Multi-objective PSO applied to PI control of DFIG wind turbine under electrical fault conditions
•PSO is given a multi-objective (MO) wheel topology formulation for controller parameter tuning of DFIG.•The proposed MO-PSO captures DFIG performance from several electrical and mechanical variables, which is decisive for effective LVRT capability improvement.•Control objectives are attained by MO-...
Saved in:
Published in | Electric power systems research Vol. 180; p. 106081 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.03.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0378-7796 1873-2046 |
DOI | 10.1016/j.epsr.2019.106081 |
Cover
Abstract | •PSO is given a multi-objective (MO) wheel topology formulation for controller parameter tuning of DFIG.•The proposed MO-PSO captures DFIG performance from several electrical and mechanical variables, which is decisive for effective LVRT capability improvement.•Control objectives are attained by MO-PSO even for worst case shaft stiffness coefficient values, a critical condition for DFIG stability during faults, while the symmetrical optimum technique shows unstable responses.•The proposed algorithm accounts for and prevents the possibility of hidden speed instability under satisfactory voltage performance during a fault.
Wind generation increase in electric power systems is a general trend in many countries. Variable speed wind turbines (WT) with doubly fed induction generators (DFIG) are commonly used for this purpose. In order to ensure stability and obtain the desired performance when WT are subject to transient disturbances, their control system needs to operate properly. This work aims at tuning the controllers comprising the DFIG control structure enhancing transient performance during electric faults and so contributing to the Low-Voltage Ride-Through (LVRT) capability. To do this, a multi-objective particle swarm optimization algorithm (MOPSO) is proposed applying to the complete dynamic model of the WT (electrical and mechanic parts) and minimizing a set of objective functions (OF) adapted to the electrical network fault problem. Tuning performance is compared with the classical symmetrical optimum method. Simulation results show that the MOPSO and penalization of both electrical and mechanical variables in the OF led to improved mechanical oscillations damping and voltage performance during a fault event, enhancing the LVRT capability even for the more critical condition of the flexible mechanical coupling. The results validate the proposed MOPSO as an effective tool capable of improving the behavior of this type of control for WT. |
---|---|
AbstractList | Wind generation increase in electric power systems is a general trend in many countries. Variable speed wind turbines (WT) with doubly fed induction generators (DFIG) are commonly used for this purpose. In order to ensure stability and obtain the desired performance when WT are subject to transient disturbances, their control system needs to operate properly. This work aims at tuning the controllers comprising the DFIG control structure enhancing transient performance during electric faults and so contributing to the Low-Voltage Ride-Through (LVRT) capability. To do this, a multi-objective particle swarm optimization algorithm (MOPSO) is proposed applying to the complete dynamic model of the WT (electrical and mechanic parts) and minimizing a set of objective functions (OF) adapted to the electrical network fault problem. Tuning performance is compared with the classical symmetrical optimum method. Simulation results show that the MOPSO and penalization of both electrical and mechanical variables in the OF led to improved mechanical oscillations damping and voltage performance during a fault event, enhancing the LVRT capability even for the more critical condition of the flexible mechanical coupling. The results validate the proposed MOPSO as an effective tool capable of improving the behavior of this type of control for WT. •PSO is given a multi-objective (MO) wheel topology formulation for controller parameter tuning of DFIG.•The proposed MO-PSO captures DFIG performance from several electrical and mechanical variables, which is decisive for effective LVRT capability improvement.•Control objectives are attained by MO-PSO even for worst case shaft stiffness coefficient values, a critical condition for DFIG stability during faults, while the symmetrical optimum technique shows unstable responses.•The proposed algorithm accounts for and prevents the possibility of hidden speed instability under satisfactory voltage performance during a fault. Wind generation increase in electric power systems is a general trend in many countries. Variable speed wind turbines (WT) with doubly fed induction generators (DFIG) are commonly used for this purpose. In order to ensure stability and obtain the desired performance when WT are subject to transient disturbances, their control system needs to operate properly. This work aims at tuning the controllers comprising the DFIG control structure enhancing transient performance during electric faults and so contributing to the Low-Voltage Ride-Through (LVRT) capability. To do this, a multi-objective particle swarm optimization algorithm (MOPSO) is proposed applying to the complete dynamic model of the WT (electrical and mechanic parts) and minimizing a set of objective functions (OF) adapted to the electrical network fault problem. Tuning performance is compared with the classical symmetrical optimum method. Simulation results show that the MOPSO and penalization of both electrical and mechanical variables in the OF led to improved mechanical oscillations damping and voltage performance during a fault event, enhancing the LVRT capability even for the more critical condition of the flexible mechanical coupling. The results validate the proposed MOPSO as an effective tool capable of improving the behavior of this type of control for WT. |
ArticleNumber | 106081 |
Author | Barrios Aguilar, Milton Ernesto Reginatto, Romeu Coury, Denis Vinicius Monaro, Renato Machado |
Author_xml | – sequence: 1 givenname: Milton Ernesto surname: Barrios Aguilar fullname: Barrios Aguilar, Milton Ernesto email: miltonbarriosaguilar@usp.br organization: São Carlos School of Engineering, University of São Paulo-USP, São Carlos, SP, Brazil – sequence: 2 givenname: Denis Vinicius surname: Coury fullname: Coury, Denis Vinicius email: coury@sc.usp.br organization: São Carlos School of Engineering, University of São Paulo-USP, São Carlos, SP, Brazil – sequence: 3 givenname: Romeu surname: Reginatto fullname: Reginatto, Romeu email: romeu@unioeste.br organization: Western Paraná State University - UNIOESTE, Foz do Iguaçu, PR, Brazil – sequence: 4 givenname: Renato Machado surname: Monaro fullname: Monaro, Renato Machado email: monaro@usp.br organization: Polytechnic School, University of São Paulo-USP, São Paulo, SP, Brazil |
BookMark | eNp9kEtr3DAQgEVJIZu0fyAnQc7ejCSvZUMuIa8upCTQ5KzK0hhkXMmR5JT8-8hsTz3kNDAz3zy-E3Lkg0dCzhhsGbDmYtzinOKWA-tKooGWfSEb1kpRcaibI7IBIdtKyq45JicpjQDQdHK3Ib9_LlN2VehHNNm9IX369Uj1PE8OLc2BPu2pCT7HMNEw0Ju7_T3963wpLbF3HuniLUaKU6GjM3qigy4DV8a67IJP38jXQU8Jv_-Lp-Tl7vb5-kf18Hi_v756qIyQPFdGis4AcCtq2wkQ_a6BmqNlcif7vu3BCi25RoNc6kEwDgMabkytmdWAVpyS88PcOYbXBVNWY1iiLysVF5LVjdhJWbraQ5eJIaWIgzIu6_XQHLWbFAO1-lSjWn2q1ac6-Cwo_w-do_uj4_vn0OUBwvL6m8OoknHoDVoXizJlg_sM_wCQVZFe |
CitedBy_id | crossref_primary_10_1007_s44196_023_00183_z crossref_primary_10_1016_j_isatra_2023_02_013 crossref_primary_10_1155_2020_9718345 crossref_primary_10_1016_j_epsr_2024_110583 crossref_primary_10_1038_s41598_023_32793_0 crossref_primary_10_1177_15501477211031748 crossref_primary_10_3389_fenrg_2022_996206 crossref_primary_10_1007_s40313_021_00779_w crossref_primary_10_1016_j_energy_2021_121039 crossref_primary_10_1016_j_scs_2020_102679 crossref_primary_10_3389_fenrg_2021_686616 crossref_primary_10_1177_01423312221110999 crossref_primary_10_1007_s40313_021_00797_8 crossref_primary_10_3390_machines10111074 crossref_primary_10_1016_j_ifacol_2024_08_070 crossref_primary_10_3390_act10100255 crossref_primary_10_1016_j_epsr_2023_109847 crossref_primary_10_1016_j_prime_2023_100293 crossref_primary_10_3390_fractalfract6080447 crossref_primary_10_1515_ijeeps_2021_0098 crossref_primary_10_3390_en17010028 crossref_primary_10_1007_s40866_024_00211_7 crossref_primary_10_1051_e3sconf_202447201002 crossref_primary_10_3390_su13147622 crossref_primary_10_1109_ACCESS_2024_3491296 crossref_primary_10_1177_09544062231193825 crossref_primary_10_3390_e23070888 crossref_primary_10_3390_su131910728 crossref_primary_10_1080_15325008_2023_2276843 crossref_primary_10_1016_j_epsr_2020_106963 |
Cites_doi | 10.1016/S0005-1098(99)00091-6 10.1109/INDICON.2016.7838953 10.1017/CBO9781107415324.004 10.1109/TIA.2017.2740850 10.1109/TPWRS.2008.919310 10.1016/S0378-7796(00)00103-6 10.1109/59.910789 10.1109/CISTEM.2016.8066803 10.1109/2943.999610 10.1049/ip-epa:19960288 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Mar 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Mar 2020 |
DBID | AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1016/j.epsr.2019.106081 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2046 |
ExternalDocumentID | 10_1016_j_epsr_2019_106081 S0378779619304006 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 8FD AFXIZ AGCQF AGRNS BNPGV FR3 KR7 L7M SSH |
ID | FETCH-LOGICAL-c372t-c739c002d34d9303b56042ed1757bb8b0d3a72aece27af3120fec2cc4a1da0ed3 |
IEDL.DBID | .~1 |
ISSN | 0378-7796 |
IngestDate | Sun Jul 13 04:31:00 EDT 2025 Thu Apr 24 22:55:23 EDT 2025 Wed Oct 01 05:09:01 EDT 2025 Fri Feb 23 02:48:29 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 99-00 Wind energy 00-01 Symmetrical optimum PSO multi-objective optimization Tuning DFIG |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-c739c002d34d9303b56042ed1757bb8b0d3a72aece27af3120fec2cc4a1da0ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://dx.doi.org/10.1016/j.epsr.2019.106081 |
PQID | 2371463577 |
PQPubID | 2047565 |
ParticipantIDs | proquest_journals_2371463577 crossref_citationtrail_10_1016_j_epsr_2019_106081 crossref_primary_10_1016_j_epsr_2019_106081 elsevier_sciencedirect_doi_10_1016_j_epsr_2019_106081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Electric power systems research |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Müller, Deicke, Rik Doncker (bib0090) 2002; 8 Prasanthi, Shubhanga (bib0085) 2016 Thiringer, Luomi (bib0100) 2001; 16 Talukder (bib0115) 2011 National Electrical System Operator (ONS) (in Portuguese) (bib0110) 2017 Qiao, Venayagamoorthy, Harley (bib0050) 2006 Astrom, Hägglund (bib0125) 1995 Mengxi, Chen (bib0035) 2016 Prajapat, Senroy, Kar (bib0055) 2017 Jagdeep, Lather, Dhillon (bib0075) 2017 Feijóo, Cidrás, Carrillo (bib0095) 2000; 56 Anilkumar, Devriese, Srivastava (bib0005) 2018; 54 Pena, Clare, Asher (bib0105) 1996; 143 Zamzoum, El Mourabit, Derouich, El Ghzizal (bib0080) 2016 Abd, Cheng, Sun (bib0020) 2016 Mukhopadhyay, Mandal (bib0010) 2016 Kayikçi, Milanović (bib0060) 2008; 23 Akhmatov (bib0070) 2003 Leite, Barros, Miranda (bib0140) 2009 D. Simon, Evolutionary Optimization Algorithms, Vol. 53, Wiley Interscience, New Jersey, 2013. arXiv:arXiv:1011.1669v3, doi:10.1017/CBO9781107415324.004. Chakravarty, Venayagamoorthy (bib0120) 2011 Queval, Ohsaki (bib0130) 2012 Preitl, Precup (bib0135) 1999; 35 Ahmed, Mohmed, Kamel (bib0015) 2017 Ackermann (bib0065) 2005 Bonyadi, Sc, Sc (bib0030) 2014 Reyes-Sierra, Coello Coello (bib0040) 2006; 2 Anaya-Lara, Jenkins, Ekanayake, Cartwright, Hughes (bib0025) 2009 Leite (10.1016/j.epsr.2019.106081_bib0140) 2009 Reyes-Sierra (10.1016/j.epsr.2019.106081_bib0040) 2006; 2 Prajapat (10.1016/j.epsr.2019.106081_bib0055) 2017 Queval (10.1016/j.epsr.2019.106081_bib0130) 2012 10.1016/j.epsr.2019.106081_bib0045 Thiringer (10.1016/j.epsr.2019.106081_bib0100) 2001; 16 Bonyadi (10.1016/j.epsr.2019.106081_bib0030) 2014 Ackermann (10.1016/j.epsr.2019.106081_bib0065) 2005 Chakravarty (10.1016/j.epsr.2019.106081_bib0120) 2011 Akhmatov (10.1016/j.epsr.2019.106081_bib0070) 2003 Zamzoum (10.1016/j.epsr.2019.106081_bib0080) 2016 Astrom (10.1016/j.epsr.2019.106081_bib0125) 1995 Anaya-Lara (10.1016/j.epsr.2019.106081_bib0025) 2009 Kayikçi (10.1016/j.epsr.2019.106081_bib0060) 2008; 23 Ahmed (10.1016/j.epsr.2019.106081_bib0015) 2017 Mengxi (10.1016/j.epsr.2019.106081_bib0035) 2016 Qiao (10.1016/j.epsr.2019.106081_bib0050) 2006 Anilkumar (10.1016/j.epsr.2019.106081_bib0005) 2018; 54 Jagdeep (10.1016/j.epsr.2019.106081_bib0075) 2017 Feijóo (10.1016/j.epsr.2019.106081_bib0095) 2000; 56 Preitl (10.1016/j.epsr.2019.106081_bib0135) 1999; 35 Mukhopadhyay (10.1016/j.epsr.2019.106081_bib0010) 2016 Pena (10.1016/j.epsr.2019.106081_bib0105) 1996; 143 National Electrical System Operator (ONS) (in Portuguese) (10.1016/j.epsr.2019.106081_bib0110) 2017 Abd (10.1016/j.epsr.2019.106081_bib0020) 2016 Prasanthi (10.1016/j.epsr.2019.106081_bib0085) 2016 Müller (10.1016/j.epsr.2019.106081_bib0090) 2002; 8 Talukder (10.1016/j.epsr.2019.106081_bib0115) 2011 |
References_xml | – year: 2003 ident: bib0070 article-title: Analysis of dynamic behaviour of electric power systems with large amount of wind power, Ph.D. thesis – year: 2011 ident: bib0115 article-title: Mathematical Modelling and Applications of Particle Swarm Optimization, Ph.D. thesis – volume: 35 start-page: 1731 year: 1999 end-page: 1736 ident: bib0135 article-title: An extension of tuning relations after symmetrical optimum method for PI and PID controllers publication-title: Automatica – volume: 16 start-page: 119 year: 2001 end-page: 126 ident: bib0100 article-title: Comparison of reduced-order dynamic models of induction machines publication-title: IEEE Trans. Power Syst. – volume: 54 start-page: 656 year: 2018 end-page: 664 ident: bib0005 article-title: Voltage and reactive power control to maximize the energy savings in power distribution system with wind energy publication-title: IEEE Trans. Ind. Appl. – year: 2016 ident: bib0085 article-title: Stability analysis of a grid connected DFIG based WECS with two-mass shaft modeling publication-title: 2016 IEEE Annual India Conference, INDICON – start-page: 226 year: 2017 end-page: 233 ident: bib0015 article-title: Optimal STATCOM controller for enhancing wind farm power system performance under fault conditions publication-title: 2016 18th International Middle-East Power Systems Conference, MEPCON 2016 - Proceedings (1) – volume: 2 start-page: 287 year: 2006 end-page: 308 ident: bib0040 article-title: Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art publication-title: Int. J. Comput. Intel. Res. – start-page: 1 year: 2017 end-page: 6 ident: bib0075 article-title: Multi Area Load Frequency Control of Interconnected Power Systems Using JAYA publication-title: IEEE Electrical Power and Energy Conference (EPEC) Multi – year: 2005 ident: bib0065 article-title: Wind Power in Power Systems, Vol. 140, Stockholm, Sweden – volume: 23 start-page: 545 year: 2008 end-page: 554 ident: bib0060 article-title: Assessing transient response of DFIG-based wind plants - The influence of model simplifications and parameters publication-title: IEEE Trans. Power Syst. – start-page: 1 year: 2012 end-page: 6 ident: bib0130 article-title: Back-to-back converter design and control for synchronous generator-based wind turbines publication-title: in: 2012 International Conference on Renewable Energy Research and Applications (ICRERA), IEEE – volume: 143 start-page: 231 year: 1996 ident: bib0105 article-title: Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation publication-title: IEE Proceedings - Electric Power Applications – start-page: 408 year: 2016 end-page: 413 ident: bib0020 article-title: A new MBF-PSO for improving performance of DFIG connected to grid under disturbance publication-title: Asia-Pacific Power and Energy Engineering Conference. APPEEC 2016-Decem – year: 1995 ident: bib0125 article-title: PID controllers: theory, design and tuning – start-page: 723 year: 2011 end-page: 728 ident: bib0120 article-title: Development of optimal controllers for a DFIG based wind farm in a smart grid under variable wind speed conditions publication-title: 2011 IEEE International Electric Machines and Drives Conference, IEMDC 2011 – year: 2017 ident: bib0110 article-title: Submodule 3.6 - Minimum technical requirements for connection to transmission installations, Tech. rep. – start-page: 1 year: 2009 end-page: 8 ident: bib0140 article-title: Evolutionary algorithm EPSO helping doubly-fed induction generators in ride-through-fault publication-title: 2009 IEEE Bucharest PowerTech: Innovative Ideas Toward the Electrical Grid of the Future – start-page: 1 year: 2017 end-page: 6 ident: bib0055 article-title: Identification and Tuning of Dominant Controller Parameters of DFIG with Damping Control publication-title: 2017 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia) – reference: D. Simon, Evolutionary Optimization Algorithms, Vol. 53, Wiley Interscience, New Jersey, 2013. arXiv:arXiv:1011.1669v3, doi:10.1017/CBO9781107415324.004. – year: 2016 ident: bib0080 article-title: Study and implementation of the MPPT strategy applied to a variable speed wind system based on DFIG with PWM-vector control publication-title: Proceedings of 2016 International Conference on Electrical Sciences and Technologies in Maghreb, CISTEM – start-page: 88 year: 2016 end-page: 93 ident: bib0010 article-title: Voltage compensation using PSO-PI controlled STATCOM in a DFIG-based grid-connected wind energy system publication-title: International Conference on Electrical Power and Energy Systems, ICEPES 2016 – year: 2009 ident: bib0025 article-title: Wind energy generation: modelling and control, Vol. 1. United Kingdom – start-page: 2539 year: 2016 end-page: 2544 ident: bib0035 article-title: Reactive Power Coordinated Control Strategy Based on PSO for Wind Farms Cluster publication-title: IEEE PES Asia-Pacific Power and Energy Conference - Xi’an - China (20156407) – year: 2014 ident: bib0030 article-title: Particle Swarm Optimization: Theoretical analysis, modifications, and applications to constrained optimization problems, Ph.D. thesis – start-page: 1982 year: 2006 end-page: 1987 ident: bib0050 article-title: Design of optimal PI controllers for doubly fed induction generators driven by wind turbines using particle swarm optimization publication-title: International Joint Conference on Neural Networks – volume: 56 start-page: 121 year: 2000 ident: bib0095 article-title: A third order model for the doubly-fed induction machine publication-title: Electric Power Syst. Res. – volume: 8 start-page: 26 year: 2002 end-page: 33 ident: bib0090 article-title: Doubly fed induction generator systems for wind turbines publication-title: Ind. Appl. Magazine. IEEE – year: 2003 ident: 10.1016/j.epsr.2019.106081_bib0070 – volume: 35 start-page: 1731 issue: 10 year: 1999 ident: 10.1016/j.epsr.2019.106081_bib0135 article-title: An extension of tuning relations after symmetrical optimum method for PI and PID controllers publication-title: Automatica doi: 10.1016/S0005-1098(99)00091-6 – year: 2016 ident: 10.1016/j.epsr.2019.106081_bib0085 article-title: Stability analysis of a grid connected DFIG based WECS with two-mass shaft modeling publication-title: 2016 IEEE Annual India Conference, INDICON doi: 10.1109/INDICON.2016.7838953 – start-page: 2539 year: 2016 ident: 10.1016/j.epsr.2019.106081_bib0035 article-title: Reactive Power Coordinated Control Strategy Based on PSO for Wind Farms Cluster publication-title: IEEE PES Asia-Pacific Power and Energy Conference - Xi’an - China (20156407) – ident: 10.1016/j.epsr.2019.106081_bib0045 doi: 10.1017/CBO9781107415324.004 – year: 2009 ident: 10.1016/j.epsr.2019.106081_bib0025 – year: 2017 ident: 10.1016/j.epsr.2019.106081_bib0110 – start-page: 408 year: 2016 ident: 10.1016/j.epsr.2019.106081_bib0020 article-title: A new MBF-PSO for improving performance of DFIG connected to grid under disturbance publication-title: Asia-Pacific Power and Energy Engineering Conference. APPEEC 2016-Decem – volume: 2 start-page: 287 issue: 3 year: 2006 ident: 10.1016/j.epsr.2019.106081_bib0040 article-title: Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art publication-title: Int. J. Comput. Intel. Res. – year: 2005 ident: 10.1016/j.epsr.2019.106081_bib0065 – volume: 54 start-page: 656 issue: 1 year: 2018 ident: 10.1016/j.epsr.2019.106081_bib0005 article-title: Voltage and reactive power control to maximize the energy savings in power distribution system with wind energy publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2017.2740850 – volume: 23 start-page: 545 issue: 2 year: 2008 ident: 10.1016/j.epsr.2019.106081_bib0060 article-title: Assessing transient response of DFIG-based wind plants - The influence of model simplifications and parameters publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2008.919310 – year: 2011 ident: 10.1016/j.epsr.2019.106081_bib0115 – start-page: 1 year: 2017 ident: 10.1016/j.epsr.2019.106081_bib0075 article-title: Multi Area Load Frequency Control of Interconnected Power Systems Using JAYA publication-title: IEEE Electrical Power and Energy Conference (EPEC) Multi – volume: 56 start-page: 121 issue: 2 year: 2000 ident: 10.1016/j.epsr.2019.106081_bib0095 article-title: A third order model for the doubly-fed induction machine publication-title: Electric Power Syst. Res. doi: 10.1016/S0378-7796(00)00103-6 – start-page: 1 year: 2017 ident: 10.1016/j.epsr.2019.106081_bib0055 article-title: Identification and Tuning of Dominant Controller Parameters of DFIG with Damping Control publication-title: 2017 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia) – start-page: 1982 year: 2006 ident: 10.1016/j.epsr.2019.106081_bib0050 article-title: Design of optimal PI controllers for doubly fed induction generators driven by wind turbines using particle swarm optimization publication-title: International Joint Conference on Neural Networks – start-page: 88 year: 2016 ident: 10.1016/j.epsr.2019.106081_bib0010 article-title: Voltage compensation using PSO-PI controlled STATCOM in a DFIG-based grid-connected wind energy system publication-title: International Conference on Electrical Power and Energy Systems, ICEPES 2016 – volume: 16 start-page: 119 issue: 1 year: 2001 ident: 10.1016/j.epsr.2019.106081_bib0100 article-title: Comparison of reduced-order dynamic models of induction machines publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.910789 – year: 2016 ident: 10.1016/j.epsr.2019.106081_bib0080 article-title: Study and implementation of the MPPT strategy applied to a variable speed wind system based on DFIG with PWM-vector control publication-title: Proceedings of 2016 International Conference on Electrical Sciences and Technologies in Maghreb, CISTEM doi: 10.1109/CISTEM.2016.8066803 – volume: 8 start-page: 26 issue: 3 year: 2002 ident: 10.1016/j.epsr.2019.106081_bib0090 article-title: Doubly fed induction generator systems for wind turbines publication-title: Ind. Appl. Magazine. IEEE doi: 10.1109/2943.999610 – year: 2014 ident: 10.1016/j.epsr.2019.106081_bib0030 – start-page: 1 year: 2012 ident: 10.1016/j.epsr.2019.106081_bib0130 article-title: Back-to-back converter design and control for synchronous generator-based wind turbines publication-title: in: 2012 International Conference on Renewable Energy Research and Applications (ICRERA), IEEE – volume: 143 start-page: 231 issue: 3 year: 1996 ident: 10.1016/j.epsr.2019.106081_bib0105 article-title: Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation publication-title: IEE Proceedings - Electric Power Applications doi: 10.1049/ip-epa:19960288 – year: 1995 ident: 10.1016/j.epsr.2019.106081_bib0125 – start-page: 723 year: 2011 ident: 10.1016/j.epsr.2019.106081_bib0120 article-title: Development of optimal controllers for a DFIG based wind farm in a smart grid under variable wind speed conditions publication-title: 2011 IEEE International Electric Machines and Drives Conference, IEMDC 2011 – start-page: 1 year: 2009 ident: 10.1016/j.epsr.2019.106081_bib0140 article-title: Evolutionary algorithm EPSO helping doubly-fed induction generators in ride-through-fault publication-title: 2009 IEEE Bucharest PowerTech: Innovative Ideas Toward the Electrical Grid of the Future – start-page: 226 year: 2017 ident: 10.1016/j.epsr.2019.106081_bib0015 article-title: Optimal STATCOM controller for enhancing wind farm power system performance under fault conditions publication-title: 2016 18th International Middle-East Power Systems Conference, MEPCON 2016 - Proceedings (1) |
SSID | ssj0006975 |
Score | 2.5126932 |
Snippet | •PSO is given a multi-objective (MO) wheel topology formulation for controller parameter tuning of DFIG.•The proposed MO-PSO captures DFIG performance from... Wind generation increase in electric power systems is a general trend in many countries. Variable speed wind turbines (WT) with doubly fed induction generators... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106081 |
SubjectTerms | Algorithms Computer simulation Damping DFIG Dynamic models Electric potential Electric power systems Electrical faults Fault diagnosis Fault tolerance Induction generators Mechanical properties Multiple objective analysis Particle swarm optimization PSO multi-objective optimization Symmetrical optimum Transient performance Tuning Turbines Voltage Wind energy Wind power Wind power generation Wind turbines |
Title | Multi-objective PSO applied to PI control of DFIG wind turbine under electrical fault conditions |
URI | https://dx.doi.org/10.1016/j.epsr.2019.106081 https://www.proquest.com/docview/2371463577 |
Volume | 180 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AKRWK dateStart: 19770901 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SL3oQn1itJQdvsnY3SbvusVRrq6iFWugt5rVQkbZoxZu_3ZlN1hfYg9eQhGUymZmP_eYLIcdJlgurFf7V1SYSyK3ROYAVA7VpBoAoVRqB4s1tqzcSV-PmeIV0yl4YpFWG2O9jehGtw0gjWLMxn0waw5iDs6UZIACOnoiy26j-BT59-v5F82hlhdguTo5wdmic8RwvN39BTdAkg4FWfJb8lZx-heki93Q3yUYoGmnbf9cWWXHTbbL-TUpwhzwUnbTRTD_6CEYHwzuqfIlJFzM66NPASqeznJ53-5f0DeA4hYwD2NhR7CV7pv5RHDw3mivYENdYT-raJaPuxX2nF4XXEyLDU7YAa_PMQLyzXFiwENdQ2wjmLNQLqdZnOrZcpUw541iqcp6wOHeGGSNUYlXsLN8jlels6vYJzU2TmaZWcQrJzLZYxqwQWrBEWyYAYFZJUppNmiAtji9cPMmSQ_Yo0dQSTS29qavk5HPN3AtrLJ3dLE9D_nAPCZF_6bpaeXQyXM4XyVClEHX40oN_bntI1hji7oKLViOVxfOrO4LiZKHrhffVyWq7f927_QCwFeLS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC7c8eB6EJ-s7z54kzBJdycxR1HHGR-zggre2n4FlGVm0BH_vlXpjqyCHryGriZ8XfmqPlJVDbCXVbV0RtNfXWMTSbU1pkaxYjE3rVAQldqQULwcFv1beXaX383AUdsLQ2WVkfsDpzdsHZ90I5rdycND9zoV6GxlhQpAkCcWv2BW5sjJHZg9HJz3h--EXFTNvF1an5BB7J0JZV5-8kxjQbMKHxTpQfZVfPrE1E346S3CQswb2WF4tSWY8aNlmP9vmuAK3DfNtMnYPAYSY1fXf5kOWSabjtnVgMXCdDau2XFvcMpeUZEzDDoojz2jdrInFu7FoaNjtcYNycaFuq5VuO2d3Bz1k3iBQmJFyacIuKgsUp4T0iFIwmB6I7l3mDKUxhyY1Aldcu2t56WuRcbT2lturdSZ06l3Yg06o_HI_wFW25zb3Oi0xHjmCl5xJ6WRPDOOI-rVOmQtbMrG6eJ0ycU_1ZaRPSqCWhHUKkC9DvvvNpMwW-Pb1Xl7GuqDhygk_2_tttqjU_H7fFacBhXSKL5y44fb7sJc_-byQl0Mhueb8JuTDG9K07agM3168duYq0zNTvTFN3El5X0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+PSO+applied+to+PI+control+of+DFIG+wind+turbine+under+electrical+fault+conditions&rft.jtitle=Electric+power+systems+research&rft.au=Aguilar%2C+Milton+Ernesto+Barrios&rft.au=Coury%2C+Denis+Vinicius&rft.au=Reginatto%2C+Romeu&rft.au=Monaro%2C+Renato+Machado&rft.date=2020-03-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=180&rft.spage=1&rft_id=info:doi/10.1016%2Fj.epsr.2019.106081&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |