Clinical application of modified bag-of-features coupled with hybrid neural-based classifier in dengue fever classification using gene expression data
Dengue fever detection and classification have a vital role due to the recent outbreaks of different kinds of dengue fever. Recently, the advancement in the microarray technology can be employed for such classification process. Several studies have established that the gene selection phase takes a s...
Saved in:
| Published in | Medical & biological engineering & computing Vol. 56; no. 4; pp. 709 - 720 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2018
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0140-0118 1741-0444 1741-0444 |
| DOI | 10.1007/s11517-017-1722-y |
Cover
| Abstract | Dengue fever detection and classification have a vital role due to the recent outbreaks of different kinds of dengue fever. Recently, the advancement in the microarray technology can be employed for such classification process. Several studies have established that the gene selection phase takes a significant role in the classifier performance. Subsequently, the current study focused on detecting two different variations, namely, dengue fever (DF) and dengue hemorrhagic fever (DHF). A modified bag-of-features method has been proposed to select the most promising genes in the classification process. Afterward, a modified cuckoo search optimization algorithm has been engaged to support the artificial neural (ANN-MCS) to classify the unknown subjects into three different classes namely, DF, DHF, and another class containing convalescent and normal cases. The proposed method has been compared with other three well-known classifiers, namely, multilayer perceptron feed-forward network (MLP-FFN), artificial neural network (ANN) trained with cuckoo search (ANN-CS), and ANN trained with PSO (ANN-PSO). Experiments have been carried out with different number of clusters for the initial bag-of-features-based feature selection phase. After obtaining the reduced dataset, the hybrid ANN-MCS model has been employed for the classification process. The results have been compared in terms of the confusion matrix-based performance measuring metrics. The experimental results indicated a highly statistically significant improvement with the proposed classifier over the traditional ANN-CS model. |
|---|---|
| AbstractList | Dengue fever detection and classification have a vital role due to the recent outbreaks of different kinds of dengue fever. Recently, the advancement in the microarray technology can be employed for such classification process. Several studies have established that the gene selection phase takes a significant role in the classifier performance. Subsequently, the current study focused on detecting two different variations, namely, dengue fever (DF) and dengue hemorrhagic fever (DHF). A modified bag-of-features method has been proposed to select the most promising genes in the classification process. Afterward, a modified cuckoo search optimization algorithm has been engaged to support the artificial neural (ANN-MCS) to classify the unknown subjects into three different classes namely, DF, DHF, and another class containing convalescent and normal cases. The proposed method has been compared with other three well-known classifiers, namely, multilayer perceptron feed-forward network (MLP-FFN), artificial neural network (ANN) trained with cuckoo search (ANN-CS), and ANN trained with PSO (ANN-PSO). Experiments have been carried out with different number of clusters for the initial bag-of-features-based feature selection phase. After obtaining the reduced dataset, the hybrid ANN-MCS model has been employed for the classification process. The results have been compared in terms of the confusion matrix-based performance measuring metrics. The experimental results indicated a highly statistically significant improvement with the proposed classifier over the traditional ANN-CS model. Dengue fever detection and classification have a vital role due to the recent outbreaks of different kinds of dengue fever. Recently, the advancement in the microarray technology can be employed for such classification process. Several studies have established that the gene selection phase takes a significant role in the classifier performance. Subsequently, the current study focused on detecting two different variations, namely, dengue fever (DF) and dengue hemorrhagic fever (DHF). A modified bag-of-features method has been proposed to select the most promising genes in the classification process. Afterward, a modified cuckoo search optimization algorithm has been engaged to support the artificial neural (ANN-MCS) to classify the unknown subjects into three different classes namely, DF, DHF, and another class containing convalescent and normal cases. The proposed method has been compared with other three well-known classifiers, namely, multilayer perceptron feed-forward network (MLP-FFN), artificial neural network (ANN) trained with cuckoo search (ANN-CS), and ANN trained with PSO (ANN-PSO). Experiments have been carried out with different number of clusters for the initial bag-of-features-based feature selection phase. After obtaining the reduced dataset, the hybrid ANN-MCS model has been employed for the classification process. The results have been compared in terms of the confusion matrix-based performance measuring metrics. The experimental results indicated a highly statistically significant improvement with the proposed classifier over the traditional ANN-CS model.Dengue fever detection and classification have a vital role due to the recent outbreaks of different kinds of dengue fever. Recently, the advancement in the microarray technology can be employed for such classification process. Several studies have established that the gene selection phase takes a significant role in the classifier performance. Subsequently, the current study focused on detecting two different variations, namely, dengue fever (DF) and dengue hemorrhagic fever (DHF). A modified bag-of-features method has been proposed to select the most promising genes in the classification process. Afterward, a modified cuckoo search optimization algorithm has been engaged to support the artificial neural (ANN-MCS) to classify the unknown subjects into three different classes namely, DF, DHF, and another class containing convalescent and normal cases. The proposed method has been compared with other three well-known classifiers, namely, multilayer perceptron feed-forward network (MLP-FFN), artificial neural network (ANN) trained with cuckoo search (ANN-CS), and ANN trained with PSO (ANN-PSO). Experiments have been carried out with different number of clusters for the initial bag-of-features-based feature selection phase. After obtaining the reduced dataset, the hybrid ANN-MCS model has been employed for the classification process. The results have been compared in terms of the confusion matrix-based performance measuring metrics. The experimental results indicated a highly statistically significant improvement with the proposed classifier over the traditional ANN-CS model. |
| Author | Sen, Soumya Dey, Nilanjan Chatterjee, Sankhadeep Ashour, Amira S. Shi, Fuqian Fong, Simon James |
| Author_xml | – sequence: 1 givenname: Sankhadeep surname: Chatterjee fullname: Chatterjee, Sankhadeep email: chatterjeesankhadeep.cu@gmail.com organization: Department of Computer Science & Engineering, University of Calcutta – sequence: 2 givenname: Nilanjan surname: Dey fullname: Dey, Nilanjan organization: Department of Information Technology, Techno India College of Technology – sequence: 3 givenname: Fuqian surname: Shi fullname: Shi, Fuqian organization: College of Information and Engineering, Wenzhou Medical University – sequence: 4 givenname: Amira S. surname: Ashour fullname: Ashour, Amira S. organization: Department of Electronics and Electrical Communications Engineering, Faculty of Engineering, Tanta University – sequence: 5 givenname: Simon James surname: Fong fullname: Fong, Simon James organization: Department of Computer and Information Science Data Analytics and Collaborative Computing Laboratory, University of Macau – sequence: 6 givenname: Soumya surname: Sen fullname: Sen, Soumya organization: A.K. Choudhury School of Information Technology, University of Calcutta |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28891000$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kVFvFCEQx4lpY6_VD-CLIfGlL2uBZZfj0Vy0mjTxpT4TFoYtDQcr7Grvi_h55byrJk3sAwFmfv-ZyfzP0UlMERB6Q8l7Soi4KpR2VDSkHioYa3Yv0IoKThvCOT9BK0I5qVm6PkPnpdwTwmjH-Et0xtZrWSuQFfq1CT56owPW0xTqY_Yp4uTwNlnvPFg86LFJrnGg5yVDwSYtU6jxn36-w3e7IXuLIyxZh2bQpSZM0KXstRn7iC3EcQHs4Ef9P6aObZbi44hHiIDhYarFyz5q9axfoVOnQ4HXx_sCffv08Xbzubn5ev1l8-GmMa1gcwPaUWaIGDh30pKeGeCdZf1aaylt30retXzoO8EGKblkzpqur8da5jQnsr1Al4e6U07fFyiz2vpiIAQdIS1FUdkK0bedIBV99wS9T0uOdTrFCO0EZUJ0lXp7pJZhC1ZN2W913qnHjVeAHgCTUykZ3F-EErV3VR1cVdVVtXdV7apGPNEYP_9Z4Zy1D88q2UFZapc4Qv439P9FvwFs0LjJ |
| CitedBy_id | crossref_primary_10_1109_TBME_2019_2897285 crossref_primary_10_1155_2021_8899263 crossref_primary_10_1371_journal_pntd_0010056 crossref_primary_10_1088_1361_6560_aaf241 crossref_primary_10_1007_s00521_018_3799_0 crossref_primary_10_3390_mca29050095 crossref_primary_10_1155_2020_6680002 crossref_primary_10_1016_j_asej_2020_01_007 crossref_primary_10_1007_s41870_023_01361_0 crossref_primary_10_1016_j_heliyon_2022_e10846 crossref_primary_10_4018_IJOCI_2020040101 crossref_primary_10_1016_j_bspc_2023_104809 crossref_primary_10_1016_j_ijleo_2018_12_107 crossref_primary_10_1016_j_artmed_2021_102157 |
| Cites_doi | 10.1155/2013/690835 10.1186/1471-2105-4-13 10.1186/1471-2105-12-312 10.1016/j.jbi.2016.05.007 10.1073/pnas.201162998 10.1016/j.eswa.2014.08.014 10.1038/nature12060 10.1186/1471-2105-5-136 10.1109/TASLP.2017.2690574 10.1016/S0140-6736(02)07746-2 10.1093/bioinformatics/btg062 10.1126/science.286.5439.531 10.1038/89044 10.2174/1574893611666151119220803 10.1016/j.patcog.2016.11.014 10.1016/S0893-6080(05)80056-5 10.1198/016214502753479248 10.1002/cfg.281 10.1093/bioinformatics/18.1.39 10.1016/S1535-6108(02)00030-2 10.1016/j.isprsjprs.2016.03.004 10.1016/j.compag.2017.01.020 10.1038/nm0102-68 10.1073/pnas.96.12.6745 10.2202/1544-6115.1147 10.1038/415436a 10.1073/pnas.94.6.2150 10.12989/sem.2016.58.3.459 10.1109/ICCIS.2004.1460457 10.1142/9789812709677_0199 10.1056/NEJMra1110265 10.1109/INDIN.2017.8104902 10.1155/2017/2460174 10.1155/2015/370640 10.1007/978-81-322-2757-1_23 10.1007/978-981-10-3156-4_34 10.4103/0972-9062.141707 |
| ContentType | Journal Article |
| Copyright | International Federation for Medical and Biological Engineering 2017 Medical & Biological Engineering & Computing is a copyright of Springer, (2017). All Rights Reserved. |
| Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2017 – notice: Medical & Biological Engineering & Computing is a copyright of Springer, (2017). All Rights Reserved. |
| DBID | AAYXX CITATION NPM 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1007/s11517-017-1722-y |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI-INFORM Complete ABI/INFORM Global (PDF only) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI Inform Computing Database Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed ProQuest Business Collection (Alumni Edition) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1741-0444 |
| EndPage | 720 |
| ExternalDocumentID | 28891000 10_1007_s11517_017_1722_y |
| Genre | Journal Article |
| GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7SC 7TB 7TS 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c372t-eaf12c07b44f9d062ce45d268aa99d6394534b6572b99492fdc56dc5dd2fa4093 |
| IEDL.DBID | BENPR |
| ISSN | 0140-0118 1741-0444 |
| IngestDate | Thu Oct 02 10:34:29 EDT 2025 Tue Oct 07 05:41:12 EDT 2025 Tue Oct 07 10:44:41 EDT 2025 Wed Oct 01 05:55:00 EDT 2025 Thu Apr 24 23:10:19 EDT 2025 Fri Feb 21 02:31:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Bag-of-features Modified cuckoo search Gene expression data Incremental feature selection scheme Dengue fever Artificial neural networks |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-eaf12c07b44f9d062ce45d268aa99d6394534b6572b99492fdc56dc5dd2fa4093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 28891000 |
| PQID | 2015712775 |
| PQPubID | 54161 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1937763570 proquest_journals_2015712775 pubmed_primary_28891000 crossref_primary_10_1007_s11517_017_1722_y crossref_citationtrail_10_1007_s11517_017_1722_y springer_journals_10_1007_s11517_017_1722_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20180400 2018-4-00 2018-Apr 20180401 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 4 year: 2018 text: 20180400 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
| PublicationTitle | Medical & biological engineering & computing |
| PublicationTitleAbbrev | Med Biol Eng Comput |
| PublicationTitleAlternate | Med Biol Eng Comput |
| PublicationYear | 2018 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Wilcoxon, Katti, Wilcox (CR45) 1970; 1 Møller (CR35) 1993; 6 Pomeroy, Tamayo, Gaasenbeek, Sturla, Angelo, McLaughlin, Kim, Goumnerova, Black, Lau, Allen, Zagzag, Olson, Curran, Wetmore, Biegel, Poggio, Mukherjee, Rifkin, Califano, Stolovitzky, Louis, Mesirov, Lander, Golub (CR1) 2002; 415 O'Neill, Song (CR27) 2003; 4 Shipp, Ross, Tamayo, Weng, Kutok, Aguiar, Gaasenbeek, Angelo, Reich, Pinkus, Ray, Koval, Last, Norton, Lister, Mesirov, Neuberg, Lander, Aster, Golub (CR3) 2002; 8 Nguyen, Rocke (CR24) 2002; 18 Heller, Schena, Chai, Shalon, Bedilion, Gilmore, Woolley, Davis (CR5) 1997; 94 CR19 CR18 CR16 CR36 Zhou, Li, Zhang, Chen, Kong (CR29) 2016; 11 CR34 Alon, Barkai, Notterman, Gish, Ybarra, Mack, Levine (CR21) 1999; 96 CR10 CR32 Chakraborty, Chatterjee, Dey, Ashour, Ashour, Shi, Mali (CR37) 2017 Chatterjee, Sarkar, Hore, Dey, Ashour, Shi, Le (CR41) 2017 Antoniadis, Lambert-Lacroix, Leblanc (CR25) 2003; 19 Grzeszick, Plinge, Fink (CR31) 2017; 25 Pérez, Bromberg, Diaz (CR39) 2017; 135 (CR13) 2013 Wang, van der Laan (CR8) 2011; 12 Dai, Lieu, Rocke (CR7) 2006; 5 Passalis, Tefas (CR30) 2017; 64 Khan, Wei, Ringner, Saal, Ladanyi, Westermann, Meltzer (CR26) 2001; 7 Rodriguez-Roche, Gould (CR17) 2013; 2013 Zhao, Zhong, Zhang (CR38) 2016; 116 Dudoit, Fridlyand, Speed (CR22) 2002; 97 CR9 Singh, Febbo, Ross, Jackson, Manola, Ladd, Tamayo, Renshaw, D'Amico, Richie, Lander, Loda, Kantoff, Golub, Sellers (CR6) 2002; 1 Wang, He, Wang, Yang (CR44) 2012; 38 CR43 Bhatt, Gething, Brady, Messina, Farlow, Moyes (CR14) 2013; 496 CR42 Golub, Slonim, Tamayo, Huard, Gaasenbeek, Mesirov, Bloomfield (CR20) 1999; 286 CR40 Kar, Sharma, Maitra (CR11) 2015; 42 Petricoin, Ardekani, Hitt, Levine, Fusaro, Steinberg, Mills, Simone, Fishman, Kohn, Liotta (CR2) 2002; 359 Chen, Zhang, Gutman (CR12) 2016; 62 Azad, Lio (CR15) 2014; 51 Liu, Cui, Jiang, Ma (CR28) 2004; 5 Chatterjee, Dey, Ashour, Drugarin (CR33) 2017 West, Blanchette, Dressman, Huang, Ishida, Spang, Nevins (CR23) 2001; 98 David (CR4) 2003; 4 S Bhatt (1722_CR14) 2013; 496 J Khan (1722_CR26) 2001; 7 M West (1722_CR23) 2001; 98 EF Petricoin (1722_CR2) 2002; 359 F Wang (1722_CR44) 2012; 38 World Health Organization (1722_CR13) 2013 S Kar (1722_CR11) 2015; 42 MF Møller (1722_CR35) 1993; 6 MA Shipp (1722_CR3) 2002; 8 S Azad (1722_CR15) 2014; 51 1722_CR19 1722_CR18 B Zhao (1722_CR38) 2016; 116 1722_CR16 SL Pomeroy (1722_CR1) 2002; 415 RA Heller (1722_CR5) 1997; 94 TR Golub (1722_CR20) 1999; 286 1722_CR36 1722_CR34 DV Nguyen (1722_CR24) 2002; 18 1722_CR10 1722_CR32 MC O'Neill (1722_CR27) 2003; 4 1722_CR9 Y Zhou (1722_CR29) 2016; 11 DS Pérez (1722_CR39) 2017; 135 H Chen (1722_CR12) 2016; 62 JJ Dai (1722_CR7) 2006; 5 S Dudoit (1722_CR22) 2002; 97 R Rodriguez-Roche (1722_CR17) 2013; 2013 R Grzeszick (1722_CR31) 2017; 25 W David (1722_CR4) 2003; 4 H Wang (1722_CR8) 2011; 12 D Singh (1722_CR6) 2002; 1 N Passalis (1722_CR30) 2017; 64 S Chatterjee (1722_CR41) 2017 A Antoniadis (1722_CR25) 2003; 19 F Wilcoxon (1722_CR45) 1970; 1 U Alon (1722_CR21) 1999; 96 1722_CR42 1722_CR43 B Liu (1722_CR28) 2004; 5 S Chakraborty (1722_CR37) 2017 1722_CR40 S Chatterjee (1722_CR33) 2017 |
| References_xml | – volume: 51 start-page: 165 issue: 3 year: 2014 end-page: 171 ident: CR15 article-title: Emerging trends of malaria-dengue geographical coupling in the Southeast Asia region publication-title: J Vector Borne Dis – volume: 2013 start-page: 690835 year: 2013 ident: CR17 article-title: Understanding the dengue viruses and progress towards their control publication-title: Biomed Res Int doi: 10.1155/2013/690835 – volume: 4 start-page: 13 issue: 1 year: 2003 ident: CR27 article-title: Neural network analysis of lymphoma microarray data: prognosis and diagnosis near-perfect publication-title: BMC bioinformatics doi: 10.1186/1471-2105-4-13 – ident: CR18 – ident: CR43 – volume: 12 start-page: 312 issue: 1 year: 2011 ident: CR8 article-title: Dimension reduction with gene expression data using targeted variable importance measurement publication-title: BMC bioinformatics doi: 10.1186/1471-2105-12-312 – volume: 62 start-page: 12 year: 2016 end-page: 20 ident: CR12 article-title: A kernel-based clustering method for gene selection with gene expression data publication-title: J Biomed Inform doi: 10.1016/j.jbi.2016.05.007 – volume: 98 start-page: 11462 issue: 20 year: 2001 end-page: 11467 ident: CR23 article-title: Predicting the clinical status of human breast cancer by using gene expression profiles publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.201162998 – volume: 42 start-page: 612 issue: 1 year: 2015 end-page: 627 ident: CR11 article-title: Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.08.014 – ident: CR16 – volume: 496 start-page: 504 issue: 7446 year: 2013 end-page: 507 ident: CR14 article-title: The global distribution and burden of dengue publication-title: Nature doi: 10.1038/nature12060 – volume: 5 start-page: 136 issue: 1 year: 2004 ident: CR28 article-title: A combinational feature selection and ensemble neural network method for classification of gene expression data publication-title: BMC bioinformatics doi: 10.1186/1471-2105-5-136 – volume: 25 start-page: 1242 issue: 6 year: 2017 end-page: 1252 ident: CR31 article-title: Bag-of-features methods for acoustic event detection and classification publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASLP.2017.2690574 – ident: CR10 – volume: 359 start-page: 572 year: 2002 end-page: 577 ident: CR2 article-title: Use of proteomic patterns in serum to identify ovarian cancer publication-title: Lancet doi: 10.1016/S0140-6736(02)07746-2 – volume: 1 start-page: 171 year: 1970 end-page: 259 ident: CR45 article-title: Critical values and probability levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Selected tables in mathematical publication-title: Statistics – year: 2013 ident: CR13 publication-title: World health statistics 2013 – volume: 19 start-page: 563 issue: 5 year: 2003 end-page: 570 ident: CR25 article-title: Effective dimension reduction methods for tumor classification using gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg062 – volume: 38 start-page: 180 issue: 11 year: 2012 end-page: 185 ident: CR44 article-title: Markov model and convergence analysis based on cuckoo search algorithm publication-title: Jisuanji Gongcheng/Comput Eng – ident: CR40 – year: 2017 ident: CR33 publication-title: Electrical energy output prediction using cuckoo search supported artificial neural network. World Conference on Smart Trends in Systems, Security and Sustainability (WS4 2017) At London, Volume – year: 2017 ident: CR37 publication-title: Modified cuckoo search algorithm in microscopic image segmentation of hippocampus – ident: CR42 – ident: CR19 – volume: 286 start-page: 531 issue: 5439 year: 1999 end-page: 537 ident: CR20 article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 7 start-page: 673 issue: 6 year: 2001 end-page: 679 ident: CR26 article-title: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks publication-title: Nat Med doi: 10.1038/89044 – year: 2017 ident: CR41 publication-title: Structural failure classification for reinforced concrete buildings using trained neural network based multi- objective genetic algorithm – volume: 11 start-page: 40 issue: 1 year: 2016 end-page: 50 ident: CR29 article-title: Feature classification and analysis of lung cancer related genes through gene ontology and KEGG pathways publication-title: Curr Bioinforma doi: 10.2174/1574893611666151119220803 – volume: 64 start-page: 277 year: 2017 end-page: 294 ident: CR30 article-title: Neural bag-of-features learning publication-title: Pattern Recogn doi: 10.1016/j.patcog.2016.11.014 – volume: 6 start-page: 525 issue: 4 year: 1993 end-page: 533 ident: CR35 article-title: A scaled conjugate gradient algorithm for fast supervised learning publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80056-5 – volume: 97 start-page: 77 issue: 457 year: 2002 end-page: 87 ident: CR22 article-title: Comparison of discrimination methods for the classification of tumors using gene expression data publication-title: J Am Stat Assoc doi: 10.1198/016214502753479248 – volume: 4 start-page: 208 year: 2003 end-page: 215 ident: CR4 article-title: Galbraith: global analysis of cell type-specific gene expression publication-title: Comp Funct Genom doi: 10.1002/cfg.281 – ident: CR9 – volume: 18 start-page: 39 issue: 1 year: 2002 end-page: 50 ident: CR24 article-title: Tumor classification by partial least squares using microarray gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.1.39 – volume: 1 start-page: 203 year: 2002 end-page: 209 ident: CR6 article-title: Gene expression correlates of clinical prostate cancer behavior publication-title: Cancer Cell doi: 10.1016/S1535-6108(02)00030-2 – ident: CR32 – ident: CR34 – volume: 116 start-page: 73 year: 2016 end-page: 85 ident: CR38 article-title: A spectral–structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2016.03.004 – volume: 135 start-page: 81 year: 2017 end-page: 95 ident: CR39 article-title: Image classification for detection of winter grapevine buds in natural conditions using scale-invariant features transform, bag of features and support vector machines publication-title: Comput Electron Agric doi: 10.1016/j.compag.2017.01.020 – ident: CR36 – volume: 8 start-page: 68 year: 2002 end-page: 74 ident: CR3 article-title: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning publication-title: Nat Med doi: 10.1038/nm0102-68 – volume: 96 start-page: 6745 issue: 12 year: 1999 end-page: 6750 ident: CR21 article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.96.12.6745 – volume: 5 start-page: 1147 issue: 1 year: 2006 ident: CR7 article-title: Dimension reduction for classification with gene expression microarray data publication-title: Stat Appl Genet Mol Biol doi: 10.2202/1544-6115.1147 – volume: 415 start-page: 436 year: 2002 end-page: 442 ident: CR1 article-title: Prediction of central nervous system embryonal tumour outcome based on gene expression publication-title: Nature doi: 10.1038/415436a – volume: 94 start-page: 2150 year: 1997 end-page: 2155 ident: CR5 article-title: Discovery and analysis of inflammatory disease related genes using cDNA microarrays publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.6.2150 – volume: 5 start-page: 1147 issue: 1 year: 2006 ident: 1722_CR7 publication-title: Stat Appl Genet Mol Biol – volume: 96 start-page: 6745 issue: 12 year: 1999 ident: 1722_CR21 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.96.12.6745 – volume: 5 start-page: 136 issue: 1 year: 2004 ident: 1722_CR28 publication-title: BMC bioinformatics doi: 10.1186/1471-2105-5-136 – volume: 62 start-page: 12 year: 2016 ident: 1722_CR12 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2016.05.007 – volume: 496 start-page: 504 issue: 7446 year: 2013 ident: 1722_CR14 publication-title: Nature doi: 10.1038/nature12060 – volume: 116 start-page: 73 year: 2016 ident: 1722_CR38 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2016.03.004 – volume: 135 start-page: 81 year: 2017 ident: 1722_CR39 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2017.01.020 – volume: 38 start-page: 180 issue: 11 year: 2012 ident: 1722_CR44 publication-title: Jisuanji Gongcheng/Comput Eng – volume: 286 start-page: 531 issue: 5439 year: 1999 ident: 1722_CR20 publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 25 start-page: 1242 issue: 6 year: 2017 ident: 1722_CR31 publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASLP.2017.2690574 – ident: 1722_CR34 doi: 10.12989/sem.2016.58.3.459 – ident: 1722_CR9 doi: 10.1109/ICCIS.2004.1460457 – volume: 42 start-page: 612 issue: 1 year: 2015 ident: 1722_CR11 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.08.014 – ident: 1722_CR32 – ident: 1722_CR43 doi: 10.1142/9789812709677_0199 – volume: 6 start-page: 525 issue: 4 year: 1993 ident: 1722_CR35 publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80056-5 – ident: 1722_CR18 doi: 10.1056/NEJMra1110265 – volume: 11 start-page: 40 issue: 1 year: 2016 ident: 1722_CR29 publication-title: Curr Bioinforma doi: 10.2174/1574893611666151119220803 – volume: 7 start-page: 673 issue: 6 year: 2001 ident: 1722_CR26 publication-title: Nat Med doi: 10.1038/89044 – volume: 4 start-page: 13 issue: 1 year: 2003 ident: 1722_CR27 publication-title: BMC bioinformatics doi: 10.1186/1471-2105-4-13 – volume: 64 start-page: 277 year: 2017 ident: 1722_CR30 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2016.11.014 – volume: 1 start-page: 203 year: 2002 ident: 1722_CR6 publication-title: Cancer Cell doi: 10.1016/S1535-6108(02)00030-2 – ident: 1722_CR36 doi: 10.1109/INDIN.2017.8104902 – ident: 1722_CR16 – ident: 1722_CR19 doi: 10.1155/2017/2460174 – volume: 2013 start-page: 690835 year: 2013 ident: 1722_CR17 publication-title: Biomed Res Int doi: 10.1155/2013/690835 – volume: 1 start-page: 171 year: 1970 ident: 1722_CR45 publication-title: Statistics – volume: 415 start-page: 436 year: 2002 ident: 1722_CR1 publication-title: Nature doi: 10.1038/415436a – volume: 18 start-page: 39 issue: 1 year: 2002 ident: 1722_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.1.39 – volume: 359 start-page: 572 year: 2002 ident: 1722_CR2 publication-title: Lancet doi: 10.1016/S0140-6736(02)07746-2 – volume: 4 start-page: 208 year: 2003 ident: 1722_CR4 publication-title: Comp Funct Genom doi: 10.1002/cfg.281 – ident: 1722_CR10 doi: 10.1155/2015/370640 – volume-title: World health statistics 2013 year: 2013 ident: 1722_CR13 – volume: 98 start-page: 11462 issue: 20 year: 2001 ident: 1722_CR23 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.201162998 – ident: 1722_CR40 doi: 10.1007/978-81-322-2757-1_23 – volume-title: Electrical energy output prediction using cuckoo search supported artificial neural network. World Conference on Smart Trends in Systems, Security and Sustainability (WS4 2017) At London, Volume year: 2017 ident: 1722_CR33 – volume-title: Modified cuckoo search algorithm in microscopic image segmentation of hippocampus year: 2017 ident: 1722_CR37 – volume: 8 start-page: 68 year: 2002 ident: 1722_CR3 publication-title: Nat Med doi: 10.1038/nm0102-68 – volume: 94 start-page: 2150 year: 1997 ident: 1722_CR5 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.6.2150 – volume: 19 start-page: 563 issue: 5 year: 2003 ident: 1722_CR25 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg062 – ident: 1722_CR42 doi: 10.1007/978-981-10-3156-4_34 – volume: 12 start-page: 312 issue: 1 year: 2011 ident: 1722_CR8 publication-title: BMC bioinformatics doi: 10.1186/1471-2105-12-312 – volume: 97 start-page: 77 issue: 457 year: 2002 ident: 1722_CR22 publication-title: J Am Stat Assoc doi: 10.1198/016214502753479248 – volume-title: Structural failure classification for reinforced concrete buildings using trained neural network based multi- objective genetic algorithm year: 2017 ident: 1722_CR41 – volume: 51 start-page: 165 issue: 3 year: 2014 ident: 1722_CR15 publication-title: J Vector Borne Dis doi: 10.4103/0972-9062.141707 |
| SSID | ssj0021524 |
| Score | 2.3293567 |
| Snippet | Dengue fever detection and classification have a vital role due to the recent outbreaks of different kinds of dengue fever. Recently, the advancement in the... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 709 |
| SubjectTerms | Artificial neural networks Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Classification Classifiers Computer Applications Data processing Dengue fever Dengue hemorrhagic fever DNA microarrays Fever Gene expression Human Physiology Imaging Multilayer perceptrons Neural networks Original Article Outbreaks Radiology Statistical analysis Viral diseases |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gHgR39YXETwphZgmTXMUUUTQkwveStImq7C24u6C-0f8vU66aVfxAR56aR4NnUnmm8zkC8AxVY5S449uWYYOiuImVsokMdoiZ5RFg9zs6d7epdc9fvMgHsI57mGb7d6GJJuVenbYDY2TT5P0pIboQU3mYVF4Ni9U4h4777wsNEi8y1tE-NyGMn_q4qsx-oYwv0VHG6NztQorAS2S86l412DOVuuwdBvi4RvwHmg9B-RTIJrUjjzX5ZNDdEmM7se1i51tCDyHpKjHLwN87_dfyePEn9cintNSD2Jv0EpSeDjt276Sp4rgqtQfW-IsanxXFD7jU-b7BBXQEvsW8mmxhR7pTehdXd5fXMfhpoW4SCQbxVa7M1ZQaTh3qqQpKywXJUszrZUqEcRwkXCTCsmMUlwxVxYixacsmdPoISZbsFDVld0BUjCOzVONsETxJMViRxMjdSZoIhKpIqDtL8-LQEPub8MY5DMCZS-lHKWUeynlkwhOuiYvUw6Ovyrvt3LMw3Qc5ohyhDxjUooIjrpinEg-OqIrW4-HOSJZ2bDz0Qi2p_LvvsayTPlASASnrULMOv91KLv_qr0HyzjMbJoVtA8Lo9exPUDAMzKHjYJ_ADBh-CI priority: 102 providerName: Springer Nature |
| Title | Clinical application of modified bag-of-features coupled with hybrid neural-based classifier in dengue fever classification using gene expression data |
| URI | https://link.springer.com/article/10.1007/s11517-017-1722-y https://www.ncbi.nlm.nih.gov/pubmed/28891000 https://www.proquest.com/docview/2015712775 https://www.proquest.com/docview/1937763570 |
| Volume | 56 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1741-0444 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1741-0444 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: ADMLS dateStart: 19770101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1741-0444 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1741-0444 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1741-0444 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1741-0444 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021524 issn: 0140-0118 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_aBMZexr7nrgsa7GnD4MiyZT2MkY2kZaNhjAWyJyPZUlrI7KxJoPlH9vfuzpGdjbI-2GDL8tdJut_pTr8DeBMpF0WGlm5ZjgaKEiZUysQh6iJnlEWF3MzpXkzT85n4PE_mRzBt18JQWGU7JjYDdVkXNEeORvowkUMuZfJh9SukrFHkXW1TaGifWqF831CMHUOfEzNWD_ofx9Ov3zoTDLWV6IIaEVu3fs5mMR0qPwrDJNJEtNB2_2qqW_Dzluu00UiTh_DAQ0k22sv-ERzZ6jHcu_DO8ifw23N-LtlfXmpWO_azLq8cQk9m9CKsXehsw-65Zvh1qyWep8lZdrmjxVyMCC_1MiRtV7KCsDbVvWZXFcMha7G1zFnsDl2RfwzF0y8Ytk7L7I0PtsUaeqOfwmwy_v7pPPRpGMIilnwTWu2GvIikEcKpMkp5YUVS8jTTWqkSEY5IYmHSRHKjlFDclUWS4laW3Gk0H-Nn0Kvqyr4AVnCB1VONmEWJOMViF8VG6iyJ4iSWKoCo_eV54TnKKVXGMj-wK5OUcpRSTlLKdwG87aqs9gQdd1182sox9311nR9aVgCvu2LsZeQ60ZWtt-scYa5sqPuiAJ7v5d89jWeZIi9JAO_aBnG4-X9f5eTuV3kJ9_Eg28cInUJvc721rxD-bMwAjuVc4j6bnA2gPzr78WU88O0cz8746A-e7gXx |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrQRcKt6kFDASXECRso7z8KFCPFptaXeFUCv1FuzYXiptk213V7B_hJ_T39aZrJMFVfTWQy5xnFgZ29-MZ-YbgDeRdFGkKXXLcjRQpNChlDoOEYuclhYBuTnTHQzT_rH4epKcrMFlmwtDYZXtnths1KYu6YwcjfRekvV4liUfJuchVY0i72pbQkP50gpmp6EY84kdB3bxC0246c7-F5T3W873do8-90NfZSAs44zPQqtcj5dRpoVw0kQpL61IDE9zpaQ0COAiiYVOk4xrKYXkzpRJipcx3CnRkDEhBGyIWEg0_jY-7Q6_fe9MPkRH0QVRoi7f-lWb5D0EWwr7JJJGtAgX_yLjNXX3mqu2QcC9-7DpVVf2cTnXHsCarR7CnYF3zj-CP55jdMz-8oqz2rGz2pw6VHWZVqOwdqGzDZvolOHfnIzxPh0Gs58LSh5jRLCpxiGhq2El6fbU94KdVgy3yNHcMmdx-XVN_jMUvz9iuBoss799cC_2UDP1GI5vRSBPYL2qK_sMWMkFdk8V6khSxCk2uyjWmcqTKE7iTAYQtb-8KD0nOpXmGBcrNmeSUoFSKkhKxSKAd12XyZIQ5KaHt1s5Fn5vmBarmRzA664ZVzW5alRl6_m0QLU6a6gCowCeLuXffY3nuSSvTADv2wmxevl_h7J181Bewd3-0eCwONwfHjyHe9iQL-OTtmF9djG3L1D1mumXfn4z-HHbS-oKy8k-iw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRaq4IN4EChgJLqCIrO3E8QEhRFm1lFYcqLS3YMf2ttKSLN1dwf4Rfgy_jpm8FlTRWw-52HFsZd6e8WeA54kOSWLp6JbnGKBoaWOtrYjRFgWrPRrkZk_36DjbP5EfJ-lkC373Z2GorLLXiY2idnVJe-QYpI9SNeJKpa9DVxbxeW_8dv49phukKNPaX6fRssihX__A8G3x5mAPaf2C8_GHL-_34-6GgbgUii9jb8KIl4myUgbtkoyXXqaOZ7kxWjs03jIV0map4lZrqXlwZZrh4xwPRjZATKj-rykhNJUTqskm2EO7KIfySfTi-4xqc2wPzSwVfBI8I8aC639t4gVH90KStrF945two3Na2buWy27Blq9uw85Rl5a_A786dNEZ-ysfzurAvtXuLKCTy6yZxnWIg29wRBesrFfzGbbTNjA7XdOxMUbQmmYWk111rCSvnsaes7OKoXKcrjwLHgVv6Oqmocr9KUM58Mz_7Mp6cYRZmrtwciXkuAfbVV35B8BKLnF4ZtA70lJk2B0SYZXJ00SkQukIkv6XF2WHhk6XcsyKDY4zUalAKhVEpWIdwcthyLyFArns5d2ejkWnFRbFhocjeDZ0ozxTksZUvl4tCnSoVQMSmERwv6X_MBvPc035mAhe9Qyx-fh_l_Lw8qU8hR0UpOLTwfHhI7iO7XlbmLQL28vzlX-MPtfSPmmYm8HXq5amPw3PPCU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+application+of+modified+bag-of-features+coupled+with+hybrid+neural-based+classifier+in+dengue+fever+classification+using+gene+expression+data&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Chatterjee%2C+Sankhadeep&rft.au=Dey%2C+Nilanjan&rft.au=Shi%2C+Fuqian&rft.au=Ashour%2C+Amira+S&rft.date=2018-04-01&rft.pub=Springer+Nature+B.V&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=56&rft.issue=4&rft.spage=709&rft.epage=720&rft_id=info:doi/10.1007%2Fs11517-017-1722-y&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |