Clinical fracture risk evaluated by hierarchical agglomerative clustering
Summary Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of different fracture risks. Differences emerged after age 60 and treatment compliance differed by hip and lumbar spine bone mineral density...
        Saved in:
      
    
          | Published in | Osteoporosis international Vol. 28; no. 3; pp. 819 - 832 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Springer London
    
        01.03.2017
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0937-941X 1433-2965 1433-2965  | 
| DOI | 10.1007/s00198-016-3828-8 | 
Cover
| Abstract | Summary
Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of different fracture risks. Differences emerged after age 60 and treatment compliance differed by hip and lumbar spine bone mineral density profiles.
Introduction
The purposes of this study were to establish and quantify patient clusters of high, average and low fracture risk using an unsupervised machine learning algorithm.
Methods
Regional and national Danish patient data on dual-energy X-ray absorptiometry (DXA) scans, medication reimbursement, primary healthcare sector use and comorbidity of female subjects were combined. Standardized variable means, Euclidean distances and Ward’s D2 method of hierarchical agglomerative clustering (HAC), were used to form the clustering object.
K
number of clusters was selected with the lowest cluster containing less than 250 subjects. Clusters were identified as high, average or low fracture risk based on bone mineral density (BMD) characteristics. Cluster-based descriptive statistics and relative Z-scores for variable means were computed.
Results
Ten thousand seven hundred seventy-five women were included in this study. Nine (
k
 = 9) clusters were identified. Four clusters (
n
 = 2886) were identified based on low to very low BMD with differences in comorbidity, anthropometrics and future bisphosphonate compliance. Two clusters of younger subjects (
n
 = 1058, mean ages 30 and 51 years) were identified as low fracture risk with high to very high BMD. A mean age of 60 years was the earliest that allowed for separation of high-risk clusters. DXA scan results could identify high-risk subjects with different antiresorptive treatment compliance levels based on similarities and differences in lumbar spine and hip region BMD.
Conclusions
Unsupervised HAC presents a novel technology to improve patient characteristics in bone disease beyond traditional T-score-based diagnosis. Technological and validation limitations need to be overcome to improve its use in internal medicine. Current DXA scan indication guidelines could be further improved by clustering algorithms. | 
    
|---|---|
| AbstractList | Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of different fracture risks. Differences emerged after age 60 and treatment compliance differed by hip and lumbar spine bone mineral density profiles.Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of different fracture risks. Differences emerged after age 60 and treatment compliance differed by hip and lumbar spine bone mineral density profiles.The purposes of this study were to establish and quantify patient clusters of high, average and low fracture risk using an unsupervised machine learning algorithm.INTRODUCTIONThe purposes of this study were to establish and quantify patient clusters of high, average and low fracture risk using an unsupervised machine learning algorithm.Regional and national Danish patient data on dual-energy X-ray absorptiometry (DXA) scans, medication reimbursement, primary healthcare sector use and comorbidity of female subjects were combined. Standardized variable means, Euclidean distances and Ward's D2 method of hierarchical agglomerative clustering (HAC), were used to form the clustering object. K number of clusters was selected with the lowest cluster containing less than 250 subjects. Clusters were identified as high, average or low fracture risk based on bone mineral density (BMD) characteristics. Cluster-based descriptive statistics and relative Z-scores for variable means were computed.METHODSRegional and national Danish patient data on dual-energy X-ray absorptiometry (DXA) scans, medication reimbursement, primary healthcare sector use and comorbidity of female subjects were combined. Standardized variable means, Euclidean distances and Ward's D2 method of hierarchical agglomerative clustering (HAC), were used to form the clustering object. K number of clusters was selected with the lowest cluster containing less than 250 subjects. Clusters were identified as high, average or low fracture risk based on bone mineral density (BMD) characteristics. Cluster-based descriptive statistics and relative Z-scores for variable means were computed.Ten thousand seven hundred seventy-five women were included in this study. Nine (k = 9) clusters were identified. Four clusters (n = 2886) were identified based on low to very low BMD with differences in comorbidity, anthropometrics and future bisphosphonate compliance. Two clusters of younger subjects (n = 1058, mean ages 30 and 51 years) were identified as low fracture risk with high to very high BMD. A mean age of 60 years was the earliest that allowed for separation of high-risk clusters. DXA scan results could identify high-risk subjects with different antiresorptive treatment compliance levels based on similarities and differences in lumbar spine and hip region BMD.RESULTSTen thousand seven hundred seventy-five women were included in this study. Nine (k = 9) clusters were identified. Four clusters (n = 2886) were identified based on low to very low BMD with differences in comorbidity, anthropometrics and future bisphosphonate compliance. Two clusters of younger subjects (n = 1058, mean ages 30 and 51 years) were identified as low fracture risk with high to very high BMD. A mean age of 60 years was the earliest that allowed for separation of high-risk clusters. DXA scan results could identify high-risk subjects with different antiresorptive treatment compliance levels based on similarities and differences in lumbar spine and hip region BMD.Unsupervised HAC presents a novel technology to improve patient characteristics in bone disease beyond traditional T-score-based diagnosis. Technological and validation limitations need to be overcome to improve its use in internal medicine. Current DXA scan indication guidelines could be further improved by clustering algorithms.CONCLUSIONSUnsupervised HAC presents a novel technology to improve patient characteristics in bone disease beyond traditional T-score-based diagnosis. Technological and validation limitations need to be overcome to improve its use in internal medicine. Current DXA scan indication guidelines could be further improved by clustering algorithms. Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of different fracture risks. Differences emerged after age 60 and treatment compliance differed by hip and lumbar spine bone mineral density profiles. The purposes of this study were to establish and quantify patient clusters of high, average and low fracture risk using an unsupervised machine learning algorithm. Regional and national Danish patient data on dual-energy X-ray absorptiometry (DXA) scans, medication reimbursement, primary healthcare sector use and comorbidity of female subjects were combined. Standardized variable means, Euclidean distances and Ward's D2 method of hierarchical agglomerative clustering (HAC), were used to form the clustering object. K number of clusters was selected with the lowest cluster containing less than 250 subjects. Clusters were identified as high, average or low fracture risk based on bone mineral density (BMD) characteristics. Cluster-based descriptive statistics and relative Z-scores for variable means were computed. Ten thousand seven hundred seventy-five women were included in this study. Nine (k = 9) clusters were identified. Four clusters (n = 2886) were identified based on low to very low BMD with differences in comorbidity, anthropometrics and future bisphosphonate compliance. Two clusters of younger subjects (n = 1058, mean ages 30 and 51 years) were identified as low fracture risk with high to very high BMD. A mean age of 60 years was the earliest that allowed for separation of high-risk clusters. DXA scan results could identify high-risk subjects with different antiresorptive treatment compliance levels based on similarities and differences in lumbar spine and hip region BMD. Unsupervised HAC presents a novel technology to improve patient characteristics in bone disease beyond traditional T-score-based diagnosis. Technological and validation limitations need to be overcome to improve its use in internal medicine. Current DXA scan indication guidelines could be further improved by clustering algorithms. SummaryClustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of different fracture risks. Differences emerged after age 60 and treatment compliance differed by hip and lumbar spine bone mineral density profiles.IntroductionThe purposes of this study were to establish and quantify patient clusters of high, average and low fracture risk using an unsupervised machine learning algorithm.MethodsRegional and national Danish patient data on dual-energy X-ray absorptiometry (DXA) scans, medication reimbursement, primary healthcare sector use and comorbidity of female subjects were combined. Standardized variable means, Euclidean distances and Ward’s D2 method of hierarchical agglomerative clustering (HAC), were used to form the clustering object. K number of clusters was selected with the lowest cluster containing less than 250 subjects. Clusters were identified as high, average or low fracture risk based on bone mineral density (BMD) characteristics. Cluster-based descriptive statistics and relative Z-scores for variable means were computed.ResultsTen thousand seven hundred seventy-five women were included in this study. Nine (k = 9) clusters were identified. Four clusters (n = 2886) were identified based on low to very low BMD with differences in comorbidity, anthropometrics and future bisphosphonate compliance. Two clusters of younger subjects (n = 1058, mean ages 30 and 51 years) were identified as low fracture risk with high to very high BMD. A mean age of 60 years was the earliest that allowed for separation of high-risk clusters. DXA scan results could identify high-risk subjects with different antiresorptive treatment compliance levels based on similarities and differences in lumbar spine and hip region BMD.ConclusionsUnsupervised HAC presents a novel technology to improve patient characteristics in bone disease beyond traditional T-score-based diagnosis. Technological and validation limitations need to be overcome to improve its use in internal medicine. Current DXA scan indication guidelines could be further improved by clustering algorithms. Summary Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of different fracture risks. Differences emerged after age 60 and treatment compliance differed by hip and lumbar spine bone mineral density profiles. Introduction The purposes of this study were to establish and quantify patient clusters of high, average and low fracture risk using an unsupervised machine learning algorithm. Methods Regional and national Danish patient data on dual-energy X-ray absorptiometry (DXA) scans, medication reimbursement, primary healthcare sector use and comorbidity of female subjects were combined. Standardized variable means, Euclidean distances and Ward’s D2 method of hierarchical agglomerative clustering (HAC), were used to form the clustering object. K number of clusters was selected with the lowest cluster containing less than 250 subjects. Clusters were identified as high, average or low fracture risk based on bone mineral density (BMD) characteristics. Cluster-based descriptive statistics and relative Z-scores for variable means were computed. Results Ten thousand seven hundred seventy-five women were included in this study. Nine ( k = 9) clusters were identified. Four clusters ( n = 2886) were identified based on low to very low BMD with differences in comorbidity, anthropometrics and future bisphosphonate compliance. Two clusters of younger subjects ( n = 1058, mean ages 30 and 51 years) were identified as low fracture risk with high to very high BMD. A mean age of 60 years was the earliest that allowed for separation of high-risk clusters. DXA scan results could identify high-risk subjects with different antiresorptive treatment compliance levels based on similarities and differences in lumbar spine and hip region BMD. Conclusions Unsupervised HAC presents a novel technology to improve patient characteristics in bone disease beyond traditional T-score-based diagnosis. Technological and validation limitations need to be overcome to improve its use in internal medicine. Current DXA scan indication guidelines could be further improved by clustering algorithms.  | 
    
| Author | Eiken, P. Kruse, C. Vestergaard, P.  | 
    
| Author_xml | – sequence: 1 givenname: C. orcidid: 0000-0001-5590-2245 surname: Kruse fullname: Kruse, C. email: C.kruse@rn.dk organization: Department of Endocrinology, Aalborg University Hospital, Department of Clinical Medicine, Aalborg University Hospital – sequence: 2 givenname: P. surname: Eiken fullname: Eiken, P. organization: Department of Cardiology, Nephrology and Endocrinology, Nordsjaellands Hospital, Faculty of Health and Medical Sciences, University of Copenhagen – sequence: 3 givenname: P. surname: Vestergaard fullname: Vestergaard, P. organization: Department of Endocrinology, Aalborg University Hospital, Department of Clinical Medicine, Aalborg University Hospital  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27848006$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kU1LJDEQhsPiso66P8CLNHjx0m7lozvJUQa_QPCyC95COl09RjPdY9I94L8347gKgp4KiucpivfdIzv90CMhhxROKYD8kwCoViXQuuSKqVL9IDMqOC-ZrqsdMgPNZakFvdsleyk9QHa0lr_ILpNKKIB6Rq7nwffe2VB00bpxilhEnx4LXNsw2RHbonku7j1GG939K2cXizAs82L0ayxcmNKI0feLA_KzsyHh77e5T_5dnP-dX5U3t5fX87Ob0nHJxhK5aGnVyQpRKM5d13DqOAPRVhWtUdjOMdtgI5SqnNMWtJON1W0jKi0Yl3yfnGzvruLwNGEazdInhyHYHocpGaoEpZzWXGT0-BP6MEyxz98ZBqCgFpWETB29UVOzxNasol_a-Gz-h5QBugVcHFKK2L0jFMymCLMtwuQizKYIo7IjPznOjzmyoR-j9eFbk23NtNrEivHj6a-lF8yxm-c | 
    
| CitedBy_id | crossref_primary_10_3389_fgene_2022_1072948 crossref_primary_10_1155_2020_8880786 crossref_primary_10_1007_s11657_020_00827_z crossref_primary_10_1016_j_arth_2023_06_027 crossref_primary_10_1016_j_ijchp_2023_100409 crossref_primary_10_1093_jamia_ocad111 crossref_primary_10_1016_j_cmpb_2020_105484 crossref_primary_10_1007_s00586_022_07176_0 crossref_primary_10_1016_j_jse_2024_07_006 crossref_primary_10_1097_BOR_0000000000000607 crossref_primary_10_1186_s13018_023_04446_5 crossref_primary_10_1016_j_fas_2022_05_005 crossref_primary_10_3803_EnM_2021_1111 crossref_primary_10_1177_10711007221093574 crossref_primary_10_3390_bioengineering10030277 crossref_primary_10_1097_CORR_0000000000001263 crossref_primary_10_1039_C9RA03848E crossref_primary_10_1055_s_0039_3400268 crossref_primary_10_3389_fbioe_2018_00075 crossref_primary_10_3803_EnM_2020_35_1_71 crossref_primary_10_1002_jbmr_4292 crossref_primary_10_1002_jmri_26280  | 
    
| Cites_doi | 10.1016/j.bone.2006.11.013 10.1007/BF01622200 10.1007/s10852-005-9022-1 10.1016/S8756-3282(00)00381-1 10.1111/j.0013-9580.2004.18804.x 10.1016/0895-4356(94)90129-5 10.1007/s002239900616 10.1002/1529-0131(200007)43:7<1450::AID-ANR6>3.0.CO;2-6 10.1001/jama.1986.03370090069022 10.1093/bioinformatics/bti201 10.1111/1467-9868.00293 10.1016/j.yebeh.2003.11.030 10.1007/s00198-005-1863-y 10.1007/s00357-014-9161-z 10.1016/0377-0427(87)90125-7 10.1007/s001980050224 10.1016/j.jocd.2011.04.011 10.1002/art.1780390111 10.1001/archinte.167.2.188 10.1002/gcc.20668 10.1007/s11914-010-0022-3 10.1007/s00198-007-0543-5 10.1080/01621459.1963.10500845 10.18637/jss.v053.i09 10.1007/s00198-014-2973-1 10.2165/00007256-199316050-00003 10.1056/NEJM199511303332201 10.1371/journal.pgen.1002254 10.1007/s001980200001 10.1210/jcem.86.1.7139 10.2165/00007256-199519020-00003 10.1007/s00223-006-0021-7 10.1016/j.bone.2015.12.002 10.1016/j.maturitas.2008.09.010 10.1016/j.jocd.2008.12.003 10.1007/BF02652563 10.1016/j.jclinepi.2004.03.012 10.1007/s00198-006-0253-4 10.1093/bioinformatics/btl117 10.5962/bhl.title.542 10.1007/978-3-642-13818-8_34  | 
    
| ContentType | Journal Article | 
    
| Copyright | International Osteoporosis Foundation and National Osteoporosis Foundation 2016 Osteoporosis International is a copyright of Springer, (2016). All Rights Reserved.  | 
    
| Copyright_xml | – notice: International Osteoporosis Foundation and National Osteoporosis Foundation 2016 – notice: Osteoporosis International is a copyright of Springer, (2016). All Rights Reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7RV 7TS 7X7 7XB 88E 8AO 8C1 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8  | 
    
| DOI | 10.1007/s00198-016-3828-8 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Nursing & Allied Health Database Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Proquest Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni Edition) Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Academic Middle East (New)  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1433-2965 | 
    
| EndPage | 832 | 
    
| ExternalDocumentID | 27848006 10_1007_s00198_016_3828_8  | 
    
| Genre | Research Support, Non-U.S. Gov't Multicenter Study Journal Article  | 
    
| GrantInformation_xml | – fundername: Det Obelske Familiefond (DK) grantid: N/A  | 
    
| GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5QI 5RE 5VS 67Z 6NX 78A 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAS LLZTM M1P M4Y MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7U Z7W Z82 Z83 Z87 Z8O Z8Q Z8V Z8W Z91 ZMTXR ZOVNA ZXP ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO CGR CUY CVF ECM EIF NPM 7QP 7TS 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8  | 
    
| ID | FETCH-LOGICAL-c372t-e34d15f75ee4833cfb31c3204d5516e4afc2abeb4885cc9a09c7ba9db45942373 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0937-941X 1433-2965  | 
    
| IngestDate | Wed Oct 01 14:35:31 EDT 2025 Mon Oct 06 17:24:05 EDT 2025 Thu Apr 03 07:04:58 EDT 2025 Wed Oct 01 03:59:18 EDT 2025 Thu Apr 24 23:09:37 EDT 2025 Fri Feb 21 02:34:04 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Osteoporosis Densitometry Clustering Risk factors Machine learning  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c372t-e34d15f75ee4833cfb31c3204d5516e4afc2abeb4885cc9a09c7ba9db45942373 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-5590-2245 | 
    
| PMID | 27848006 | 
    
| PQID | 2008064570 | 
    
| PQPubID | 33762 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_miscellaneous_1841131634 proquest_journals_2008064570 pubmed_primary_27848006 crossref_primary_10_1007_s00198_016_3828_8 crossref_citationtrail_10_1007_s00198_016_3828_8 springer_journals_10_1007_s00198_016_3828_8  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20170300 2017-3-00 2017-03-00 20170301  | 
    
| PublicationDateYYYYMMDD | 2017-03-01 | 
    
| PublicationDate_xml | – month: 3 year: 2017 text: 20170300  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationSubtitle | With other metabolic bone diseases | 
    
| PublicationTitle | Osteoporosis international | 
    
| PublicationTitleAbbrev | Osteoporos Int | 
    
| PublicationTitleAlternate | Osteoporos Int | 
    
| PublicationYear | 2017 | 
    
| Publisher | Springer London Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer London – name: Springer Nature B.V  | 
    
| References | Mattson, Gidal (CR6) 2004; 5 Schwartz, Sellmeyer, Ensrud (CR11) 2001; 86 Rousseeuw (CR16) 1987; 20 Antoniades, MacGregor, Matson, Spector (CR32) 2000; 43 Vestergaard, Rejnmark, Mosekilde (CR9) 2006; 79 Liberman, Weiss, Bröll, Minne, Quan, Bell, Rodriguez-Portales, Downs, Dequeker, Favus (CR27) 1995; 333 Liu, Peacock, Eilam, Dorulla, Braunstein, Johnston (CR29) 1997; 7 Lane, Bloch, Jones, Marshall, Wood, Fries (CR35) 1986; 255 CR15 Genant, Cooper, Poor (CR1) 1999; 10 CR36 Burger, van Daele, Odding, Valkenburg, Hofman, Grobbee, Schütte, Birkenhäger, Pols (CR28) 1996; 39 Kruse, Eiken, Verbalis, Vestergaard (CR19) 2016; 84 Vestergaard, Rejnmark, Mosekilde (CR10) 2004; 45 Kruse, Eiken, Vestergaard (CR18) 2015; 26 Vestergaard (CR8) 2007; 18 Rannevik, Jeppsson, Johnell, Bjerre, Laurell-Borulf, Svanberg (CR26) 2008; 61 Ao, Yip, Ng (CR12) 2005; 21 Leslie, Kovacs, Olszynski, Towheed, Kaiser, Prior, Josse, Jamal, Kreiger, Goltzman (CR38) 2011; 14 Chilibeck, Sale, Webber (CR33) 1995; 19 De laet, Kanis, Odén (CR5) 2005; 16 Ward (CR23) 1963; 58 Lane, Oehlert, Bloch, Fries (CR30) 1998; 25 Kanis, Johnell, Oden, Jonsson, De laet, Dawson (CR2) 2000; 27 Sandor, Felsenberg, Brown (CR4) 1999; 64 Kanis (CR3) 1994; 4 Charlson, Szatrowski, Peterson, Gold (CR21) 1994; 47 Warming, Hassager, Christiansen (CR25) 2002; 13 Kanis, Johnell, Oden, Johansson, McCloskey (CR37) 2008; 19 van den Bergh, van Geel, Lems, Geusens (CR39) 2010; 8 Reynolds, Richards, de la Iglesia, Rayward-Smith (CR41) 1992; 5 Kaufman, Rousseeuw (CR43) 1990 Sundararajan, Henderson, Perry, Muggivan, Quan, Ghali (CR22) 2004; 57 Suominen (CR34) 1993; 16 CR45 CR44 CR20 Agnelli, Mosca, Fabris, Lionetti, Andronache, Kwee, Todoerti, Verdelli, Battaglia, Bertoni, Deliliers, Neri (CR13) 2009; 48 Murtagh (CR24) 2014; 31 Müllner (CR42) 2013; 53 Richards, Papaioannou, Adachi, Joseph, Whitson, Prior, Goltzman (CR7) 2007; 167 Cotsapas, Voight, Rossin, Lage, Neale, Wallace, Abecasis, Barrett, Behrens, Cho, De Jager, Elder, Graham, Gregersen, Klareskog, Siminovitch, van Heel, Wijmenga, Worthington, Todd, Hafler, Rich, Daly (CR14) 2011; 7 Tibshirani, Walther, Hastie (CR17) 2001; 63 Mäkinen, Alm, Laine, Svedström, Aro (CR31) 2007; 40 Hamdy, Kiebzak (CR40) 2009; 12 3828_CR45 3828_CR20 3828_CR44 P Vestergaard (3828_CR8) 2007; 18 PJ Rousseeuw (3828_CR16) 1987; 20 L Agnelli (3828_CR13) 2009; 48 PD Chilibeck (3828_CR33) 1995; 19 JA Kanis (3828_CR2) 2000; 27 V Sundararajan (3828_CR22) 2004; 57 M Charlson (3828_CR21) 1994; 47 JB Richards (3828_CR7) 2007; 167 G Rannevik (3828_CR26) 2008; 61 A Reynolds (3828_CR41) 1992; 5 NE Lane (3828_CR35) 1986; 255 C Kruse (3828_CR19) 2016; 84 JP Bergh van den (3828_CR39) 2010; 8 TJ Mäkinen (3828_CR31) 2007; 40 RC Hamdy (3828_CR40) 2009; 12 T Sandor (3828_CR4) 1999; 64 F Murtagh (3828_CR24) 2014; 31 HK Genant (3828_CR1) 1999; 10 3828_CR15 JH Ward (3828_CR23) 1963; 58 P Vestergaard (3828_CR9) 2006; 79 3828_CR36 D Müllner (3828_CR42) 2013; 53 G Liu (3828_CR29) 1997; 7 H Burger (3828_CR28) 1996; 39 C De laet (3828_CR5) 2005; 16 JA Kanis (3828_CR37) 2008; 19 NE Lane (3828_CR30) 1998; 25 C Cotsapas (3828_CR14) 2011; 7 C Kruse (3828_CR18) 2015; 26 JA Kanis (3828_CR3) 1994; 4 H Suominen (3828_CR34) 1993; 16 L Kaufman (3828_CR43) 1990 L Antoniades (3828_CR32) 2000; 43 AV Schwartz (3828_CR11) 2001; 86 R Tibshirani (3828_CR17) 2001; 63 L Warming (3828_CR25) 2002; 13 SI Ao (3828_CR12) 2005; 21 UA Liberman (3828_CR27) 1995; 333 WD Leslie (3828_CR38) 2011; 14 RH Mattson (3828_CR6) 2004; 5 P Vestergaard (3828_CR10) 2004; 45 15509233 - Epilepsia. 2004 Nov;45(11):1330-7 7722560 - J Clin Epidemiol. 1994 Nov;47(11):1245-51 11905520 - Osteoporos Int. 2002;13(2):105-12 19434880 - Maturitas. 2008 Sep-Oct;61(1-2):67-77 3945033 - JAMA. 1986 Mar 7;255 (9):1147-51 11062343 - Bone. 2000 Nov;27(5):585-90 10692972 - Osteoporos Int. 1999;10(4):259-64 17242321 - Arch Intern Med. 2007 Jan 22;167(2):188-94 21723768 - J Clin Densitom. 2011 Jul-Sep;14 (3):286-93 8546742 - Arthritis Rheum. 1996 Jan;39(1):81-6 11231974 - J Clin Endocrinol Metab. 2001 Jan;86(1):32-8 26679436 - Bone. 2016 Mar;84:9-14 17068657 - Osteoporos Int. 2007 Apr;18(4):427-44 15617955 - J Clin Epidemiol. 2004 Dec;57(12):1288-94 21852963 - PLoS Genet. 2011 Aug;7(8):e1002254 25466529 - Osteoporos Int. 2015 Mar;26(3):1005-16 16927047 - Calcif Tissue Int. 2006 Aug;79(2):76-83 7477143 - N Engl J Med. 1995 Nov 30;333(22):1437-43 7696835 - Osteoporos Int. 1994 Nov;4(6):368-81 8272687 - Sports Med. 1993 Nov;16(5):316-30 15123010 - Epilepsy Behav. 2004 Feb;5 Suppl 2:S36-40 7747001 - Sports Med. 1995 Feb;19(2):103-22 15585525 - Bioinformatics. 2005 Apr 15;21(8):1735-6 20563901 - Curr Osteoporos Rep. 2010 Sep;8(3):131-7 9604053 - Osteoporos Int. 1997;7(6):564-9 19396863 - Genes Chromosomes Cancer. 2009 Jul;48(7):603-14 18292978 - Osteoporos Int. 2008 Apr;19(4):385-97 10024389 - Calcif Tissue Int. 1999 Mar;64(3):267-70 19201635 - J Clin Densitom. 2009 Apr-Jun;12 (2):158-61 10902745 - Arthritis Rheum. 2000 Jul;43(7):1450-5 9489830 - J Rheumatol. 1998 Feb;25(2):334-41 17239668 - Bone. 2007 Apr;40(4):1041-7 16595560 - Bioinformatics. 2006 Jun 15;22(12):1540-2 15928804 - Osteoporos Int. 2005 Nov;16(11):1330-8  | 
    
| References_xml | – ident: CR45 – volume: 40 start-page: 1041 issue: 4 year: 2007 end-page: 1047 ident: CR31 article-title: The incidence of osteopenia and osteoporosis in women with hip osteoarthritis scheduled for cementless total joint replacement publication-title: Bone doi: 10.1016/j.bone.2006.11.013 – volume: 4 start-page: 368 issue: 6 year: 1994 end-page: 381 ident: CR3 article-title: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO study group publication-title: Osteoporos Int doi: 10.1007/BF01622200 – volume: 25 start-page: 334 issue: 2 year: 1998 end-page: 341 ident: CR30 article-title: The relationship of running to osteoarthritis of the knee and hip and bone mineral density of the lumbar spine: a 9-year longitudinal study publication-title: J Rheumatol – volume: 5 start-page: 475 year: 1992 end-page: 504 ident: CR41 article-title: Clustering rules: a comparison of partitioning and hierarchical clustering algorithms publication-title: Journal of Mathematical Modelling and Algorithms doi: 10.1007/s10852-005-9022-1 – volume: 27 start-page: 585 issue: 5 year: 2000 end-page: 590 ident: CR2 article-title: Risk of hip fracture according to the World Health Organization criteria for osteopenia and osteoporosis publication-title: Bone doi: 10.1016/S8756-3282(00)00381-1 – volume: 45 start-page: 1330 issue: 11 year: 2004 end-page: 1337 ident: CR10 article-title: Fracture risk associated with use of antiepileptic drugs publication-title: Epilepsia doi: 10.1111/j.0013-9580.2004.18804.x – volume: 47 start-page: 1245 issue: 11 year: 1994 end-page: 1251 ident: CR21 article-title: Validation of a combined comorbidity index publication-title: J Clin Epidemiol doi: 10.1016/0895-4356(94)90129-5 – volume: 64 start-page: 267 issue: 3 year: 1999 end-page: 270 ident: CR4 article-title: Comments on the hypotheses underlying fracture risk assessment in osteoporosis as proposed by the World Health Organization publication-title: Calcif Tissue Int doi: 10.1007/s002239900616 – volume: 43 start-page: 1450 issue: 7 year: 2000 end-page: 1455 ident: CR32 article-title: A cotwin control study of the relationship between hip osteoarthritis and bone mineral density publication-title: Arthritis Rheum doi: 10.1002/1529-0131(200007)43:7<1450::AID-ANR6>3.0.CO;2-6 – volume: 255 start-page: 1147 issue: 9 year: 1986 end-page: 1151 ident: CR35 article-title: Long-distance running, bone density, and osteoarthritis publication-title: JAMA doi: 10.1001/jama.1986.03370090069022 – volume: 21 start-page: 1735 issue: 8 year: 2005 end-page: 1736 ident: CR12 article-title: CLUSTAG: hierarchical clustering and graph methods for selecting tag SNPs publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti201 – volume: 63 start-page: 411 issue: 2 year: 2001 end-page: 423 ident: CR17 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/1467-9868.00293 – volume: 5 start-page: S36 issue: Suppl 2 year: 2004 end-page: S40 ident: CR6 article-title: Fractures, epilepsy, and antiepileptic drugs publication-title: Epilepsy Behav doi: 10.1016/j.yebeh.2003.11.030 – volume: 16 start-page: 1330 issue: 11 year: 2005 end-page: 1338 ident: CR5 article-title: Body mass index as a predictor of fracture risk: a meta-analysis publication-title: Osteoporos Int doi: 10.1007/s00198-005-1863-y – volume: 31 start-page: 274 year: 2014 end-page: 295 ident: CR24 article-title: Ward’s hierarchical agglomerative clustering method:which algorithms implement Ward’s criterion? publication-title: J Classif doi: 10.1007/s00357-014-9161-z – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: CR16 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J Comput Appl Math doi: 10.1016/0377-0427(87)90125-7 – volume: 10 start-page: 259 issue: 4 year: 1999 end-page: 264 ident: CR1 article-title: Interim report and recommendations of the World Health Organization task-force for osteoporosis publication-title: Osteoporos Int doi: 10.1007/s001980050224 – volume: 14 start-page: 286 issue: 3 year: 2011 end-page: 293 ident: CR38 article-title: CaMos research group. Spine-hip T-score difference predicts major osteoporotic fracture risk independent of FRAX(®): a population-based report from CAMOS publication-title: J Clin Densitom doi: 10.1016/j.jocd.2011.04.011 – volume: 39 start-page: 81 issue: 1 year: 1996 end-page: 86 ident: CR28 article-title: Association of radiographically evident osteoarthritis with higher bone mineral density and increased bone loss with age. The Rotterdam study publication-title: Arthritis Rheum doi: 10.1002/art.1780390111 – volume: 167 start-page: 188 issue: 2 year: 2007 end-page: 194 ident: CR7 article-title: Effect of selective serotonin reuptake inhibitors on the risk of fracture publication-title: Arch Intern Med doi: 10.1001/archinte.167.2.188 – volume: 48 start-page: 603 issue: 7 year: 2009 end-page: 614 ident: CR13 article-title: A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect publication-title: Genes Chromosomes Cancer doi: 10.1002/gcc.20668 – year: 1990 ident: CR43 publication-title: (=: “K&R(1990)”) finding groups in data: an introduction to cluster analysis – volume: 8 start-page: 131 issue: 3 year: 2010 end-page: 137 ident: CR39 article-title: Assessment of individual fracture risk: FRAX and beyond publication-title: Curr Osteoporos Rep doi: 10.1007/s11914-010-0022-3 – ident: CR44 – volume: 19 start-page: 385 issue: 4 year: 2008 end-page: 397 ident: CR37 article-title: FRAX and the assessment of fracture probability in men and women from the UK publication-title: Osteoporos Int doi: 10.1007/s00198-007-0543-5 – volume: 58 start-page: 236 issue: 301 year: 1963 end-page: 244 ident: CR23 article-title: Hierarchical grouping to optimize an objective function publication-title: J Am Stat Assoc doi: 10.1080/01621459.1963.10500845 – volume: 53 start-page: 1 issue: 9 year: 2013 end-page: 18 ident: CR42 article-title: Fastcluster: fast hierarchical, agglomerative clustering routines for R and python publication-title: J Stat Softw doi: 10.18637/jss.v053.i09 – volume: 26 start-page: 1005 issue: 3 year: 2015 end-page: 1016 ident: CR18 article-title: Hyponatremia and osteoporosis: insights from the Danish National Patient Registry publication-title: Osteoporos Int doi: 10.1007/s00198-014-2973-1 – ident: CR15 – volume: 16 start-page: 316 issue: 5 year: 1993 end-page: 330 ident: CR34 article-title: Bone mineral density and long term exercise. An overview of cross-sectional athlete studies publication-title: Sports Med doi: 10.2165/00007256-199316050-00003 – volume: 333 start-page: 1437 issue: 22 year: 1995 end-page: 1443 ident: CR27 article-title: Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The alendronate phase III osteoporosis treatment study group publication-title: N Engl J Med doi: 10.1056/NEJM199511303332201 – volume: 7 start-page: e1002254 issue: 8 year: 2011 ident: CR14 article-title: FOCiS network of consortia. Pervasive sharing of genetic effects in autoimmune disease publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002254 – volume: 13 start-page: 105 issue: 2 year: 2002 end-page: 112 ident: CR25 article-title: Changes in bone mineral density with age in men and women: a longitudinal study publication-title: Osteoporos Int doi: 10.1007/s001980200001 – ident: CR36 – volume: 86 start-page: 32 issue: 1 year: 2001 end-page: 38 ident: CR11 article-title: Older women with diabetes have an increased risk of fracture: a prospective study publication-title: J Clin Endocrinol Metab doi: 10.1210/jcem.86.1.7139 – volume: 19 start-page: 103 issue: 2 year: 1995 end-page: 122 ident: CR33 article-title: Exercise and bone mineral density publication-title: Sports Med doi: 10.2165/00007256-199519020-00003 – volume: 79 start-page: 76 issue: 2 year: 2006 end-page: 83 ident: CR9 article-title: Proton pump inhibitors, histamine H2 receptor antagonists, and other antacid medications and the risk of fracture publication-title: Calcif Tissue Int doi: 10.1007/s00223-006-0021-7 – volume: 84 start-page: 9 year: 2016 end-page: 14 ident: CR19 article-title: The effect of chronic mild hyponatremia on bone mineral loss evaluated by retrospective national Danish patient data publication-title: Bone doi: 10.1016/j.bone.2015.12.002 – volume: 61 start-page: 67 issue: 1–2 year: 2008 end-page: 77 ident: CR26 article-title: A longitudinal study of the perimenopausal transition: altered profiles of steroid and pituitary hormones, SHBG and bone mineral density publication-title: Maturitas doi: 10.1016/j.maturitas.2008.09.010 – volume: 12 start-page: 158 issue: 2 year: 2009 end-page: 161 ident: CR40 article-title: Variance in 10-year fracture risk calculated with and without T-scores in select subgroups of normal and osteoporotic patients publication-title: J Clin Densitom doi: 10.1016/j.jocd.2008.12.003 – volume: 7 start-page: 564 issue: 6 year: 1997 end-page: 569 ident: CR29 article-title: Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women publication-title: Osteoporos Int doi: 10.1007/BF02652563 – volume: 57 start-page: 1288 issue: 12 year: 2004 end-page: 1294 ident: CR22 article-title: New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2004.03.012 – volume: 18 start-page: 427 issue: 4 year: 2007 end-page: 444 ident: CR8 article-title: Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis publication-title: Osteoporos Int doi: 10.1007/s00198-006-0253-4 – ident: CR20 – volume: 7 start-page: 564 issue: 6 year: 1997 ident: 3828_CR29 publication-title: Osteoporos Int doi: 10.1007/BF02652563 – volume: 19 start-page: 103 issue: 2 year: 1995 ident: 3828_CR33 publication-title: Sports Med doi: 10.2165/00007256-199519020-00003 – ident: 3828_CR20 – volume: 13 start-page: 105 issue: 2 year: 2002 ident: 3828_CR25 publication-title: Osteoporos Int doi: 10.1007/s001980200001 – volume: 45 start-page: 1330 issue: 11 year: 2004 ident: 3828_CR10 publication-title: Epilepsia doi: 10.1111/j.0013-9580.2004.18804.x – volume: 5 start-page: 475 year: 1992 ident: 3828_CR41 publication-title: Journal of Mathematical Modelling and Algorithms doi: 10.1007/s10852-005-9022-1 – volume: 61 start-page: 67 issue: 1–2 year: 2008 ident: 3828_CR26 publication-title: Maturitas doi: 10.1016/j.maturitas.2008.09.010 – volume: 19 start-page: 385 issue: 4 year: 2008 ident: 3828_CR37 publication-title: Osteoporos Int doi: 10.1007/s00198-007-0543-5 – volume: 79 start-page: 76 issue: 2 year: 2006 ident: 3828_CR9 publication-title: Calcif Tissue Int doi: 10.1007/s00223-006-0021-7 – ident: 3828_CR45 doi: 10.1093/bioinformatics/btl117 – volume: 8 start-page: 131 issue: 3 year: 2010 ident: 3828_CR39 publication-title: Curr Osteoporos Rep doi: 10.1007/s11914-010-0022-3 – volume: 84 start-page: 9 year: 2016 ident: 3828_CR19 publication-title: Bone doi: 10.1016/j.bone.2015.12.002 – volume-title: (=: “K&R(1990)”) finding groups in data: an introduction to cluster analysis year: 1990 ident: 3828_CR43 – volume: 47 start-page: 1245 issue: 11 year: 1994 ident: 3828_CR21 publication-title: J Clin Epidemiol doi: 10.1016/0895-4356(94)90129-5 – volume: 25 start-page: 334 issue: 2 year: 1998 ident: 3828_CR30 publication-title: J Rheumatol – volume: 39 start-page: 81 issue: 1 year: 1996 ident: 3828_CR28 publication-title: Arthritis Rheum doi: 10.1002/art.1780390111 – volume: 10 start-page: 259 issue: 4 year: 1999 ident: 3828_CR1 publication-title: Osteoporos Int doi: 10.1007/s001980050224 – volume: 86 start-page: 32 issue: 1 year: 2001 ident: 3828_CR11 publication-title: J Clin Endocrinol Metab doi: 10.1210/jcem.86.1.7139 – volume: 43 start-page: 1450 issue: 7 year: 2000 ident: 3828_CR32 publication-title: Arthritis Rheum doi: 10.1002/1529-0131(200007)43:7<1450::AID-ANR6>3.0.CO;2-6 – volume: 53 start-page: 1 issue: 9 year: 2013 ident: 3828_CR42 publication-title: J Stat Softw doi: 10.18637/jss.v053.i09 – volume: 26 start-page: 1005 issue: 3 year: 2015 ident: 3828_CR18 publication-title: Osteoporos Int doi: 10.1007/s00198-014-2973-1 – volume: 31 start-page: 274 year: 2014 ident: 3828_CR24 publication-title: J Classif doi: 10.1007/s00357-014-9161-z – volume: 16 start-page: 316 issue: 5 year: 1993 ident: 3828_CR34 publication-title: Sports Med doi: 10.2165/00007256-199316050-00003 – volume: 63 start-page: 411 issue: 2 year: 2001 ident: 3828_CR17 publication-title: J R Stat Soc Ser B Stat Methodol doi: 10.1111/1467-9868.00293 – volume: 18 start-page: 427 issue: 4 year: 2007 ident: 3828_CR8 publication-title: Osteoporos Int doi: 10.1007/s00198-006-0253-4 – ident: 3828_CR15 doi: 10.5962/bhl.title.542 – volume: 20 start-page: 53 year: 1987 ident: 3828_CR16 publication-title: J Comput Appl Math doi: 10.1016/0377-0427(87)90125-7 – volume: 57 start-page: 1288 issue: 12 year: 2004 ident: 3828_CR22 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2004.03.012 – volume: 58 start-page: 236 issue: 301 year: 1963 ident: 3828_CR23 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1963.10500845 – ident: 3828_CR36 – volume: 48 start-page: 603 issue: 7 year: 2009 ident: 3828_CR13 publication-title: Genes Chromosomes Cancer doi: 10.1002/gcc.20668 – volume: 4 start-page: 368 issue: 6 year: 1994 ident: 3828_CR3 publication-title: Osteoporos Int doi: 10.1007/BF01622200 – volume: 167 start-page: 188 issue: 2 year: 2007 ident: 3828_CR7 publication-title: Arch Intern Med doi: 10.1001/archinte.167.2.188 – volume: 5 start-page: S36 issue: Suppl 2 year: 2004 ident: 3828_CR6 publication-title: Epilepsy Behav doi: 10.1016/j.yebeh.2003.11.030 – volume: 14 start-page: 286 issue: 3 year: 2011 ident: 3828_CR38 publication-title: J Clin Densitom doi: 10.1016/j.jocd.2011.04.011 – ident: 3828_CR44 doi: 10.1007/978-3-642-13818-8_34 – volume: 27 start-page: 585 issue: 5 year: 2000 ident: 3828_CR2 publication-title: Bone doi: 10.1016/S8756-3282(00)00381-1 – volume: 7 start-page: e1002254 issue: 8 year: 2011 ident: 3828_CR14 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002254 – volume: 255 start-page: 1147 issue: 9 year: 1986 ident: 3828_CR35 publication-title: JAMA doi: 10.1001/jama.1986.03370090069022 – volume: 333 start-page: 1437 issue: 22 year: 1995 ident: 3828_CR27 publication-title: N Engl J Med doi: 10.1056/NEJM199511303332201 – volume: 21 start-page: 1735 issue: 8 year: 2005 ident: 3828_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti201 – volume: 40 start-page: 1041 issue: 4 year: 2007 ident: 3828_CR31 publication-title: Bone doi: 10.1016/j.bone.2006.11.013 – volume: 64 start-page: 267 issue: 3 year: 1999 ident: 3828_CR4 publication-title: Calcif Tissue Int doi: 10.1007/s002239900616 – volume: 16 start-page: 1330 issue: 11 year: 2005 ident: 3828_CR5 publication-title: Osteoporos Int doi: 10.1007/s00198-005-1863-y – volume: 12 start-page: 158 issue: 2 year: 2009 ident: 3828_CR40 publication-title: J Clin Densitom doi: 10.1016/j.jocd.2008.12.003 – reference: 9604053 - Osteoporos Int. 1997;7(6):564-9 – reference: 10024389 - Calcif Tissue Int. 1999 Mar;64(3):267-70 – reference: 8272687 - Sports Med. 1993 Nov;16(5):316-30 – reference: 7747001 - Sports Med. 1995 Feb;19(2):103-22 – reference: 11905520 - Osteoporos Int. 2002;13(2):105-12 – reference: 25466529 - Osteoporos Int. 2015 Mar;26(3):1005-16 – reference: 11062343 - Bone. 2000 Nov;27(5):585-90 – reference: 10692972 - Osteoporos Int. 1999;10(4):259-64 – reference: 21852963 - PLoS Genet. 2011 Aug;7(8):e1002254 – reference: 20563901 - Curr Osteoporos Rep. 2010 Sep;8(3):131-7 – reference: 7722560 - J Clin Epidemiol. 1994 Nov;47(11):1245-51 – reference: 26679436 - Bone. 2016 Mar;84:9-14 – reference: 8546742 - Arthritis Rheum. 1996 Jan;39(1):81-6 – reference: 19396863 - Genes Chromosomes Cancer. 2009 Jul;48(7):603-14 – reference: 15928804 - Osteoporos Int. 2005 Nov;16(11):1330-8 – reference: 17068657 - Osteoporos Int. 2007 Apr;18(4):427-44 – reference: 17242321 - Arch Intern Med. 2007 Jan 22;167(2):188-94 – reference: 17239668 - Bone. 2007 Apr;40(4):1041-7 – reference: 19201635 - J Clin Densitom. 2009 Apr-Jun;12 (2):158-61 – reference: 21723768 - J Clin Densitom. 2011 Jul-Sep;14 (3):286-93 – reference: 15509233 - Epilepsia. 2004 Nov;45(11):1330-7 – reference: 16595560 - Bioinformatics. 2006 Jun 15;22(12):1540-2 – reference: 7696835 - Osteoporos Int. 1994 Nov;4(6):368-81 – reference: 19434880 - Maturitas. 2008 Sep-Oct;61(1-2):67-77 – reference: 15585525 - Bioinformatics. 2005 Apr 15;21(8):1735-6 – reference: 9489830 - J Rheumatol. 1998 Feb;25(2):334-41 – reference: 15617955 - J Clin Epidemiol. 2004 Dec;57(12):1288-94 – reference: 16927047 - Calcif Tissue Int. 2006 Aug;79(2):76-83 – reference: 15123010 - Epilepsy Behav. 2004 Feb;5 Suppl 2:S36-40 – reference: 18292978 - Osteoporos Int. 2008 Apr;19(4):385-97 – reference: 3945033 - JAMA. 1986 Mar 7;255 (9):1147-51 – reference: 7477143 - N Engl J Med. 1995 Nov 30;333(22):1437-43 – reference: 10902745 - Arthritis Rheum. 2000 Jul;43(7):1450-5 – reference: 11231974 - J Clin Endocrinol Metab. 2001 Jan;86(1):32-8  | 
    
| SSID | ssj0007997 | 
    
| Score | 2.34109 | 
    
| Snippet | Summary
Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters... Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of... SummaryClustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters...  | 
    
| SourceID | proquest pubmed crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 819 | 
    
| SubjectTerms | Absorptiometry, Photon Adult Aged Aged, 80 and over Algorithms Bone density Bone Density - physiology Bone mineral density Cluster Analysis Clustering Comorbidity Denmark - epidemiology Dual energy X-ray absorptiometry Endocrinology Female Fractures Hip Hip Joint - physiopathology Humans Learning algorithms Lumbar Vertebrae - physiopathology Machine Learning Medicine Medicine & Public Health Middle Aged Original Article Orthopedics Osteoporosis Osteoporosis - complications Osteoporosis - epidemiology Osteoporosis - physiopathology Osteoporosis, Postmenopausal - complications Osteoporosis, Postmenopausal - epidemiology Osteoporosis, Postmenopausal - physiopathology Osteoporotic Fractures - epidemiology Osteoporotic Fractures - etiology Osteoporotic Fractures - physiopathology Reproducibility of Results Rheumatology Risk assessment Risk Factors Spine (lumbar) Statistical analysis  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90gvgiflu_qOCTEmiapGkfhzimMJ8c7K2kabKX0cm2Pvjfm-vSikwFn5sm4S7J3eV3-R3AHVe2TJxdd1tcR4S7oIMovLdKMmUjmlpPpjN6TYZj_jIRE_-Oe9lmu7eQZHNSd4_d0BvBxKuEMBcmkHQbdgSyeblFPI773fErs6aiiovUJck4nbRQ5k9dfDdGGx7mBjraGJ3BAex7bzHsr9V7CFumOoLdkcfDj-HZ03rOQouvneqFCTFXPPQc3qYMi48Qq103eAG2U9PpbI4XUXjMhXpWI1GCG_sExoOnt8ch8cURiGYyXhHDeEmFlcIYnjKmbcGoZnHES4S-jNOBjlVhCrdBhdaZijItC5WVBRcZpsKwU-hV88qcQyioSrWVRtm4wPAq1bR0oRkXhtpEcRlA1Eop1545HAtYzPKO87gRbI7ZYijYPA3gvvvlfU2b8Vfjq1b0ud9By6Y8JnLpySiA2-6zW_sIaKjKzOtl7qJTSpnzKHkAZ2uVdaMhoOqc4SSAh1aHX53_OpWLf7W-hL0YrXyTknYFvdWiNtfOR1kVN82a_AQWQ9td priority: 102 providerName: Springer Nature  | 
    
| Title | Clinical fracture risk evaluated by hierarchical agglomerative clustering | 
    
| URI | https://link.springer.com/article/10.1007/s00198-016-3828-8 https://www.ncbi.nlm.nih.gov/pubmed/27848006 https://www.proquest.com/docview/2008064570 https://www.proquest.com/docview/1841131634  | 
    
| Volume | 28 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-2965 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007997 issn: 0937-941X databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1433-2965 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0007997 issn: 0937-941X databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-2965 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0007997 issn: 0937-941X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-2965 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007997 issn: 0937-941X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-2965 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007997 issn: 0937-941X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90A_FF_LY6RwWflGDTpE37IDJlfuIQcTCfSpomexmbuu3B_95cl1ZE9KUPbdqGS-5yl9_ldwDHXJoituu6VXEVEG6DDiJx3ypOpQloYhyZzmMvvu3z-0E0WIJedRYG0yorm1ga6mKicI_8DHF65FYTwcXbO8GqUYiuViU0pCutUJyXFGPL0AyRGasBzctu7-m5ts0iLcut2DBekJTTQYVzBiWtKMXjZjQmzIYhJPm5Uv1yP39Bp-WKdL0Oa86V9DuLsd-AJT3ehJVHB5ZvwZ3j_Bz5Bo9CzT-0j4nkviP41oWff_pYCrsEE7CdHA5HE9ylQhvoq9EcWRTsv7ehf919ubolrnICUUyEM6IZL2hkRKQ1TxhTJmdUsTDgBeJi2g6QCmWuc6u9kVKpDFIlcpkWOY9SzJNhO9AYT8Z6D_yIykQZoaUJc4y9EkULG7fxSFMTSy48CCopZcrRimN1i1FWEyKXgs0wlQwFmyUenNSvvC04Nf5r3KpEnzn1mmbfk8GDo_qxVQxEO-RYT-bTzIaulDLrbnIPdhdDVv8N0VbrKccenFZj-P3xP7uy_39XDmA1xDW_TFBrQWP2MdeH1mOZ5W1YFgNhr8kVbUOzc_P60G27qWnv9sPOF6gl6WY | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6FRipcEFAeWwIYCS4gi_Xa-zpEiEerhCZRVbVSbluv1-4lStomEcqf47cxs_FuhSp663m99u7Y45nxN_4G4IPSrkrQrqOKm5ArDDq4pnOrJNcuFJnzZDrjSTI4U7-m8bQDf5q7MJRW2eyJ9UZdLQydkX8hnJ641dLw6-UVp6pRhK42JTS0L61Q9WuKMX-x48hufmMIt-wPf-J8f4yiw4PTHwPuqwxwI9Noxa1UlYhdGlurMimNK6UwMgpVRRiSxZ8xkS5tiSs9NibXYW7SUudVqeKcckok9vsAukqqHIO_7veDyfFJawvSvC7vEqITwHMlpg2uGtY0poKut4mESwx7ePavZbzl7t6CamsLePgEHnvXlX3brrWn0LHzZ7A79uD8Hgw9x-iMObp6tb62jBLXmScUtxUrN4xKb9fgBbXTFxezBZ2K0Z7LzGxNrA049nM4uxcZvoCd-WJuXwGLhc6MS612UUmxXmZEhXGiiq1wiVZpAGEjpcJ4GnOqpjErWgLmWrAFpa6RYIssgE_tK5dbDo-7Gvca0RdenZfFzeIL4H37GBWR0BU9t4v1ssBQWQiJ7q0K4OV2ytrRCN1FzzwJ4HMzhzed__dT9u_-lHfwcHA6HhWj4eToNTyKyN-ok-N6sLO6Xts36C2tyrd-STI4v28t-AusuSK- | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVqq4VFAeDRRqpHIBWbVjJ04OCCHaVbcvcaDS3oLj2HtZ7ZburlD_Gr-OmayTClXtrec4djKesWf8jb8B2Nc2NDnu62jiTnCNQQe3dG6VlzYIWYRIpnN-kR9f6pNRNlqDv91dGEqr7NbEdqFuZo7OyA8IpyduNSMOQkyL-HE4-Hr1m1MFKUJau3IaKxU59Td_MHybfxke4lx_TNPB0c_vxzxWGOBOmXTBvdKNzILJvNeFUi7USjqVCt0QfuTxR1xqa1-jlmfOlVaUztS2bGqdlZRPorDfJ7BhlCopndCM-mBPmLIt7CJw--ellqMOURUtgamki20y5woDHl78vyfecXTvgLTt3jd4BlvRaWXfVlr2HNb8dBs2zyMs_wKGkV10wgJdulpee0Yp6yxSifuG1TeMim63sAW1s-PxZEbnYbTaMjdZEl8Djv0SLh9Fgq9gfTqb-h1gmbSFC8bbkNYU5RVONhgh6szLkFttEhCdlCoXCcypjsak6qmXW8FWlLRGgq2KBD71r1yt2Dsearzbib6KhjyvbtUugQ_9YzRBwlXs1M-W8wqDZCkVOrY6gderKetHI1wXffI8gc_dHN52fu-nvHn4U_ZgE3W_OhtenL6Fpyk5Gm1W3C6sL66X_h26SYv6fauPDH49tgH8A6psIFg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+fracture+risk+evaluated+by+hierarchical+agglomerative+clustering&rft.jtitle=Osteoporosis+international&rft.au=Kruse%2C+C&rft.au=Eiken%2C+P&rft.au=Vestergaard%2C+P&rft.date=2017-03-01&rft.eissn=1433-2965&rft.volume=28&rft.issue=3&rft.spage=819&rft_id=info:doi/10.1007%2Fs00198-016-3828-8&rft_id=info%3Apmid%2F27848006&rft.externalDocID=27848006 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0937-941X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0937-941X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0937-941X&client=summon |