An O(n2) algorithm for detecting communities of unbalanced sizes in large scale social networks

In the study of complex networks, a network is said to have community structure if it divides naturally into groups of nodes with dense connections within groups and only sparser connections between them [1]. Community structures are quite common in real networks. Social networks often include commu...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 37; pp. 19 - 36
Main Authors Zardi, H., Romdhane, L. Ben
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2013
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2012.05.021

Cover

Abstract In the study of complex networks, a network is said to have community structure if it divides naturally into groups of nodes with dense connections within groups and only sparser connections between them [1]. Community structures are quite common in real networks. Social networks often include community groups based on common location, interests, occupation, etc. One of the most widely used methods for community detection is modularity maximization [2]. Modularity is a function that measures the quality of a particular division of a network into communities. But in [3], it is shown that communities that maximize the modularity are certainly groupings of smaller communities that need to be studied. In this work, we define a new function that qualifies a partition. We also present an algorithm that optimizes this function in order to find, within a reasonable time, the partition with the best measure of quality and which does not ignore small community.
AbstractList In the study of complex networks, a network is said to have community structure if it divides naturally into groups of nodes with dense connections within groups and only sparser connections between them [1]. Community structures are quite common in real networks. Social networks often include community groups based on common location, interests, occupation, etc. One of the most widely used methods for community detection is modularity maximization [2]. Modularity is a function that measures the quality of a particular division of a network into communities. But in [3], it is shown that communities that maximize the modularity are certainly groupings of smaller communities that need to be studied. In this work, we define a new function that qualifies a partition. We also present an algorithm that optimizes this function in order to find, within a reasonable time, the partition with the best measure of quality and which does not ignore small community.
In the study of complex networks, a network is said to have community structure if it divides naturally into groups of nodes with dense connections within groups and only sparser connections between them. Community structures are quite common in real networks. Social networks often include community groups based on common location, interests, occupation, etc. One of the most widely used methods for community detection is modularity maximization. Modularity is a function that measures the quality of a particular division of a network into communities. But in, it is shown that communities that maximize the modularity are certainly groupings of smaller communities that need to be studied. In this work, we define a new function that qualifies a partition. We also present an algorithm that optimizes this function in order to find, within a reasonable time, the partition with the best measure of quality and which does not ignore small community.
Author Zardi, H.
Romdhane, L. Ben
Author_xml – sequence: 1
  givenname: H.
  surname: Zardi
  fullname: Zardi, H.
  email: zardidarine@yahoo.fr
  organization: Faculty of Sciences, University of Monastir, Tunisia
– sequence: 2
  givenname: L. Ben
  surname: Romdhane
  fullname: Romdhane, L. Ben
  organization: High School of Sciences and Technology of Hammam Sousse, University of Sousse, Tunisia
BookMark eNqNkU9P3DAQxa2KSl3-fAMOPtJDwtix46QHJIRaqITEhZ4tx54sXhIbbG8r-umb1XLiULjMjEbznkbvd0gOQgxIyCmDmgFrzzf1Y4j5JdccGK9B1sDZJ7JineKVEtAfkBX0EioFkn0hhzlvAIBz1q2Ivgz07izwr9RM65h8eZjpGBN1WNAWH9bUxnneBl88ZhpHug2DmUyw6Gj2f5edD3QyaY00WzMtNVpvJhqw_InpMR-Tz6OZMp689iPy68f3-6ub6vbu-ufV5W1lG8VL5QwbG-eaUQxj20grXKes6JYJVKv4ODTQixaFkQpF55QdFHcKh3awPW8da47I2d73KcXnLeaiZ58tTsurGLdZM6Gk5KJv5QdO2wagE2zn-m1_alPMOeGorS-m-BhKMn7SDPQOgN7oPQC9A6BB6gXAIhZvxE_Jzya9vCe72Mtwieu3x6Sz9bgL3KcFiXbR_9_gH0f4pNQ
CitedBy_id crossref_primary_10_1016_j_eswa_2013_04_021
crossref_primary_10_1016_j_knosys_2017_02_018
crossref_primary_10_1016_j_procs_2017_08_045
crossref_primary_10_1016_j_procs_2024_09_208
crossref_primary_10_1016_j_knosys_2014_04_040
crossref_primary_10_1109_ACCESS_2021_3076594
crossref_primary_10_1038_srep18374
crossref_primary_10_1007_s00607_016_0524_7
crossref_primary_10_1007_s11280_014_0279_z
crossref_primary_10_1016_j_knosys_2016_05_024
crossref_primary_10_1155_2021_6699130
crossref_primary_10_1016_j_eswa_2014_01_002
crossref_primary_10_1109_ACCESS_2020_3018941
Cites_doi 10.1007/978-3-642-01206-8_7
10.1073/pnas.0400054101
10.1016/j.knosys.2011.06.014
10.1103/PhysRevE.74.036104
10.1007/978-3-540-39658-1_52
10.1103/PhysRevE.70.066111
10.1103/PhysRevLett.94.160202
10.1073/pnas.0706851105
10.1073/pnas.0605965104
10.14232/actacyb.20.1.2011.6
10.1016/j.knosys.2012.01.007
10.1016/j.knosys.2011.07.017
10.1038/nature03607
10.1086/jar.33.4.3629752
10.1371/journal.pone.0018209
10.1016/j.physa.2005.04.022
10.1073/pnas.122653799
10.1145/1242572.1242805
10.1073/pnas.0601602103
10.1088/1742-5468/2008/10/P10008
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
CorporateAuthor MARS (Modeling of Automated Reasoning Systems) Research Group
CorporateAuthor_xml – name: MARS (Modeling of Automated Reasoning Systems) Research Group
DBID AAYXX
CITATION
E3H
F2A
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2012.05.021
DatabaseName CrossRef
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Library and Information Science Abstracts (LISA)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Library and Information Science Abstracts (LISA)
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 36
ExternalDocumentID 10_1016_j_knosys_2012_05_021
S0950705112001736
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
UHS
WH7
WUQ
XPP
ZMT
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
E3H
F2A
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c372t-da1f3dd3f4bf635c4d87c4835c07672fb30946e4a57e48d7cb72d7eb6bc926d13
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Sat Sep 27 18:15:49 EDT 2025
Wed Oct 01 09:35:10 EDT 2025
Wed Oct 01 05:08:43 EDT 2025
Thu Apr 24 23:02:28 EDT 2025
Fri Feb 23 02:28:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Community detection
Social networks
Graph theory
Objective function
Modularity maximization
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-da1f3dd3f4bf635c4d87c4835c07672fb30946e4a57e48d7cb72d7eb6bc926d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1463008411
PQPubID 23477
PageCount 18
ParticipantIDs proquest_miscellaneous_1475524965
proquest_miscellaneous_1463008411
crossref_citationtrail_10_1016_j_knosys_2012_05_021
crossref_primary_10_1016_j_knosys_2012_05_021
elsevier_sciencedirect_doi_10_1016_j_knosys_2012_05_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2013
2013-1-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationTitle Knowledge-based systems
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Knuth (b0120) 1993
Girvan, Newman (b0025) 2002
Jure Leskovec, Stanford large network dataset collection, 2011. <http://snap.stanford.edu/data/>.
C. Ding, H. Xiaofeng, Spectral min–max cut for graph partitioning and data clustering, PhD thesis, California University, 2001.
Blondel, Guillaume, Lambiotte, Lefebvre (b0155) 2008
Radicchi, Castellano, Cecconi, Loreto, Parisi (b0085) 2004
Lancichinetti, Fortunato, Radicchi (b0100) 2008; E78
Rosvall, Bergstrom (b0050) 2008; 105
Derényi, Palla, Vicsek (b0070) 2005; 94
Griechisch, Pluhár (b0080) 2011
Girvan, Newman (b0145) 2002; 99
Zhao, Feng, Wang, Huang, Williams, Fan (b0020) 2012
Xiang, Chen, Zhou (b0150) 2009; 207
U. Brandes, M. Gaertler, Experiments on graph clustering algorithms, in: 11th European Symposium on Algorithms, 2003, pp. 568–579.
De Meo, Ferrara, Fiumara, Ricciardello (b0045) 2012
Labatut, Balasque (b0060) 2011
Newman (b0135) 2006
Ken Wakita, Toshiyuki Tsurumi, Finding community structure in mega-scale social networks, in: Proceedings of the 16th International Conference on World Wide Web, 2007, pp. 1275–1276.
Medus, Acuña, Dorso (b0130) 2005
Newman (b0005) 2006; 74
Mark Newman, Network data, 2009. <http://www-personal.umich.edu/∼ mejn/netdata/>.
Rosvall, Bergstrom (b0055) 2011
Valdis Krebs, Social network of political books, 2004. <www.visualcomplexity.com>.
Comellas, Miralles (b0125) 2007
Fortunato (b0010) 2009
Xia, Bu (b0065) 2012
Fortunato, Barthélemy (b0015) 2007
Clauset, Newman, Moore (b0035) 2004; 70
Zachary (b0115) 1977
Yueping, Yunming, Eric Ke Wang (b0030) 2011
Palla, Derényi, Farkas, Vicsek (b0075) 2005; 435
Xia (10.1016/j.knosys.2012.05.021_b0065) 2012
Griechisch (10.1016/j.knosys.2012.05.021_b0080) 2011
10.1016/j.knosys.2012.05.021_b0140
Rosvall (10.1016/j.knosys.2012.05.021_b0055) 2011
10.1016/j.knosys.2012.05.021_b0040
Newman (10.1016/j.knosys.2012.05.021_b0135) 2006
Xiang (10.1016/j.knosys.2012.05.021_b0150) 2009; 207
Yueping (10.1016/j.knosys.2012.05.021_b0030) 2011
10.1016/j.knosys.2012.05.021_b0105
Radicchi (10.1016/j.knosys.2012.05.021_b0085) 2004
Blondel (10.1016/j.knosys.2012.05.021_b0155) 2008
Lancichinetti (10.1016/j.knosys.2012.05.021_b0100) 2008; E78
Derényi (10.1016/j.knosys.2012.05.021_b0070) 2005; 94
10.1016/j.knosys.2012.05.021_b0110
Girvan (10.1016/j.knosys.2012.05.021_b0145) 2002; 99
Newman (10.1016/j.knosys.2012.05.021_b0005) 2006; 74
Rosvall (10.1016/j.knosys.2012.05.021_b0050) 2008; 105
Girvan (10.1016/j.knosys.2012.05.021_b0025) 2002
De Meo (10.1016/j.knosys.2012.05.021_b0045) 2012
10.1016/j.knosys.2012.05.021_b0095
Medus (10.1016/j.knosys.2012.05.021_b0130) 2005
10.1016/j.knosys.2012.05.021_b0090
Labatut (10.1016/j.knosys.2012.05.021_b0060) 2011
Clauset (10.1016/j.knosys.2012.05.021_b0035) 2004; 70
Comellas (10.1016/j.knosys.2012.05.021_b0125) 2007
Fortunato (10.1016/j.knosys.2012.05.021_b0015) 2007
Fortunato (10.1016/j.knosys.2012.05.021_b0010) 2009
Palla (10.1016/j.knosys.2012.05.021_b0075) 2005; 435
Zachary (10.1016/j.knosys.2012.05.021_b0115) 1977
Knuth (10.1016/j.knosys.2012.05.021_b0120) 1993
Zhao (10.1016/j.knosys.2012.05.021_b0020) 2012
References_xml – year: 1993
  ident: b0120
  article-title: The stanford graphbase: a platform for combinatorial computing
– start-page: e18209
  year: 2011
  ident: b0055
  article-title: Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems
  publication-title: PLOS ONE
– start-page: 593
  year: 2005
  end-page: 604
  ident: b0130
  article-title: Detection of community structures in networks via global optimization
  publication-title: Physica A: Statistical Mechanics and its Applications
– start-page: 69
  year: 2011
  end-page: 85
  ident: b0080
  article-title: Community detection by using the extended modularity
  publication-title: Acta Cybernetica
– start-page: 7821
  year: 2002
  end-page: 7826
  ident: b0025
  article-title: Community structure in social and biological networks
  publication-title: Proceedings of the National Academy of Science
– start-page: P10008
  year: 2008
  ident: b0155
  article-title: Fast unfolding of communities in large networks
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
– volume: 74
  start-page: 036104
  year: 2006
  ident: b0005
  article-title: Finding community structure in networks using the eigenvectors of matrices
  publication-title: Physical Review E
– reference: U. Brandes, M. Gaertler, Experiments on graph clustering algorithms, in: 11th European Symposium on Algorithms, 2003, pp. 568–579.
– volume: 105
  start-page: 1118
  year: 2008
  end-page: 1123
  ident: b0050
  article-title: Maps of information flow reveal community structure in complex networks
  publication-title: Proceedings of the National Academy of Science
– year: 2011
  ident: b0060
  article-title: Detection and interpretation of communities in complex networks: practical methods and application
  publication-title: Computational Social Network Analysis: Trends, Tools and Research Advances
– reference: Jure Leskovec, Stanford large network dataset collection, 2011. <http://snap.stanford.edu/data/>.
– start-page: 2007
  year: 2007
  end-page: 2014
  ident: b0125
  article-title: A fast and efficient algorithm to identify clusters in networks
  publication-title: Applied Mathematics and Computation
– start-page: 30
  year: 2012
  end-page: 39
  ident: b0065
  article-title: Community detection based on a semantic network
  publication-title: Knowledge-Based Systems
– start-page: 2658
  year: 2004
  end-page: 2663
  ident: b0085
  article-title: Defining and identifying communities in networks
  publication-title: Proceedings of the National Academy of Science
– volume: 70
  start-page: 066111
  year: 2004
  ident: b0035
  article-title: Finding community structure in very large networks
  publication-title: Physical Review E
– volume: 435
  start-page: 814
  year: 2005
  end-page: 818
  ident: b0075
  article-title: Uncovering the overlapping community structure of complex networks in nature and society
  publication-title: Nature
– start-page: 8577
  year: 2006
  end-page: 8582
  ident: b0135
  article-title: Modularity and community structure in networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– reference: C. Ding, H. Xiaofeng, Spectral min–max cut for graph partitioning and data clustering, PhD thesis, California University, 2001.
– start-page: 164
  year: 2012
  end-page: 173
  ident: b0020
  article-title: Topic oriented community detection through social objects and link analysis in social networks
  publication-title: Knowledge-Based Systems
– volume: E78
  start-page: 046110
  year: 2008
  ident: b0100
  article-title: Benchmark graphs for testing community detection algorithms
  publication-title: Physical Review
– reference: Mark Newman, Network data, 2009. <http://www-personal.umich.edu/∼ mejn/netdata/>.
– start-page: 136
  year: 2012
  end-page: 150
  ident: b0045
  article-title: A novel measure of edge centrality in social networks
  publication-title: Knowledge-Based Systems
– volume: 99
  start-page: 7821
  year: 2002
  end-page: 7826
  ident: b0145
  article-title: Community structure in social and biological networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 452
  year: 1977
  end-page: 473
  ident: b0115
  article-title: An information flow model for conflict and fission in small groups
  publication-title: Journal of Anthropological Research
– reference: Ken Wakita, Toshiyuki Tsurumi, Finding community structure in mega-scale social networks, in: Proceedings of the 16th International Conference on World Wide Web, 2007, pp. 1275–1276.
– reference: Valdis Krebs, Social network of political books, 2004. <www.visualcomplexity.com>.
– start-page: 153
  year: 2011
  end-page: 164
  ident: b0030
  article-title: Fast computation of modularity in agglomerative clustering methods for community discovery
  publication-title: International Journal of Advancements in Computing Technology
– volume: 207
  start-page: 73
  year: 2009
  end-page: 81
  ident: b0150
  article-title: Finding community structure based on subgraph similarity
  publication-title: Studies in Computational Intelligence
– start-page: 36
  year: 2007
  end-page: 41
  ident: b0015
  article-title: Resolution limit in community detection
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 75
  year: 2009
  end-page: 174
  ident: b0010
  article-title: Community detection in graphs
  publication-title: Physics Report
– volume: 94
  start-page: 160202
  year: 2005
  ident: b0070
  article-title: Clique percolation in random networks
  publication-title: Physical Review Letters
– ident: 10.1016/j.knosys.2012.05.021_b0110
– volume: E78
  start-page: 046110
  year: 2008
  ident: 10.1016/j.knosys.2012.05.021_b0100
  article-title: Benchmark graphs for testing community detection algorithms
  publication-title: Physical Review
– volume: 207
  start-page: 73
  year: 2009
  ident: 10.1016/j.knosys.2012.05.021_b0150
  article-title: Finding community structure based on subgraph similarity
  publication-title: Studies in Computational Intelligence
  doi: 10.1007/978-3-642-01206-8_7
– start-page: 2658
  year: 2004
  ident: 10.1016/j.knosys.2012.05.021_b0085
  article-title: Defining and identifying communities in networks
  publication-title: Proceedings of the National Academy of Science
  doi: 10.1073/pnas.0400054101
– start-page: 30
  year: 2012
  ident: 10.1016/j.knosys.2012.05.021_b0065
  article-title: Community detection based on a semantic network
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2011.06.014
– volume: 74
  start-page: 036104
  year: 2006
  ident: 10.1016/j.knosys.2012.05.021_b0005
  article-title: Finding community structure in networks using the eigenvectors of matrices
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.74.036104
– ident: 10.1016/j.knosys.2012.05.021_b0095
  doi: 10.1007/978-3-540-39658-1_52
– volume: 70
  start-page: 066111
  issue: 6
  year: 2004
  ident: 10.1016/j.knosys.2012.05.021_b0035
  article-title: Finding community structure in very large networks
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.70.066111
– volume: 94
  start-page: 160202
  year: 2005
  ident: 10.1016/j.knosys.2012.05.021_b0070
  article-title: Clique percolation in random networks
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.94.160202
– start-page: 153
  year: 2011
  ident: 10.1016/j.knosys.2012.05.021_b0030
  article-title: Fast computation of modularity in agglomerative clustering methods for community discovery
  publication-title: International Journal of Advancements in Computing Technology
– volume: 105
  start-page: 1118
  issue: 4
  year: 2008
  ident: 10.1016/j.knosys.2012.05.021_b0050
  article-title: Maps of information flow reveal community structure in complex networks
  publication-title: Proceedings of the National Academy of Science
  doi: 10.1073/pnas.0706851105
– ident: 10.1016/j.knosys.2012.05.021_b0090
– start-page: 36
  year: 2007
  ident: 10.1016/j.knosys.2012.05.021_b0015
  article-title: Resolution limit in community detection
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0605965104
– start-page: 69
  year: 2011
  ident: 10.1016/j.knosys.2012.05.021_b0080
  article-title: Community detection by using the extended modularity
  publication-title: Acta Cybernetica
  doi: 10.14232/actacyb.20.1.2011.6
– year: 2011
  ident: 10.1016/j.knosys.2012.05.021_b0060
  article-title: Detection and interpretation of communities in complex networks: practical methods and application
– year: 1993
  ident: 10.1016/j.knosys.2012.05.021_b0120
– ident: 10.1016/j.knosys.2012.05.021_b0140
– start-page: 136
  year: 2012
  ident: 10.1016/j.knosys.2012.05.021_b0045
  article-title: A novel measure of edge centrality in social networks
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2012.01.007
– ident: 10.1016/j.knosys.2012.05.021_b0105
– start-page: 2007
  year: 2007
  ident: 10.1016/j.knosys.2012.05.021_b0125
  article-title: A fast and efficient algorithm to identify clusters in networks
  publication-title: Applied Mathematics and Computation
– start-page: 164
  year: 2012
  ident: 10.1016/j.knosys.2012.05.021_b0020
  article-title: Topic oriented community detection through social objects and link analysis in social networks
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2011.07.017
– volume: 435
  start-page: 814
  year: 2005
  ident: 10.1016/j.knosys.2012.05.021_b0075
  article-title: Uncovering the overlapping community structure of complex networks in nature and society
  publication-title: Nature
  doi: 10.1038/nature03607
– start-page: 452
  year: 1977
  ident: 10.1016/j.knosys.2012.05.021_b0115
  article-title: An information flow model for conflict and fission in small groups
  publication-title: Journal of Anthropological Research
  doi: 10.1086/jar.33.4.3629752
– start-page: 75
  year: 2009
  ident: 10.1016/j.knosys.2012.05.021_b0010
  article-title: Community detection in graphs
  publication-title: Physics Report
– start-page: e18209
  year: 2011
  ident: 10.1016/j.knosys.2012.05.021_b0055
  article-title: Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0018209
– start-page: 593
  year: 2005
  ident: 10.1016/j.knosys.2012.05.021_b0130
  article-title: Detection of community structures in networks via global optimization
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2005.04.022
– volume: 99
  start-page: 7821
  year: 2002
  ident: 10.1016/j.knosys.2012.05.021_b0145
  article-title: Community structure in social and biological networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.122653799
– ident: 10.1016/j.knosys.2012.05.021_b0040
  doi: 10.1145/1242572.1242805
– start-page: 7821
  year: 2002
  ident: 10.1016/j.knosys.2012.05.021_b0025
  article-title: Community structure in social and biological networks
  publication-title: Proceedings of the National Academy of Science
  doi: 10.1073/pnas.122653799
– start-page: 8577
  year: 2006
  ident: 10.1016/j.knosys.2012.05.021_b0135
  article-title: Modularity and community structure in networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0601602103
– start-page: P10008
  year: 2008
  ident: 10.1016/j.knosys.2012.05.021_b0155
  article-title: Fast unfolding of communities in large networks
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
  doi: 10.1088/1742-5468/2008/10/P10008
SSID ssj0002218
Score 2.1309576
Snippet In the study of complex networks, a network is said to have community structure if it divides naturally into groups of nodes with dense connections within...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19
SubjectTerms Algorithms
Communities
Community detection
Detection
Graph theory
Modularity maximization
Objective function
Social networks
Title An O(n2) algorithm for detecting communities of unbalanced sizes in large scale social networks
URI https://dx.doi.org/10.1016/j.knosys.2012.05.021
https://www.proquest.com/docview/1463008411
https://www.proquest.com/docview/1475524965
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - access via UTK
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AKRWK
  dateStart: 19871201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--xTcRPOihbpukTT0uoqyKelDBW8ij1dU1XezuQQ_-dmf6UBRU8NJDmECYJDPfTL_MELKTulAnAESC1HAWCCsMXCkdB0zLAybDXNsMA8Xzi6R3I05v49sJcti-hUFaZWP7a5teWetmpNNoszPs9ztXAA7gvCJgQFPLsey2EBK7GOy_fdI8GKtyfCgcoHT7fK7ieD36onzBot2YEYz3Qxb95J6-GerK-xzPkZkGNtJuvbJ5MpH5BTLbtmSgzQ1dJKrr6eWuZ3tUD-4KCPzvnyjAUuoy_FkAbora-kUI1lGlRU7H3iC5EfRAy_4rjPU9HSA7nJawe_CtcurU12zxconcHB9dH_aCpodCYLlko8DpKOfO8VyYHLCFFS6VVgDssqFMJMsNh_guyYSOZSZSJ62RzGGfFGMPWOIivkwmfeGzFUJ55GToolQnNhJ5ZLSQWO0OonFmEhfbVcJb1SnbFBjHPhcD1TLJHlStcIUKV2GsQOGrJPiYNawLbPwhL9tdUV8OigIf8MfM7XYTFdwh_DGifVaMSwx_ODYWiH6VkXHMsLr-2r9XsE6mWdVNAzM4G2Ry9DzONgHTjMxWdWi3yFT35Kx38Q67SPdn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba5dBeCrRULE9X4gCH7CZ-xNljVbFaaLscaKXeLD-SNrA4q2b3AAd-OzN5FIEEK_WSgzWWrLE9883k8wwhbzIfmxSASJRZziLhhIUrZWTEjJowFRfG5Rgons_T2aX4eCWvtshJ_xYGaZWd7W9temOtu5Fxp83xsizHnwEcwHlFwICmlqfb5IGQTGEENvr5m-fBWJPkQ-kIxfv3cw3J62uo6u9YtRtTgnIUs-Rf_ukvS924n-kjstfhRnrcLu0x2crDPnnY92Sg3RU9IPo40E9vA3tHzeK6gsj_5hsFXEp9jn8LwE9R1z4JwUKqtCroOlhkN4IiaF3-gLEy0AXSw2kN2wffJqlOQ0sXr5-Qy-n7i5NZ1DVRiBxXbBV5kxTce14IWwC4cMJnygnAXS5WqWKF5RDgpbkwUuUi88pZxTw2SrFuwlKf8EMyCFXInxLKE69in2QmdYkoEmuEwnJ3EI4zm3rphoT3qtOuqzCOjS4WuqeSfdGtwjUqXMdSg8KHJLqbtWwrbGyQV_2u6D9OigYnsGHmUb-JGi4R_hkxIa_WNcY_HDsLJP-VUVIyLK__7N4reE12ZhfnZ_rsw_z0OdllTWsNTOe8IIPV7Tp_CQBnZV81B_gXcSX4_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+O%28n2%29+algorithm+for+detecting+communities+of+unbalanced+sizes+in+large+scale+social+networks&rft.jtitle=Knowledge-based+systems&rft.au=Zardi%2C+H.&rft.au=Romdhane%2C+L.+Ben&rft.date=2013-01-01&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=37&rft.spage=19&rft.epage=36&rft_id=info:doi/10.1016%2Fj.knosys.2012.05.021&rft.externalDocID=S0950705112001736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon