Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI

Purpose To determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma on multi-parametric MR imaging including diffusion-weighted imaging. Methods Retrospective eva...

Full description

Saved in:
Bibliographic Details
Published inNeuroradiology Vol. 60; no. 12; pp. 1297 - 1305
Main Authors Kim, Yikyung, Cho, Hwan-ho, Kim, Sung Tae, Park, Hyunjin, Nam, Dohyun, Kong, Doo-Sik
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0028-3940
1432-1920
1432-1920
DOI10.1007/s00234-018-2091-4

Cover

Abstract Purpose To determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma on multi-parametric MR imaging including diffusion-weighted imaging. Methods Retrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 143 patients (two independent cohorts for discovery [ n  = 86; glioblastoma = 49, PCNSL = 37] and validation [ n  = 57; glioblastoma = 29, PCNSL = 28]) with newly diagnosed glioblastoma and PCNSL were subjected to radiomics analysis using the multi-parametric MRI (contrast-enhanced T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging). Radiomics analyses were performed for two types of regions of interest (ROI) covering contrast-enhancing tumor and whole (enhancing or non-enhancing) tumor plus peritumoral edema. A total of 127 radiomics features were calculated. Feature selection was performed to identify the most discriminating features for every MR image in the discovery cohort. The identified features were used to calculate radiomics scores, which were later used in logistic regression to distinguish between PCNSL and glioblastoma. The classification model was further tested on the independent validation cohort. Results Fifteen features were selected as significant features in the discovery cohort. Using the identified features and calculated radiomics scores, the logistic regression-based classifier yielded an area under the curve (AUC) of 0.979, sensitivity of 0.938, and specificity of 0.944 in the discovery cohort to distinguish between glioblastoma and PCNSL. A similarly high rate of performance was observed in the validation cohort (AUC = 0.956). Conclusions Radiomics features derived from multi-parametric MRI can be used to differentiate PCNSL from glioblastoma effectively.
AbstractList Purpose To determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma on multi-parametric MR imaging including diffusion-weighted imaging. Methods Retrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 143 patients (two independent cohorts for discovery [ n  = 86; glioblastoma = 49, PCNSL = 37] and validation [ n  = 57; glioblastoma = 29, PCNSL = 28]) with newly diagnosed glioblastoma and PCNSL were subjected to radiomics analysis using the multi-parametric MRI (contrast-enhanced T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging). Radiomics analyses were performed for two types of regions of interest (ROI) covering contrast-enhancing tumor and whole (enhancing or non-enhancing) tumor plus peritumoral edema. A total of 127 radiomics features were calculated. Feature selection was performed to identify the most discriminating features for every MR image in the discovery cohort. The identified features were used to calculate radiomics scores, which were later used in logistic regression to distinguish between PCNSL and glioblastoma. The classification model was further tested on the independent validation cohort. Results Fifteen features were selected as significant features in the discovery cohort. Using the identified features and calculated radiomics scores, the logistic regression-based classifier yielded an area under the curve (AUC) of 0.979, sensitivity of 0.938, and specificity of 0.944 in the discovery cohort to distinguish between glioblastoma and PCNSL. A similarly high rate of performance was observed in the validation cohort (AUC = 0.956). Conclusions Radiomics features derived from multi-parametric MRI can be used to differentiate PCNSL from glioblastoma effectively.
To determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma on multi-parametric MR imaging including diffusion-weighted imaging.PURPOSETo determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma on multi-parametric MR imaging including diffusion-weighted imaging.Retrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 143 patients (two independent cohorts for discovery [n = 86; glioblastoma = 49, PCNSL = 37] and validation [n = 57; glioblastoma = 29, PCNSL = 28]) with newly diagnosed glioblastoma and PCNSL were subjected to radiomics analysis using the multi-parametric MRI (contrast-enhanced T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging). Radiomics analyses were performed for two types of regions of interest (ROI) covering contrast-enhancing tumor and whole (enhancing or non-enhancing) tumor plus peritumoral edema. A total of 127 radiomics features were calculated. Feature selection was performed to identify the most discriminating features for every MR image in the discovery cohort. The identified features were used to calculate radiomics scores, which were later used in logistic regression to distinguish between PCNSL and glioblastoma. The classification model was further tested on the independent validation cohort.METHODSRetrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 143 patients (two independent cohorts for discovery [n = 86; glioblastoma = 49, PCNSL = 37] and validation [n = 57; glioblastoma = 29, PCNSL = 28]) with newly diagnosed glioblastoma and PCNSL were subjected to radiomics analysis using the multi-parametric MRI (contrast-enhanced T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging). Radiomics analyses were performed for two types of regions of interest (ROI) covering contrast-enhancing tumor and whole (enhancing or non-enhancing) tumor plus peritumoral edema. A total of 127 radiomics features were calculated. Feature selection was performed to identify the most discriminating features for every MR image in the discovery cohort. The identified features were used to calculate radiomics scores, which were later used in logistic regression to distinguish between PCNSL and glioblastoma. The classification model was further tested on the independent validation cohort.Fifteen features were selected as significant features in the discovery cohort. Using the identified features and calculated radiomics scores, the logistic regression-based classifier yielded an area under the curve (AUC) of 0.979, sensitivity of 0.938, and specificity of 0.944 in the discovery cohort to distinguish between glioblastoma and PCNSL. A similarly high rate of performance was observed in the validation cohort (AUC = 0.956).RESULTSFifteen features were selected as significant features in the discovery cohort. Using the identified features and calculated radiomics scores, the logistic regression-based classifier yielded an area under the curve (AUC) of 0.979, sensitivity of 0.938, and specificity of 0.944 in the discovery cohort to distinguish between glioblastoma and PCNSL. A similarly high rate of performance was observed in the validation cohort (AUC = 0.956).Radiomics features derived from multi-parametric MRI can be used to differentiate PCNSL from glioblastoma effectively.CONCLUSIONSRadiomics features derived from multi-parametric MRI can be used to differentiate PCNSL from glioblastoma effectively.
PurposeTo determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma on multi-parametric MR imaging including diffusion-weighted imaging.MethodsRetrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 143 patients (two independent cohorts for discovery [n = 86; glioblastoma = 49, PCNSL = 37] and validation [n = 57; glioblastoma = 29, PCNSL = 28]) with newly diagnosed glioblastoma and PCNSL were subjected to radiomics analysis using the multi-parametric MRI (contrast-enhanced T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging). Radiomics analyses were performed for two types of regions of interest (ROI) covering contrast-enhancing tumor and whole (enhancing or non-enhancing) tumor plus peritumoral edema. A total of 127 radiomics features were calculated. Feature selection was performed to identify the most discriminating features for every MR image in the discovery cohort. The identified features were used to calculate radiomics scores, which were later used in logistic regression to distinguish between PCNSL and glioblastoma. The classification model was further tested on the independent validation cohort.ResultsFifteen features were selected as significant features in the discovery cohort. Using the identified features and calculated radiomics scores, the logistic regression-based classifier yielded an area under the curve (AUC) of 0.979, sensitivity of 0.938, and specificity of 0.944 in the discovery cohort to distinguish between glioblastoma and PCNSL. A similarly high rate of performance was observed in the validation cohort (AUC = 0.956).ConclusionsRadiomics features derived from multi-parametric MRI can be used to differentiate PCNSL from glioblastoma effectively.
To determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma on multi-parametric MR imaging including diffusion-weighted imaging. Retrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 143 patients (two independent cohorts for discovery [n = 86; glioblastoma = 49, PCNSL = 37] and validation [n = 57; glioblastoma = 29, PCNSL = 28]) with newly diagnosed glioblastoma and PCNSL were subjected to radiomics analysis using the multi-parametric MRI (contrast-enhanced T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging). Radiomics analyses were performed for two types of regions of interest (ROI) covering contrast-enhancing tumor and whole (enhancing or non-enhancing) tumor plus peritumoral edema. A total of 127 radiomics features were calculated. Feature selection was performed to identify the most discriminating features for every MR image in the discovery cohort. The identified features were used to calculate radiomics scores, which were later used in logistic regression to distinguish between PCNSL and glioblastoma. The classification model was further tested on the independent validation cohort. Fifteen features were selected as significant features in the discovery cohort. Using the identified features and calculated radiomics scores, the logistic regression-based classifier yielded an area under the curve (AUC) of 0.979, sensitivity of 0.938, and specificity of 0.944 in the discovery cohort to distinguish between glioblastoma and PCNSL. A similarly high rate of performance was observed in the validation cohort (AUC = 0.956). Radiomics features derived from multi-parametric MRI can be used to differentiate PCNSL from glioblastoma effectively.
Author Cho, Hwan-ho
Park, Hyunjin
Nam, Dohyun
Kong, Doo-Sik
Kim, Sung Tae
Kim, Yikyung
Author_xml – sequence: 1
  givenname: Yikyung
  surname: Kim
  fullname: Kim, Yikyung
  organization: Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine
– sequence: 2
  givenname: Hwan-ho
  surname: Cho
  fullname: Cho, Hwan-ho
  organization: Department of Electrical and Computer Engineering, Sungkyunkwan University, Center for Neuroscience Imaging Research, Institute for Basic Science
– sequence: 3
  givenname: Sung Tae
  orcidid: 0000-0001-8185-0063
  surname: Kim
  fullname: Kim, Sung Tae
  organization: Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine
– sequence: 4
  givenname: Hyunjin
  surname: Park
  fullname: Park, Hyunjin
  email: hyunjinp@skku.edu
  organization: Center for Neuroscience Imaging Research, Institute for Basic Science, School of Electronic and Electrical Engineering, Sungkyunkwan University
– sequence: 5
  givenname: Dohyun
  surname: Nam
  fullname: Nam, Dohyun
  organization: Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine
– sequence: 6
  givenname: Doo-Sik
  surname: Kong
  fullname: Kong, Doo-Sik
  organization: Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30232517$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFTEYhYNU7G31B7iRgBs30XzNZGYpxdpCS6HoOiSZzG1KPq5JRrj_vhnuLYWCrsJLnnM4nHMGTmKKFoCPBH8lGItvBWPKOMJkQBSPBPE3YEM4o4iMFJ-ATfseEBs5PgVnpTxijJlg4h04ZU1HOyI2oNyryaXgTIGzVXXJtsCa4ORKdXG7uPIAt94l7VWpKSg45xTgLrug8h4aG2tWHkab_6alwLIv1Qbo92H3sMIpwrD46tBOZRVszc7A2_vr9-DtrHyxH47vOfh9-ePXxRW6uft5ffH9BhkmaEVmGog2Rs9Y9HYeB66p6pRWUz-0m2sxWMI07pWZaKf6zhKt-cjGgbKOcEPZOfhy8N3l9GexpcrgirHeq2hbXEkJ63HX87Fr6OdX6GNacmzpGoVHTIUYVsNPR2rRwU7y2IN8rrMB4gCYnErJdpbGVVVdWntyXhIs1-HkYTjZhpPrcJI3JXmlfDb_n4YeNKWxcWvzS-h_i54AYWirxw
CitedBy_id crossref_primary_10_1016_j_isci_2024_109023
crossref_primary_10_3389_fonc_2023_1134109
crossref_primary_10_3390_life14101290
crossref_primary_10_1007_s00330_023_09709_7
crossref_primary_10_1007_s11060_020_03607_4
crossref_primary_10_1186_s12911_023_02397_9
crossref_primary_10_1016_j_ejrad_2021_109784
crossref_primary_10_1177_1971400921998979
crossref_primary_10_1016_j_crad_2022_08_138
crossref_primary_10_1259_bjr_20201302
crossref_primary_10_3389_fonc_2022_1080988
crossref_primary_10_3389_fonc_2022_884724
crossref_primary_10_1093_noajnl_vdac141
crossref_primary_10_3174_ajnr_A7473
crossref_primary_10_1007_s00330_021_07845_6
crossref_primary_10_3390_neuroglia5040025
crossref_primary_10_1007_s00330_020_06927_1
crossref_primary_10_1016_j_wneu_2021_01_114
crossref_primary_10_1080_14737140_2022_2082948
crossref_primary_10_1155_2022_9547166
crossref_primary_10_1186_s12957_021_02239_w
crossref_primary_10_3389_fonc_2022_848846
crossref_primary_10_18705_2311_4495_2022_9_2_70_80
crossref_primary_10_1093_nop_npac017
crossref_primary_10_3389_fmed_2024_1345162
crossref_primary_10_1088_1361_6560_ad3cb1
crossref_primary_10_1016_j_clineuro_2019_105565
crossref_primary_10_1097_RCT_0000000000001344
crossref_primary_10_3390_bioengineering10030285
crossref_primary_10_3390_cancers14225608
crossref_primary_10_1016_j_wneu_2025_123740
crossref_primary_10_1186_s13014_025_02613_y
crossref_primary_10_1007_s00234_025_03551_y
crossref_primary_10_3390_cancers14112731
crossref_primary_10_1148_rycan_2020190047
crossref_primary_10_1002_jmri_26602
crossref_primary_10_1016_j_wneu_2024_03_152
crossref_primary_10_1097_RCT_0000000000001499
crossref_primary_10_1053_j_sult_2022_02_005
crossref_primary_10_1007_s00117_022_01051_1
crossref_primary_10_1007_s11060_022_04150_0
crossref_primary_10_1093_neuros_nyab124
crossref_primary_10_1177_02841851241283781
crossref_primary_10_3390_cancers14030836
crossref_primary_10_1093_noajnl_vdad136
crossref_primary_10_3390_cancers14030713
crossref_primary_10_1093_noajnl_vdae022
crossref_primary_10_1016_j_jocn_2020_04_080
crossref_primary_10_1016_j_ymeth_2020_06_020
crossref_primary_10_1016_j_jocn_2021_04_043
crossref_primary_10_1016_j_nicl_2019_101912
crossref_primary_10_1002_jmri_28494
crossref_primary_10_3389_fonc_2022_884173
crossref_primary_10_3389_fonc_2024_1291861
crossref_primary_10_1016_j_ejrad_2022_110235
crossref_primary_10_1016_j_neucom_2024_129220
crossref_primary_10_3389_fonc_2024_1401977
crossref_primary_10_3390_jpm11090876
crossref_primary_10_3892_or_2022_8457
Cites_doi 10.1007/s00401-007-0293-7
10.1056/NEJMoa043330
10.3174/ajnr.A2333
10.1126/scitranslmed.aaa7582
10.1109/TSMC.1973.4309314
10.3174/ajnr.A2171
10.1016/S0730-725X(03)00201-7
10.3171/2010.6.JNS091326
10.1016/j.crad.2016.02.006
10.1148/radiol.2015151169
10.1148/radiol.2432060493
10.1023/A:1006258619757
10.1093/neuonc/noy021
10.1007/s13244-012-0196-6
10.1038/ncomms5006
10.1212/WNL.57.3.393
10.2967/jnumed.110.082404
10.1371/journal.pone.0162565
10.1177/1756285608101222
10.1007/s00330-018-5368-4
10.3174/ajnr.A5173
10.1148/radiol.14131731
10.1148/radiol.2353031338
10.1016/j.ejca.2011.11.036
10.1158/0008-5472.CAN-17-0339
10.1109/TPAMI.2005.159
10.1155/2013/619658
10.1371/journal.pone.0118261
10.1109/42.925295
10.2463/mrms.mp.2017-0044
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Neuroradiology is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Neuroradiology is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2O
M7P
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s00234-018-2091-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
Toxicology Abstracts
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Research Library Prep
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1920
EndPage 1305
ExternalDocumentID 30232517
10_1007_s00234_018_2091_4
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Science and ICT of Korea under the ITRC program
  grantid: IITP-2018-0-01798
– fundername: Institute for Basic Science
  grantid: IBS-R015-D1
  funderid: http://dx.doi.org/10.13039/501100010446
– fundername: National Research Foundation of Korea
  grantid: NRF-2016R1A2B4008545
– fundername: Institute for Basic Science
  grantid: IBS-R015-D1
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.55
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3O-
3V.
4.4
406
408
409
40D
40E
53G
5QI
5RE
5VS
67Z
6NX
6PF
78A
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHVE
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J5H
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M2O
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
X7M
YLTOR
Z45
Z7U
Z7X
Z82
Z87
Z8O
Z8V
Z91
ZGI
ZMTXR
ZOVNA
ZXP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
7U7
7XB
8FD
8FK
ABRTQ
C1K
FR3
K9.
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
7X8
ID FETCH-LOGICAL-c372t-cd81bccbf076ef984b2a5abad686ef4b78e13b06acd25a65e1bb4939823514c23
IEDL.DBID 8FG
ISSN 0028-3940
1432-1920
IngestDate Fri Sep 05 14:41:14 EDT 2025
Sat Aug 23 14:00:33 EDT 2025
Thu Apr 03 07:05:56 EDT 2025
Tue Jul 01 02:28:37 EDT 2025
Thu Apr 24 22:59:20 EDT 2025
Fri Feb 21 02:33:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Diagnosis
Magnetic resonance imaging
Lymphoma
Glioblastoma
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-cd81bccbf076ef984b2a5abad686ef4b78e13b06acd25a65e1bb4939823514c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8185-0063
PMID 30232517
PQID 2109027782
PQPubID 49036
PageCount 9
ParticipantIDs proquest_miscellaneous_2136056495
proquest_journals_2109027782
pubmed_primary_30232517
crossref_citationtrail_10_1007_s00234_018_2091_4
crossref_primary_10_1007_s00234_018_2091_4
springer_journals_10_1007_s00234_018_2091_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181200
2018-12-00
2018-Dec
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 20181200
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle A Journal Dedicated to Neuroimaging and Interventional Neuroradiology
PublicationTitle Neuroradiology
PublicationTitleAbbrev Neuroradiology
PublicationTitleAlternate Neuroradiology
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Itakura, Achrol, Mitchell, Loya, Liu, Westbroek, Feroze, Rodriguez, Echegaray, Azad, Yeom, Napel, Rubin, Chang, GRt, Gevaert (CR9) 2015; 7
Suh, Choi, Bae, Ahn, Chang, Kang, Kim, Kim, Lee (CR13) 2018; 28
Tixier, Le Rest, Hatt, Albarghach, Pradier, Metges, Corcos, Visvikis (CR16) 2011; 52
Mahmoud-Ghoneim, Toussaint, Constans, de Certaines (CR26) 2003; 21
Yamasaki, Kurisu, Satoh, Arita, Sugiyama, Ohtaki, Takaba, Tominaga, Hanaya, Yoshioka, Hama, Ito, Kajiwara, Yahara, Saito, Thohar (CR30) 2005; 235
Gillies, Kinahan, Hricak (CR10) 2016; 278
DeAngelis (CR6) 1999; 43
Claes, Idema, Wesseling (CR24) 2007; 114
Aerts, Velazquez, Leijenaar, Parmar, Grossmann, Carvalho, Bussink, Monshouwer, Haibe-Kains, Rietveld, Hoebers, Rietbergen, Leemans, Dekker, Quackenbush, Gillies, Lambin (CR7) 2014; 5
Gevaert, Mitchell, Achrol, Xu, Echegaray, Steinberg, Cheshier, Napel, Zaharchuk, Plevritis (CR8) 2014; 273
CR14
Davnall, Yip, Ljungqvist, Selmi, Ng, Sanghera, Ganeshan, Miles, Cook, Goh (CR15) 2012; 3
CR32
Yamasaki, Chen, Hirai, Murakami (CR22) 2013; 2013
Alcaide-Leon, Dufort, Geraldo, Alshafai, Maralani, Spears, Bharatha (CR21) 2017; 38
Bathla, Hegde (CR28) 2016; 71
Al-Okaili, Krejza, Woo, Wolf, O’Rourke, Judy, Poptani, Melhem (CR4) 2007; 243
Buhring, Herrlinger, Krings, Thiex, Weller, Kuker (CR3) 2001; 57
Kang, Park, Kim, Kim, Oh, Kim, Kim, Kim, Kim (CR12) 2018; 20
Stupp, Mason, van den Bent, Weller, Fisher, Taphoorn, Belanger, Brandes, Marosi, Bogdahn, Curschmann, Janzer, Ludwin, Gorlia, Allgeier, Lacombe, Cairncross, Eisenhauer, Mirimanoff (CR2) 2005; 352
CR23
Lambin, Rios-Velazquez, Leijenaar, Carvalho, van Stiphout, Granton, Zegers, Gillies, Boellard, Dekker, Aerts (CR11) 2012; 48
Ko, Tai, Li, Chen, Chen, Shu, Kuo, Lee (CR31) 2016; 11
Peng, Long, Ding (CR19) 2005; 27
Schlegel (CR1) 2009; 2
Hassaneen, Levine, Suki, Salaskar, de Moura Lima, McCutcheon, Prabhu, Lang, DeMonte, Rao, Weinberg, Wildrick, Aldape, Sawaya (CR27) 2011; 114
van Griethuysen, Fedorov, Parmar, Hosny, Aucoin, Narayan, Beets-Tan, Fillion-Robin, Pieper, Aerts (CR20) 2017; 77
Haldorsen, Espeland, Larsson (CR5) 2011; 32
Kovalev, Kruggel, Gertz, von Cramon (CR25) 2001; 20
Grove, Berglund, Schabath, Aerts, Dekker, Wang, Velazquez, Lambin, Gu, Balagurunathan, Eikman, Gatenby, Eschrich, Gillies (CR17) 2015; 10
Wang, Kim, Chawla, Wolf, Knipp, Vossough, O’Rourke, Judy, Poptani, Melhem (CR29) 2011; 32
Haralick, Shanmugam (CR18) 1973; SMC-3
H Peng (2091_CR19) 2005; 27
A Claes (2091_CR24) 2007; 114
RN Al-Okaili (2091_CR4) 2007; 243
2091_CR32
U Buhring (2091_CR3) 2001; 57
HJ Aerts (2091_CR7) 2014; 5
2091_CR14
S Wang (2091_CR29) 2011; 32
F Tixier (2091_CR16) 2011; 52
D Mahmoud-Ghoneim (2091_CR26) 2003; 21
G Bathla (2091_CR28) 2016; 71
RJ Gillies (2091_CR10) 2016; 278
D Kang (2091_CR12) 2018; 20
P Alcaide-Leon (2091_CR21) 2017; 38
JJM Griethuysen van (2091_CR20) 2017; 77
R Stupp (2091_CR2) 2005; 352
T Yamasaki (2091_CR22) 2013; 2013
F Yamasaki (2091_CR30) 2005; 235
W Hassaneen (2091_CR27) 2011; 114
VA Kovalev (2091_CR25) 2001; 20
LM DeAngelis (2091_CR6) 1999; 43
F Davnall (2091_CR15) 2012; 3
O Gevaert (2091_CR8) 2014; 273
2091_CR23
RM Haralick (2091_CR18) 1973; SMC-3
CC Ko (2091_CR31) 2016; 11
H Itakura (2091_CR9) 2015; 7
U Schlegel (2091_CR1) 2009; 2
IS Haldorsen (2091_CR5) 2011; 32
HB Suh (2091_CR13) 2018; 28
P Lambin (2091_CR11) 2012; 48
O Grove (2091_CR17) 2015; 10
15833979 - Radiology. 2005 Jun;235(3):985-91
20690813 - J Neurosurg. 2011 Mar;114(3):576-84
27631626 - PLoS One. 2016 Sep 15;11(9):e0162565
28362236 - J Neurosurg. 2018 Mar;128(3):667-678
28638001 - Magn Reson Med Sci. 2018 Jan 10;17(1):50-57
29438500 - Neuro Oncol. 2018 Aug 2;20(9):1251-1261
29092951 - Cancer Res. 2017 Nov 1;77(21):e104-e107
10563431 - J Neurooncol. 1999 Jul;43(3):249-57
24827998 - Radiology. 2014 Oct;273(1):168-74
24892406 - Nat Commun. 2014 Jun 03;5:4006
22257792 - Eur J Cancer. 2012 Mar;48(4):441-6
25739030 - PLoS One. 2015 Mar 04;10(3):e0118261
14684200 - Magn Reson Imaging. 2003 Nov;21(9):983-7
23840280 - Comput Math Methods Med. 2013;2013:619658
26579733 - Radiology. 2016 Feb;278(2):563-77
11403201 - IEEE Trans Med Imaging. 2001 May;20(5):424-33
26333934 - Sci Transl Med. 2015 Sep 2;7(303):303ra138
17456876 - Radiology. 2007 May;243(2):539-50
29626238 - Eur Radiol. 2018 Sep;28(9):3832-3839
21180644 - Ther Adv Neurol Disord. 2009 Mar;2(2):93-104
21321270 - J Nucl Med. 2011 Mar;52(3):369-78
20616176 - AJNR Am J Neuroradiol. 2011 Jun-Jul;32(6):984-92
15758009 - N Engl J Med. 2005 Mar 10;352(10):987-96
27038652 - Clin Radiol. 2016 Jun;71(6):602-9
17805551 - Acta Neuropathol. 2007 Nov;114(5):443-58
11515505 - Neurology. 2001 Aug 14;57(3):393-6
16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38
28450433 - AJNR Am J Neuroradiol. 2017 Jun;38(6):1145-1150
23093486 - Insights Imaging. 2012 Dec;3(6):573-89
21330399 - AJNR Am J Neuroradiol. 2011 Mar;32(3):507-14
References_xml – volume: 114
  start-page: 443
  year: 2007
  end-page: 458
  ident: CR24
  article-title: Diffuse glioma growth: a guerilla war
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-007-0293-7
– volume: 352
  start-page: 987
  year: 2005
  end-page: 996
  ident: CR2
  article-title: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa043330
– ident: CR14
– volume: 32
  start-page: 507
  year: 2011
  end-page: 514
  ident: CR29
  article-title: Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A2333
– volume: 7
  start-page: 303ra138
  year: 2015
  ident: CR9
  article-title: Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaa7582
– volume: SMC-3
  start-page: 610
  year: 1973
  end-page: 621
  ident: CR18
  article-title: Textural features for image classification
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1973.4309314
– volume: 32
  start-page: 984
  year: 2011
  end-page: 992
  ident: CR5
  article-title: Central nervous system lymphoma: characteristic findings on traditional and advanced imaging
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A2171
– volume: 21
  start-page: 983
  year: 2003
  end-page: 987
  ident: CR26
  article-title: Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas
  publication-title: Magn Reson Imaging
  doi: 10.1016/S0730-725X(03)00201-7
– volume: 114
  start-page: 576
  year: 2011
  end-page: 584
  ident: CR27
  article-title: Multiple craniotomies in the management of multifocal and multicentric glioblastoma, Clinical article
  publication-title: J Neurosurg
  doi: 10.3171/2010.6.JNS091326
– volume: 71
  start-page: 602
  year: 2016
  end-page: 609
  ident: CR28
  article-title: Lymphomatous involvement of the central nervous system
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2016.02.006
– volume: 278
  start-page: 563
  year: 2016
  end-page: 577
  ident: CR10
  article-title: Radiomics: images are more than pictures, they are data
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 243
  start-page: 539
  year: 2007
  end-page: 550
  ident: CR4
  article-title: Intraaxial brain masses: MR imaging-based diagnostic strategy--initial experience
  publication-title: Radiology
  doi: 10.1148/radiol.2432060493
– volume: 43
  start-page: 249
  year: 1999
  end-page: 257
  ident: CR6
  article-title: Primary CNS lymphoma: treatment with combined chemotherapy and radiotherapy
  publication-title: J Neuro-Oncol
  doi: 10.1023/A:1006258619757
– volume: 20
  start-page: 1251
  year: 2018
  end-page: 1261
  ident: CR12
  article-title: Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noy021
– volume: 3
  start-page: 573
  year: 2012
  end-page: 589
  ident: CR15
  article-title: Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice?
  publication-title: Insights Imaging
  doi: 10.1007/s13244-012-0196-6
– ident: CR23
– volume: 5
  start-page: 4006
  year: 2014
  ident: CR7
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
– volume: 57
  start-page: 393
  year: 2001
  end-page: 396
  ident: CR3
  article-title: MRI features of primary central nervous system lymphomas at presentation
  publication-title: Neurology
  doi: 10.1212/WNL.57.3.393
– volume: 52
  start-page: 369
  year: 2011
  end-page: 378
  ident: CR16
  article-title: Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.110.082404
– volume: 11
  start-page: e0162565
  year: 2016
  ident: CR31
  article-title: Differentiation between glioblastoma multiforme and primary cerebral lymphoma: additional benefits of quantitative diffusion-weighted MR imaging
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0162565
– volume: 2
  start-page: 93
  year: 2009
  end-page: 104
  ident: CR1
  article-title: Primary CNS lymphoma
  publication-title: Ther Adv Neurol Disord
  doi: 10.1177/1756285608101222
– volume: 28
  start-page: 3832
  year: 2018
  end-page: 3839
  ident: CR13
  article-title: Primary central nervous system lymphoma and atypical glioblastoma: differentiation using radiomics approach
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5368-4
– volume: 38
  start-page: 1145
  year: 2017
  end-page: 1150
  ident: CR21
  article-title: Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A5173
– volume: 273
  start-page: 168
  year: 2014
  end-page: 174
  ident: CR8
  article-title: Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features
  publication-title: Radiology
  doi: 10.1148/radiol.14131731
– volume: 235
  start-page: 985
  year: 2005
  end-page: 991
  ident: CR30
  article-title: Apparent diffusion coefficient of human brain tumors at MR imaging
  publication-title: Radiology
  doi: 10.1148/radiol.2353031338
– volume: 48
  start-page: 441
  year: 2012
  end-page: 446
  ident: CR11
  article-title: Radiomics: extracting more information from medical images using advanced feature analysis
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2011.11.036
– volume: 77
  start-page: e104
  year: 2017
  end-page: e107
  ident: CR20
  article-title: Computational Radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0339
– ident: CR32
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: CR19
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– volume: 2013
  start-page: 619658
  year: 2013
  ident: CR22
  article-title: Classification of cerebral lymphomas and glioblastomas featuring luminance distribution analysis
  publication-title: Comput Math Methods Med
  doi: 10.1155/2013/619658
– volume: 10
  start-page: e0118261
  year: 2015
  ident: CR17
  article-title: Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118261
– volume: 20
  start-page: 424
  year: 2001
  end-page: 433
  ident: CR25
  article-title: Three-dimensional texture analysis of MRI brain datasets
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.925295
– volume: 28
  start-page: 3832
  year: 2018
  ident: 2091_CR13
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5368-4
– volume: 114
  start-page: 443
  year: 2007
  ident: 2091_CR24
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-007-0293-7
– volume: 3
  start-page: 573
  year: 2012
  ident: 2091_CR15
  publication-title: Insights Imaging
  doi: 10.1007/s13244-012-0196-6
– volume: 77
  start-page: e104
  year: 2017
  ident: 2091_CR20
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0339
– volume: 278
  start-page: 563
  year: 2016
  ident: 2091_CR10
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 352
  start-page: 987
  year: 2005
  ident: 2091_CR2
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa043330
– volume: 243
  start-page: 539
  year: 2007
  ident: 2091_CR4
  publication-title: Radiology
  doi: 10.1148/radiol.2432060493
– ident: 2091_CR32
– volume: 5
  start-page: 4006
  year: 2014
  ident: 2091_CR7
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
– volume: 7
  start-page: 303ra138
  year: 2015
  ident: 2091_CR9
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaa7582
– volume: 2
  start-page: 93
  year: 2009
  ident: 2091_CR1
  publication-title: Ther Adv Neurol Disord
  doi: 10.1177/1756285608101222
– volume: 71
  start-page: 602
  year: 2016
  ident: 2091_CR28
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2016.02.006
– volume: 273
  start-page: 168
  year: 2014
  ident: 2091_CR8
  publication-title: Radiology
  doi: 10.1148/radiol.14131731
– volume: SMC-3
  start-page: 610
  year: 1973
  ident: 2091_CR18
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1973.4309314
– volume: 38
  start-page: 1145
  year: 2017
  ident: 2091_CR21
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A5173
– volume: 20
  start-page: 424
  year: 2001
  ident: 2091_CR25
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.925295
– volume: 11
  start-page: e0162565
  year: 2016
  ident: 2091_CR31
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0162565
– volume: 10
  start-page: e0118261
  year: 2015
  ident: 2091_CR17
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118261
– volume: 32
  start-page: 984
  year: 2011
  ident: 2091_CR5
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A2171
– ident: 2091_CR23
  doi: 10.2463/mrms.mp.2017-0044
– volume: 43
  start-page: 249
  year: 1999
  ident: 2091_CR6
  publication-title: J Neuro-Oncol
  doi: 10.1023/A:1006258619757
– volume: 20
  start-page: 1251
  year: 2018
  ident: 2091_CR12
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noy021
– volume: 57
  start-page: 393
  year: 2001
  ident: 2091_CR3
  publication-title: Neurology
  doi: 10.1212/WNL.57.3.393
– volume: 21
  start-page: 983
  year: 2003
  ident: 2091_CR26
  publication-title: Magn Reson Imaging
  doi: 10.1016/S0730-725X(03)00201-7
– volume: 235
  start-page: 985
  year: 2005
  ident: 2091_CR30
  publication-title: Radiology
  doi: 10.1148/radiol.2353031338
– volume: 48
  start-page: 441
  year: 2012
  ident: 2091_CR11
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2011.11.036
– volume: 52
  start-page: 369
  year: 2011
  ident: 2091_CR16
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.110.082404
– ident: 2091_CR14
– volume: 27
  start-page: 1226
  year: 2005
  ident: 2091_CR19
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– volume: 2013
  start-page: 619658
  year: 2013
  ident: 2091_CR22
  publication-title: Comput Math Methods Med
  doi: 10.1155/2013/619658
– volume: 114
  start-page: 576
  year: 2011
  ident: 2091_CR27
  publication-title: J Neurosurg
  doi: 10.3171/2010.6.JNS091326
– volume: 32
  start-page: 507
  year: 2011
  ident: 2091_CR29
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A2333
– reference: 24827998 - Radiology. 2014 Oct;273(1):168-74
– reference: 29092951 - Cancer Res. 2017 Nov 1;77(21):e104-e107
– reference: 27631626 - PLoS One. 2016 Sep 15;11(9):e0162565
– reference: 14684200 - Magn Reson Imaging. 2003 Nov;21(9):983-7
– reference: 21180644 - Ther Adv Neurol Disord. 2009 Mar;2(2):93-104
– reference: 23840280 - Comput Math Methods Med. 2013;2013:619658
– reference: 17805551 - Acta Neuropathol. 2007 Nov;114(5):443-58
– reference: 23093486 - Insights Imaging. 2012 Dec;3(6):573-89
– reference: 29626238 - Eur Radiol. 2018 Sep;28(9):3832-3839
– reference: 25739030 - PLoS One. 2015 Mar 04;10(3):e0118261
– reference: 28362236 - J Neurosurg. 2018 Mar;128(3):667-678
– reference: 15833979 - Radiology. 2005 Jun;235(3):985-91
– reference: 21321270 - J Nucl Med. 2011 Mar;52(3):369-78
– reference: 26579733 - Radiology. 2016 Feb;278(2):563-77
– reference: 17456876 - Radiology. 2007 May;243(2):539-50
– reference: 16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38
– reference: 29438500 - Neuro Oncol. 2018 Aug 2;20(9):1251-1261
– reference: 10563431 - J Neurooncol. 1999 Jul;43(3):249-57
– reference: 24892406 - Nat Commun. 2014 Jun 03;5:4006
– reference: 28450433 - AJNR Am J Neuroradiol. 2017 Jun;38(6):1145-1150
– reference: 11403201 - IEEE Trans Med Imaging. 2001 May;20(5):424-33
– reference: 28638001 - Magn Reson Med Sci. 2018 Jan 10;17(1):50-57
– reference: 26333934 - Sci Transl Med. 2015 Sep 2;7(303):303ra138
– reference: 21330399 - AJNR Am J Neuroradiol. 2011 Mar;32(3):507-14
– reference: 20616176 - AJNR Am J Neuroradiol. 2011 Jun-Jul;32(6):984-92
– reference: 20690813 - J Neurosurg. 2011 Mar;114(3):576-84
– reference: 11515505 - Neurology. 2001 Aug 14;57(3):393-6
– reference: 27038652 - Clin Radiol. 2016 Jun;71(6):602-9
– reference: 15758009 - N Engl J Med. 2005 Mar 10;352(10):987-96
– reference: 22257792 - Eur J Cancer. 2012 Mar;48(4):441-6
SSID ssj0003737
Score 2.4648733
Snippet Purpose To determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central...
To determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous...
PurposeTo determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1297
SubjectTerms Adult
Aged
Aged, 80 and over
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - pathology
Central nervous system
Contrast Media
Diagnosis, Differential
Diagnostic Neuroradiology
Diffusion Magnetic Resonance Imaging
Edema
Feasibility Studies
Feature extraction
Female
Glioblastoma
Glioblastoma - diagnostic imaging
Glioblastoma - pathology
Humans
Imaging
Informed consent
Lymphoma
Lymphoma - diagnostic imaging
Lymphoma - pathology
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical diagnosis
Medical imaging
Medicine
Medicine & Public Health
Middle Aged
Model testing
Nervous system
Neurology
Neuroradiology
Neurosciences
Neurosurgery
Radiology
Radiomics
Regression analysis
Retrospective Studies
Tumors
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLdgkxCXjW86BgoSJ1CmNk2b9DihjQF6HKZNGqcqSdPxxFs7rX2H8ddjt2kRDJB2rJqmiT8SW7Z_BniTaGW00o575SouVV1wI5zlLtG5kYlBoaLi5MWX_OhUfjrLzkIddzdlu08hyeGknovd6HqhjAnibIGOz13YzNA_QW3c3P_w9fPBfACnKkBlCs2p8fcUzPzbJL9fRzdszBvx0eHaOdyGk2nBY7bJ9711b_fcjz-wHG-5owewFcxQtj_KzUO445tHcG8RAu2PoTs21ZIKljtW-wH7s2N9yyo6EZrz9bL7xs5Xy9ai7d23F4ZRlQq7HJErWEj4ZA2eQ-26YyNaNFtdo-TQ4LZhQx4jJ9zxC2rp5dji-OMTOD08OHl_xEN_Bu5SJXruKrR5nbN1rHJfF1paYTJjTZVrfJZWaZ-kNs6Nq0Rm8swn1soiLbSg8gEn0qew0bSNfw4skTYvnCfYdCuNE1a4OK6qAv0X5eskjSCe2FS6AF5OPTRW5Qy7PBCzRGKWRMxSRvB2_iTs_3-Ddyfel0GJu1IMSasKbagIXs-vUf0opmIajxTEMSk6hDm6mRE8G2Vm_hv1YyJEuAjeTfz_Nfk_l7Jzq9Ev4L4gARoSbHZho79a-5doJvX2VVCLnz-xCO0
  priority: 102
  providerName: Springer Nature
Title Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI
URI https://link.springer.com/article/10.1007/s00234-018-2091-4
https://www.ncbi.nlm.nih.gov/pubmed/30232517
https://www.proquest.com/docview/2109027782
https://www.proquest.com/docview/2136056495
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-xTUK8IL4JjMpIPIEsEseNkyfUonYD1ApVVCpPke04W6UuGSR94L_nLnUyoYk9WVGcxPGdz3e-u98BvItSpVOVWu6ULbhUZca1sIbbKE20jDQyFSUnL5bJ-Vp-3Yw3_sCt8WGVvUzsBHVRWzoj_yi6CEKFG9qn61-cqkaRd9WX0DiCk0jgXkuZ4vOzQRLHymNmipRTBfDeqxl2IKIipvgL4pMMzah_96VbyuYtR2m3_8wfwUOvOLLJgdKP4Z6rnsD9hXeNP4VmpYstpRg3rHQdWmfD2poVtIari_22uWQXu21tUFtu6yvNKK-EXR-wJpgP0WQVSo5637ADvjPb_UFaU-e6Yl3kISek8CsqwmXZYvXlGaznsx-fz7mvqMBtrETLbYFaqrWmDFXiyiyVRuixNrpIUryWRqUuik2YaFuIsU7GLjJGZnGWCgr4tyJ-DsdVXbmXwCJpksw6Ajo3UlthhA3DosjQ4lCujOIAwn4-c-vhxqnqxS4fgJI7EuRIgpxIkMsA3g-P-P-_q_NpT6TcL7smv2GSAN4Ot3HBkBdEVw5nEPvEaMIlaBgG8OJA3OFrVEGJMNwC-NBT--bl_x3Kq7uH8hoeCOKzLgbmFI7b33v3BjWZ1ozgSG3UqGPaEZxM5tPpktqzn99m2E5ny-8rvLsWk79h_fYf
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQIuFW9SChgJLiCLxPHGyQEhBFS7tNtD1Up7C7bjlJW2SSFZof6p_sbOOI8KVfTWYxTn5fk8nsnMfAPwNkqVTlVquVO24FKVGdfCGm6jNNEy0ggqKk6eHyTTY_ljMVlswMVQC0NplYNO9Iq6qC39I_8ofAahwg3t89lvTl2jKLo6tNDoYLHnzv-iy9Z8mn1D-b4TYvf70dcp77sKcBsr0XJboKVmrSnRg3dllkoj9EQbXSQpHkujUhfFJky0LcREJxMXGSOzOEsFJb1bIjpAlX9HUogR149ajA5eGKueo1OknDqOD1HU0JOWipjyPQiXGbpt_-6D14zba4FZv9_tPoCt3lBlXzpkPYQNVz2Cu_M-FP8YmkNdLKmkuWGl8-ygDWtrVpDOqE7Wy-YXO1kta4PWeVufakZ1LOys47ZgfUooq1BT1euGdXzSbHWO2KLBdcV8piMnZvJTavpl2fxw9gSOb2Wun8JmVVfuObBImiSzjojVjdRWGGHDsCgy9HCUK6M4gHCYz9z29ObUZWOVj8TMXgQ5iiAnEeQygPfjJf333zR4ZxBS3i_zJr8CZQBvxtO4QCnqoiuHM4hjYnQZE3REA3jWCXd8GnVsIs64AD4M0r66-X9fZfvmV3kN96ZH8_18f3aw9wLuC8Kcz7_Zgc32z9q9RCuqNa88dBn8vO21cglbnC3M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VrVRxQbwxFFgkuIBWtdeO1z5UCGijhpKoiqjUm9mXS6TULtgR6l_kVzHjrF2hit56jLxxnJ3ZeXhmvg_gTZRJlcnMcCeN5Yksc66E0dxEWaqSSKFS0XDydJYeniRfTkenG_Cnn4WhtsreJnaG2taG3pHviq6DUKJD2y19W8Tx_vjDxU9ODFJUae3pNJSnWbB7HdyYH_I4cpe_MZ1r9ib7KPu3QowPvn0-5J5xgJtYipYbi1GcMbrE7N6VeZZooUZKK5tm-DnRMnNRrMNUGStGKh25SOskj_NMUEO8IRAEdAdbEr0-JoJbnw5mx_PBL8TSI3iKjBMfeV9jDTtIUxFTNwhpbY5J3b9e8lroe61s23nD8T2468NY9nGtd_dhw1UPYHvqC_UPoZkru6CB54aVrsMObVhbM0sWpTpbLZof7Gy5qDXG7m19rhhNubCLNfIF8w2jrEI7Vq8atkabZstL1DxaXFes64PkhFt-TpRghk3nk0dwciu7_Rg2q7pyT4FFiU5z4wh2XSfKCC1MGFqbY_4jXRnFAYT9fhbGg58TB8eyGGCbOxEUKIKCRFAkAbwbvuL__02Ld3ohFd4INMWVygbweriMx5dqMqpyuIO4JsaEMsU0NYAna-EOv0Z8ToQoF8D7XtpXN__vozy7-VFewTaem-LrZHb0HO4IUrmuOWcHNttfK_cCQ6xWv_S6y-D7bR-Xv0m-OKc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomics+features+to+distinguish+glioblastoma+from+primary+central+nervous+system+lymphoma+on+multi-parametric+MRI&rft.jtitle=Neuroradiology&rft.au=Kim%2C+Yikyung&rft.au=Cho%2C+Hwan-ho&rft.au=Kim%2C+Sung+Tae&rft.au=Park%2C+Hyunjin&rft.date=2018-12-01&rft.issn=0028-3940&rft.eissn=1432-1920&rft.volume=60&rft.issue=12&rft.spage=1297&rft.epage=1305&rft_id=info:doi/10.1007%2Fs00234-018-2091-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00234_018_2091_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3940&client=summon