Matrix Completion With Noise

On the heels of compressed sensing, a new field has very recently emerged. This field addresses a broad range of problems of significant practical interest, namely, the recovery of a data matrix from what appears to be incomplete, and perhaps even corrupted, information. In its simplest form, the pr...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the IEEE Vol. 98; no. 6; pp. 925 - 936
Main Authors Candes, Emmanuel J., Plan, Yaniv
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9219
1558-2256
1558-2256
DOI10.1109/JPROC.2009.2035722

Cover

Abstract On the heels of compressed sensing, a new field has very recently emerged. This field addresses a broad range of problems of significant practical interest, namely, the recovery of a data matrix from what appears to be incomplete, and perhaps even corrupted, information. In its simplest form, the problem is to recover a matrix from a small sample of its entries. It comes up in many areas of science and engineering, including collaborative filtering, machine learning, control, remote sensing, and computer vision, to name a few. This paper surveys the novel literature on matrix completion, which shows that under some suitable conditions, one can recover an unknown low-rank matrix from a nearly minimal set of entries by solving a simple convex optimization problem, namely, nuclear-norm minimization subject to data constraints. Further, this paper introduces novel results showing that matrix completion is provably accurate even when the few observed entries are corrupted with a small amount of noise. A typical result is that one can recover an unknown matrix of low rank from just about log noisy samples with an error that is proportional to the noise level. We present numerical results that complement our quantitative analysis and show that, in practice, nuclear-norm minimization accurately fills in the many missing entries of large low-rank matrices from just a few noisy samples. Some analogies between matrix completion and compressed sensing are discussed throughout.
AbstractList On the heels of compressed sensing, a new field has very recently emerged. This field addresses a broad range of problems of significant practical interest, namely, the recovery of a data matrix from what appears to be incomplete, and perhaps even corrupted, information. In its simplest form, the problem is to recover a matrix from a small sample of its entries. It comes up in many areas of science and engineering, including collaborative filtering, machine learning, control, remote sensing, and computer vision, to name a few. This paper surveys the novel literature on matrix completion, which shows that under some suitable conditions, one can recover an unknown low-rank matrix from a nearly minimal set of entries by solving a simple convex optimization problem, namely, nuclear-norm minimization subject to data constraints. Further, this paper introduces novel results showing that matrix completion is provably accurate even when the few observed entries are corrupted with a small amount of noise. A typical result is that one can recover an unknown [Formula Omitted] matrix of low rank [Formula Omitted] from just about [Formula Omitted] log [Formula Omitted] noisy samples with an error that is proportional to the noise level. We present numerical results that complement our quantitative analysis and show that, in practice, nuclear-norm minimization accurately fills in the many missing entries of large low-rank matrices from just a few noisy samples. Some analogies between matrix completion and compressed sensing are discussed throughout.
On the heels of compressed sensing, a new field has very recently emerged. This field addresses a broad range of problems of significant practical interest, namely, the recovery of a data matrix from what appears to be incomplete, and perhaps even corrupted, information. In its simplest form, the problem is to recover a matrix from a small sample of its entries. It comes up in many areas of science and engineering, including collaborative filtering, machine learning, control, remote sensing, and computer vision, to name a few. This paper surveys the novel literature on matrix completion, which shows that under some suitable conditions, one can recover an unknown low-rank matrix from a nearly minimal set of entries by solving a simple convex optimization problem, namely, nuclear-norm minimization subject to data constraints. Further, this paper introduces novel results showing that matrix completion is provably accurate even when the few observed entries are corrupted with a small amount of noise. A typical result is that one can recover an unknown matrix of low rank from just about log noisy samples with an error that is proportional to the noise level. We present numerical results that complement our quantitative analysis and show that, in practice, nuclear-norm minimization accurately fills in the many missing entries of large low-rank matrices from just a few noisy samples. Some analogies between matrix completion and compressed sensing are discussed throughout.
On the heels of compressed sensing, a new field has very recently emerged. This field addresses a broad range of problems of significant practical interest, namely, the recovery of a data matrix from what appears to be incomplete, and perhaps even corrupted, information. In its simplest form, the problem is to recover a matrix from a small sample of its entries. It comes up in many areas of science and engineering, including collaborative filtering, machine learning, control, remote sensing, and computer vision, to name a few. This paper surveys the novel literature on matrix completion, which shows that under some suitable conditions, one can recover an unknown low-rank matrix from a nearly minimal set of entries by solving a simple convex optimization problem, namely, nuclear-norm minimization subject to data constraints. Further, this paper introduces novel results showing that matrix completion is provably accurate even when the few observed entries are corrupted with a small amount of noise. A typical result is that one can recover an unknown n n matrix of low rank r from just about nr log 2 n noisy samples with an error that is proportional to the noise level. We present numerical results that complement our quantitative analysis and show that, in practice, nuclear-norm minimization accurately fills in the many missing entries of large low-rank matrices from just a few noisy samples. Some analogies between matrix completion and compressed sensing are discussed throughout.
Author Candes, Emmanuel J.
Plan, Yaniv
Author_xml – sequence: 1
  givenname: Emmanuel J.
  surname: Candes
  fullname: Candes, Emmanuel J.
  organization: Department of Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA, USA
– sequence: 2
  givenname: Yaniv
  surname: Plan
  fullname: Plan, Yaniv
  organization: Department of Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA, USA
BookMark eNptkD1PwzAQhi1UJNrCHwCGSiwsKT47tuMRVXyqUIRAjJadOMJVmoQ4EfTfk5CqQ8RyHu59zvfcBI3yIrcInQKeA2B59fjyulrMCcayLZQJQg7QGBiLAkIYH6ExxhAFkoA8QhPv1xi3KU7H6PxJ15X7mS2KTZnZ2hX57MPVn7Pnwnl7jA5TnXl7snun6P325m1xHyxXdw-L62UQU0HqwBopQTCqrUi00VGcpizhMREUkhBLMFJwg42RkeGcJhFjhAsDKY5MDCloOkW0n9vkpd5-6yxTZeU2utoqwKoTVOuyKmLVCaqdYEtd9lTb-mqsr9XG-dhmmc5t0XgFXAChICLRRi8G0XXRVHnr1H5ABEgc4m5g1KfiqvC-sqmKXa27m9SVdtl-l79jD3chA3Qo8C901kPOWrsHWMjCEHP6C5W5iNo
CODEN IEEPAD
CitedBy_id crossref_primary_10_1007_s10115_013_0713_z
crossref_primary_10_1016_j_laa_2021_06_011
crossref_primary_10_1587_transcom_2019EBP3230
crossref_primary_10_1109_TIT_2011_2143970
crossref_primary_10_1371_journal_pcbi_1005506
crossref_primary_10_1080_01621459_2021_1891924
crossref_primary_10_1109_JSAC_2019_2904347
crossref_primary_10_1109_TIT_2013_2240435
crossref_primary_10_1109_TVT_2021_3105673
crossref_primary_10_1002_cmmi_1543
crossref_primary_10_1049_rsn2_12074
crossref_primary_10_1007_s11075_023_01662_2
crossref_primary_10_1214_18_AOS1742
crossref_primary_10_1016_j_sigpro_2022_108580
crossref_primary_10_1016_j_vlsi_2016_08_006
crossref_primary_10_1109_TGRS_2013_2284280
crossref_primary_10_1109_TIP_2018_2865837
crossref_primary_10_1016_j_neucom_2018_05_092
crossref_primary_10_1109_TMC_2017_2775230
crossref_primary_10_1109_TNNLS_2023_3280086
crossref_primary_10_7717_peerj_cs_231
crossref_primary_10_1109_TIT_2022_3196707
crossref_primary_10_3390_a16010012
crossref_primary_10_1109_TSG_2019_2956906
crossref_primary_10_1109_TIT_2023_3273181
crossref_primary_10_1109_TSP_2020_3032234
crossref_primary_10_1109_TSP_2021_3139213
crossref_primary_10_1111_ele_14059
crossref_primary_10_3102_1076998616676407
crossref_primary_10_1137_15M104726X
crossref_primary_10_1109_JSTSP_2012_2195472
crossref_primary_10_3934_bdia_2016001
crossref_primary_10_1016_j_jvcir_2015_06_012
crossref_primary_10_1109_TIT_2024_3350518
crossref_primary_10_1109_TSG_2018_2848935
crossref_primary_10_1109_LSP_2024_3379830
crossref_primary_10_1109_TSP_2013_2295557
crossref_primary_10_1214_21_AOS2061
crossref_primary_10_3390_rs14164120
crossref_primary_10_1093_bib_bbab479
crossref_primary_10_1109_TSP_2013_2279080
crossref_primary_10_1007_s11276_018_1663_x
crossref_primary_10_1214_21_AOS2066
crossref_primary_10_1109_TGRS_2019_2907801
crossref_primary_10_1109_TPAMI_2012_271
crossref_primary_10_1146_annurev_control_091819_074326
crossref_primary_10_1109_JSEN_2019_2906375
crossref_primary_10_1007_s40314_018_0613_7
crossref_primary_10_1214_21_EJS1935
crossref_primary_10_1002_anie_201409291
crossref_primary_10_1016_j_cam_2023_115557
crossref_primary_10_1016_j_neucom_2017_09_052
crossref_primary_10_1109_TKDE_2019_2962031
crossref_primary_10_3934_ipi_2017030
crossref_primary_10_1016_j_trip_2022_100555
crossref_primary_10_1109_TVT_2024_3495536
crossref_primary_10_1109_TCYB_2018_2837675
crossref_primary_10_3390_rs14153790
crossref_primary_10_1016_j_media_2017_02_008
crossref_primary_10_1109_TAC_2021_3137147
crossref_primary_10_1587_transcom_2018EBP3289
crossref_primary_10_2139_ssrn_4372280
crossref_primary_10_1109_TSP_2015_2449254
crossref_primary_10_3150_23_BEJ1675
crossref_primary_10_1109_LSP_2017_2685518
crossref_primary_10_1364_OE_24_020069
crossref_primary_10_1016_j_ins_2022_08_087
crossref_primary_10_1109_TPDS_2023_3274305
crossref_primary_10_1109_TIT_2023_3331010
crossref_primary_10_1109_TGRS_2020_2996686
crossref_primary_10_1371_journal_pone_0098441
crossref_primary_10_1016_j_neucom_2015_05_146
crossref_primary_10_1109_TSP_2014_2357773
crossref_primary_10_1016_j_sysconle_2013_04_005
crossref_primary_10_1002_cjs_70002
crossref_primary_10_1038_lsa_2017_179
crossref_primary_10_1049_iet_ipr_2019_1648
crossref_primary_10_1109_TCYB_2023_3305552
crossref_primary_10_1190_geo2015_0341_1
crossref_primary_10_1016_j_sigpro_2019_07_028
crossref_primary_10_1111_1365_2478_12949
crossref_primary_10_1016_j_jeconom_2024_105684
crossref_primary_10_1016_j_procs_2013_05_021
crossref_primary_10_1142_S0217595913400101
crossref_primary_10_1049_iet_ipr_2019_1654
crossref_primary_10_1109_TGRS_2021_3053201
crossref_primary_10_1007_s10957_019_01477_z
crossref_primary_10_1007_s10915_024_02636_9
crossref_primary_10_1016_j_jeconom_2024_105682
crossref_primary_10_1088_1361_6420_ab3204
crossref_primary_10_1007_s10994_023_06338_5
crossref_primary_10_1016_j_infrared_2024_105676
crossref_primary_10_1109_TIT_2022_3170244
crossref_primary_10_3390_s18072377
crossref_primary_10_1109_TCOMM_2014_2346775
crossref_primary_10_1121_10_0002175
crossref_primary_10_1109_TGRS_2017_2709250
crossref_primary_10_1007_s10208_015_9256_x
crossref_primary_10_1016_j_patrec_2016_12_019
crossref_primary_10_1137_21M141703X
crossref_primary_10_1109_TRS_2024_3362693
crossref_primary_10_1016_j_patcog_2017_05_013
crossref_primary_10_1109_TPAMI_2019_2906603
crossref_primary_10_1109_LSP_2025_3539252
crossref_primary_10_1137_16M1062089
crossref_primary_10_1109_TIP_2014_2352497
crossref_primary_10_1109_TIT_2013_2257913
crossref_primary_10_1109_TSP_2023_3251110
crossref_primary_10_1093_bib_bbab328
crossref_primary_10_1214_20_AOAS1356
crossref_primary_10_1016_j_jvcir_2021_103335
crossref_primary_10_1109_TIT_2014_2311661
crossref_primary_10_1109_TIT_2017_2701342
crossref_primary_10_2140_tunis_2024_6_543
crossref_primary_10_3390_s22124625
crossref_primary_10_1109_TNET_2018_2888600
crossref_primary_10_1109_TIT_2023_3317168
crossref_primary_10_1016_j_ins_2023_119562
crossref_primary_10_1109_ACCESS_2024_3516506
crossref_primary_10_1109_TGRS_2015_2489218
crossref_primary_10_1109_TCI_2017_2693966
crossref_primary_10_1088_1361_6579_aba492
crossref_primary_10_1016_j_sigpro_2015_09_036
crossref_primary_10_1007_s10208_020_09471_y
crossref_primary_10_1007_s11263_013_0684_2
crossref_primary_10_1155_2014_420856
crossref_primary_10_1016_j_knosys_2021_107053
crossref_primary_10_14778_3397230_3397235
crossref_primary_10_1016_j_acha_2023_03_007
crossref_primary_10_1021_jz3009369
crossref_primary_10_1109_TCNS_2022_3203798
crossref_primary_10_1109_TIT_2018_2809782
crossref_primary_10_1109_TKDE_2016_2569096
crossref_primary_10_3390_rs9101044
crossref_primary_10_1109_TIP_2017_2781425
crossref_primary_10_1098_rspa_2023_0121
crossref_primary_10_1016_j_trc_2017_09_011
crossref_primary_10_1109_TSP_2021_3051425
crossref_primary_10_1214_21_AOS2146
crossref_primary_10_1007_s10957_021_01956_2
crossref_primary_10_1007_s10994_017_5667_z
crossref_primary_10_1088_1361_665X_ac50f4
crossref_primary_10_1109_TIT_2021_3111828
crossref_primary_10_1016_j_acha_2016_09_005
crossref_primary_10_1007_s41095_016_0056_2
crossref_primary_10_1016_j_energy_2020_117775
crossref_primary_10_1109_JPROC_2018_2844126
crossref_primary_10_1145_3264961
crossref_primary_10_2139_ssrn_4006034
crossref_primary_10_1109_LSP_2020_2988596
crossref_primary_10_1051_matecconf_201817601018
crossref_primary_10_1016_j_ijforecast_2018_03_008
crossref_primary_10_1016_j_sigpro_2022_108480
crossref_primary_10_1109_TSP_2011_2161982
crossref_primary_10_1109_TSP_2011_2161984
crossref_primary_10_1109_TPAMI_2016_2608882
crossref_primary_10_1016_j_ymssp_2025_112565
crossref_primary_10_1002_cpe_5701
crossref_primary_10_1109_ACCESS_2018_2880454
crossref_primary_10_1109_TIT_2017_2695601
crossref_primary_10_1016_j_jvcir_2017_11_019
crossref_primary_10_1109_TSP_2016_2569479
crossref_primary_10_1109_TAES_2015_140452
crossref_primary_10_1109_TSP_2017_2711501
crossref_primary_10_1109_JSTSP_2020_3038054
crossref_primary_10_1137_16M1078318
crossref_primary_10_1007_s11228_017_0421_z
crossref_primary_10_1109_TIP_2020_3044472
crossref_primary_10_1109_LSP_2018_2872400
crossref_primary_10_1214_15_AOS1426
crossref_primary_10_1109_TIP_2015_2441632
crossref_primary_10_3390_math11122674
crossref_primary_10_1002_mrm_24997
crossref_primary_10_3390_s23187848
crossref_primary_10_1109_TIFS_2020_2975925
crossref_primary_10_1016_j_comnet_2017_09_001
crossref_primary_10_1109_TNNLS_2020_2980960
crossref_primary_10_1016_j_jsv_2016_02_031
crossref_primary_10_1109_TIT_2015_2466597
crossref_primary_10_3390_axioms7030051
crossref_primary_10_1214_15_EJS1020
crossref_primary_10_1007_BF03549586
crossref_primary_10_1093_bioinformatics_btx597
crossref_primary_10_1007_s11766_020_4136_3
crossref_primary_10_1109_ACCESS_2018_2887261
crossref_primary_10_1109_TIP_2015_2503238
crossref_primary_10_1109_MSP_2010_939733
crossref_primary_10_1109_TNNLS_2012_2188906
crossref_primary_10_1111_poms_13582
crossref_primary_10_1190_geo2019_0586_1
crossref_primary_10_1186_s13408_019_0077_0
crossref_primary_10_1093_bioinformatics_btab322
crossref_primary_10_1109_TNNLS_2023_3288769
crossref_primary_10_1109_TSP_2021_3085116
crossref_primary_10_1017_S0963548321000249
crossref_primary_10_3390_rs16111837
crossref_primary_10_1049_iet_spr_2018_5114
crossref_primary_10_1109_TSMCB_2011_2168953
crossref_primary_10_1109_TVT_2023_3290181
crossref_primary_10_1109_TGRS_2020_3002724
crossref_primary_10_1145_3404374
crossref_primary_10_1109_TGRS_2017_2771155
crossref_primary_10_1016_j_neunet_2017_08_001
crossref_primary_10_1016_j_orl_2019_08_001
crossref_primary_10_1080_0952813X_2015_1042532
crossref_primary_10_1214_15_EJS1093
crossref_primary_10_1016_j_patcog_2019_02_011
crossref_primary_10_1109_ACCESS_2021_3076797
crossref_primary_10_1109_TSP_2021_3113468
crossref_primary_10_1016_j_laa_2017_11_014
crossref_primary_10_3389_fmicb_2023_1179414
crossref_primary_10_1109_ACCESS_2020_2996303
crossref_primary_10_1109_TPDS_2019_2954902
crossref_primary_10_1109_TSP_2016_2613070
crossref_primary_10_1016_j_jfa_2022_109593
crossref_primary_10_1080_07350015_2021_1954527
crossref_primary_10_1007_s10472_020_09717_z
crossref_primary_10_1109_TSG_2024_3471077
crossref_primary_10_1109_JSTSP_2021_3063837
crossref_primary_10_1109_TSP_2018_2867995
crossref_primary_10_1155_2014_353970
crossref_primary_10_1088_1742_6596_787_1_012008
crossref_primary_10_1109_ACCESS_2019_2894784
crossref_primary_10_1109_TNNLS_2022_3183970
crossref_primary_10_1109_JSEN_2019_2912642
crossref_primary_10_1109_TIP_2011_2177989
crossref_primary_10_1016_j_engappai_2023_106659
crossref_primary_10_1016_j_patrec_2016_05_029
crossref_primary_10_1137_141002165
crossref_primary_10_1109_TIT_2020_3039308
crossref_primary_10_1137_19M1290000
crossref_primary_10_1109_JSTSP_2012_2237381
crossref_primary_10_1109_TIT_2011_2111190
crossref_primary_10_1109_JPROC_2015_2474704
crossref_primary_10_1109_JSEN_2024_3393761
crossref_primary_10_1109_TKDE_2020_3005978
crossref_primary_10_1002_sta4_70003
crossref_primary_10_1007_s11042_017_5263_z
crossref_primary_10_1007_s00362_018_1043_8
crossref_primary_10_4236_am_2017_82019
crossref_primary_10_1109_TIM_2022_3203097
crossref_primary_10_1016_j_acha_2016_08_004
crossref_primary_10_1109_TIT_2019_2950715
crossref_primary_10_1109_TIP_2012_2192742
crossref_primary_10_1109_ACCESS_2018_2877432
crossref_primary_10_1109_LGRS_2015_2461654
crossref_primary_10_1109_OJCSYS_2022_3200015
crossref_primary_10_1016_j_laa_2017_07_016
crossref_primary_10_3390_rs10071053
crossref_primary_10_1007_s11222_020_09963_5
crossref_primary_10_1109_TIT_2023_3284341
crossref_primary_10_1109_JSTSP_2016_2535182
crossref_primary_10_1007_s11045_017_0531_7
crossref_primary_10_1007_s10115_021_01628_7
crossref_primary_10_1016_j_physrep_2012_02_006
crossref_primary_10_1214_15_EJS1076
crossref_primary_10_7566_JPSJ_89_012001
crossref_primary_10_1016_j_cam_2017_03_014
crossref_primary_10_1109_LCSYS_2018_2845943
crossref_primary_10_1109_TSP_2017_2695450
crossref_primary_10_2200_S00640ED1V01Y201504IVM018
crossref_primary_10_1214_19_EJS1582
crossref_primary_10_1016_j_comnet_2012_02_017
crossref_primary_10_1080_10618600_2018_1482763
crossref_primary_10_1109_TIP_2011_2156801
crossref_primary_10_1109_TIP_2018_2874284
crossref_primary_10_1109_TNNLS_2022_3182541
crossref_primary_10_1109_JSTSP_2015_2469641
crossref_primary_10_1137_21M1416849
crossref_primary_10_1137_110853996
crossref_primary_10_1016_j_cam_2017_12_048
crossref_primary_10_1016_j_knosys_2017_02_031
crossref_primary_10_1109_TIP_2016_2540810
crossref_primary_10_2139_ssrn_4568525
crossref_primary_10_1093_biomet_asaa006
crossref_primary_10_1109_TIM_2022_3204072
crossref_primary_10_1049_iet_spr_2018_5102
crossref_primary_10_1137_20M1315294
crossref_primary_10_1080_10618600_2019_1585261
crossref_primary_10_1007_s11075_020_00876_y
crossref_primary_10_1007_s11075_023_01513_0
crossref_primary_10_1109_TAES_2018_2847958
crossref_primary_10_1109_TNNLS_2018_2885699
crossref_primary_10_1007_s10107_016_1090_7
crossref_primary_10_1002_cpa_21432
crossref_primary_10_1109_OJCSYS_2023_3315088
crossref_primary_10_1137_15M1025153
crossref_primary_10_3389_fgene_2019_00009
crossref_primary_10_3934_ipi_2012_6_357
crossref_primary_10_1016_j_sigpro_2016_07_034
crossref_primary_10_1109_LSP_2022_3229555
crossref_primary_10_1109_JSTSP_2016_2539123
crossref_primary_10_1186_s13634_016_0360_0
crossref_primary_10_1016_j_ejor_2016_07_014
crossref_primary_10_3150_19_BEJ1114
crossref_primary_10_1016_j_neucom_2018_07_066
crossref_primary_10_3390_e25020333
crossref_primary_10_1109_TASE_2020_2997718
crossref_primary_10_1137_100817206
crossref_primary_10_1190_geo2013_0022_1
crossref_primary_10_1214_10_AOS860
crossref_primary_10_3390_s22155548
crossref_primary_10_1109_TIT_2022_3205781
crossref_primary_10_1109_ACCESS_2019_2894622
crossref_primary_10_1103_PhysRevA_86_012512
crossref_primary_10_1109_TGRS_2020_3027819
crossref_primary_10_1109_LGRS_2025_3527696
crossref_primary_10_1103_PhysRevA_87_030102
crossref_primary_10_1016_j_chemolab_2018_04_001
crossref_primary_10_1109_LCSYS_2021_3133798
crossref_primary_10_1109_TNET_2019_2953921
crossref_primary_10_1214_24_AOS2366
crossref_primary_10_1109_TSP_2011_2161471
crossref_primary_10_1002_mrm_26079
crossref_primary_10_1109_TSP_2018_2876305
crossref_primary_10_1109_TIT_2011_2136318
crossref_primary_10_1109_TIP_2016_2642784
crossref_primary_10_1016_j_orl_2022_01_007
crossref_primary_10_1109_TIT_2016_2598574
crossref_primary_10_1109_TIT_2021_3050469
crossref_primary_10_1137_120862843
crossref_primary_10_1016_j_neucom_2016_11_068
crossref_primary_10_1080_10618600_2018_1518238
crossref_primary_10_1109_TSC_2021_3065035
crossref_primary_10_1109_TBME_2013_2264772
crossref_primary_10_1016_j_sigpro_2016_07_018
crossref_primary_10_1109_TNNLS_2023_3327716
crossref_primary_10_1109_TSP_2022_3230332
crossref_primary_10_1016_j_sigpro_2024_109656
crossref_primary_10_1109_TGRS_2021_3100715
crossref_primary_10_1073_pnas_2302930120
crossref_primary_10_1109_MCOM_2016_7588229
crossref_primary_10_1007_s10994_017_5673_1
crossref_primary_10_1007_s11425_016_9107_y
crossref_primary_10_1109_LCOMM_2018_2804396
crossref_primary_10_1007_s10107_015_0961_7
crossref_primary_10_1109_TIP_2017_2768185
crossref_primary_10_1109_TIT_2011_2104999
crossref_primary_10_3390_eng5010021
crossref_primary_10_1016_j_neucom_2017_11_021
crossref_primary_10_1109_TBC_2014_2345931
crossref_primary_10_1109_TKDE_2024_3419698
crossref_primary_10_1007_s10489_021_03137_0
crossref_primary_10_1016_j_knosys_2015_06_001
crossref_primary_10_1109_TSP_2019_2946022
crossref_primary_10_1109_JSTSP_2016_2539100
crossref_primary_10_1109_TSP_2014_2385040
crossref_primary_10_3390_e20030171
crossref_primary_10_1002_wics_1469
crossref_primary_10_1007_s10618_017_0516_z
crossref_primary_10_1109_TSP_2019_2946026
crossref_primary_10_1137_17M1115770
crossref_primary_10_1080_03610918_2023_2242013
crossref_primary_10_1109_TKDE_2020_2983708
crossref_primary_10_3390_info10040124
crossref_primary_10_1007_s40687_023_00381_3
crossref_primary_10_1109_JSAC_2024_3414589
crossref_primary_10_1109_LSP_2020_3025478
crossref_primary_10_1016_j_patcog_2010_11_012
crossref_primary_10_1007_s10618_013_0341_y
crossref_primary_10_1002_sta4_303
crossref_primary_10_1088_1612_202X_aa7b96
crossref_primary_10_1109_TIT_2014_2343623
crossref_primary_10_1049_ipr2_12040
crossref_primary_10_1145_3658148
crossref_primary_10_1016_j_procs_2015_05_422
crossref_primary_10_1109_TIT_2018_2816685
crossref_primary_10_1142_S0219691317500321
crossref_primary_10_1007_s40305_015_0080_4
crossref_primary_10_1007_s12532_012_0044_1
crossref_primary_10_1109_LSP_2020_2970306
crossref_primary_10_1016_j_laa_2016_04_017
crossref_primary_10_1145_3278607
crossref_primary_10_1088_1742_5468_aabc7d
crossref_primary_10_1109_TIT_2017_2713822
crossref_primary_10_1007_s13042_017_0665_9
crossref_primary_10_1007_s10107_015_0876_3
crossref_primary_10_1002_cnm_3858
crossref_primary_10_1016_j_acha_2011_04_004
crossref_primary_10_1109_TAES_2017_2717518
crossref_primary_10_1016_j_laa_2020_01_036
crossref_primary_10_1002_nbm_4695
crossref_primary_10_1111_1365_2478_13123
crossref_primary_10_1007_s40687_023_00414_x
crossref_primary_10_1016_j_neucom_2012_04_043
crossref_primary_10_1109_LGRS_2014_2300170
crossref_primary_10_1109_TMC_2016_2595569
crossref_primary_10_1109_TSP_2019_2916100
crossref_primary_10_1080_14498596_2018_1509740
crossref_primary_10_1080_00401706_2020_1801256
crossref_primary_10_1109_TCYB_2022_3224070
crossref_primary_10_1109_TVT_2020_2986783
crossref_primary_10_1007_s11222_021_10033_7
crossref_primary_10_1109_TGRS_2025_3527056
crossref_primary_10_1109_TNET_2014_2337371
crossref_primary_10_1109_TCYB_2014_2351831
crossref_primary_10_1016_j_jmsy_2022_03_001
crossref_primary_10_1016_j_dsp_2021_103242
crossref_primary_10_1109_TCOMM_2016_2623606
crossref_primary_10_1186_s13638_020_01724_2
crossref_primary_10_1109_TIP_2016_2547180
crossref_primary_10_1016_j_rse_2021_112649
crossref_primary_10_1186_s43593_022_00038_8
crossref_primary_10_1007_s10994_013_5366_3
crossref_primary_10_3150_12_BEJSP17
crossref_primary_10_3390_a10010029
crossref_primary_10_1515_jiip_2023_0009
crossref_primary_10_1587_transfun_E100_A_1279
crossref_primary_10_1080_01621459_2024_2380105
crossref_primary_10_1109_JSTSP_2018_2827299
crossref_primary_10_1109_TIT_2021_3138772
crossref_primary_10_1016_j_laa_2021_03_039
crossref_primary_10_1016_j_dsp_2021_103009
crossref_primary_10_1007_s11767_013_3049_7
crossref_primary_10_1016_j_jvcir_2014_01_015
crossref_primary_10_1109_JSYST_2020_3012775
crossref_primary_10_1142_S0218001415510039
crossref_primary_10_3389_fams_2018_00065
crossref_primary_10_1080_01621459_2019_1635485
crossref_primary_10_1007_s00521_016_2391_8
crossref_primary_10_1109_TIT_2011_2171521
crossref_primary_10_1007_s11263_016_0881_x
crossref_primary_10_1016_j_crmeth_2023_100540
crossref_primary_10_1109_TSC_2021_3089241
crossref_primary_10_1016_j_cam_2022_114866
crossref_primary_10_1109_OJSP_2021_3104497
crossref_primary_10_1109_TSP_2013_2278516
crossref_primary_10_1214_19_EJS1630
crossref_primary_10_1109_TFUZZ_2017_2760287
crossref_primary_10_1109_TCYB_2018_2811764
crossref_primary_10_1093_imaiai_iaaa020
crossref_primary_10_1017_jfm_2016_682
crossref_primary_10_1214_17_AOS1541
crossref_primary_10_1007_s11424_023_2342_2
crossref_primary_10_1109_TSP_2016_2645517
crossref_primary_10_1109_TSP_2018_2883924
crossref_primary_10_1007_s10994_024_06691_z
crossref_primary_10_1214_17_AOS1666
crossref_primary_10_3390_e24070946
crossref_primary_10_1103_PhysRevLett_105_150401
crossref_primary_10_3390_sym11101277
crossref_primary_10_1109_TPAMI_2012_88
crossref_primary_10_1186_s13634_018_0591_3
crossref_primary_10_1109_TIT_2019_2924900
crossref_primary_10_3390_s24082485
crossref_primary_10_1016_j_jcss_2022_12_001
crossref_primary_10_1109_TSP_2021_3067738
crossref_primary_10_1145_2674559
crossref_primary_10_1109_TIP_2015_2511584
crossref_primary_10_1109_MSP_2012_2232355
crossref_primary_10_1137_130919490
crossref_primary_10_1109_TCBB_2021_3109055
crossref_primary_10_1109_LSP_2012_2224655
crossref_primary_10_3182_20120711_3_BE_2027_00244
crossref_primary_10_1007_s10589_021_00279_2
crossref_primary_10_1007_s43670_024_00096_8
crossref_primary_10_1007_s00521_017_3216_0
crossref_primary_10_1109_TGRS_2018_2872590
crossref_primary_10_3390_app9081669
crossref_primary_10_1109_TSP_2014_2325798
crossref_primary_10_1007_s11263_014_0746_0
crossref_primary_10_1007_s13042_023_01935_1
crossref_primary_10_1109_TIT_2022_3144605
crossref_primary_10_1109_TKDE_2014_2356461
crossref_primary_10_1016_j_neucom_2021_07_075
crossref_primary_10_1007_s13177_018_0175_5
crossref_primary_10_1007_s10483_014_1860_9
crossref_primary_10_1109_LSP_2020_3008043
crossref_primary_10_1137_130932168
crossref_primary_10_1137_130935434
crossref_primary_10_1214_22_AOS2223
crossref_primary_10_1016_j_neucom_2015_02_082
crossref_primary_10_1002_cpa_21957
crossref_primary_10_1016_j_sigpro_2022_108826
crossref_primary_10_1109_TIP_2019_2957925
crossref_primary_10_3390_sym11111377
crossref_primary_10_1214_20_AOS1942
crossref_primary_10_1145_3700433
crossref_primary_10_1093_imaiai_iay003
crossref_primary_10_1109_TSP_2012_2197748
crossref_primary_10_1118_1_4921365
crossref_primary_10_1007_s10915_021_01654_1
crossref_primary_10_1002_mrm_25395
crossref_primary_10_1109_JIOT_2019_2950418
crossref_primary_10_1016_j_imavis_2014_02_007
crossref_primary_10_1002_nbm_5223
crossref_primary_10_1109_TIT_2016_2556702
crossref_primary_10_1137_18M1202311
crossref_primary_10_1016_j_sigpro_2016_05_026
crossref_primary_10_1137_21M1402340
crossref_primary_10_1007_s13042_014_0241_5
crossref_primary_10_1080_01621459_2024_2335591
crossref_primary_10_1109_TPAMI_2019_2929043
crossref_primary_10_1287_trsc_2023_0493
crossref_primary_10_1111_rssb_12400
crossref_primary_10_2139_ssrn_4747889
crossref_primary_10_1109_ACCESS_2019_2961787
crossref_primary_10_1109_TIP_2021_3086596
crossref_primary_10_1109_TIT_2016_2549040
crossref_primary_10_3390_rs17060982
crossref_primary_10_1109_TGRS_2023_3247689
crossref_primary_10_1016_j_cageo_2019_104376
crossref_primary_10_1109_TIT_2013_2294644
crossref_primary_10_1021_acs_jctc_3c00851
crossref_primary_10_1117_1_JRS_10_035014
crossref_primary_10_1109_TNET_2012_2228881
crossref_primary_10_1109_TSP_2022_3173470
crossref_primary_10_1137_130921179
crossref_primary_10_1016_j_acha_2024_101746
crossref_primary_10_1109_TCYB_2021_3113520
crossref_primary_10_1109_TGRS_2023_3237464
crossref_primary_10_1109_TIP_2014_2380155
crossref_primary_10_1109_TAC_2022_3161876
crossref_primary_10_1162_NECO_a_00369
crossref_primary_10_1016_j_acha_2021_03_004
crossref_primary_10_1093_ije_dyac043
crossref_primary_10_1093_imaiai_iay019
crossref_primary_10_1109_TIM_2021_3109743
crossref_primary_10_1038_srep17728
crossref_primary_10_1109_TBDATA_2017_2763170
crossref_primary_10_1007_s11704_016_5552_0
crossref_primary_10_5802_ojmo_27
crossref_primary_10_1109_JSEN_2016_2558184
crossref_primary_10_1109_TSP_2022_3229642
crossref_primary_10_1049_ipr2_12551
crossref_primary_10_1088_1361_6420_ab6139
crossref_primary_10_3390_info8010017
crossref_primary_10_1109_TSP_2015_2417491
crossref_primary_10_1016_j_sigpro_2021_107993
crossref_primary_10_1109_TSP_2018_2818075
crossref_primary_10_1214_19_AOS1819
crossref_primary_10_1137_20M1319577
crossref_primary_10_1111_jcmm_14048
crossref_primary_10_1109_TGRS_2016_2623626
crossref_primary_10_1109_JSTARS_2022_3162763
crossref_primary_10_1109_LGRS_2018_2810234
crossref_primary_10_1021_pr500171u
crossref_primary_10_1109_TIP_2019_2917857
crossref_primary_10_3390_math8040628
crossref_primary_10_1109_TGRS_2023_3282217
crossref_primary_10_1109_TSP_2022_3174423
crossref_primary_10_1007_s11063_017_9715_2
crossref_primary_10_1109_TCSVT_2023_3250651
crossref_primary_10_1109_TPAMI_2016_2539946
crossref_primary_10_1109_TSP_2019_2904026
crossref_primary_10_1007_s11265_022_01817_9
crossref_primary_10_3390_s17030542
crossref_primary_10_1039_C7JA00178A
crossref_primary_10_1214_14_AOS1272
crossref_primary_10_3934_fods_2021028
crossref_primary_10_1109_TCYB_2017_2715846
crossref_primary_10_1109_TNNLS_2016_2597444
crossref_primary_10_1038_s44172_025_00345_1
crossref_primary_10_1109_JSTSP_2012_2233193
crossref_primary_10_3390_a9020028
crossref_primary_10_1016_j_comcom_2018_03_007
crossref_primary_10_1109_TSP_2016_2597121
crossref_primary_10_1016_j_asoc_2024_112075
crossref_primary_10_1093_ectj_utae014
crossref_primary_10_1109_TCYB_2013_2286106
crossref_primary_10_1093_imaiai_iax020
crossref_primary_10_1109_JSTSP_2021_3079626
crossref_primary_10_12677_PM_2021_116114
crossref_primary_10_1109_TIT_2023_3237231
crossref_primary_10_1109_TKDE_2012_75
crossref_primary_10_1121_10_0017064
crossref_primary_10_1214_19_EJS1658
crossref_primary_10_1109_TGRS_2017_2771826
crossref_primary_10_1109_TKDE_2020_2995896
crossref_primary_10_1007_s11517_020_02312_8
crossref_primary_10_1049_rsn2_12110
crossref_primary_10_1016_j_sigpro_2021_108109
crossref_primary_10_1214_20_AOS1980
crossref_primary_10_1016_j_acha_2012_04_002
crossref_primary_10_1109_TVT_2017_2693384
crossref_primary_10_1007_s11222_015_9567_4
crossref_primary_10_1088_1742_6596_1237_3_032059
crossref_primary_10_1137_100799988
crossref_primary_10_1093_imaiai_iaad033
crossref_primary_10_1214_22_EJS2015
crossref_primary_10_1109_TITS_2014_2305334
crossref_primary_10_1109_TPAMI_2020_3046476
crossref_primary_10_1287_ijoc_2022_1251
crossref_primary_10_1002_sta4_296
crossref_primary_10_1080_10618600_2024_2441165
crossref_primary_10_1080_09720502_2015_1040663
crossref_primary_10_1016_j_patcog_2019_06_019
crossref_primary_10_1038_npjqi_2015_18
crossref_primary_10_1109_TIT_2014_2366459
crossref_primary_10_1109_TSP_2017_2755602
crossref_primary_10_1145_1970392_1970395
crossref_primary_10_1007_s10208_011_9084_6
crossref_primary_10_1080_03610926_2020_1843055
crossref_primary_10_1109_TIP_2012_2221729
crossref_primary_10_1016_j_apm_2019_02_001
crossref_primary_10_1109_TSP_2020_2997180
crossref_primary_10_1109_TPAMI_2011_191
crossref_primary_10_3390_rs15010121
crossref_primary_10_1109_TGRS_2014_2321557
crossref_primary_10_1093_imaiai_iaae013
crossref_primary_10_2139_ssrn_4063431
crossref_primary_10_1016_j_dsp_2016_01_006
crossref_primary_10_1109_TNNLS_2023_3236415
crossref_primary_10_1016_j_patcog_2015_09_008
crossref_primary_10_3390_app14104239
crossref_primary_10_1016_j_trc_2024_104513
crossref_primary_10_1080_01431161_2016_1148286
crossref_primary_10_1214_16_EJS1147
crossref_primary_10_1080_01621459_2017_1389740
crossref_primary_10_1190_geo2015_0066_1
crossref_primary_10_1007_s11063_018_9841_5
crossref_primary_10_1016_j_sigpro_2015_02_025
crossref_primary_10_1145_2903716
crossref_primary_10_1109_TPWRS_2023_3237505
crossref_primary_10_1145_3360488
crossref_primary_10_1088_1742_2132_13_5_704
crossref_primary_10_1109_TSP_2020_3011024
crossref_primary_10_1080_10618600_2022_2134873
crossref_primary_10_1109_TIT_2018_2881749
crossref_primary_10_1190_geo2020_0032_1
crossref_primary_10_1007_s11222_020_09939_5
crossref_primary_10_1214_11_AOS894
crossref_primary_10_1007_s10589_017_9898_5
crossref_primary_10_1016_j_sigpro_2014_07_016
crossref_primary_10_1016_j_procs_2016_05_378
crossref_primary_10_1038_s41598_024_63582_y
crossref_primary_10_1088_1361_6420_aaf317
crossref_primary_10_1109_TSP_2019_2952057
crossref_primary_10_1109_TSP_2018_2879031
crossref_primary_10_1016_j_procs_2016_05_379
crossref_primary_10_1109_TIT_2012_2204535
crossref_primary_10_1007_s40300_023_00239_2
crossref_primary_10_1016_j_neunet_2017_04_005
crossref_primary_10_1109_MSP_2014_2327238
crossref_primary_10_1287_ijoc_2022_0022
crossref_primary_10_1016_j_sigpro_2014_08_026
crossref_primary_10_1109_TMM_2022_3171088
crossref_primary_10_3390_computers10030033
crossref_primary_10_1109_TNNLS_2022_3215983
crossref_primary_10_1016_j_patcog_2017_10_014
crossref_primary_10_1109_TAC_2021_3135361
crossref_primary_10_1088_0266_5611_26_11_115009
crossref_primary_10_1002_ange_201409291
crossref_primary_10_1109_TIT_2011_2111771
crossref_primary_10_3390_s23104847
crossref_primary_10_1177_0161734620910163
crossref_primary_10_1287_ijoc_2022_1219
crossref_primary_10_1109_LSP_2021_3116525
crossref_primary_10_1016_j_artmed_2018_12_006
crossref_primary_10_1007_s13042_024_02480_1
crossref_primary_10_1016_j_sigpro_2014_08_032
crossref_primary_10_3390_jimaging7070110
crossref_primary_10_1002_sam_11700
crossref_primary_10_1109_TVT_2011_2118777
crossref_primary_10_1007_s11760_019_01482_9
crossref_primary_10_1109_TMM_2016_2613824
crossref_primary_10_1109_TVT_2022_3169404
crossref_primary_10_1214_22_BA1317
crossref_primary_10_1109_TSG_2020_2968814
crossref_primary_10_1214_19_AOS1854
crossref_primary_10_1214_19_AOS1855
crossref_primary_10_1080_02331934_2019_1678157
crossref_primary_10_1109_LGRS_2014_2327224
crossref_primary_10_1109_TIT_2024_3450870
crossref_primary_10_1109_LSP_2017_2708750
crossref_primary_10_1080_03081087_2019_1631246
crossref_primary_10_1109_TSG_2019_2944986
crossref_primary_10_1111_rssb_12550
crossref_primary_10_1214_21_AOS2125
crossref_primary_10_3724_SP_J_1249_2019_05473
crossref_primary_10_1109_TSP_2014_2340820
crossref_primary_10_1137_19M126476X
crossref_primary_10_1287_opre_2021_2193
crossref_primary_10_3150_12_BEJ487
crossref_primary_10_1007_s11227_018_2486_3
crossref_primary_10_1007_s11276_020_02328_w
crossref_primary_10_1016_j_neucom_2018_02_002
crossref_primary_10_1016_j_comnet_2014_02_020
crossref_primary_10_1109_ACCESS_2022_3177592
crossref_primary_10_1109_LSP_2012_2188026
crossref_primary_10_1073_pnas_1705490115
crossref_primary_10_1109_TWC_2020_3020191
crossref_primary_10_1109_TCSVT_2023_3275299
crossref_primary_10_1186_s13634_020_00698_z
crossref_primary_10_1007_s11760_017_1110_y
crossref_primary_10_1111_coin_12372
crossref_primary_10_1109_JSTARS_2019_2891114
crossref_primary_10_1109_JSEN_2018_2866686
crossref_primary_10_1109_TIP_2017_2718183
crossref_primary_10_1109_TSP_2016_2586753
crossref_primary_10_1137_110845768
crossref_primary_10_1214_23_AOS2293
crossref_primary_10_1109_TSP_2019_2940121
crossref_primary_10_1007_s11135_023_01659_y
crossref_primary_10_1109_TNET_2015_2417809
crossref_primary_10_1109_TCBB_2015_2459692
crossref_primary_10_1016_j_apacoust_2020_107681
crossref_primary_10_1109_TCOMM_2023_3279403
crossref_primary_10_1109_TSP_2015_2440187
crossref_primary_10_1111_bmsp_12340
crossref_primary_10_1109_TAC_2016_2595761
crossref_primary_10_1155_2014_763469
crossref_primary_10_1109_TIP_2017_2698920
crossref_primary_10_1109_TCBB_2020_3027444
crossref_primary_10_1109_TSP_2019_2932875
crossref_primary_10_1016_j_cam_2010_06_010
crossref_primary_10_1109_TSP_2015_2441042
crossref_primary_10_1109_TGRS_2020_3018315
crossref_primary_10_1137_100785028
crossref_primary_10_1109_TPAMI_2024_3512458
crossref_primary_10_1109_TAP_2024_3454456
crossref_primary_10_3390_math11051155
crossref_primary_10_1145_2601408
crossref_primary_10_1214_18_STS642
crossref_primary_10_1109_TIT_2020_3019569
crossref_primary_10_1109_JSTARS_2019_2906360
crossref_primary_10_1109_TPAMI_2017_2734888
crossref_primary_10_1109_TSP_2019_2944758
crossref_primary_10_1364_JOSAA_381158
crossref_primary_10_1016_j_sigpro_2022_108640
crossref_primary_10_1016_j_dsp_2020_102880
crossref_primary_10_1109_TIT_2023_3266271
crossref_primary_10_1109_TSP_2024_3388372
crossref_primary_10_1007_s11760_024_03353_4
crossref_primary_10_1109_JSTSP_2018_2840481
crossref_primary_10_1016_j_jeconom_2020_08_002
crossref_primary_10_1002_widm_1108
crossref_primary_10_1109_TSP_2020_3020397
crossref_primary_10_1137_18M1189464
crossref_primary_10_1145_2822877
crossref_primary_10_1007_s10898_018_0684_4
crossref_primary_10_1109_TCSVT_2011_2106251
crossref_primary_10_1137_110820361
crossref_primary_10_1109_TSP_2015_2500192
crossref_primary_10_1016_j_neucom_2023_01_030
crossref_primary_10_1109_TMI_2017_2744663
crossref_primary_10_1109_TSP_2017_2784361
crossref_primary_10_1016_j_ins_2020_03_103
crossref_primary_10_1145_3478105
crossref_primary_10_1021_acsphotonics_0c00553
crossref_primary_10_1109_JSTSP_2016_2547860
crossref_primary_10_1109_TSP_2018_2813332
crossref_primary_10_1109_TSP_2019_2944740
crossref_primary_10_1287_opre_2021_2182
crossref_primary_10_1109_TSP_2012_2208634
crossref_primary_10_1109_TIT_2023_3345902
crossref_primary_10_1073_pnas_1910053116
crossref_primary_10_1137_23M1580164
crossref_primary_10_1016_j_neucom_2020_05_026
crossref_primary_10_1109_TSP_2020_2988784
crossref_primary_10_1109_TII_2019_2937876
crossref_primary_10_2139_ssrn_4086999
crossref_primary_10_1145_3634751
crossref_primary_10_1109_TSP_2013_2287673
crossref_primary_10_1109_TPAMI_2019_2937869
crossref_primary_10_1137_21M1433812
crossref_primary_10_1109_JSTSP_2016_2555482
crossref_primary_10_1109_ACCESS_2019_2936619
crossref_primary_10_1109_TIP_2014_2329449
crossref_primary_10_1016_j_jvcir_2016_11_005
crossref_primary_10_3390_s21031016
crossref_primary_10_1007_s00034_019_01093_2
crossref_primary_10_1109_TIP_2016_2585047
crossref_primary_10_1007_s11749_024_00934_w
Cites_doi 10.1145/1273496.1273499
10.1007/BF00129684
10.1109/9.554402
10.1007/BFb0030287
10.1090/S0894-0347-08-00600-0
10.1109/TAP.1986.1143830
10.1073/pnas.0709842104
10.1145/138859.138867
10.1109/TIT.2005.862083
10.1109/TSP.2002.1003065
10.1137/090750688
10.1137/070697835
10.1137/090755436
10.1109/TPAMI.2004.52
10.1145/1149283.1149286
10.1109/ACSSC.2008.5074571
10.1007/s10208-009-9045-5
10.1137/080738970
10.1109/TIT.2005.858979
10.1002/cpa.20132
10.1109/ISIT.2009.5205567
10.1109/ACC.2003.1243393
10.1145/380752.380859
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
F28
FR3
ADTOC
UNPAY
DOI 10.1109/JPROC.2009.2035722
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore (NTUSG)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2256
EndPage 936
ExternalDocumentID oai:authors.library.caltech.edu:18601
2716848551
10_1109_JPROC_2009_2035722
5454406
Genre orig-research
GroupedDBID -DZ
-~X
.DC
0R~
123
1OL
29P
3EH
4.4
6IK
85S
97E
9M8
AAJGR
AAWTH
ABAZT
ABFSI
ABJNI
ABQJQ
ABVLG
ACBEA
ACGFS
AENEX
AETEA
AETIX
AFOGA
AGNAY
AGQYO
AGSQL
AHBIQ
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
FA8
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MVM
O9-
OCL
RIA
RIE
RIU
RNS
TAE
TN5
TWZ
UDY
UHB
UKR
UQL
VOH
WHG
XJT
XOL
YNT
ZCA
ZXP
ZY4
~02
AAYXX
CITATION
7SP
8FD
L7M
RIG
F28
FR3
ADTOC
UNPAY
ID FETCH-LOGICAL-c372t-eb991753ae7daba8cff5d6c2731d4091b976b0bb98b663d855267b1f08bc1f1a3
IEDL.DBID RIE
ISSN 0018-9219
1558-2256
IngestDate Sun Oct 26 04:11:47 EDT 2025
Wed Oct 01 13:33:25 EDT 2025
Mon Jun 30 05:21:00 EDT 2025
Thu Apr 24 23:07:19 EDT 2025
Wed Oct 01 02:41:00 EDT 2025
Wed Aug 27 02:43:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-eb991753ae7daba8cff5d6c2731d4091b976b0bb98b663d855267b1f08bc1f1a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://resolver.caltech.edu/CaltechAUTHORS:20100608-084826169
PQID 1027190402
PQPubID 85453
PageCount 12
ParticipantIDs unpaywall_primary_10_1109_jproc_2009_2035722
ieee_primary_5454406
crossref_citationtrail_10_1109_JPROC_2009_2035722
crossref_primary_10_1109_JPROC_2009_2035722
proquest_journals_1027190402
proquest_miscellaneous_1671231787
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-06-01
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Proceedings of the IEEE
PublicationTitleAbbrev JPROC
PublicationYear 2010
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref12
ref15
ref31
ref30
ref33
ref11
ref32
ref10
ref17
fazel (ref19) 2002
(ref2) 2008; 25
ref16
ref18
(ref1) 0
weng (ref35) 0
ref24
cands (ref13) 2007; 35
ref23
ref26
cai (ref9) 2008
ref20
ref21
ma (ref27) 2008
ref28
ref29
ref8
ref7
ref3
keshavan (ref25) 2009
ref5
gilbert (ref22) 2005
argyriou (ref4) 2007
beck (ref6) 1998
cands (ref14) 2009
References_xml – volume: 25
  year: 2008
  ident: ref2
  publication-title: IEEE Signal Processing Mag (Special Issue on Sensing Sampling and Compression)
– ident: ref3
  doi: 10.1145/1273496.1273499
– ident: ref33
  doi: 10.1007/BF00129684
– ident: ref28
  doi: 10.1109/9.554402
– ident: ref16
  doi: 10.1007/BFb0030287
– year: 1998
  ident: ref6
  article-title: computational study and comparisons of lft reducibility methods
  publication-title: Proc Amer Contr Conf
– ident: ref18
  doi: 10.1090/S0894-0347-08-00600-0
– ident: ref30
  doi: 10.1109/TAP.1986.1143830
– year: 2008
  ident: ref9
  publication-title: A Singular Value Thresholding Algorithm for Matrix Completion
– ident: ref31
  doi: 10.1073/pnas.0709842104
– ident: ref23
  doi: 10.1145/138859.138867
– year: 2009
  ident: ref14
  publication-title: The power of convex relaxation Near-optimal matrix completion
– ident: ref11
  doi: 10.1109/TIT.2005.862083
– year: 0
  ident: ref1
– ident: ref34
  doi: 10.1109/TSP.2002.1003065
– ident: ref32
  doi: 10.1137/090750688
– ident: ref29
  doi: 10.1137/070697835
– year: 2005
  ident: ref22
  article-title: improved time bounds for near-optimal sparse fourier representation
  publication-title: Proc Wavelets XI SPIE Opt Photon
– ident: ref26
  doi: 10.1137/090755436
– volume: 35
  year: 2007
  ident: ref13
  article-title: the dantzig selector: statistical estimation when <tex notation="tex">$p$</tex> is much larger than <tex notation="tex">$n$</tex>
  publication-title: Ann Statist
– ident: ref15
  doi: 10.1109/TPAMI.2004.52
– year: 2002
  ident: ref19
  publication-title: Matrix Rank Minimization With Applications
– ident: ref7
  doi: 10.1145/1149283.1149286
– ident: ref20
  doi: 10.1109/ACSSC.2008.5074571
– ident: ref10
  doi: 10.1007/s10208-009-9045-5
– year: 0
  ident: ref35
  article-title: matrix completion for doa estimation
– ident: ref8
  doi: 10.1137/080738970
– year: 2008
  ident: ref27
  publication-title: Fixed Point and Bregman Iterative Methods for Matrix Rank Minimization
– ident: ref12
  doi: 10.1109/TIT.2005.858979
– ident: ref17
  doi: 10.1002/cpa.20132
– year: 2007
  ident: ref4
  article-title: multi-task feature learning
  publication-title: Neural Inf Process Syst
– year: 2009
  ident: ref25
  publication-title: Matrix completion from noisy entries
– ident: ref24
  doi: 10.1109/ISIT.2009.5205567
– ident: ref21
  doi: 10.1109/ACC.2003.1243393
– ident: ref5
  doi: 10.1145/380752.380859
SSID ssj0003563
Score 2.5799944
Snippet On the heels of compressed sensing, a new field has very recently emerged. This field addresses a broad range of problems of significant practical interest,...
SourceID unpaywall
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 925
SubjectTerms Collaboration
Compressed
Compressed sensing
Computer vision
Detection
duality in optimization
Filtering
Frequency
Linear matrix inequalities
low-rank matrices
Machine learning
Matrices
matrix completion
Minimization
Motion pictures
Noise
Noise level
nuclear-norm minimization
Optimization
oracle inequalities
Quantitative analysis
Remote sensing
semidefinite programming
Studies
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9tADLdGeRg8wBhMy1ZQkPa2Be6uuVyON1SBKiQKYqsGT9F9RXSrEgSpBvz18yVpRTcJCd4ixYmc2Gf_fD7bAF-cEoRroSOlJYli7XqRQk8eWUNyGdtcGu6rkU-HyWAUn1zyy3bDzdfCYIxZTurmqD5b3Oy27feba5TY4Ozi-4FP4JLEp-3TGNExTeQSLCccsXgHlkfD88OrxvziSmb1ZA_0magO6NxnVTNE7v_yDqLpV8lIjwvGFjxTPWplAXW-nRY36uGPmkyeOKDjdchmrDfnTn7vTSu9Zx7_6er4-m97B2stNg0PG2XagDeueA-rTzoWbkL31Lf0vw-9GfFtu8si_DmursNhOb5zWzA6PvrRH0TtgIXI9ASrIqcRHWK8opywSqvU5Dm3iUFEQy3GfVQjVtFEa5lqBCY25ZwlQtOcpNrQnKreB-gUZeE-Qsisr94Sitg0RrNg0zxmiqbEcOdDHBkAnf3czLTdx_0QjElWRyFEZifnF2d9PxVTZq1AAvg6f-am6b3xLPWml9mcEqEhcpIE0J3JMGuX5x2-hQlEQhg7B7A7v40Ly2dLVOHKKdIkAr06RYMWwLe57P9jpNajBUY-vYz8M6w0JxL8zk4XOtXt1G0j0Kn0TqvNfwHTU_LO
  priority: 102
  providerName: Unpaywall
Title Matrix Completion With Noise
URI https://ieeexplore.ieee.org/document/5454406
https://www.proquest.com/docview/1027190402
https://www.proquest.com/docview/1671231787
https://resolver.caltech.edu/CaltechAUTHORS:20100608-084826169
UnpaywallVersion submittedVersion
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore (NTUSG)
  customDbUrl:
  eissn: 1558-2256
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003563
  issn: 1558-2256
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEB48HtQHbzFaJYJvmrqbJtnksRRFhFYRi_oU9goeJRFN8Pj1ziZpsCriSwhkEiazx3yzu_MNwL7mjPiCCYeLiDie0B2Hoyd3lCRJ5Kkkkr7JRu4PgtOhd3bj30zBYZMLo7UuD5_ptrkt9_JVJguzVHaE3t7zDL_2NAuDKlermXU7fl01jeIAxmE4TpAh0dHZxeV5r6KmdFGOue6EEyqrqkwAzLkifeLvr3w0-uJrTpagP9ayOmLy2C5y0ZYf3wgc__sby7BYg067W_WSFZjS6SosfKEiXINW33D1v9lmfjB83FlqX9_nd_Ygu3_R6zA8Ob7qnTp15QRHdpibO1og7MNAhGumuOChTBJfBRKhClUY0FGBIEQQIaJQIOJQoe-7ARM0IaGQNKG8swEzaZbqTbBdZdKyGCcqRKXxmngupyGRvjaxS2QBHZsyljWtuKluMYrL8IJEcWl-U-4yimvzW3DQvPNUkWr8Kb1mbNhI1uazoDVusbgedy_4FZchxMGg2IK95jGOGLMNwlOdFSgTMHTXFGcqCw6blv6hyINBEBOKbP2uyDbMV0cKzNJMC2by50LvIFLJxW7ZRXdhdji46N5-Aq3p4qQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8heCg8AONDy1ZYkPYGKXYa18kjqqg6aMuEQPAW-SuCUSVoTTTYX79zkkYtm9Bekki5RJdz7Pud7fsdwFcjOGGSS0_IiHiBNF1PoCf3tCJJFOgkUsxmI48nveFtcHHP7lfgpMmFMcaUm89Mx16Wa_k6U4WdKjtFbx8Ell97Dc8Bq7K1mnG3y-q6aRS7MHbEeYoMiU4vvl9f9StySh_luO8vuaGyrsoSxGwV6bN4_SWm0wVvM9iC8VzPapPJU6fIZUf9fkPh-L8fsg2bNex0z6r_5AOsmHQHNhbICHehPbZs_S-uHSEsI3eWuneP-YM7yR5nZg9uB-c3_aFX107wVJf7uWckAj8MRYThWkgRqiRhuqcQrFCNIR2VCEMkkTIKJWIOHTLm97ikCQmlogkV3X1YTbPUfATX1zYxiwuiQ1Qaj0ngCxoSxYyNXiIH6NyUsaqJxW19i2lcBhgkikvz24KXUVyb34Hj5pnnilbjXelda8NGsjafA-15i8V1z5vhW3yOIAfDYgeOmtvYZ-xCiEhNVqBMj6PDpjhWOXDStPRfivywGGJJkU__VuQLtIY341E8-ja5_Azr1QYDO1HThtX8Z2EOELfk8rD8Xf8AlJbkQQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9tADLdGeRg8wBhMy1ZQkPa2Be6uuVyON1SBKiQKYqsGT9F9RXSrEgSpBvz18yVpRTcJCd4ixYmc2Gf_fD7bAF-cEoRroSOlJYli7XqRQk8eWUNyGdtcGu6rkU-HyWAUn1zyy3bDzdfCYIxZTurmqD5b3Oy27feba5TY4Ozi-4FP4JLEp-3TGNExTeQSLCccsXgHlkfD88OrxvziSmb1ZA_0magO6NxnVTNE7v_yDqLpV8lIjwvGFjxTPWplAXW-nRY36uGPmkyeOKDjdchmrDfnTn7vTSu9Zx7_6er4-m97B2stNg0PG2XagDeueA-rTzoWbkL31Lf0vw-9GfFtu8si_DmursNhOb5zWzA6PvrRH0TtgIXI9ASrIqcRHWK8opywSqvU5Dm3iUFEQy3GfVQjVtFEa5lqBCY25ZwlQtOcpNrQnKreB-gUZeE-Qsisr94Sitg0RrNg0zxmiqbEcOdDHBkAnf3czLTdx_0QjElWRyFEZifnF2d9PxVTZq1AAvg6f-am6b3xLPWml9mcEqEhcpIE0J3JMGuX5x2-hQlEQhg7B7A7v40Ly2dLVOHKKdIkAr06RYMWwLe57P9jpNajBUY-vYz8M6w0JxL8zk4XOtXt1G0j0Kn0TqvNfwHTU_LO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Matrix+Completion+With+Noise&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Candes%2C+Emmanuel+J.&rft.au=Plan%2C+Yaniv&rft.date=2010-06-01&rft.pub=IEEE&rft.issn=0018-9219&rft.volume=98&rft.issue=6&rft.spage=925&rft.epage=936&rft_id=info:doi/10.1109%2FJPROC.2009.2035722&rft.externalDocID=5454406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon