Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI
Purpose To determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma on multi-parametric MR imaging including diffusion-weighted imaging. Methods Retrospective eva...
Saved in:
Published in | Neuroradiology Vol. 60; no. 12; pp. 1297 - 1305 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0028-3940 1432-1920 1432-1920 |
DOI | 10.1007/s00234-018-2091-4 |
Cover
Abstract | Purpose
To determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma on multi-parametric MR imaging including diffusion-weighted imaging.
Methods
Retrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 143 patients (two independent cohorts for discovery [
n
= 86; glioblastoma = 49, PCNSL = 37] and validation [
n
= 57; glioblastoma = 29, PCNSL = 28]) with newly diagnosed glioblastoma and PCNSL were subjected to radiomics analysis using the multi-parametric MRI (contrast-enhanced T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging). Radiomics analyses were performed for two types of regions of interest (ROI) covering contrast-enhancing tumor and whole (enhancing or non-enhancing) tumor plus peritumoral edema. A total of 127 radiomics features were calculated. Feature selection was performed to identify the most discriminating features for every MR image in the discovery cohort. The identified features were used to calculate radiomics scores, which were later used in logistic regression to distinguish between PCNSL and glioblastoma. The classification model was further tested on the independent validation cohort.
Results
Fifteen features were selected as significant features in the discovery cohort. Using the identified features and calculated radiomics scores, the logistic regression-based classifier yielded an area under the curve (AUC) of 0.979, sensitivity of 0.938, and specificity of 0.944 in the discovery cohort to distinguish between glioblastoma and PCNSL. A similarly high rate of performance was observed in the validation cohort (AUC = 0.956).
Conclusions
Radiomics features derived from multi-parametric MRI can be used to differentiate PCNSL from glioblastoma effectively. |
---|---|
AbstractList | Purpose
To determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma on multi-parametric MR imaging including diffusion-weighted imaging.
Methods
Retrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 143 patients (two independent cohorts for discovery [
n
= 86; glioblastoma = 49, PCNSL = 37] and validation [
n
= 57; glioblastoma = 29, PCNSL = 28]) with newly diagnosed glioblastoma and PCNSL were subjected to radiomics analysis using the multi-parametric MRI (contrast-enhanced T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging). Radiomics analyses were performed for two types of regions of interest (ROI) covering contrast-enhancing tumor and whole (enhancing or non-enhancing) tumor plus peritumoral edema. A total of 127 radiomics features were calculated. Feature selection was performed to identify the most discriminating features for every MR image in the discovery cohort. The identified features were used to calculate radiomics scores, which were later used in logistic regression to distinguish between PCNSL and glioblastoma. The classification model was further tested on the independent validation cohort.
Results
Fifteen features were selected as significant features in the discovery cohort. Using the identified features and calculated radiomics scores, the logistic regression-based classifier yielded an area under the curve (AUC) of 0.979, sensitivity of 0.938, and specificity of 0.944 in the discovery cohort to distinguish between glioblastoma and PCNSL. A similarly high rate of performance was observed in the validation cohort (AUC = 0.956).
Conclusions
Radiomics features derived from multi-parametric MRI can be used to differentiate PCNSL from glioblastoma effectively. To determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma on multi-parametric MR imaging including diffusion-weighted imaging.PURPOSETo determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma on multi-parametric MR imaging including diffusion-weighted imaging.Retrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 143 patients (two independent cohorts for discovery [n = 86; glioblastoma = 49, PCNSL = 37] and validation [n = 57; glioblastoma = 29, PCNSL = 28]) with newly diagnosed glioblastoma and PCNSL were subjected to radiomics analysis using the multi-parametric MRI (contrast-enhanced T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging). Radiomics analyses were performed for two types of regions of interest (ROI) covering contrast-enhancing tumor and whole (enhancing or non-enhancing) tumor plus peritumoral edema. A total of 127 radiomics features were calculated. Feature selection was performed to identify the most discriminating features for every MR image in the discovery cohort. The identified features were used to calculate radiomics scores, which were later used in logistic regression to distinguish between PCNSL and glioblastoma. The classification model was further tested on the independent validation cohort.METHODSRetrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 143 patients (two independent cohorts for discovery [n = 86; glioblastoma = 49, PCNSL = 37] and validation [n = 57; glioblastoma = 29, PCNSL = 28]) with newly diagnosed glioblastoma and PCNSL were subjected to radiomics analysis using the multi-parametric MRI (contrast-enhanced T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging). Radiomics analyses were performed for two types of regions of interest (ROI) covering contrast-enhancing tumor and whole (enhancing or non-enhancing) tumor plus peritumoral edema. A total of 127 radiomics features were calculated. Feature selection was performed to identify the most discriminating features for every MR image in the discovery cohort. The identified features were used to calculate radiomics scores, which were later used in logistic regression to distinguish between PCNSL and glioblastoma. The classification model was further tested on the independent validation cohort.Fifteen features were selected as significant features in the discovery cohort. Using the identified features and calculated radiomics scores, the logistic regression-based classifier yielded an area under the curve (AUC) of 0.979, sensitivity of 0.938, and specificity of 0.944 in the discovery cohort to distinguish between glioblastoma and PCNSL. A similarly high rate of performance was observed in the validation cohort (AUC = 0.956).RESULTSFifteen features were selected as significant features in the discovery cohort. Using the identified features and calculated radiomics scores, the logistic regression-based classifier yielded an area under the curve (AUC) of 0.979, sensitivity of 0.938, and specificity of 0.944 in the discovery cohort to distinguish between glioblastoma and PCNSL. A similarly high rate of performance was observed in the validation cohort (AUC = 0.956).Radiomics features derived from multi-parametric MRI can be used to differentiate PCNSL from glioblastoma effectively.CONCLUSIONSRadiomics features derived from multi-parametric MRI can be used to differentiate PCNSL from glioblastoma effectively. PurposeTo determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma on multi-parametric MR imaging including diffusion-weighted imaging.MethodsRetrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 143 patients (two independent cohorts for discovery [n = 86; glioblastoma = 49, PCNSL = 37] and validation [n = 57; glioblastoma = 29, PCNSL = 28]) with newly diagnosed glioblastoma and PCNSL were subjected to radiomics analysis using the multi-parametric MRI (contrast-enhanced T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging). Radiomics analyses were performed for two types of regions of interest (ROI) covering contrast-enhancing tumor and whole (enhancing or non-enhancing) tumor plus peritumoral edema. A total of 127 radiomics features were calculated. Feature selection was performed to identify the most discriminating features for every MR image in the discovery cohort. The identified features were used to calculate radiomics scores, which were later used in logistic regression to distinguish between PCNSL and glioblastoma. The classification model was further tested on the independent validation cohort.ResultsFifteen features were selected as significant features in the discovery cohort. Using the identified features and calculated radiomics scores, the logistic regression-based classifier yielded an area under the curve (AUC) of 0.979, sensitivity of 0.938, and specificity of 0.944 in the discovery cohort to distinguish between glioblastoma and PCNSL. A similarly high rate of performance was observed in the validation cohort (AUC = 0.956).ConclusionsRadiomics features derived from multi-parametric MRI can be used to differentiate PCNSL from glioblastoma effectively. To determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma on multi-parametric MR imaging including diffusion-weighted imaging. Retrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 143 patients (two independent cohorts for discovery [n = 86; glioblastoma = 49, PCNSL = 37] and validation [n = 57; glioblastoma = 29, PCNSL = 28]) with newly diagnosed glioblastoma and PCNSL were subjected to radiomics analysis using the multi-parametric MRI (contrast-enhanced T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging). Radiomics analyses were performed for two types of regions of interest (ROI) covering contrast-enhancing tumor and whole (enhancing or non-enhancing) tumor plus peritumoral edema. A total of 127 radiomics features were calculated. Feature selection was performed to identify the most discriminating features for every MR image in the discovery cohort. The identified features were used to calculate radiomics scores, which were later used in logistic regression to distinguish between PCNSL and glioblastoma. The classification model was further tested on the independent validation cohort. Fifteen features were selected as significant features in the discovery cohort. Using the identified features and calculated radiomics scores, the logistic regression-based classifier yielded an area under the curve (AUC) of 0.979, sensitivity of 0.938, and specificity of 0.944 in the discovery cohort to distinguish between glioblastoma and PCNSL. A similarly high rate of performance was observed in the validation cohort (AUC = 0.956). Radiomics features derived from multi-parametric MRI can be used to differentiate PCNSL from glioblastoma effectively. |
Author | Cho, Hwan-ho Park, Hyunjin Nam, Dohyun Kong, Doo-Sik Kim, Sung Tae Kim, Yikyung |
Author_xml | – sequence: 1 givenname: Yikyung surname: Kim fullname: Kim, Yikyung organization: Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine – sequence: 2 givenname: Hwan-ho surname: Cho fullname: Cho, Hwan-ho organization: Department of Electrical and Computer Engineering, Sungkyunkwan University, Center for Neuroscience Imaging Research, Institute for Basic Science – sequence: 3 givenname: Sung Tae orcidid: 0000-0001-8185-0063 surname: Kim fullname: Kim, Sung Tae organization: Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine – sequence: 4 givenname: Hyunjin surname: Park fullname: Park, Hyunjin email: hyunjinp@skku.edu organization: Center for Neuroscience Imaging Research, Institute for Basic Science, School of Electronic and Electrical Engineering, Sungkyunkwan University – sequence: 5 givenname: Dohyun surname: Nam fullname: Nam, Dohyun organization: Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine – sequence: 6 givenname: Doo-Sik surname: Kong fullname: Kong, Doo-Sik organization: Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30232517$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rFTEYhYNU7G31B7iRgBs30XzNZGYpxdpCS6HoOiSZzG1KPq5JRrj_vhnuLYWCrsJLnnM4nHMGTmKKFoCPBH8lGItvBWPKOMJkQBSPBPE3YEM4o4iMFJ-ATfseEBs5PgVnpTxijJlg4h04ZU1HOyI2oNyryaXgTIGzVXXJtsCa4ORKdXG7uPIAt94l7VWpKSg45xTgLrug8h4aG2tWHkab_6alwLIv1Qbo92H3sMIpwrD46tBOZRVszc7A2_vr9-DtrHyxH47vOfh9-ePXxRW6uft5ffH9BhkmaEVmGog2Rs9Y9HYeB66p6pRWUz-0m2sxWMI07pWZaKf6zhKt-cjGgbKOcEPZOfhy8N3l9GexpcrgirHeq2hbXEkJ63HX87Fr6OdX6GNacmzpGoVHTIUYVsNPR2rRwU7y2IN8rrMB4gCYnErJdpbGVVVdWntyXhIs1-HkYTjZhpPrcJI3JXmlfDb_n4YeNKWxcWvzS-h_i54AYWirxw |
CitedBy_id | crossref_primary_10_1016_j_isci_2024_109023 crossref_primary_10_3389_fonc_2023_1134109 crossref_primary_10_3390_life14101290 crossref_primary_10_1007_s00330_023_09709_7 crossref_primary_10_1007_s11060_020_03607_4 crossref_primary_10_1186_s12911_023_02397_9 crossref_primary_10_1016_j_ejrad_2021_109784 crossref_primary_10_1177_1971400921998979 crossref_primary_10_1016_j_crad_2022_08_138 crossref_primary_10_1259_bjr_20201302 crossref_primary_10_3389_fonc_2022_1080988 crossref_primary_10_3389_fonc_2022_884724 crossref_primary_10_1093_noajnl_vdac141 crossref_primary_10_3174_ajnr_A7473 crossref_primary_10_1007_s00330_021_07845_6 crossref_primary_10_3390_neuroglia5040025 crossref_primary_10_1007_s00330_020_06927_1 crossref_primary_10_1016_j_wneu_2021_01_114 crossref_primary_10_1080_14737140_2022_2082948 crossref_primary_10_1155_2022_9547166 crossref_primary_10_1186_s12957_021_02239_w crossref_primary_10_3389_fonc_2022_848846 crossref_primary_10_18705_2311_4495_2022_9_2_70_80 crossref_primary_10_1093_nop_npac017 crossref_primary_10_3389_fmed_2024_1345162 crossref_primary_10_1088_1361_6560_ad3cb1 crossref_primary_10_1016_j_clineuro_2019_105565 crossref_primary_10_1097_RCT_0000000000001344 crossref_primary_10_3390_bioengineering10030285 crossref_primary_10_3390_cancers14225608 crossref_primary_10_1016_j_wneu_2025_123740 crossref_primary_10_1186_s13014_025_02613_y crossref_primary_10_1007_s00234_025_03551_y crossref_primary_10_3390_cancers14112731 crossref_primary_10_1148_rycan_2020190047 crossref_primary_10_1002_jmri_26602 crossref_primary_10_1016_j_wneu_2024_03_152 crossref_primary_10_1097_RCT_0000000000001499 crossref_primary_10_1053_j_sult_2022_02_005 crossref_primary_10_1007_s00117_022_01051_1 crossref_primary_10_1007_s11060_022_04150_0 crossref_primary_10_1093_neuros_nyab124 crossref_primary_10_1177_02841851241283781 crossref_primary_10_3390_cancers14030836 crossref_primary_10_1093_noajnl_vdad136 crossref_primary_10_3390_cancers14030713 crossref_primary_10_1093_noajnl_vdae022 crossref_primary_10_1016_j_jocn_2020_04_080 crossref_primary_10_1016_j_ymeth_2020_06_020 crossref_primary_10_1016_j_jocn_2021_04_043 crossref_primary_10_1016_j_nicl_2019_101912 crossref_primary_10_1002_jmri_28494 crossref_primary_10_3389_fonc_2022_884173 crossref_primary_10_3389_fonc_2024_1291861 crossref_primary_10_1016_j_ejrad_2022_110235 crossref_primary_10_1016_j_neucom_2024_129220 crossref_primary_10_3389_fonc_2024_1401977 crossref_primary_10_3390_jpm11090876 crossref_primary_10_3892_or_2022_8457 |
Cites_doi | 10.1007/s00401-007-0293-7 10.1056/NEJMoa043330 10.3174/ajnr.A2333 10.1126/scitranslmed.aaa7582 10.1109/TSMC.1973.4309314 10.3174/ajnr.A2171 10.1016/S0730-725X(03)00201-7 10.3171/2010.6.JNS091326 10.1016/j.crad.2016.02.006 10.1148/radiol.2015151169 10.1148/radiol.2432060493 10.1023/A:1006258619757 10.1093/neuonc/noy021 10.1007/s13244-012-0196-6 10.1038/ncomms5006 10.1212/WNL.57.3.393 10.2967/jnumed.110.082404 10.1371/journal.pone.0162565 10.1177/1756285608101222 10.1007/s00330-018-5368-4 10.3174/ajnr.A5173 10.1148/radiol.14131731 10.1148/radiol.2353031338 10.1016/j.ejca.2011.11.036 10.1158/0008-5472.CAN-17-0339 10.1109/TPAMI.2005.159 10.1155/2013/619658 10.1371/journal.pone.0118261 10.1109/42.925295 10.2463/mrms.mp.2017-0044 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 Neuroradiology is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Neuroradiology is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. KB0 LK8 M0S M1P M2O M7P MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s00234-018-2091-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Research Library Biological Science Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic Toxicology Abstracts ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1920 |
EndPage | 1305 |
ExternalDocumentID | 30232517 10_1007_s00234_018_2091_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and ICT of Korea under the ITRC program grantid: IITP-2018-0-01798 – fundername: Institute for Basic Science grantid: IBS-R015-D1 funderid: http://dx.doi.org/10.13039/501100010446 – fundername: National Research Foundation of Korea grantid: NRF-2016R1A2B4008545 – fundername: Institute for Basic Science grantid: IBS-R015-D1 |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .55 .86 .GJ .VR 04C 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 3V. 4.4 406 408 409 40D 40E 53G 5QI 5RE 5VS 67Z 6NX 6PF 78A 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHVE ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J5H JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M2O M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW X7M YLTOR Z45 Z7U Z7X Z82 Z87 Z8O Z8V Z91 ZGI ZMTXR ZOVNA ZXP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7TK 7U7 7XB 8FD 8FK ABRTQ C1K FR3 K9. MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO Q9U 7X8 |
ID | FETCH-LOGICAL-c372t-cd81bccbf076ef984b2a5abad686ef4b78e13b06acd25a65e1bb4939823514c23 |
IEDL.DBID | 8FG |
ISSN | 0028-3940 1432-1920 |
IngestDate | Fri Sep 05 14:41:14 EDT 2025 Sat Aug 23 14:00:33 EDT 2025 Thu Apr 03 07:05:56 EDT 2025 Tue Jul 01 02:28:37 EDT 2025 Thu Apr 24 22:59:20 EDT 2025 Fri Feb 21 02:33:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Diagnosis Magnetic resonance imaging Lymphoma Glioblastoma Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-cd81bccbf076ef984b2a5abad686ef4b78e13b06acd25a65e1bb4939823514c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8185-0063 |
PMID | 30232517 |
PQID | 2109027782 |
PQPubID | 49036 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2136056495 proquest_journals_2109027782 pubmed_primary_30232517 crossref_citationtrail_10_1007_s00234_018_2091_4 crossref_primary_10_1007_s00234_018_2091_4 springer_journals_10_1007_s00234_018_2091_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181200 2018-12-00 2018-Dec 20181201 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 20181200 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | A Journal Dedicated to Neuroimaging and Interventional Neuroradiology |
PublicationTitle | Neuroradiology |
PublicationTitleAbbrev | Neuroradiology |
PublicationTitleAlternate | Neuroradiology |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Itakura, Achrol, Mitchell, Loya, Liu, Westbroek, Feroze, Rodriguez, Echegaray, Azad, Yeom, Napel, Rubin, Chang, GRt, Gevaert (CR9) 2015; 7 Suh, Choi, Bae, Ahn, Chang, Kang, Kim, Kim, Lee (CR13) 2018; 28 Tixier, Le Rest, Hatt, Albarghach, Pradier, Metges, Corcos, Visvikis (CR16) 2011; 52 Mahmoud-Ghoneim, Toussaint, Constans, de Certaines (CR26) 2003; 21 Yamasaki, Kurisu, Satoh, Arita, Sugiyama, Ohtaki, Takaba, Tominaga, Hanaya, Yoshioka, Hama, Ito, Kajiwara, Yahara, Saito, Thohar (CR30) 2005; 235 Gillies, Kinahan, Hricak (CR10) 2016; 278 DeAngelis (CR6) 1999; 43 Claes, Idema, Wesseling (CR24) 2007; 114 Aerts, Velazquez, Leijenaar, Parmar, Grossmann, Carvalho, Bussink, Monshouwer, Haibe-Kains, Rietveld, Hoebers, Rietbergen, Leemans, Dekker, Quackenbush, Gillies, Lambin (CR7) 2014; 5 Gevaert, Mitchell, Achrol, Xu, Echegaray, Steinberg, Cheshier, Napel, Zaharchuk, Plevritis (CR8) 2014; 273 CR14 Davnall, Yip, Ljungqvist, Selmi, Ng, Sanghera, Ganeshan, Miles, Cook, Goh (CR15) 2012; 3 CR32 Yamasaki, Chen, Hirai, Murakami (CR22) 2013; 2013 Alcaide-Leon, Dufort, Geraldo, Alshafai, Maralani, Spears, Bharatha (CR21) 2017; 38 Bathla, Hegde (CR28) 2016; 71 Al-Okaili, Krejza, Woo, Wolf, O’Rourke, Judy, Poptani, Melhem (CR4) 2007; 243 Buhring, Herrlinger, Krings, Thiex, Weller, Kuker (CR3) 2001; 57 Kang, Park, Kim, Kim, Oh, Kim, Kim, Kim, Kim (CR12) 2018; 20 Stupp, Mason, van den Bent, Weller, Fisher, Taphoorn, Belanger, Brandes, Marosi, Bogdahn, Curschmann, Janzer, Ludwin, Gorlia, Allgeier, Lacombe, Cairncross, Eisenhauer, Mirimanoff (CR2) 2005; 352 CR23 Lambin, Rios-Velazquez, Leijenaar, Carvalho, van Stiphout, Granton, Zegers, Gillies, Boellard, Dekker, Aerts (CR11) 2012; 48 Ko, Tai, Li, Chen, Chen, Shu, Kuo, Lee (CR31) 2016; 11 Peng, Long, Ding (CR19) 2005; 27 Schlegel (CR1) 2009; 2 Hassaneen, Levine, Suki, Salaskar, de Moura Lima, McCutcheon, Prabhu, Lang, DeMonte, Rao, Weinberg, Wildrick, Aldape, Sawaya (CR27) 2011; 114 van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan, Beets-Tan, Fillion-Robin, Pieper, Aerts (CR20) 2017; 77 Haldorsen, Espeland, Larsson (CR5) 2011; 32 Kovalev, Kruggel, Gertz, von Cramon (CR25) 2001; 20 Grove, Berglund, Schabath, Aerts, Dekker, Wang, Velazquez, Lambin, Gu, Balagurunathan, Eikman, Gatenby, Eschrich, Gillies (CR17) 2015; 10 Wang, Kim, Chawla, Wolf, Knipp, Vossough, O’Rourke, Judy, Poptani, Melhem (CR29) 2011; 32 Haralick, Shanmugam (CR18) 1973; SMC-3 H Peng (2091_CR19) 2005; 27 A Claes (2091_CR24) 2007; 114 RN Al-Okaili (2091_CR4) 2007; 243 2091_CR32 U Buhring (2091_CR3) 2001; 57 HJ Aerts (2091_CR7) 2014; 5 2091_CR14 S Wang (2091_CR29) 2011; 32 F Tixier (2091_CR16) 2011; 52 D Mahmoud-Ghoneim (2091_CR26) 2003; 21 G Bathla (2091_CR28) 2016; 71 RJ Gillies (2091_CR10) 2016; 278 D Kang (2091_CR12) 2018; 20 P Alcaide-Leon (2091_CR21) 2017; 38 JJM Griethuysen van (2091_CR20) 2017; 77 R Stupp (2091_CR2) 2005; 352 T Yamasaki (2091_CR22) 2013; 2013 F Yamasaki (2091_CR30) 2005; 235 W Hassaneen (2091_CR27) 2011; 114 VA Kovalev (2091_CR25) 2001; 20 LM DeAngelis (2091_CR6) 1999; 43 F Davnall (2091_CR15) 2012; 3 O Gevaert (2091_CR8) 2014; 273 2091_CR23 RM Haralick (2091_CR18) 1973; SMC-3 CC Ko (2091_CR31) 2016; 11 H Itakura (2091_CR9) 2015; 7 U Schlegel (2091_CR1) 2009; 2 IS Haldorsen (2091_CR5) 2011; 32 HB Suh (2091_CR13) 2018; 28 P Lambin (2091_CR11) 2012; 48 O Grove (2091_CR17) 2015; 10 15833979 - Radiology. 2005 Jun;235(3):985-91 20690813 - J Neurosurg. 2011 Mar;114(3):576-84 27631626 - PLoS One. 2016 Sep 15;11(9):e0162565 28362236 - J Neurosurg. 2018 Mar;128(3):667-678 28638001 - Magn Reson Med Sci. 2018 Jan 10;17(1):50-57 29438500 - Neuro Oncol. 2018 Aug 2;20(9):1251-1261 29092951 - Cancer Res. 2017 Nov 1;77(21):e104-e107 10563431 - J Neurooncol. 1999 Jul;43(3):249-57 24827998 - Radiology. 2014 Oct;273(1):168-74 24892406 - Nat Commun. 2014 Jun 03;5:4006 22257792 - Eur J Cancer. 2012 Mar;48(4):441-6 25739030 - PLoS One. 2015 Mar 04;10(3):e0118261 14684200 - Magn Reson Imaging. 2003 Nov;21(9):983-7 23840280 - Comput Math Methods Med. 2013;2013:619658 26579733 - Radiology. 2016 Feb;278(2):563-77 11403201 - IEEE Trans Med Imaging. 2001 May;20(5):424-33 26333934 - Sci Transl Med. 2015 Sep 2;7(303):303ra138 17456876 - Radiology. 2007 May;243(2):539-50 29626238 - Eur Radiol. 2018 Sep;28(9):3832-3839 21180644 - Ther Adv Neurol Disord. 2009 Mar;2(2):93-104 21321270 - J Nucl Med. 2011 Mar;52(3):369-78 20616176 - AJNR Am J Neuroradiol. 2011 Jun-Jul;32(6):984-92 15758009 - N Engl J Med. 2005 Mar 10;352(10):987-96 27038652 - Clin Radiol. 2016 Jun;71(6):602-9 17805551 - Acta Neuropathol. 2007 Nov;114(5):443-58 11515505 - Neurology. 2001 Aug 14;57(3):393-6 16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38 28450433 - AJNR Am J Neuroradiol. 2017 Jun;38(6):1145-1150 23093486 - Insights Imaging. 2012 Dec;3(6):573-89 21330399 - AJNR Am J Neuroradiol. 2011 Mar;32(3):507-14 |
References_xml | – volume: 114 start-page: 443 year: 2007 end-page: 458 ident: CR24 article-title: Diffuse glioma growth: a guerilla war publication-title: Acta Neuropathol doi: 10.1007/s00401-007-0293-7 – volume: 352 start-page: 987 year: 2005 end-page: 996 ident: CR2 article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma publication-title: N Engl J Med doi: 10.1056/NEJMoa043330 – ident: CR14 – volume: 32 start-page: 507 year: 2011 end-page: 514 ident: CR29 article-title: Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A2333 – volume: 7 start-page: 303ra138 year: 2015 ident: CR9 article-title: Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaa7582 – volume: SMC-3 start-page: 610 year: 1973 end-page: 621 ident: CR18 article-title: Textural features for image classification publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1973.4309314 – volume: 32 start-page: 984 year: 2011 end-page: 992 ident: CR5 article-title: Central nervous system lymphoma: characteristic findings on traditional and advanced imaging publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A2171 – volume: 21 start-page: 983 year: 2003 end-page: 987 ident: CR26 article-title: Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas publication-title: Magn Reson Imaging doi: 10.1016/S0730-725X(03)00201-7 – volume: 114 start-page: 576 year: 2011 end-page: 584 ident: CR27 article-title: Multiple craniotomies in the management of multifocal and multicentric glioblastoma, Clinical article publication-title: J Neurosurg doi: 10.3171/2010.6.JNS091326 – volume: 71 start-page: 602 year: 2016 end-page: 609 ident: CR28 article-title: Lymphomatous involvement of the central nervous system publication-title: Clin Radiol doi: 10.1016/j.crad.2016.02.006 – volume: 278 start-page: 563 year: 2016 end-page: 577 ident: CR10 article-title: Radiomics: images are more than pictures, they are data publication-title: Radiology doi: 10.1148/radiol.2015151169 – volume: 243 start-page: 539 year: 2007 end-page: 550 ident: CR4 article-title: Intraaxial brain masses: MR imaging-based diagnostic strategy--initial experience publication-title: Radiology doi: 10.1148/radiol.2432060493 – volume: 43 start-page: 249 year: 1999 end-page: 257 ident: CR6 article-title: Primary CNS lymphoma: treatment with combined chemotherapy and radiotherapy publication-title: J Neuro-Oncol doi: 10.1023/A:1006258619757 – volume: 20 start-page: 1251 year: 2018 end-page: 1261 ident: CR12 article-title: Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation publication-title: Neuro-Oncology doi: 10.1093/neuonc/noy021 – volume: 3 start-page: 573 year: 2012 end-page: 589 ident: CR15 article-title: Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? publication-title: Insights Imaging doi: 10.1007/s13244-012-0196-6 – ident: CR23 – volume: 5 start-page: 4006 year: 2014 ident: CR7 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun doi: 10.1038/ncomms5006 – volume: 57 start-page: 393 year: 2001 end-page: 396 ident: CR3 article-title: MRI features of primary central nervous system lymphomas at presentation publication-title: Neurology doi: 10.1212/WNL.57.3.393 – volume: 52 start-page: 369 year: 2011 end-page: 378 ident: CR16 article-title: Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer publication-title: J Nucl Med doi: 10.2967/jnumed.110.082404 – volume: 11 start-page: e0162565 year: 2016 ident: CR31 article-title: Differentiation between glioblastoma multiforme and primary cerebral lymphoma: additional benefits of quantitative diffusion-weighted MR imaging publication-title: PLoS One doi: 10.1371/journal.pone.0162565 – volume: 2 start-page: 93 year: 2009 end-page: 104 ident: CR1 article-title: Primary CNS lymphoma publication-title: Ther Adv Neurol Disord doi: 10.1177/1756285608101222 – volume: 28 start-page: 3832 year: 2018 end-page: 3839 ident: CR13 article-title: Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach publication-title: Eur Radiol doi: 10.1007/s00330-018-5368-4 – volume: 38 start-page: 1145 year: 2017 end-page: 1150 ident: CR21 article-title: Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A5173 – volume: 273 start-page: 168 year: 2014 end-page: 174 ident: CR8 article-title: Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features publication-title: Radiology doi: 10.1148/radiol.14131731 – volume: 235 start-page: 985 year: 2005 end-page: 991 ident: CR30 article-title: Apparent diffusion coefficient of human brain tumors at MR imaging publication-title: Radiology doi: 10.1148/radiol.2353031338 – volume: 48 start-page: 441 year: 2012 end-page: 446 ident: CR11 article-title: Radiomics: extracting more information from medical images using advanced feature analysis publication-title: Eur J Cancer doi: 10.1016/j.ejca.2011.11.036 – volume: 77 start-page: e104 year: 2017 end-page: e107 ident: CR20 article-title: Computational Radiomics system to decode the radiographic phenotype publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0339 – ident: CR32 – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: CR19 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.159 – volume: 2013 start-page: 619658 year: 2013 ident: CR22 article-title: Classification of cerebral lymphomas and glioblastomas featuring luminance distribution analysis publication-title: Comput Math Methods Med doi: 10.1155/2013/619658 – volume: 10 start-page: e0118261 year: 2015 ident: CR17 article-title: Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma publication-title: PLoS One doi: 10.1371/journal.pone.0118261 – volume: 20 start-page: 424 year: 2001 end-page: 433 ident: CR25 article-title: Three-dimensional texture analysis of MRI brain datasets publication-title: IEEE Trans Med Imaging doi: 10.1109/42.925295 – volume: 28 start-page: 3832 year: 2018 ident: 2091_CR13 publication-title: Eur Radiol doi: 10.1007/s00330-018-5368-4 – volume: 114 start-page: 443 year: 2007 ident: 2091_CR24 publication-title: Acta Neuropathol doi: 10.1007/s00401-007-0293-7 – volume: 3 start-page: 573 year: 2012 ident: 2091_CR15 publication-title: Insights Imaging doi: 10.1007/s13244-012-0196-6 – volume: 77 start-page: e104 year: 2017 ident: 2091_CR20 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0339 – volume: 278 start-page: 563 year: 2016 ident: 2091_CR10 publication-title: Radiology doi: 10.1148/radiol.2015151169 – volume: 352 start-page: 987 year: 2005 ident: 2091_CR2 publication-title: N Engl J Med doi: 10.1056/NEJMoa043330 – volume: 243 start-page: 539 year: 2007 ident: 2091_CR4 publication-title: Radiology doi: 10.1148/radiol.2432060493 – ident: 2091_CR32 – volume: 5 start-page: 4006 year: 2014 ident: 2091_CR7 publication-title: Nat Commun doi: 10.1038/ncomms5006 – volume: 7 start-page: 303ra138 year: 2015 ident: 2091_CR9 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaa7582 – volume: 2 start-page: 93 year: 2009 ident: 2091_CR1 publication-title: Ther Adv Neurol Disord doi: 10.1177/1756285608101222 – volume: 71 start-page: 602 year: 2016 ident: 2091_CR28 publication-title: Clin Radiol doi: 10.1016/j.crad.2016.02.006 – volume: 273 start-page: 168 year: 2014 ident: 2091_CR8 publication-title: Radiology doi: 10.1148/radiol.14131731 – volume: SMC-3 start-page: 610 year: 1973 ident: 2091_CR18 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1973.4309314 – volume: 38 start-page: 1145 year: 2017 ident: 2091_CR21 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A5173 – volume: 20 start-page: 424 year: 2001 ident: 2091_CR25 publication-title: IEEE Trans Med Imaging doi: 10.1109/42.925295 – volume: 11 start-page: e0162565 year: 2016 ident: 2091_CR31 publication-title: PLoS One doi: 10.1371/journal.pone.0162565 – volume: 10 start-page: e0118261 year: 2015 ident: 2091_CR17 publication-title: PLoS One doi: 10.1371/journal.pone.0118261 – volume: 32 start-page: 984 year: 2011 ident: 2091_CR5 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A2171 – ident: 2091_CR23 doi: 10.2463/mrms.mp.2017-0044 – volume: 43 start-page: 249 year: 1999 ident: 2091_CR6 publication-title: J Neuro-Oncol doi: 10.1023/A:1006258619757 – volume: 20 start-page: 1251 year: 2018 ident: 2091_CR12 publication-title: Neuro-Oncology doi: 10.1093/neuonc/noy021 – volume: 57 start-page: 393 year: 2001 ident: 2091_CR3 publication-title: Neurology doi: 10.1212/WNL.57.3.393 – volume: 21 start-page: 983 year: 2003 ident: 2091_CR26 publication-title: Magn Reson Imaging doi: 10.1016/S0730-725X(03)00201-7 – volume: 235 start-page: 985 year: 2005 ident: 2091_CR30 publication-title: Radiology doi: 10.1148/radiol.2353031338 – volume: 48 start-page: 441 year: 2012 ident: 2091_CR11 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2011.11.036 – volume: 52 start-page: 369 year: 2011 ident: 2091_CR16 publication-title: J Nucl Med doi: 10.2967/jnumed.110.082404 – ident: 2091_CR14 – volume: 27 start-page: 1226 year: 2005 ident: 2091_CR19 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.159 – volume: 2013 start-page: 619658 year: 2013 ident: 2091_CR22 publication-title: Comput Math Methods Med doi: 10.1155/2013/619658 – volume: 114 start-page: 576 year: 2011 ident: 2091_CR27 publication-title: J Neurosurg doi: 10.3171/2010.6.JNS091326 – volume: 32 start-page: 507 year: 2011 ident: 2091_CR29 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A2333 – reference: 24827998 - Radiology. 2014 Oct;273(1):168-74 – reference: 29092951 - Cancer Res. 2017 Nov 1;77(21):e104-e107 – reference: 27631626 - PLoS One. 2016 Sep 15;11(9):e0162565 – reference: 14684200 - Magn Reson Imaging. 2003 Nov;21(9):983-7 – reference: 21180644 - Ther Adv Neurol Disord. 2009 Mar;2(2):93-104 – reference: 23840280 - Comput Math Methods Med. 2013;2013:619658 – reference: 17805551 - Acta Neuropathol. 2007 Nov;114(5):443-58 – reference: 23093486 - Insights Imaging. 2012 Dec;3(6):573-89 – reference: 29626238 - Eur Radiol. 2018 Sep;28(9):3832-3839 – reference: 25739030 - PLoS One. 2015 Mar 04;10(3):e0118261 – reference: 28362236 - J Neurosurg. 2018 Mar;128(3):667-678 – reference: 15833979 - Radiology. 2005 Jun;235(3):985-91 – reference: 21321270 - J Nucl Med. 2011 Mar;52(3):369-78 – reference: 26579733 - Radiology. 2016 Feb;278(2):563-77 – reference: 17456876 - Radiology. 2007 May;243(2):539-50 – reference: 16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38 – reference: 29438500 - Neuro Oncol. 2018 Aug 2;20(9):1251-1261 – reference: 10563431 - J Neurooncol. 1999 Jul;43(3):249-57 – reference: 24892406 - Nat Commun. 2014 Jun 03;5:4006 – reference: 28450433 - AJNR Am J Neuroradiol. 2017 Jun;38(6):1145-1150 – reference: 11403201 - IEEE Trans Med Imaging. 2001 May;20(5):424-33 – reference: 28638001 - Magn Reson Med Sci. 2018 Jan 10;17(1):50-57 – reference: 26333934 - Sci Transl Med. 2015 Sep 2;7(303):303ra138 – reference: 21330399 - AJNR Am J Neuroradiol. 2011 Mar;32(3):507-14 – reference: 20616176 - AJNR Am J Neuroradiol. 2011 Jun-Jul;32(6):984-92 – reference: 20690813 - J Neurosurg. 2011 Mar;114(3):576-84 – reference: 11515505 - Neurology. 2001 Aug 14;57(3):393-6 – reference: 27038652 - Clin Radiol. 2016 Jun;71(6):602-9 – reference: 15758009 - N Engl J Med. 2005 Mar 10;352(10):987-96 – reference: 22257792 - Eur J Cancer. 2012 Mar;48(4):441-6 |
SSID | ssj0003737 |
Score | 2.4648733 |
Snippet | Purpose
To determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central... To determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous... PurposeTo determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1297 |
SubjectTerms | Adult Aged Aged, 80 and over Brain cancer Brain Neoplasms - diagnostic imaging Brain Neoplasms - pathology Central nervous system Contrast Media Diagnosis, Differential Diagnostic Neuroradiology Diffusion Magnetic Resonance Imaging Edema Feasibility Studies Feature extraction Female Glioblastoma Glioblastoma - diagnostic imaging Glioblastoma - pathology Humans Imaging Informed consent Lymphoma Lymphoma - diagnostic imaging Lymphoma - pathology Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical diagnosis Medical imaging Medicine Medicine & Public Health Middle Aged Model testing Nervous system Neurology Neuroradiology Neurosciences Neurosurgery Radiology Radiomics Regression analysis Retrospective Studies Tumors |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLdgkxCXjW86BgoSJ1CmNk2b9DihjQF6HKZNGqcqSdPxxFs7rX2H8ddjt2kRDJB2rJqmiT8SW7Z_BniTaGW00o575SouVV1wI5zlLtG5kYlBoaLi5MWX_OhUfjrLzkIddzdlu08hyeGknovd6HqhjAnibIGOz13YzNA_QW3c3P_w9fPBfACnKkBlCs2p8fcUzPzbJL9fRzdszBvx0eHaOdyGk2nBY7bJ9711b_fcjz-wHG-5owewFcxQtj_KzUO445tHcG8RAu2PoTs21ZIKljtW-wH7s2N9yyo6EZrz9bL7xs5Xy9ai7d23F4ZRlQq7HJErWEj4ZA2eQ-26YyNaNFtdo-TQ4LZhQx4jJ9zxC2rp5dji-OMTOD08OHl_xEN_Bu5SJXruKrR5nbN1rHJfF1paYTJjTZVrfJZWaZ-kNs6Nq0Rm8swn1soiLbSg8gEn0qew0bSNfw4skTYvnCfYdCuNE1a4OK6qAv0X5eskjSCe2FS6AF5OPTRW5Qy7PBCzRGKWRMxSRvB2_iTs_3-Ddyfel0GJu1IMSasKbagIXs-vUf0opmIajxTEMSk6hDm6mRE8G2Vm_hv1YyJEuAjeTfz_Nfk_l7Jzq9Ev4L4gARoSbHZho79a-5doJvX2VVCLnz-xCO0 priority: 102 providerName: Springer Nature |
Title | Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI |
URI | https://link.springer.com/article/10.1007/s00234-018-2091-4 https://www.ncbi.nlm.nih.gov/pubmed/30232517 https://www.proquest.com/docview/2109027782 https://www.proquest.com/docview/2136056495 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xTUK8IL4JjMpIPIEsEseNkyfUonYD1ApVVCpPke04W6UuGSR94L_nLnUyoYk9WVGcxPGdz3e-u98BvItSpVOVWu6ULbhUZca1sIbbKE20jDQyFSUnL5bJ-Vp-3Yw3_sCt8WGVvUzsBHVRWzoj_yi6CEKFG9qn61-cqkaRd9WX0DiCk0jgXkuZ4vOzQRLHymNmipRTBfDeqxl2IKIipvgL4pMMzah_96VbyuYtR2m3_8wfwUOvOLLJgdKP4Z6rnsD9hXeNP4VmpYstpRg3rHQdWmfD2poVtIari_22uWQXu21tUFtu6yvNKK-EXR-wJpgP0WQVSo5637ADvjPb_UFaU-e6Yl3kISek8CsqwmXZYvXlGaznsx-fz7mvqMBtrETLbYFaqrWmDFXiyiyVRuixNrpIUryWRqUuik2YaFuIsU7GLjJGZnGWCgr4tyJ-DsdVXbmXwCJpksw6Ajo3UlthhA3DosjQ4lCujOIAwn4-c-vhxqnqxS4fgJI7EuRIgpxIkMsA3g-P-P-_q_NpT6TcL7smv2GSAN4Ot3HBkBdEVw5nEPvEaMIlaBgG8OJA3OFrVEGJMNwC-NBT--bl_x3Kq7uH8hoeCOKzLgbmFI7b33v3BjWZ1ozgSG3UqGPaEZxM5tPpktqzn99m2E5ny-8rvLsWk79h_fYf |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQIuFW9SChgJLiCLxPHGyQEhBFS7tNtD1Up7C7bjlJW2SSFZof6p_sbOOI8KVfTWYxTn5fk8nsnMfAPwNkqVTlVquVO24FKVGdfCGm6jNNEy0ggqKk6eHyTTY_ljMVlswMVQC0NplYNO9Iq6qC39I_8ofAahwg3t89lvTl2jKLo6tNDoYLHnzv-iy9Z8mn1D-b4TYvf70dcp77sKcBsr0XJboKVmrSnRg3dllkoj9EQbXSQpHkujUhfFJky0LcREJxMXGSOzOEsFJb1bIjpAlX9HUogR149ajA5eGKueo1OknDqOD1HU0JOWipjyPQiXGbpt_-6D14zba4FZv9_tPoCt3lBlXzpkPYQNVz2Cu_M-FP8YmkNdLKmkuWGl8-ygDWtrVpDOqE7Wy-YXO1kta4PWeVufakZ1LOys47ZgfUooq1BT1euGdXzSbHWO2KLBdcV8piMnZvJTavpl2fxw9gSOb2Wun8JmVVfuObBImiSzjojVjdRWGGHDsCgy9HCUK6M4gHCYz9z29ObUZWOVj8TMXgQ5iiAnEeQygPfjJf333zR4ZxBS3i_zJr8CZQBvxtO4QCnqoiuHM4hjYnQZE3REA3jWCXd8GnVsIs64AD4M0r66-X9fZfvmV3kN96ZH8_18f3aw9wLuC8Kcz7_Zgc32z9q9RCuqNa88dBn8vO21cglbnC3M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VrVRxQbwxFFgkuIBWtdeO1z5UCGijhpKoiqjUm9mXS6TULtgR6l_kVzHjrF2hit56jLxxnJ3ZeXhmvg_gTZRJlcnMcCeN5Yksc66E0dxEWaqSSKFS0XDydJYeniRfTkenG_Cnn4WhtsreJnaG2taG3pHviq6DUKJD2y19W8Tx_vjDxU9ODFJUae3pNJSnWbB7HdyYH_I4cpe_MZ1r9ib7KPu3QowPvn0-5J5xgJtYipYbi1GcMbrE7N6VeZZooUZKK5tm-DnRMnNRrMNUGStGKh25SOskj_NMUEO8IRAEdAdbEr0-JoJbnw5mx_PBL8TSI3iKjBMfeV9jDTtIUxFTNwhpbY5J3b9e8lroe61s23nD8T2468NY9nGtd_dhw1UPYHvqC_UPoZkru6CB54aVrsMObVhbM0sWpTpbLZof7Gy5qDXG7m19rhhNubCLNfIF8w2jrEI7Vq8atkabZstL1DxaXFes64PkhFt-TpRghk3nk0dwciu7_Rg2q7pyT4FFiU5z4wh2XSfKCC1MGFqbY_4jXRnFAYT9fhbGg58TB8eyGGCbOxEUKIKCRFAkAbwbvuL__02Ld3ohFd4INMWVygbweriMx5dqMqpyuIO4JsaEMsU0NYAna-EOv0Z8ToQoF8D7XtpXN__vozy7-VFewTaem-LrZHb0HO4IUrmuOWcHNttfK_cCQ6xWv_S6y-D7bR-Xv0m-OKc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomics+features+to+distinguish+glioblastoma+from+primary+central+nervous+system+lymphoma+on+multi-parametric+MRI&rft.jtitle=Neuroradiology&rft.au=Kim%2C+Yikyung&rft.au=Cho%2C+Hwan-ho&rft.au=Kim%2C+Sung+Tae&rft.au=Park%2C+Hyunjin&rft.date=2018-12-01&rft.issn=0028-3940&rft.eissn=1432-1920&rft.volume=60&rft.issue=12&rft.spage=1297&rft.epage=1305&rft_id=info:doi/10.1007%2Fs00234-018-2091-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00234_018_2091_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3940&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3940&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3940&client=summon |