Clinical fracture risk evaluated by hierarchical agglomerative clustering

Summary Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of different fracture risks. Differences emerged after age 60 and treatment compliance differed by hip and lumbar spine bone mineral density...

Full description

Saved in:
Bibliographic Details
Published inOsteoporosis international Vol. 28; no. 3; pp. 819 - 832
Main Authors Kruse, C., Eiken, P., Vestergaard, P.
Format Journal Article
LanguageEnglish
Published London Springer London 01.03.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0937-941X
1433-2965
1433-2965
DOI10.1007/s00198-016-3828-8

Cover

Abstract Summary Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of different fracture risks. Differences emerged after age 60 and treatment compliance differed by hip and lumbar spine bone mineral density profiles. Introduction The purposes of this study were to establish and quantify patient clusters of high, average and low fracture risk using an unsupervised machine learning algorithm. Methods Regional and national Danish patient data on dual-energy X-ray absorptiometry (DXA) scans, medication reimbursement, primary healthcare sector use and comorbidity of female subjects were combined. Standardized variable means, Euclidean distances and Ward’s D2 method of hierarchical agglomerative clustering (HAC), were used to form the clustering object. K number of clusters was selected with the lowest cluster containing less than 250 subjects. Clusters were identified as high, average or low fracture risk based on bone mineral density (BMD) characteristics. Cluster-based descriptive statistics and relative Z-scores for variable means were computed. Results Ten thousand seven hundred seventy-five women were included in this study. Nine ( k  = 9) clusters were identified. Four clusters ( n  = 2886) were identified based on low to very low BMD with differences in comorbidity, anthropometrics and future bisphosphonate compliance. Two clusters of younger subjects ( n  = 1058, mean ages 30 and 51 years) were identified as low fracture risk with high to very high BMD. A mean age of 60 years was the earliest that allowed for separation of high-risk clusters. DXA scan results could identify high-risk subjects with different antiresorptive treatment compliance levels based on similarities and differences in lumbar spine and hip region BMD. Conclusions Unsupervised HAC presents a novel technology to improve patient characteristics in bone disease beyond traditional T-score-based diagnosis. Technological and validation limitations need to be overcome to improve its use in internal medicine. Current DXA scan indication guidelines could be further improved by clustering algorithms.
AbstractList Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of different fracture risks. Differences emerged after age 60 and treatment compliance differed by hip and lumbar spine bone mineral density profiles.Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of different fracture risks. Differences emerged after age 60 and treatment compliance differed by hip and lumbar spine bone mineral density profiles.The purposes of this study were to establish and quantify patient clusters of high, average and low fracture risk using an unsupervised machine learning algorithm.INTRODUCTIONThe purposes of this study were to establish and quantify patient clusters of high, average and low fracture risk using an unsupervised machine learning algorithm.Regional and national Danish patient data on dual-energy X-ray absorptiometry (DXA) scans, medication reimbursement, primary healthcare sector use and comorbidity of female subjects were combined. Standardized variable means, Euclidean distances and Ward's D2 method of hierarchical agglomerative clustering (HAC), were used to form the clustering object. K number of clusters was selected with the lowest cluster containing less than 250 subjects. Clusters were identified as high, average or low fracture risk based on bone mineral density (BMD) characteristics. Cluster-based descriptive statistics and relative Z-scores for variable means were computed.METHODSRegional and national Danish patient data on dual-energy X-ray absorptiometry (DXA) scans, medication reimbursement, primary healthcare sector use and comorbidity of female subjects were combined. Standardized variable means, Euclidean distances and Ward's D2 method of hierarchical agglomerative clustering (HAC), were used to form the clustering object. K number of clusters was selected with the lowest cluster containing less than 250 subjects. Clusters were identified as high, average or low fracture risk based on bone mineral density (BMD) characteristics. Cluster-based descriptive statistics and relative Z-scores for variable means were computed.Ten thousand seven hundred seventy-five women were included in this study. Nine (k = 9) clusters were identified. Four clusters (n = 2886) were identified based on low to very low BMD with differences in comorbidity, anthropometrics and future bisphosphonate compliance. Two clusters of younger subjects (n = 1058, mean ages 30 and 51 years) were identified as low fracture risk with high to very high BMD. A mean age of 60 years was the earliest that allowed for separation of high-risk clusters. DXA scan results could identify high-risk subjects with different antiresorptive treatment compliance levels based on similarities and differences in lumbar spine and hip region BMD.RESULTSTen thousand seven hundred seventy-five women were included in this study. Nine (k = 9) clusters were identified. Four clusters (n = 2886) were identified based on low to very low BMD with differences in comorbidity, anthropometrics and future bisphosphonate compliance. Two clusters of younger subjects (n = 1058, mean ages 30 and 51 years) were identified as low fracture risk with high to very high BMD. A mean age of 60 years was the earliest that allowed for separation of high-risk clusters. DXA scan results could identify high-risk subjects with different antiresorptive treatment compliance levels based on similarities and differences in lumbar spine and hip region BMD.Unsupervised HAC presents a novel technology to improve patient characteristics in bone disease beyond traditional T-score-based diagnosis. Technological and validation limitations need to be overcome to improve its use in internal medicine. Current DXA scan indication guidelines could be further improved by clustering algorithms.CONCLUSIONSUnsupervised HAC presents a novel technology to improve patient characteristics in bone disease beyond traditional T-score-based diagnosis. Technological and validation limitations need to be overcome to improve its use in internal medicine. Current DXA scan indication guidelines could be further improved by clustering algorithms.
Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of different fracture risks. Differences emerged after age 60 and treatment compliance differed by hip and lumbar spine bone mineral density profiles. The purposes of this study were to establish and quantify patient clusters of high, average and low fracture risk using an unsupervised machine learning algorithm. Regional and national Danish patient data on dual-energy X-ray absorptiometry (DXA) scans, medication reimbursement, primary healthcare sector use and comorbidity of female subjects were combined. Standardized variable means, Euclidean distances and Ward's D2 method of hierarchical agglomerative clustering (HAC), were used to form the clustering object. K number of clusters was selected with the lowest cluster containing less than 250 subjects. Clusters were identified as high, average or low fracture risk based on bone mineral density (BMD) characteristics. Cluster-based descriptive statistics and relative Z-scores for variable means were computed. Ten thousand seven hundred seventy-five women were included in this study. Nine (k = 9) clusters were identified. Four clusters (n = 2886) were identified based on low to very low BMD with differences in comorbidity, anthropometrics and future bisphosphonate compliance. Two clusters of younger subjects (n = 1058, mean ages 30 and 51 years) were identified as low fracture risk with high to very high BMD. A mean age of 60 years was the earliest that allowed for separation of high-risk clusters. DXA scan results could identify high-risk subjects with different antiresorptive treatment compliance levels based on similarities and differences in lumbar spine and hip region BMD. Unsupervised HAC presents a novel technology to improve patient characteristics in bone disease beyond traditional T-score-based diagnosis. Technological and validation limitations need to be overcome to improve its use in internal medicine. Current DXA scan indication guidelines could be further improved by clustering algorithms.
SummaryClustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of different fracture risks. Differences emerged after age 60 and treatment compliance differed by hip and lumbar spine bone mineral density profiles.IntroductionThe purposes of this study were to establish and quantify patient clusters of high, average and low fracture risk using an unsupervised machine learning algorithm.MethodsRegional and national Danish patient data on dual-energy X-ray absorptiometry (DXA) scans, medication reimbursement, primary healthcare sector use and comorbidity of female subjects were combined. Standardized variable means, Euclidean distances and Ward’s D2 method of hierarchical agglomerative clustering (HAC), were used to form the clustering object. K number of clusters was selected with the lowest cluster containing less than 250 subjects. Clusters were identified as high, average or low fracture risk based on bone mineral density (BMD) characteristics. Cluster-based descriptive statistics and relative Z-scores for variable means were computed.ResultsTen thousand seven hundred seventy-five women were included in this study. Nine (k = 9) clusters were identified. Four clusters (n = 2886) were identified based on low to very low BMD with differences in comorbidity, anthropometrics and future bisphosphonate compliance. Two clusters of younger subjects (n = 1058, mean ages 30 and 51 years) were identified as low fracture risk with high to very high BMD. A mean age of 60 years was the earliest that allowed for separation of high-risk clusters. DXA scan results could identify high-risk subjects with different antiresorptive treatment compliance levels based on similarities and differences in lumbar spine and hip region BMD.ConclusionsUnsupervised HAC presents a novel technology to improve patient characteristics in bone disease beyond traditional T-score-based diagnosis. Technological and validation limitations need to be overcome to improve its use in internal medicine. Current DXA scan indication guidelines could be further improved by clustering algorithms.
Summary Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of different fracture risks. Differences emerged after age 60 and treatment compliance differed by hip and lumbar spine bone mineral density profiles. Introduction The purposes of this study were to establish and quantify patient clusters of high, average and low fracture risk using an unsupervised machine learning algorithm. Methods Regional and national Danish patient data on dual-energy X-ray absorptiometry (DXA) scans, medication reimbursement, primary healthcare sector use and comorbidity of female subjects were combined. Standardized variable means, Euclidean distances and Ward’s D2 method of hierarchical agglomerative clustering (HAC), were used to form the clustering object. K number of clusters was selected with the lowest cluster containing less than 250 subjects. Clusters were identified as high, average or low fracture risk based on bone mineral density (BMD) characteristics. Cluster-based descriptive statistics and relative Z-scores for variable means were computed. Results Ten thousand seven hundred seventy-five women were included in this study. Nine ( k  = 9) clusters were identified. Four clusters ( n  = 2886) were identified based on low to very low BMD with differences in comorbidity, anthropometrics and future bisphosphonate compliance. Two clusters of younger subjects ( n  = 1058, mean ages 30 and 51 years) were identified as low fracture risk with high to very high BMD. A mean age of 60 years was the earliest that allowed for separation of high-risk clusters. DXA scan results could identify high-risk subjects with different antiresorptive treatment compliance levels based on similarities and differences in lumbar spine and hip region BMD. Conclusions Unsupervised HAC presents a novel technology to improve patient characteristics in bone disease beyond traditional T-score-based diagnosis. Technological and validation limitations need to be overcome to improve its use in internal medicine. Current DXA scan indication guidelines could be further improved by clustering algorithms.
Author Eiken, P.
Kruse, C.
Vestergaard, P.
Author_xml – sequence: 1
  givenname: C.
  orcidid: 0000-0001-5590-2245
  surname: Kruse
  fullname: Kruse, C.
  email: C.kruse@rn.dk
  organization: Department of Endocrinology, Aalborg University Hospital, Department of Clinical Medicine, Aalborg University Hospital
– sequence: 2
  givenname: P.
  surname: Eiken
  fullname: Eiken, P.
  organization: Department of Cardiology, Nephrology and Endocrinology, Nordsjaellands Hospital, Faculty of Health and Medical Sciences, University of Copenhagen
– sequence: 3
  givenname: P.
  surname: Vestergaard
  fullname: Vestergaard, P.
  organization: Department of Endocrinology, Aalborg University Hospital, Department of Clinical Medicine, Aalborg University Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27848006$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LJDEQhsPiso66P8CLNHjx0m7lozvJUQa_QPCyC95COl09RjPdY9I94L8347gKgp4KiucpivfdIzv90CMhhxROKYD8kwCoViXQuuSKqVL9IDMqOC-ZrqsdMgPNZakFvdsleyk9QHa0lr_ILpNKKIB6Rq7nwffe2VB00bpxilhEnx4LXNsw2RHbonku7j1GG939K2cXizAs82L0ayxcmNKI0feLA_KzsyHh77e5T_5dnP-dX5U3t5fX87Ob0nHJxhK5aGnVyQpRKM5d13DqOAPRVhWtUdjOMdtgI5SqnNMWtJON1W0jKi0Yl3yfnGzvruLwNGEazdInhyHYHocpGaoEpZzWXGT0-BP6MEyxz98ZBqCgFpWETB29UVOzxNasol_a-Gz-h5QBugVcHFKK2L0jFMymCLMtwuQizKYIo7IjPznOjzmyoR-j9eFbk23NtNrEivHj6a-lF8yxm-c
CitedBy_id crossref_primary_10_3389_fgene_2022_1072948
crossref_primary_10_1155_2020_8880786
crossref_primary_10_1007_s11657_020_00827_z
crossref_primary_10_1016_j_arth_2023_06_027
crossref_primary_10_1016_j_ijchp_2023_100409
crossref_primary_10_1093_jamia_ocad111
crossref_primary_10_1016_j_cmpb_2020_105484
crossref_primary_10_1007_s00586_022_07176_0
crossref_primary_10_1016_j_jse_2024_07_006
crossref_primary_10_1097_BOR_0000000000000607
crossref_primary_10_1186_s13018_023_04446_5
crossref_primary_10_1016_j_fas_2022_05_005
crossref_primary_10_3803_EnM_2021_1111
crossref_primary_10_1177_10711007221093574
crossref_primary_10_3390_bioengineering10030277
crossref_primary_10_1097_CORR_0000000000001263
crossref_primary_10_1039_C9RA03848E
crossref_primary_10_1055_s_0039_3400268
crossref_primary_10_3389_fbioe_2018_00075
crossref_primary_10_3803_EnM_2020_35_1_71
crossref_primary_10_1002_jbmr_4292
crossref_primary_10_1002_jmri_26280
Cites_doi 10.1016/j.bone.2006.11.013
10.1007/BF01622200
10.1007/s10852-005-9022-1
10.1016/S8756-3282(00)00381-1
10.1111/j.0013-9580.2004.18804.x
10.1016/0895-4356(94)90129-5
10.1007/s002239900616
10.1002/1529-0131(200007)43:7<1450::AID-ANR6>3.0.CO;2-6
10.1001/jama.1986.03370090069022
10.1093/bioinformatics/bti201
10.1111/1467-9868.00293
10.1016/j.yebeh.2003.11.030
10.1007/s00198-005-1863-y
10.1007/s00357-014-9161-z
10.1016/0377-0427(87)90125-7
10.1007/s001980050224
10.1016/j.jocd.2011.04.011
10.1002/art.1780390111
10.1001/archinte.167.2.188
10.1002/gcc.20668
10.1007/s11914-010-0022-3
10.1007/s00198-007-0543-5
10.1080/01621459.1963.10500845
10.18637/jss.v053.i09
10.1007/s00198-014-2973-1
10.2165/00007256-199316050-00003
10.1056/NEJM199511303332201
10.1371/journal.pgen.1002254
10.1007/s001980200001
10.1210/jcem.86.1.7139
10.2165/00007256-199519020-00003
10.1007/s00223-006-0021-7
10.1016/j.bone.2015.12.002
10.1016/j.maturitas.2008.09.010
10.1016/j.jocd.2008.12.003
10.1007/BF02652563
10.1016/j.jclinepi.2004.03.012
10.1007/s00198-006-0253-4
10.1093/bioinformatics/btl117
10.5962/bhl.title.542
10.1007/978-3-642-13818-8_34
ContentType Journal Article
Copyright International Osteoporosis Foundation and National Osteoporosis Foundation 2016
Osteoporosis International is a copyright of Springer, (2016). All Rights Reserved.
Copyright_xml – notice: International Osteoporosis Foundation and National Osteoporosis Foundation 2016
– notice: Osteoporosis International is a copyright of Springer, (2016). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7RV
7TS
7X7
7XB
88E
8AO
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00198-016-3828-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Nursing & Allied Health Database
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Proquest Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
ProQuest One Academic Middle East (New)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1433-2965
EndPage 832
ExternalDocumentID 27848006
10_1007_s00198_016_3828_8
Genre Research Support, Non-U.S. Gov't
Multicenter Study
Journal Article
GrantInformation_xml – fundername: Det Obelske Familiefond (DK)
  grantid: N/A
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5QI
5RE
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L7B
LAS
LLZTM
M1P
M4Y
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7U
Z7W
Z82
Z83
Z87
Z8O
Z8Q
Z8V
Z8W
Z91
ZMTXR
ZOVNA
ZXP
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c372t-e34d15f75ee4833cfb31c3204d5516e4afc2abeb4885cc9a09c7ba9db45942373
IEDL.DBID BENPR
ISSN 0937-941X
1433-2965
IngestDate Wed Oct 01 14:35:31 EDT 2025
Mon Oct 06 17:24:05 EDT 2025
Thu Apr 03 07:04:58 EDT 2025
Wed Oct 01 03:59:18 EDT 2025
Thu Apr 24 23:09:37 EDT 2025
Fri Feb 21 02:34:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Osteoporosis
Densitometry
Clustering
Risk factors
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-e34d15f75ee4833cfb31c3204d5516e4afc2abeb4885cc9a09c7ba9db45942373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5590-2245
PMID 27848006
PQID 2008064570
PQPubID 33762
PageCount 14
ParticipantIDs proquest_miscellaneous_1841131634
proquest_journals_2008064570
pubmed_primary_27848006
crossref_primary_10_1007_s00198_016_3828_8
crossref_citationtrail_10_1007_s00198_016_3828_8
springer_journals_10_1007_s00198_016_3828_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170300
2017-3-00
2017-03-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 3
  year: 2017
  text: 20170300
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle With other metabolic bone diseases
PublicationTitle Osteoporosis international
PublicationTitleAbbrev Osteoporos Int
PublicationTitleAlternate Osteoporos Int
PublicationYear 2017
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Mattson, Gidal (CR6) 2004; 5
Schwartz, Sellmeyer, Ensrud (CR11) 2001; 86
Rousseeuw (CR16) 1987; 20
Antoniades, MacGregor, Matson, Spector (CR32) 2000; 43
Vestergaard, Rejnmark, Mosekilde (CR9) 2006; 79
Liberman, Weiss, Bröll, Minne, Quan, Bell, Rodriguez-Portales, Downs, Dequeker, Favus (CR27) 1995; 333
Liu, Peacock, Eilam, Dorulla, Braunstein, Johnston (CR29) 1997; 7
Lane, Bloch, Jones, Marshall, Wood, Fries (CR35) 1986; 255
CR15
Genant, Cooper, Poor (CR1) 1999; 10
CR36
Burger, van Daele, Odding, Valkenburg, Hofman, Grobbee, Schütte, Birkenhäger, Pols (CR28) 1996; 39
Kruse, Eiken, Verbalis, Vestergaard (CR19) 2016; 84
Vestergaard, Rejnmark, Mosekilde (CR10) 2004; 45
Kruse, Eiken, Vestergaard (CR18) 2015; 26
Vestergaard (CR8) 2007; 18
Rannevik, Jeppsson, Johnell, Bjerre, Laurell-Borulf, Svanberg (CR26) 2008; 61
Ao, Yip, Ng (CR12) 2005; 21
Leslie, Kovacs, Olszynski, Towheed, Kaiser, Prior, Josse, Jamal, Kreiger, Goltzman (CR38) 2011; 14
Chilibeck, Sale, Webber (CR33) 1995; 19
De laet, Kanis, Odén (CR5) 2005; 16
Ward (CR23) 1963; 58
Lane, Oehlert, Bloch, Fries (CR30) 1998; 25
Kanis, Johnell, Oden, Jonsson, De laet, Dawson (CR2) 2000; 27
Sandor, Felsenberg, Brown (CR4) 1999; 64
Kanis (CR3) 1994; 4
Charlson, Szatrowski, Peterson, Gold (CR21) 1994; 47
Warming, Hassager, Christiansen (CR25) 2002; 13
Kanis, Johnell, Oden, Johansson, McCloskey (CR37) 2008; 19
van den Bergh, van Geel, Lems, Geusens (CR39) 2010; 8
Reynolds, Richards, de la Iglesia, Rayward-Smith (CR41) 1992; 5
Kaufman, Rousseeuw (CR43) 1990
Sundararajan, Henderson, Perry, Muggivan, Quan, Ghali (CR22) 2004; 57
Suominen (CR34) 1993; 16
CR45
CR44
CR20
Agnelli, Mosca, Fabris, Lionetti, Andronache, Kwee, Todoerti, Verdelli, Battaglia, Bertoni, Deliliers, Neri (CR13) 2009; 48
Murtagh (CR24) 2014; 31
Müllner (CR42) 2013; 53
Richards, Papaioannou, Adachi, Joseph, Whitson, Prior, Goltzman (CR7) 2007; 167
Cotsapas, Voight, Rossin, Lage, Neale, Wallace, Abecasis, Barrett, Behrens, Cho, De Jager, Elder, Graham, Gregersen, Klareskog, Siminovitch, van Heel, Wijmenga, Worthington, Todd, Hafler, Rich, Daly (CR14) 2011; 7
Tibshirani, Walther, Hastie (CR17) 2001; 63
Mäkinen, Alm, Laine, Svedström, Aro (CR31) 2007; 40
Hamdy, Kiebzak (CR40) 2009; 12
3828_CR45
3828_CR20
3828_CR44
P Vestergaard (3828_CR8) 2007; 18
PJ Rousseeuw (3828_CR16) 1987; 20
L Agnelli (3828_CR13) 2009; 48
PD Chilibeck (3828_CR33) 1995; 19
JA Kanis (3828_CR2) 2000; 27
V Sundararajan (3828_CR22) 2004; 57
M Charlson (3828_CR21) 1994; 47
JB Richards (3828_CR7) 2007; 167
G Rannevik (3828_CR26) 2008; 61
A Reynolds (3828_CR41) 1992; 5
NE Lane (3828_CR35) 1986; 255
C Kruse (3828_CR19) 2016; 84
JP Bergh van den (3828_CR39) 2010; 8
TJ Mäkinen (3828_CR31) 2007; 40
RC Hamdy (3828_CR40) 2009; 12
T Sandor (3828_CR4) 1999; 64
F Murtagh (3828_CR24) 2014; 31
HK Genant (3828_CR1) 1999; 10
3828_CR15
JH Ward (3828_CR23) 1963; 58
P Vestergaard (3828_CR9) 2006; 79
3828_CR36
D Müllner (3828_CR42) 2013; 53
G Liu (3828_CR29) 1997; 7
H Burger (3828_CR28) 1996; 39
C De laet (3828_CR5) 2005; 16
JA Kanis (3828_CR37) 2008; 19
NE Lane (3828_CR30) 1998; 25
C Cotsapas (3828_CR14) 2011; 7
C Kruse (3828_CR18) 2015; 26
JA Kanis (3828_CR3) 1994; 4
H Suominen (3828_CR34) 1993; 16
L Kaufman (3828_CR43) 1990
L Antoniades (3828_CR32) 2000; 43
AV Schwartz (3828_CR11) 2001; 86
R Tibshirani (3828_CR17) 2001; 63
L Warming (3828_CR25) 2002; 13
SI Ao (3828_CR12) 2005; 21
UA Liberman (3828_CR27) 1995; 333
WD Leslie (3828_CR38) 2011; 14
RH Mattson (3828_CR6) 2004; 5
P Vestergaard (3828_CR10) 2004; 45
15509233 - Epilepsia. 2004 Nov;45(11):1330-7
7722560 - J Clin Epidemiol. 1994 Nov;47(11):1245-51
11905520 - Osteoporos Int. 2002;13(2):105-12
19434880 - Maturitas. 2008 Sep-Oct;61(1-2):67-77
3945033 - JAMA. 1986 Mar 7;255 (9):1147-51
11062343 - Bone. 2000 Nov;27(5):585-90
10692972 - Osteoporos Int. 1999;10(4):259-64
17242321 - Arch Intern Med. 2007 Jan 22;167(2):188-94
21723768 - J Clin Densitom. 2011 Jul-Sep;14 (3):286-93
8546742 - Arthritis Rheum. 1996 Jan;39(1):81-6
11231974 - J Clin Endocrinol Metab. 2001 Jan;86(1):32-8
26679436 - Bone. 2016 Mar;84:9-14
17068657 - Osteoporos Int. 2007 Apr;18(4):427-44
15617955 - J Clin Epidemiol. 2004 Dec;57(12):1288-94
21852963 - PLoS Genet. 2011 Aug;7(8):e1002254
25466529 - Osteoporos Int. 2015 Mar;26(3):1005-16
16927047 - Calcif Tissue Int. 2006 Aug;79(2):76-83
7477143 - N Engl J Med. 1995 Nov 30;333(22):1437-43
7696835 - Osteoporos Int. 1994 Nov;4(6):368-81
8272687 - Sports Med. 1993 Nov;16(5):316-30
15123010 - Epilepsy Behav. 2004 Feb;5 Suppl 2:S36-40
7747001 - Sports Med. 1995 Feb;19(2):103-22
15585525 - Bioinformatics. 2005 Apr 15;21(8):1735-6
20563901 - Curr Osteoporos Rep. 2010 Sep;8(3):131-7
9604053 - Osteoporos Int. 1997;7(6):564-9
19396863 - Genes Chromosomes Cancer. 2009 Jul;48(7):603-14
18292978 - Osteoporos Int. 2008 Apr;19(4):385-97
10024389 - Calcif Tissue Int. 1999 Mar;64(3):267-70
19201635 - J Clin Densitom. 2009 Apr-Jun;12 (2):158-61
10902745 - Arthritis Rheum. 2000 Jul;43(7):1450-5
9489830 - J Rheumatol. 1998 Feb;25(2):334-41
17239668 - Bone. 2007 Apr;40(4):1041-7
16595560 - Bioinformatics. 2006 Jun 15;22(12):1540-2
15928804 - Osteoporos Int. 2005 Nov;16(11):1330-8
References_xml – ident: CR45
– volume: 40
  start-page: 1041
  issue: 4
  year: 2007
  end-page: 1047
  ident: CR31
  article-title: The incidence of osteopenia and osteoporosis in women with hip osteoarthritis scheduled for cementless total joint replacement
  publication-title: Bone
  doi: 10.1016/j.bone.2006.11.013
– volume: 4
  start-page: 368
  issue: 6
  year: 1994
  end-page: 381
  ident: CR3
  article-title: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO study group
  publication-title: Osteoporos Int
  doi: 10.1007/BF01622200
– volume: 25
  start-page: 334
  issue: 2
  year: 1998
  end-page: 341
  ident: CR30
  article-title: The relationship of running to osteoarthritis of the knee and hip and bone mineral density of the lumbar spine: a 9-year longitudinal study
  publication-title: J Rheumatol
– volume: 5
  start-page: 475
  year: 1992
  end-page: 504
  ident: CR41
  article-title: Clustering rules: a comparison of partitioning and hierarchical clustering algorithms
  publication-title: Journal of Mathematical Modelling and Algorithms
  doi: 10.1007/s10852-005-9022-1
– volume: 27
  start-page: 585
  issue: 5
  year: 2000
  end-page: 590
  ident: CR2
  article-title: Risk of hip fracture according to the World Health Organization criteria for osteopenia and osteoporosis
  publication-title: Bone
  doi: 10.1016/S8756-3282(00)00381-1
– volume: 45
  start-page: 1330
  issue: 11
  year: 2004
  end-page: 1337
  ident: CR10
  article-title: Fracture risk associated with use of antiepileptic drugs
  publication-title: Epilepsia
  doi: 10.1111/j.0013-9580.2004.18804.x
– volume: 47
  start-page: 1245
  issue: 11
  year: 1994
  end-page: 1251
  ident: CR21
  article-title: Validation of a combined comorbidity index
  publication-title: J Clin Epidemiol
  doi: 10.1016/0895-4356(94)90129-5
– volume: 64
  start-page: 267
  issue: 3
  year: 1999
  end-page: 270
  ident: CR4
  article-title: Comments on the hypotheses underlying fracture risk assessment in osteoporosis as proposed by the World Health Organization
  publication-title: Calcif Tissue Int
  doi: 10.1007/s002239900616
– volume: 43
  start-page: 1450
  issue: 7
  year: 2000
  end-page: 1455
  ident: CR32
  article-title: A cotwin control study of the relationship between hip osteoarthritis and bone mineral density
  publication-title: Arthritis Rheum
  doi: 10.1002/1529-0131(200007)43:7<1450::AID-ANR6>3.0.CO;2-6
– volume: 255
  start-page: 1147
  issue: 9
  year: 1986
  end-page: 1151
  ident: CR35
  article-title: Long-distance running, bone density, and osteoarthritis
  publication-title: JAMA
  doi: 10.1001/jama.1986.03370090069022
– volume: 21
  start-page: 1735
  issue: 8
  year: 2005
  end-page: 1736
  ident: CR12
  article-title: CLUSTAG: hierarchical clustering and graph methods for selecting tag SNPs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti201
– volume: 63
  start-page: 411
  issue: 2
  year: 2001
  end-page: 423
  ident: CR17
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/1467-9868.00293
– volume: 5
  start-page: S36
  issue: Suppl 2
  year: 2004
  end-page: S40
  ident: CR6
  article-title: Fractures, epilepsy, and antiepileptic drugs
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2003.11.030
– volume: 16
  start-page: 1330
  issue: 11
  year: 2005
  end-page: 1338
  ident: CR5
  article-title: Body mass index as a predictor of fracture risk: a meta-analysis
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-005-1863-y
– volume: 31
  start-page: 274
  year: 2014
  end-page: 295
  ident: CR24
  article-title: Ward’s hierarchical agglomerative clustering method:which algorithms implement Ward’s criterion?
  publication-title: J Classif
  doi: 10.1007/s00357-014-9161-z
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: CR16
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– volume: 10
  start-page: 259
  issue: 4
  year: 1999
  end-page: 264
  ident: CR1
  article-title: Interim report and recommendations of the World Health Organization task-force for osteoporosis
  publication-title: Osteoporos Int
  doi: 10.1007/s001980050224
– volume: 14
  start-page: 286
  issue: 3
  year: 2011
  end-page: 293
  ident: CR38
  article-title: CaMos research group. Spine-hip T-score difference predicts major osteoporotic fracture risk independent of FRAX(®): a population-based report from CAMOS
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2011.04.011
– volume: 39
  start-page: 81
  issue: 1
  year: 1996
  end-page: 86
  ident: CR28
  article-title: Association of radiographically evident osteoarthritis with higher bone mineral density and increased bone loss with age. The Rotterdam study
  publication-title: Arthritis Rheum
  doi: 10.1002/art.1780390111
– volume: 167
  start-page: 188
  issue: 2
  year: 2007
  end-page: 194
  ident: CR7
  article-title: Effect of selective serotonin reuptake inhibitors on the risk of fracture
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.167.2.188
– volume: 48
  start-page: 603
  issue: 7
  year: 2009
  end-page: 614
  ident: CR13
  article-title: A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.20668
– year: 1990
  ident: CR43
  publication-title: (=: “K&R(1990)”) finding groups in data: an introduction to cluster analysis
– volume: 8
  start-page: 131
  issue: 3
  year: 2010
  end-page: 137
  ident: CR39
  article-title: Assessment of individual fracture risk: FRAX and beyond
  publication-title: Curr Osteoporos Rep
  doi: 10.1007/s11914-010-0022-3
– ident: CR44
– volume: 19
  start-page: 385
  issue: 4
  year: 2008
  end-page: 397
  ident: CR37
  article-title: FRAX and the assessment of fracture probability in men and women from the UK
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-007-0543-5
– volume: 58
  start-page: 236
  issue: 301
  year: 1963
  end-page: 244
  ident: CR23
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1963.10500845
– volume: 53
  start-page: 1
  issue: 9
  year: 2013
  end-page: 18
  ident: CR42
  article-title: Fastcluster: fast hierarchical, agglomerative clustering routines for R and python
  publication-title: J Stat Softw
  doi: 10.18637/jss.v053.i09
– volume: 26
  start-page: 1005
  issue: 3
  year: 2015
  end-page: 1016
  ident: CR18
  article-title: Hyponatremia and osteoporosis: insights from the Danish National Patient Registry
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-014-2973-1
– ident: CR15
– volume: 16
  start-page: 316
  issue: 5
  year: 1993
  end-page: 330
  ident: CR34
  article-title: Bone mineral density and long term exercise. An overview of cross-sectional athlete studies
  publication-title: Sports Med
  doi: 10.2165/00007256-199316050-00003
– volume: 333
  start-page: 1437
  issue: 22
  year: 1995
  end-page: 1443
  ident: CR27
  article-title: Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The alendronate phase III osteoporosis treatment study group
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199511303332201
– volume: 7
  start-page: e1002254
  issue: 8
  year: 2011
  ident: CR14
  article-title: FOCiS network of consortia. Pervasive sharing of genetic effects in autoimmune disease
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002254
– volume: 13
  start-page: 105
  issue: 2
  year: 2002
  end-page: 112
  ident: CR25
  article-title: Changes in bone mineral density with age in men and women: a longitudinal study
  publication-title: Osteoporos Int
  doi: 10.1007/s001980200001
– ident: CR36
– volume: 86
  start-page: 32
  issue: 1
  year: 2001
  end-page: 38
  ident: CR11
  article-title: Older women with diabetes have an increased risk of fracture: a prospective study
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jcem.86.1.7139
– volume: 19
  start-page: 103
  issue: 2
  year: 1995
  end-page: 122
  ident: CR33
  article-title: Exercise and bone mineral density
  publication-title: Sports Med
  doi: 10.2165/00007256-199519020-00003
– volume: 79
  start-page: 76
  issue: 2
  year: 2006
  end-page: 83
  ident: CR9
  article-title: Proton pump inhibitors, histamine H2 receptor antagonists, and other antacid medications and the risk of fracture
  publication-title: Calcif Tissue Int
  doi: 10.1007/s00223-006-0021-7
– volume: 84
  start-page: 9
  year: 2016
  end-page: 14
  ident: CR19
  article-title: The effect of chronic mild hyponatremia on bone mineral loss evaluated by retrospective national Danish patient data
  publication-title: Bone
  doi: 10.1016/j.bone.2015.12.002
– volume: 61
  start-page: 67
  issue: 1–2
  year: 2008
  end-page: 77
  ident: CR26
  article-title: A longitudinal study of the perimenopausal transition: altered profiles of steroid and pituitary hormones, SHBG and bone mineral density
  publication-title: Maturitas
  doi: 10.1016/j.maturitas.2008.09.010
– volume: 12
  start-page: 158
  issue: 2
  year: 2009
  end-page: 161
  ident: CR40
  article-title: Variance in 10-year fracture risk calculated with and without T-scores in select subgroups of normal and osteoporotic patients
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2008.12.003
– volume: 7
  start-page: 564
  issue: 6
  year: 1997
  end-page: 569
  ident: CR29
  article-title: Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women
  publication-title: Osteoporos Int
  doi: 10.1007/BF02652563
– volume: 57
  start-page: 1288
  issue: 12
  year: 2004
  end-page: 1294
  ident: CR22
  article-title: New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2004.03.012
– volume: 18
  start-page: 427
  issue: 4
  year: 2007
  end-page: 444
  ident: CR8
  article-title: Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-006-0253-4
– ident: CR20
– volume: 7
  start-page: 564
  issue: 6
  year: 1997
  ident: 3828_CR29
  publication-title: Osteoporos Int
  doi: 10.1007/BF02652563
– volume: 19
  start-page: 103
  issue: 2
  year: 1995
  ident: 3828_CR33
  publication-title: Sports Med
  doi: 10.2165/00007256-199519020-00003
– ident: 3828_CR20
– volume: 13
  start-page: 105
  issue: 2
  year: 2002
  ident: 3828_CR25
  publication-title: Osteoporos Int
  doi: 10.1007/s001980200001
– volume: 45
  start-page: 1330
  issue: 11
  year: 2004
  ident: 3828_CR10
  publication-title: Epilepsia
  doi: 10.1111/j.0013-9580.2004.18804.x
– volume: 5
  start-page: 475
  year: 1992
  ident: 3828_CR41
  publication-title: Journal of Mathematical Modelling and Algorithms
  doi: 10.1007/s10852-005-9022-1
– volume: 61
  start-page: 67
  issue: 1–2
  year: 2008
  ident: 3828_CR26
  publication-title: Maturitas
  doi: 10.1016/j.maturitas.2008.09.010
– volume: 19
  start-page: 385
  issue: 4
  year: 2008
  ident: 3828_CR37
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-007-0543-5
– volume: 79
  start-page: 76
  issue: 2
  year: 2006
  ident: 3828_CR9
  publication-title: Calcif Tissue Int
  doi: 10.1007/s00223-006-0021-7
– ident: 3828_CR45
  doi: 10.1093/bioinformatics/btl117
– volume: 8
  start-page: 131
  issue: 3
  year: 2010
  ident: 3828_CR39
  publication-title: Curr Osteoporos Rep
  doi: 10.1007/s11914-010-0022-3
– volume: 84
  start-page: 9
  year: 2016
  ident: 3828_CR19
  publication-title: Bone
  doi: 10.1016/j.bone.2015.12.002
– volume-title: (=: “K&R(1990)”) finding groups in data: an introduction to cluster analysis
  year: 1990
  ident: 3828_CR43
– volume: 47
  start-page: 1245
  issue: 11
  year: 1994
  ident: 3828_CR21
  publication-title: J Clin Epidemiol
  doi: 10.1016/0895-4356(94)90129-5
– volume: 25
  start-page: 334
  issue: 2
  year: 1998
  ident: 3828_CR30
  publication-title: J Rheumatol
– volume: 39
  start-page: 81
  issue: 1
  year: 1996
  ident: 3828_CR28
  publication-title: Arthritis Rheum
  doi: 10.1002/art.1780390111
– volume: 10
  start-page: 259
  issue: 4
  year: 1999
  ident: 3828_CR1
  publication-title: Osteoporos Int
  doi: 10.1007/s001980050224
– volume: 86
  start-page: 32
  issue: 1
  year: 2001
  ident: 3828_CR11
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jcem.86.1.7139
– volume: 43
  start-page: 1450
  issue: 7
  year: 2000
  ident: 3828_CR32
  publication-title: Arthritis Rheum
  doi: 10.1002/1529-0131(200007)43:7<1450::AID-ANR6>3.0.CO;2-6
– volume: 53
  start-page: 1
  issue: 9
  year: 2013
  ident: 3828_CR42
  publication-title: J Stat Softw
  doi: 10.18637/jss.v053.i09
– volume: 26
  start-page: 1005
  issue: 3
  year: 2015
  ident: 3828_CR18
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-014-2973-1
– volume: 31
  start-page: 274
  year: 2014
  ident: 3828_CR24
  publication-title: J Classif
  doi: 10.1007/s00357-014-9161-z
– volume: 16
  start-page: 316
  issue: 5
  year: 1993
  ident: 3828_CR34
  publication-title: Sports Med
  doi: 10.2165/00007256-199316050-00003
– volume: 63
  start-page: 411
  issue: 2
  year: 2001
  ident: 3828_CR17
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/1467-9868.00293
– volume: 18
  start-page: 427
  issue: 4
  year: 2007
  ident: 3828_CR8
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-006-0253-4
– ident: 3828_CR15
  doi: 10.5962/bhl.title.542
– volume: 20
  start-page: 53
  year: 1987
  ident: 3828_CR16
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– volume: 57
  start-page: 1288
  issue: 12
  year: 2004
  ident: 3828_CR22
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2004.03.012
– volume: 58
  start-page: 236
  issue: 301
  year: 1963
  ident: 3828_CR23
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1963.10500845
– ident: 3828_CR36
– volume: 48
  start-page: 603
  issue: 7
  year: 2009
  ident: 3828_CR13
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.20668
– volume: 4
  start-page: 368
  issue: 6
  year: 1994
  ident: 3828_CR3
  publication-title: Osteoporos Int
  doi: 10.1007/BF01622200
– volume: 167
  start-page: 188
  issue: 2
  year: 2007
  ident: 3828_CR7
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.167.2.188
– volume: 5
  start-page: S36
  issue: Suppl 2
  year: 2004
  ident: 3828_CR6
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2003.11.030
– volume: 14
  start-page: 286
  issue: 3
  year: 2011
  ident: 3828_CR38
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2011.04.011
– ident: 3828_CR44
  doi: 10.1007/978-3-642-13818-8_34
– volume: 27
  start-page: 585
  issue: 5
  year: 2000
  ident: 3828_CR2
  publication-title: Bone
  doi: 10.1016/S8756-3282(00)00381-1
– volume: 7
  start-page: e1002254
  issue: 8
  year: 2011
  ident: 3828_CR14
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002254
– volume: 255
  start-page: 1147
  issue: 9
  year: 1986
  ident: 3828_CR35
  publication-title: JAMA
  doi: 10.1001/jama.1986.03370090069022
– volume: 333
  start-page: 1437
  issue: 22
  year: 1995
  ident: 3828_CR27
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199511303332201
– volume: 21
  start-page: 1735
  issue: 8
  year: 2005
  ident: 3828_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti201
– volume: 40
  start-page: 1041
  issue: 4
  year: 2007
  ident: 3828_CR31
  publication-title: Bone
  doi: 10.1016/j.bone.2006.11.013
– volume: 64
  start-page: 267
  issue: 3
  year: 1999
  ident: 3828_CR4
  publication-title: Calcif Tissue Int
  doi: 10.1007/s002239900616
– volume: 16
  start-page: 1330
  issue: 11
  year: 2005
  ident: 3828_CR5
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-005-1863-y
– volume: 12
  start-page: 158
  issue: 2
  year: 2009
  ident: 3828_CR40
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2008.12.003
– reference: 9604053 - Osteoporos Int. 1997;7(6):564-9
– reference: 10024389 - Calcif Tissue Int. 1999 Mar;64(3):267-70
– reference: 8272687 - Sports Med. 1993 Nov;16(5):316-30
– reference: 7747001 - Sports Med. 1995 Feb;19(2):103-22
– reference: 11905520 - Osteoporos Int. 2002;13(2):105-12
– reference: 25466529 - Osteoporos Int. 2015 Mar;26(3):1005-16
– reference: 11062343 - Bone. 2000 Nov;27(5):585-90
– reference: 10692972 - Osteoporos Int. 1999;10(4):259-64
– reference: 21852963 - PLoS Genet. 2011 Aug;7(8):e1002254
– reference: 20563901 - Curr Osteoporos Rep. 2010 Sep;8(3):131-7
– reference: 7722560 - J Clin Epidemiol. 1994 Nov;47(11):1245-51
– reference: 26679436 - Bone. 2016 Mar;84:9-14
– reference: 8546742 - Arthritis Rheum. 1996 Jan;39(1):81-6
– reference: 19396863 - Genes Chromosomes Cancer. 2009 Jul;48(7):603-14
– reference: 15928804 - Osteoporos Int. 2005 Nov;16(11):1330-8
– reference: 17068657 - Osteoporos Int. 2007 Apr;18(4):427-44
– reference: 17242321 - Arch Intern Med. 2007 Jan 22;167(2):188-94
– reference: 17239668 - Bone. 2007 Apr;40(4):1041-7
– reference: 19201635 - J Clin Densitom. 2009 Apr-Jun;12 (2):158-61
– reference: 21723768 - J Clin Densitom. 2011 Jul-Sep;14 (3):286-93
– reference: 15509233 - Epilepsia. 2004 Nov;45(11):1330-7
– reference: 16595560 - Bioinformatics. 2006 Jun 15;22(12):1540-2
– reference: 7696835 - Osteoporos Int. 1994 Nov;4(6):368-81
– reference: 19434880 - Maturitas. 2008 Sep-Oct;61(1-2):67-77
– reference: 15585525 - Bioinformatics. 2005 Apr 15;21(8):1735-6
– reference: 9489830 - J Rheumatol. 1998 Feb;25(2):334-41
– reference: 15617955 - J Clin Epidemiol. 2004 Dec;57(12):1288-94
– reference: 16927047 - Calcif Tissue Int. 2006 Aug;79(2):76-83
– reference: 15123010 - Epilepsy Behav. 2004 Feb;5 Suppl 2:S36-40
– reference: 18292978 - Osteoporos Int. 2008 Apr;19(4):385-97
– reference: 3945033 - JAMA. 1986 Mar 7;255 (9):1147-51
– reference: 7477143 - N Engl J Med. 1995 Nov 30;333(22):1437-43
– reference: 10902745 - Arthritis Rheum. 2000 Jul;43(7):1450-5
– reference: 11231974 - J Clin Endocrinol Metab. 2001 Jan;86(1):32-8
SSID ssj0007997
Score 2.34109
Snippet Summary Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters...
Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of...
SummaryClustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 819
SubjectTerms Absorptiometry, Photon
Adult
Aged
Aged, 80 and over
Algorithms
Bone density
Bone Density - physiology
Bone mineral density
Cluster Analysis
Clustering
Comorbidity
Denmark - epidemiology
Dual energy X-ray absorptiometry
Endocrinology
Female
Fractures
Hip
Hip Joint - physiopathology
Humans
Learning algorithms
Lumbar Vertebrae - physiopathology
Machine Learning
Medicine
Medicine & Public Health
Middle Aged
Original Article
Orthopedics
Osteoporosis
Osteoporosis - complications
Osteoporosis - epidemiology
Osteoporosis - physiopathology
Osteoporosis, Postmenopausal - complications
Osteoporosis, Postmenopausal - epidemiology
Osteoporosis, Postmenopausal - physiopathology
Osteoporotic Fractures - epidemiology
Osteoporotic Fractures - etiology
Osteoporotic Fractures - physiopathology
Reproducibility of Results
Rheumatology
Risk assessment
Risk Factors
Spine (lumbar)
Statistical analysis
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90gvgiflu_qOCTEmiapGkfhzimMJ8c7K2kabKX0cm2Pvjfm-vSikwFn5sm4S7J3eV3-R3AHVe2TJxdd1tcR4S7oIMovLdKMmUjmlpPpjN6TYZj_jIRE_-Oe9lmu7eQZHNSd4_d0BvBxKuEMBcmkHQbdgSyeblFPI773fErs6aiiovUJck4nbRQ5k9dfDdGGx7mBjraGJ3BAex7bzHsr9V7CFumOoLdkcfDj-HZ03rOQouvneqFCTFXPPQc3qYMi48Qq103eAG2U9PpbI4XUXjMhXpWI1GCG_sExoOnt8ch8cURiGYyXhHDeEmFlcIYnjKmbcGoZnHES4S-jNOBjlVhCrdBhdaZijItC5WVBRcZpsKwU-hV88qcQyioSrWVRtm4wPAq1bR0oRkXhtpEcRlA1Eop1545HAtYzPKO87gRbI7ZYijYPA3gvvvlfU2b8Vfjq1b0ud9By6Y8JnLpySiA2-6zW_sIaKjKzOtl7qJTSpnzKHkAZ2uVdaMhoOqc4SSAh1aHX53_OpWLf7W-hL0YrXyTknYFvdWiNtfOR1kVN82a_AQWQ9td
  priority: 102
  providerName: Springer Nature
Title Clinical fracture risk evaluated by hierarchical agglomerative clustering
URI https://link.springer.com/article/10.1007/s00198-016-3828-8
https://www.ncbi.nlm.nih.gov/pubmed/27848006
https://www.proquest.com/docview/2008064570
https://www.proquest.com/docview/1841131634
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-2965
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007997
  issn: 0937-941X
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1433-2965
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0007997
  issn: 0937-941X
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-2965
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0007997
  issn: 0937-941X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-2965
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007997
  issn: 0937-941X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-2965
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007997
  issn: 0937-941X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90A_FF_LY6RwWflGDTpE37IDJlfuIQcTCfSpomexmbuu3B_95cl1ZE9KUPbdqGS-5yl9_ldwDHXJoituu6VXEVEG6DDiJx3ypOpQloYhyZzmMvvu3z-0E0WIJedRYG0yorm1ga6mKicI_8DHF65FYTwcXbO8GqUYiuViU0pCutUJyXFGPL0AyRGasBzctu7-m5ts0iLcut2DBekJTTQYVzBiWtKMXjZjQmzIYhJPm5Uv1yP39Bp-WKdL0Oa86V9DuLsd-AJT3ehJVHB5ZvwZ3j_Bz5Bo9CzT-0j4nkviP41oWff_pYCrsEE7CdHA5HE9ylQhvoq9EcWRTsv7ehf919ubolrnICUUyEM6IZL2hkRKQ1TxhTJmdUsTDgBeJi2g6QCmWuc6u9kVKpDFIlcpkWOY9SzJNhO9AYT8Z6D_yIykQZoaUJc4y9EkULG7fxSFMTSy48CCopZcrRimN1i1FWEyKXgs0wlQwFmyUenNSvvC04Nf5r3KpEnzn1mmbfk8GDo_qxVQxEO-RYT-bTzIaulDLrbnIPdhdDVv8N0VbrKccenFZj-P3xP7uy_39XDmA1xDW_TFBrQWP2MdeH1mOZ5W1YFgNhr8kVbUOzc_P60G27qWnv9sPOF6gl6WY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6FRipcEFAeWwIYCS4gi_Xa-zpEiEerhCZRVbVSbluv1-4lStomEcqf47cxs_FuhSp663m99u7Y45nxN_4G4IPSrkrQrqOKm5ArDDq4pnOrJNcuFJnzZDrjSTI4U7-m8bQDf5q7MJRW2eyJ9UZdLQydkX8hnJ641dLw6-UVp6pRhK42JTS0L61Q9WuKMX-x48hufmMIt-wPf-J8f4yiw4PTHwPuqwxwI9Noxa1UlYhdGlurMimNK6UwMgpVRRiSxZ8xkS5tiSs9NibXYW7SUudVqeKcckok9vsAukqqHIO_7veDyfFJawvSvC7vEqITwHMlpg2uGtY0poKut4mESwx7ePavZbzl7t6CamsLePgEHnvXlX3brrWn0LHzZ7A79uD8Hgw9x-iMObp6tb62jBLXmScUtxUrN4xKb9fgBbXTFxezBZ2K0Z7LzGxNrA049nM4uxcZvoCd-WJuXwGLhc6MS612UUmxXmZEhXGiiq1wiVZpAGEjpcJ4GnOqpjErWgLmWrAFpa6RYIssgE_tK5dbDo-7Gvca0RdenZfFzeIL4H37GBWR0BU9t4v1ssBQWQiJ7q0K4OV2ytrRCN1FzzwJ4HMzhzed__dT9u_-lHfwcHA6HhWj4eToNTyKyN-ok-N6sLO6Xts36C2tyrd-STI4v28t-AusuSK-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqq4VFAeDRRqpHIBWbVjJ04OCCHaVbcvcaDS3oLj2HtZ7ZburlD_Gr-OmayTClXtrec4djKesWf8jb8B2Nc2NDnu62jiTnCNQQe3dG6VlzYIWYRIpnN-kR9f6pNRNlqDv91dGEqr7NbEdqFuZo7OyA8IpyduNSMOQkyL-HE4-Hr1m1MFKUJau3IaKxU59Td_MHybfxke4lx_TNPB0c_vxzxWGOBOmXTBvdKNzILJvNeFUi7USjqVCt0QfuTxR1xqa1-jlmfOlVaUztS2bGqdlZRPorDfJ7BhlCopndCM-mBPmLIt7CJw--ellqMOURUtgamki20y5woDHl78vyfecXTvgLTt3jd4BlvRaWXfVlr2HNb8dBs2zyMs_wKGkV10wgJdulpee0Yp6yxSifuG1TeMim63sAW1s-PxZEbnYbTaMjdZEl8Djv0SLh9Fgq9gfTqb-h1gmbSFC8bbkNYU5RVONhgh6szLkFttEhCdlCoXCcypjsak6qmXW8FWlLRGgq2KBD71r1yt2Dsearzbib6KhjyvbtUugQ_9YzRBwlXs1M-W8wqDZCkVOrY6gderKetHI1wXffI8gc_dHN52fu-nvHn4U_ZgE3W_OhtenL6Fpyk5Gm1W3C6sL66X_h26SYv6fauPDH49tgH8A6psIFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+fracture+risk+evaluated+by+hierarchical+agglomerative+clustering&rft.jtitle=Osteoporosis+international&rft.au=Kruse%2C+C&rft.au=Eiken%2C+P&rft.au=Vestergaard%2C+P&rft.date=2017-03-01&rft.eissn=1433-2965&rft.volume=28&rft.issue=3&rft.spage=819&rft_id=info:doi/10.1007%2Fs00198-016-3828-8&rft_id=info%3Apmid%2F27848006&rft.externalDocID=27848006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0937-941X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0937-941X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0937-941X&client=summon