eswa_2023_119561 crossref_primary_10_1088_1361_6579_ab87b4 crossref_primary_10_1016_j_bspc_2023_105552 crossref_primary_10_1109_JSEN_2017_2772031 crossref_primary_10_3390_info14070377 crossref_primary_10_3390_app10144741 crossref_primary_10_1016_j_measurement_2020_107858 crossref_primary_10_35940_ijeat_F4262_0812623 crossref_primary_10_1016_j_irbm_2019_12_001 crossref_primary_10_1016_j_bdr_2021_100271 crossref_primary_10_1016_j_cvdhj_2020_04_001 crossref_primary_10_1109_ACCESS_2022_3225899 crossref_primary_10_1016_j_bspc_2023_105780 crossref_primary_10_1155_2021_9913127 crossref_primary_10_1109_ACCESS_2018_2870689 crossref_primary_10_1007_s12065_020_00454_0 crossref_primary_10_1007_s40031_021_00606_5 crossref_primary_10_1142_S0219519421500251 crossref_primary_10_1016_j_bspc_2023_104697 crossref_primary_10_1016_j_bbe_2022_05_004 crossref_primary_10_1007_s00521_022_06889_z crossref_primary_10_1371_journal_pone_0206593 crossref_primary_10_1007_s12652_020_02003_0 crossref_primary_10_1016_j_neunet_2018_08_023 crossref_primary_10_1007_s11280_019_00776_9 crossref_primary_10_1016_j_ins_2020_10_014 crossref_primary_10_1016_j_bspc_2017_07_020 crossref_primary_10_1007_s00521_019_04081_4 crossref_primary_10_1166_jctn_2020_9453 crossref_primary_10_1186_s13634_024_01187_3 crossref_primary_10_1016_j_swevo_2017_10_002 crossref_primary_10_1108_DTA_03_2020_0076 crossref_primary_10_1007_s42600_020_00057_9 crossref_primary_10_1063_10_0019678 crossref_primary_10_1007_s00034_019_01196_w crossref_primary_10_1080_03091902_2017_1394386 crossref_primary_10_3390_s17020234 crossref_primary_10_1007_s11042_022_14302_z crossref_primary_10_1109_TIM_2025_3547091 crossref_primary_10_1371_journal_pone_0284791 crossref_primary_10_1002_ima_22940 crossref_primary_10_1016_j_patcog_2018_11_019 crossref_primary_10_1155_2022_7654666 crossref_primary_10_1016_j_cmpb_2021_106321 crossref_primary_10_3389_fphy_2019_00103 crossref_primary_10_1109_ACCESS_2019_2904095 crossref_primary_10_1093_jigpal_jzae102 crossref_primary_10_1142_S0219467820500369 crossref_primary_10_1016_j_eswa_2017_09_022 crossref_primary_10_1007_s10462_021_09999_7 crossref_primary_10_1016_j_cmpb_2018_08_008 |
| Cites_doi | 10.1016/S0167-9473(02)00163-9 10.1109/GSIS.2009.5408165 10.1109/10.846677 10.1109/TBME.2012.2213253 10.1109/ICSSE.2011.5961921 10.1109/TENCON.2006.343781 10.1109/TNN.2007.900239 10.1109/TBME.2009.2013934 10.1613/jair.614 10.1109/IEMBS.2011.6090487 10.1109/IEMBS.2011.6091235 10.1109/TBME.2010.2068048 10.1109/TENCONSpring.2013.6584412 10.1109/TBME.2004.827359 10.1109/ICECENG.2011.6057059 10.1109/TBME.2004.824138 10.1109/TITB.2004.838369 10.1109/EMS.2013.45 10.1109/TBME.2011.2171037 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier B.V. |
| Copyright_xml | – notice: 2015 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patrec.2015.11.018 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1872-7344 |
| EndPage | 51 |
| ExternalDocumentID | 10_1016_j_patrec_2015_11_018 S0167865515004043 |
| GroupedDBID | --M .DC .~1 0R~ 123 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K TN5 UNMZH WH7 XPP ZMT ~G- --K 1B1 29O AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADMXK ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ IHE R2- RPZ SBC SDS SEW VOH WUQ Y6R ~HD |
| ID | FETCH-LOGICAL-c372t-f55c69d14cfe94d6649272c916f812247e63f7eac8ccd7698b3d507f63f871913 |
| IEDL.DBID | .~1 |
| ISSN | 0167-8655 |
| IngestDate | Mon Oct 27 04:16:45 EDT 2025 Thu Apr 24 22:59:10 EDT 2025 Fri Feb 23 02:26:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Expectation maximization Decision tree Gaussian mixture model Heartbeat classification Higher order statistics |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-f55c69d14cfe94d6649272c916f812247e63f7eac8ccd7698b3d507f63f871913 |
| PageCount | 7 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_patrec_2015_11_018 crossref_primary_10_1016_j_patrec_2015_11_018 elsevier_sciencedirect_doi_10_1016_j_patrec_2015_11_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-01-15 |
| PublicationDateYYYYMMDD | 2016-01-15 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Pattern recognition letters |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | de Lannoy, Francois, Delbeke, Verleysen (bib0007) 2012; 59 Lagerholm, Peterson, Braccini, Edenbrandt (bib0014) 2002; 47 [Accessed February 2015]. Ye, Kumar, Coimbra (bib0025) 2012; 59 X.D. Zeng, S. Chao & F. Wong, 2011. Ensemble learning on heartbeat type classification. Macao, s.n. Anon., 1987. Recommended practice for testing and reporting performance results of ventricular arrhythmia detection algorithms, s.l.: Association for the Advancement of Medical Instrumentation. S. Yang, & H. Shen, 2013. Heartbeat classification using discrete wavelet transform and kernel principal component analysis. Sydney, NSW, s.n., pp. 34–38. A. Awodeyi, S. Alty, & M. Ghavami, 2013. Median filter approach for removal of baseline wander in photoplethysmography signals. Manchester, s.n., pp. 261–264. R. Mark & G. Moody, 1997. MIT-BIH database and software catalog. [Online] Available at R. Martis, R. Acharya & A. Ray, 2011. Application of higher order cumulants to ECG signals for the cardiac health diagnosis. Boston, s.n. D. Jenkins & S. Gerred, 2015 n.d. Normal ECG. [Online] Available at Llamedo, Martinez (bib0015) 2011; 58 Rodriguez, Goñi, Illarramendi (bib0022) 2005; 9 Ince, Kiranyaz, Gabbouj (bib0010) 2009; 56 S. Zaunseder, R. Huhle & H. Malberg, 2011. CinC challenge - assessing the usability of ECG by ensemble decision trees. Hangzhou,s.n., pp. 277–280. Jiang, Kong (bib0012) 2007; 18 L. de Oliveira, R. Andreao & M. Sarcinelli-Filho, 2011. Premature ventricular beat classification using a dynamic Bayesian network. Boston, MA, s.n. Maimon, Rokach (bib0016) 2010 A. Ebrahimzadeh & A. Khazaee, 2011. Higher order statistics for automated classification of ECG beats. Yichang, s.n. L. Breiman, J. Friedman, C.J. Stone, & R. Olshen, 1984. Classification and regression trees. s.l.: Chapman and Hall/CRC. Biernackia, Celeuxb, Govaertc (bib0004) 2003; 41 Osowski, Hoai, Markiewicz (bib0020) 2004; 51 Opitz, Maclin (bib0019) 1999; 11 Anon., 1998. Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms, s.l.: Association for the Advancement of Medical Instrumentation. de Chazal, O'Dwyer, Reilly (bib0006) 2004; 51 Prasad, Sahambi (bib0021) 2003; 1 X. Jiang, L. Zhang, Q. Zhao, & S. Albayrak, 2006. ECG arrhythmias recognition system based on independent component analysis feature extraction. Hong Kong, s.n. H. Wang, Y. Jiang & H. Wang, 2009. Stock return prediction based on Bagging-decision tree. Nanjing, s.n. 10.1016/j.patrec.2015.11.018_bib0013 Lagerholm (10.1016/j.patrec.2015.11.018_bib0014) 2002; 47 Rodriguez (10.1016/j.patrec.2015.11.018_bib0022) 2005; 9 Ye (10.1016/j.patrec.2015.11.018_bib0025) 2012; 59 10.1016/j.patrec.2015.11.018_bib0011 Jiang (10.1016/j.patrec.2015.11.018_bib0012) 2007; 18 10.1016/j.patrec.2015.11.018_bib0018 10.1016/j.patrec.2015.11.018_bib0017 Biernackia (10.1016/j.patrec.2015.11.018_bib0004) 2003; 41 Prasad (10.1016/j.patrec.2015.11.018_bib0021) 2003; 1 de Chazal (10.1016/j.patrec.2015.11.018_bib0006) 2004; 51 de Lannoy (10.1016/j.patrec.2015.11.018_bib0007) 2012; 59 Osowski (10.1016/j.patrec.2015.11.018_bib0020) 2004; 51 10.1016/j.patrec.2015.11.018_bib0003 10.1016/j.patrec.2015.11.018_bib0002 10.1016/j.patrec.2015.11.018_bib0024 10.1016/j.patrec.2015.11.018_bib0001 10.1016/j.patrec.2015.11.018_bib0023 10.1016/j.patrec.2015.11.018_bib0005 10.1016/j.patrec.2015.11.018_bib0027 10.1016/j.patrec.2015.11.018_bib0026 10.1016/j.patrec.2015.11.018_bib0009 10.1016/j.patrec.2015.11.018_bib0008 Maimon (10.1016/j.patrec.2015.11.018_bib0016) 2010 Opitz (10.1016/j.patrec.2015.11.018_bib0019) 1999; 11 Ince (10.1016/j.patrec.2015.11.018_bib0010) 2009; 56 Llamedo (10.1016/j.patrec.2015.11.018_bib0015) 2011; 58 |
| References_xml | – reference: A. Ebrahimzadeh & A. Khazaee, 2011. Higher order statistics for automated classification of ECG beats. Yichang, s.n. – volume: 56 start-page: 1415 year: 2009 end-page: 1426 ident: bib0010 article-title: A generic and robust system for automated patient-specific classification of ECG signals publication-title: IEEE Trans. Biomed. Eng. – reference: X. Jiang, L. Zhang, Q. Zhao, & S. Albayrak, 2006. ECG arrhythmias recognition system based on independent component analysis feature extraction. Hong Kong, s.n. – volume: 1 start-page: 227 year: 2003 end-page: 231 ident: bib0021 article-title: Classification of ECG arrhythmias using multi-resolution analysis and neural networks publication-title: Conference on Convergent Technologies for the Asia-Pacific Region, TENCON – volume: 18 start-page: 1750 year: 2007 end-page: 1761 ident: bib0012 article-title: Block-based neural networks for personalized ECG signal classification publication-title: IEEE Trans. Neural Netw. – reference: L. Breiman, J. Friedman, C.J. Stone, & R. Olshen, 1984. Classification and regression trees. s.l.: Chapman and Hall/CRC. – volume: 47 start-page: 838 year: 2002 end-page: 848 ident: bib0014 article-title: Clustering ECG complexes using Hermite functions and self-organizing maps publication-title: IEEE Trans. Biomed. Eng. – reference: D. Jenkins & S. Gerred, 2015 n.d. Normal ECG. [Online] Available at: – reference: R. Mark & G. Moody, 1997. MIT-BIH database and software catalog. [Online] Available at: – reference: H. Wang, Y. Jiang & H. Wang, 2009. Stock return prediction based on Bagging-decision tree. Nanjing, s.n. – volume: 51 start-page: 1196 year: 2004 end-page: 1206 ident: bib0006 article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features publication-title: IEEE Trans. Biomed. Eng. – volume: 58 start-page: 616 year: 2011 end-page: 625 ident: bib0015 article-title: Heartbeat classification using feature selection driven by database generalization criteria publication-title: IEEE Trans. Biomed. Eng. – volume: 41 start-page: 561 year: 2003 end-page: 575 ident: bib0004 article-title: Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models publication-title: Comput. Stat. Data Anal. – reference: R. Martis, R. Acharya & A. Ray, 2011. Application of higher order cumulants to ECG signals for the cardiac health diagnosis. Boston, s.n. – reference: S. Zaunseder, R. Huhle & H. Malberg, 2011. CinC challenge - assessing the usability of ECG by ensemble decision trees. Hangzhou,s.n., pp. 277–280. – reference: L. de Oliveira, R. Andreao & M. Sarcinelli-Filho, 2011. Premature ventricular beat classification using a dynamic Bayesian network. Boston, MA, s.n. – volume: 59 start-page: 241 year: 2012 end-page: 247 ident: bib0007 article-title: Weighted conditional random fields for supervised interpatient heartbeat classification publication-title: IEEE Trans. Biomed. Eng. – year: 2010 ident: bib0016 article-title: Data Mining and Knowledge Discovery Handbook – volume: 11 start-page: 169 year: 1999 end-page: 198 ident: bib0019 article-title: Popular ensemble methods: An empirical study publication-title: J. Artif. Intell. Res. – reference: Anon., 1987. Recommended practice for testing and reporting performance results of ventricular arrhythmia detection algorithms, s.l.: Association for the Advancement of Medical Instrumentation. – reference: [Accessed February 2015]. – reference: Anon., 1998. Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms, s.l.: Association for the Advancement of Medical Instrumentation. – reference: A. Awodeyi, S. Alty, & M. Ghavami, 2013. Median filter approach for removal of baseline wander in photoplethysmography signals. Manchester, s.n., pp. 261–264. – reference: X.D. Zeng, S. Chao & F. Wong, 2011. Ensemble learning on heartbeat type classification. Macao, s.n. – volume: 51 start-page: 582 year: 2004 end-page: 589 ident: bib0020 article-title: Support vector machine-based expert system for reliable heartbeat recognition publication-title: IEEE Trans. Biomed. Eng. – volume: 9 start-page: 23 year: 2005 end-page: 34 ident: bib0022 article-title: Real-time classification of ECGs on a PDA publication-title: IEEE Trans. Inf. Technol. Biomed. – reference: S. Yang, & H. Shen, 2013. Heartbeat classification using discrete wavelet transform and kernel principal component analysis. Sydney, NSW, s.n., pp. 34–38. – volume: 59 start-page: 2930 year: 2012 end-page: 2941 ident: bib0025 article-title: Heartbeat classification using morphological and dynamic features of ECG signals publication-title: IEEE Trans. Biomed. Eng. – volume: 41 start-page: 561 issue: 3 year: 2003 ident: 10.1016/j.patrec.2015.11.018_bib0004 article-title: Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(02)00163-9 – ident: 10.1016/j.patrec.2015.11.018_bib0023 doi: 10.1109/GSIS.2009.5408165 – year: 2010 ident: 10.1016/j.patrec.2015.11.018_bib0016 – volume: 47 start-page: 838 issue: 7 year: 2002 ident: 10.1016/j.patrec.2015.11.018_bib0014 article-title: Clustering ECG complexes using Hermite functions and self-organizing maps publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.846677 – volume: 59 start-page: 2930 issue: 10 year: 2012 ident: 10.1016/j.patrec.2015.11.018_bib0025 article-title: Heartbeat classification using morphological and dynamic features of ECG signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2213253 – ident: 10.1016/j.patrec.2015.11.018_bib0027 doi: 10.1109/ICSSE.2011.5961921 – ident: 10.1016/j.patrec.2015.11.018_bib0013 doi: 10.1109/TENCON.2006.343781 – volume: 18 start-page: 1750 issue: 6 year: 2007 ident: 10.1016/j.patrec.2015.11.018_bib0012 article-title: Block-based neural networks for personalized ECG signal classification publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2007.900239 – volume: 56 start-page: 1415 issue: 5 year: 2009 ident: 10.1016/j.patrec.2015.11.018_bib0010 article-title: A generic and robust system for automated patient-specific classification of ECG signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2013934 – volume: 11 start-page: 169 year: 1999 ident: 10.1016/j.patrec.2015.11.018_bib0019 article-title: Popular ensemble methods: An empirical study publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.614 – ident: 10.1016/j.patrec.2015.11.018_bib0018 doi: 10.1109/IEMBS.2011.6090487 – volume: 1 start-page: 227 year: 2003 ident: 10.1016/j.patrec.2015.11.018_bib0021 article-title: Classification of ECG arrhythmias using multi-resolution analysis and neural networks – ident: 10.1016/j.patrec.2015.11.018_bib0008 doi: 10.1109/IEMBS.2011.6091235 – volume: 58 start-page: 616 issue: 3 year: 2011 ident: 10.1016/j.patrec.2015.11.018_bib0015 article-title: Heartbeat classification using feature selection driven by database generalization criteria publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2068048 – ident: 10.1016/j.patrec.2015.11.018_bib0002 – ident: 10.1016/j.patrec.2015.11.018_bib0024 doi: 10.1109/TENCONSpring.2013.6584412 – volume: 51 start-page: 1196 issue: 7 year: 2004 ident: 10.1016/j.patrec.2015.11.018_bib0006 article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827359 – ident: 10.1016/j.patrec.2015.11.018_bib0009 doi: 10.1109/ICECENG.2011.6057059 – ident: 10.1016/j.patrec.2015.11.018_bib0011 – volume: 51 start-page: 582 issue: 4 year: 2004 ident: 10.1016/j.patrec.2015.11.018_bib0020 article-title: Support vector machine-based expert system for reliable heartbeat recognition publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.824138 – volume: 9 start-page: 23 issue: 1 year: 2005 ident: 10.1016/j.patrec.2015.11.018_bib0022 article-title: Real-time classification of ECGs on a PDA publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2004.838369 – ident: 10.1016/j.patrec.2015.11.018_bib0017 – ident: 10.1016/j.patrec.2015.11.018_bib0005 – ident: 10.1016/j.patrec.2015.11.018_bib0003 doi: 10.1109/EMS.2013.45 – ident: 10.1016/j.patrec.2015.11.018_bib0001 – ident: 10.1016/j.patrec.2015.11.018_bib0026 – volume: 59 start-page: 241 issue: 1 year: 2012 ident: 10.1016/j.patrec.2015.11.018_bib0007 article-title: Weighted conditional random fields for supervised interpatient heartbeat classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2171037 |
| SSID | ssj0006398 |
| Score | 2.5396879 |
| Snippet | •Gaussian mixture modeling is used to fit the probability density function of heartbeats.•Expectation maximization algorithm estimates the parameters of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 45 |
| SubjectTerms | Decision tree Expectation maximization Gaussian mixture model Heartbeat classification Higher order statistics |
| Title | Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals |
| URI | https://dx.doi.org/10.1016/j.patrec.2015.11.018 |
| Volume | 70 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006398 issn: 0167-8655 databaseCode: AKRWK dateStart: 19821001 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjBB2rEB9mD10JL293ukRAQNXJREm613YdgpBCsiV787c4srWJiNPHYzW7azGznsfvNN4Scu4lhOmCJ47rKhQRFMCcF1TuCK89A-gAxAN7o3gzZYBRcjcNxhXTLWhiEVRa2f2XTrbUuRlqFNFuL6bR1iwB6LKuEkMZFjhisYA84djFovn_BPMADRyW_N84uy-csxgvPmzUSGXphE7k8sfXHT-5pzeX0d8l2ESvSzupz9khFZzWyU_ZhoMVvWSNba6SC--S-a5UuabJcTt7yyWyaUIkxMoKCrB4ogt0fKNYSWZpmeEeSKTqbvuJ1ArXNcXCC0Zb185nODe11LyhiPWC3HpBRv3fXHThFHwVH-rydOyYMJRPKC6TRIlCMBaLN2xICQxPhxRrXzDccLHAkpeJMRKmvIEw0MArplPD8Q1LN5pk-IlRDvBd6qRIsRVYcV6hQKx4Z5ftuEoWiTvxSfLEsSMax18VTXKLJHuOV0GMUOuQfMQi9TpzPVYsVycYf83mpmfjbZonBD_y68vjfK0_IJjzZ0xcvPCXVfPmizyAeydOG3XANstG5vB4MPwBZdd_B |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHIADO6KsPnBNm9WOj6gCytJeaKXeQuKFBkGpSpHgwrczkyYsEgKJq2Ur0diZeRO_eQNw5KaWm5CnjutqFxMUyZ0Mt96RQnsW0wfEAHSj2-7wVi-86Ef9GWhWtTBEqyx9_9SnF966HGmU1myM8rxxTQR6KqtESOOSRswszIeRLygDq7998jwwBMeVwDdNr-rnCpIX_XA2pGToRXUS86TeHz_Fpy8x53QVlkuwyI6n77MGM2a4DitVIwZWfpfrsPRFVXADbprFriuWjseD18ngIU-ZIpBMrKBiIxix3W8ZFRMVOs34jHSo2UP-QvcJrOiOQxOsKWQ_n9ijZSfNM0ZkDzyum9A7Pek2W07ZSMFRgfAnjo0ixaX2QmWNDDXnofSFrxAZ2phu1oThgRXogmOltOAyzgKNONHiKOZT0gu2YG74ODTbwAwCvsjLtOQZyeK4UkdGi9jqIHDTOJI1CCrzJapUGadmF_dJRSe7S6ZGT8jomIAkaPQaOB-rRlOVjT_mi2pnkm-nJcFA8OvKnX-vPISFVrd9lVyddy53YdGnMgiSxo33YG4yfjb7CE4m2UFx-N4BoTXhXQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiac+arrhythmia+classification+using+statistical+and+mixture+modeling+features+of+ECG+signals&rft.jtitle=Pattern+recognition+letters&rft.au=Ghorbani+Afkhami%2C+Rashid&rft.au=Azarnia%2C+Ghanbar&rft.au=Tinati%2C+Mohammad+Ali&rft.date=2016-01-15&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=70&rft.spage=45&rft.epage=51&rft_id=info:doi/10.1016%2Fj.patrec.2015.11.018&rft.externalDocID=S0167865515004043 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |