A new network forensic framework based on deep learning for Internet of Things networks: A particle deep framework
With the prevalence of Internet of Things (IoT) systems, inconspicuous everyday household devices are connected to the Internet, providing automation and real-time services to their users. In spite of their light-weight design and low power, their vulnerabilities often give rise to cyber risks that...
        Saved in:
      
    
          | Published in | Future generation computer systems Vol. 110; pp. 91 - 106 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.09.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0167-739X 1872-7115  | 
| DOI | 10.1016/j.future.2020.03.042 | 
Cover
| Abstract | With the prevalence of Internet of Things (IoT) systems, inconspicuous everyday household devices are connected to the Internet, providing automation and real-time services to their users. In spite of their light-weight design and low power, their vulnerabilities often give rise to cyber risks that harm their operations over network systems. One of the key challenges of securing IoT networks is tracing sources of cyber-attack events, along with obfuscating and encrypting network traffic. This study proposes a new network forensics framework , called a Particle Deep Framework (PDF), which describes the digital investigation phases for identifying and tracing attack behaviors in IoT networks. The proposed framework includes three new functions: (1) extracting network data flows and verifying their integrity to deal with encrypted networks; (2) utilizing a Particle Swarm Optimization (PSO) algorithm to automatically adapt parameters of deep learning; and (3) developing a Deep Neural Network (DNN) based on the PSO algorithm to discover and trace abnormal events from IoT network of smart homes. The proposed PDF is evaluated using the Bot-IoT and UNSW_NB15 datasets and compared with various deep learning techniques. Experimental results reveal a high performance of the proposed framework for discovering and tracing cyber-attack events compared with the other techniques.
•Particle Deep Framework for Internet of things Network Forensics presented.•Deep Neural Network optimization through Particle Swarm Optimization.•Analysis of experimental results indicate high accuracy, precision and recall. | 
    
|---|---|
| AbstractList | With the prevalence of Internet of Things (IoT) systems, inconspicuous everyday household devices are connected to the Internet, providing automation and real-time services to their users. In spite of their light-weight design and low power, their vulnerabilities often give rise to cyber risks that harm their operations over network systems. One of the key challenges of securing IoT networks is tracing sources of cyber-attack events, along with obfuscating and encrypting network traffic. This study proposes a new network forensics framework , called a Particle Deep Framework (PDF), which describes the digital investigation phases for identifying and tracing attack behaviors in IoT networks. The proposed framework includes three new functions: (1) extracting network data flows and verifying their integrity to deal with encrypted networks; (2) utilizing a Particle Swarm Optimization (PSO) algorithm to automatically adapt parameters of deep learning; and (3) developing a Deep Neural Network (DNN) based on the PSO algorithm to discover and trace abnormal events from IoT network of smart homes. The proposed PDF is evaluated using the Bot-IoT and UNSW_NB15 datasets and compared with various deep learning techniques. Experimental results reveal a high performance of the proposed framework for discovering and tracing cyber-attack events compared with the other techniques.
•Particle Deep Framework for Internet of things Network Forensics presented.•Deep Neural Network optimization through Particle Swarm Optimization.•Analysis of experimental results indicate high accuracy, precision and recall. | 
    
| Author | Koroniotis, Nickolaos Moustafa, Nour Sitnikova, Elena  | 
    
| Author_xml | – sequence: 1 givenname: Nickolaos surname: Koroniotis fullname: Koroniotis, Nickolaos email: n.koroniotis@student.adfa.edu.au – sequence: 2 givenname: Nour surname: Moustafa fullname: Moustafa, Nour – sequence: 3 givenname: Elena surname: Sitnikova fullname: Sitnikova, Elena  | 
    
| BookMark | eNqFkM1KAzEURoNUsK2-gYu8wIzJJNPMdCGU4k-h4KaCu5BkbjS1zZQktfj2Th114UIXlwuX7xy43wgNfOsBoUtKckro5Gqd233aB8gLUpCcsJzw4gQNaSWKTFBaDtCwi4lMsPrpDI1iXBNCqGB0iMIMezh0kw5teMW2DeCjM9gGtYXPk1YRGtx63ADs8AZU8M4_H5N44ROEDsWtxauX7hq_RXGKZ3inQnJmAz35YzxHp1ZtIlx87TF6vL1Zze-z5cPdYj5bZoaJImWG61LZesIrYypeA2Ocq0Y0oE1dlVpbrakVBRUl1FXDwBR1U3Jd84oWagKCjRHvvSa0MQawchfcVoV3SYk89ibXsu9NHnuThMmutw6b_sKMSyq51qeg3OY_-LqHoXvszUGQ0TjwBhoXwCTZtO5vwQdUdpDp | 
    
| CitedBy_id | crossref_primary_10_3390_electronics10111257 crossref_primary_10_1016_j_jisa_2024_103961 crossref_primary_10_1109_JIOT_2022_3229722 crossref_primary_10_1016_j_jksuci_2024_102164 crossref_primary_10_1016_j_cose_2023_103384 crossref_primary_10_1109_JIOT_2021_3100755 crossref_primary_10_3390_electronics13091671 crossref_primary_10_1587_transcom_2022EBP3169 crossref_primary_10_3390_s21092985 crossref_primary_10_1007_s13218_022_00763_9 crossref_primary_10_1145_3691634 crossref_primary_10_1007_s00500_025_10425_1 crossref_primary_10_1016_j_fsidi_2024_301748 crossref_primary_10_28925_2663_4023_2024_26_684 crossref_primary_10_1016_j_jnca_2024_103925 crossref_primary_10_1007_s13042_024_02269_2 crossref_primary_10_1016_j_cosrev_2024_100717 crossref_primary_10_1016_j_neucom_2023_126886 crossref_primary_10_1016_j_inffus_2023_101853 crossref_primary_10_1016_j_aej_2024_10_102 crossref_primary_10_1109_TII_2021_3108464 crossref_primary_10_3390_app13137774 crossref_primary_10_1016_j_future_2020_10_001 crossref_primary_10_1016_j_future_2021_03_019 crossref_primary_10_1109_TEM_2023_3304409 crossref_primary_10_1080_1206212X_2024_2443504 crossref_primary_10_3390_healthcare10061110 crossref_primary_10_3390_electronics11071126 crossref_primary_10_3390_su14148707 crossref_primary_10_1007_s11042_023_15918_5 crossref_primary_10_1002_cpe_6881 crossref_primary_10_1007_s10489_023_05176_1 crossref_primary_10_1109_ACCESS_2021_3118642 crossref_primary_10_3390_app132011145 crossref_primary_10_1007_s00354_022_00158_2 crossref_primary_10_1016_j_physa_2022_127764 crossref_primary_10_3390_electronics13142685 crossref_primary_10_1007_s42979_022_01321_8 crossref_primary_10_3390_sym13050767 crossref_primary_10_1007_s42979_024_03613_7 crossref_primary_10_1007_s00500_023_08256_z crossref_primary_10_1007_s10586_024_04531_2 crossref_primary_10_1080_1206212X_2021_1885150 crossref_primary_10_1016_j_fsidi_2022_301441 crossref_primary_10_32604_cmc_2022_026226 crossref_primary_10_1109_ACCESS_2025_3531216 crossref_primary_10_1007_s11042_023_16436_0 crossref_primary_10_1109_ACCESS_2024_3375368 crossref_primary_10_48084_etasr_6316 crossref_primary_10_1016_j_compeleceng_2021_107039 crossref_primary_10_2478_cait_2022_0033 crossref_primary_10_1016_j_isatra_2023_12_005 crossref_primary_10_1057_s41288_022_00266_6 crossref_primary_10_1007_s10207_023_00807_7 crossref_primary_10_1109_TII_2020_3025755 crossref_primary_10_3390_electronics11040569 crossref_primary_10_1016_j_iot_2024_101162 crossref_primary_10_3390_electronics10091104 crossref_primary_10_3390_electronics13163318 crossref_primary_10_12720_jait_15_12_1400_1412 crossref_primary_10_36548_jucct_2021_4_005 crossref_primary_10_1016_j_comcom_2023_06_020 crossref_primary_10_1016_j_heliyon_2024_e31631 crossref_primary_10_3390_electronics12051260 crossref_primary_10_1109_JIOT_2022_3167005 crossref_primary_10_1007_s10586_022_03810_0 crossref_primary_10_1155_2022_3576419 crossref_primary_10_1016_j_csa_2023_100034 crossref_primary_10_1080_08839514_2022_2137639 crossref_primary_10_3390_network3040023 crossref_primary_10_1007_s11227_022_04390_x crossref_primary_10_1016_j_compeleceng_2024_109609 crossref_primary_10_32604_csse_2023_038085 crossref_primary_10_1007_s13042_025_02544_w crossref_primary_10_1149_2754_2726_ac7abc crossref_primary_10_1002_spy2_70009 crossref_primary_10_1142_S0218539323500122 crossref_primary_10_3390_electronics13142827 crossref_primary_10_1109_ACCESS_2021_3104113 crossref_primary_10_1155_2023_7107663 crossref_primary_10_3233_JHS_200641 crossref_primary_10_3390_su151813887 crossref_primary_10_3390_s22166133 crossref_primary_10_1016_j_future_2021_01_012 crossref_primary_10_1155_2021_9562579 crossref_primary_10_1109_ACCESS_2023_3292181 crossref_primary_10_4236_jcc_2020_812002 crossref_primary_10_3390_s23167215 crossref_primary_10_1109_ACCESS_2020_3036728 crossref_primary_10_3390_s23167135 crossref_primary_10_1080_00051144_2023_2288486 crossref_primary_10_1109_ACCESS_2021_3124262 crossref_primary_10_1007_s00170_022_10259_3 crossref_primary_10_1186_s40537_021_00558_z  | 
    
| Cites_doi | 10.1016/j.jnca.2013.08.001 10.1109/INFCOMW.2018.8406875 10.1111/1556-4029.12823 10.1109/ACCESS.2019.2916717 10.1016/j.future.2017.07.060 10.1109/ICNN.1995.488968 10.1016/j.diin.2018.04.024 10.1016/j.chemolab.2015.08.020 10.1109/TEVC.2004.826069 10.1007/s00500-016-2474-6 10.1016/j.jnca.2019.02.022 10.1016/j.heliyon.2018.e00938 10.1109/MITP.2018.032501747 10.1016/S1361-3723(15)30045-2 10.1109/MCOM.2018.1800137 10.1016/j.comcom.2009.07.013 10.1016/j.future.2018.03.007 10.1016/j.neunet.2014.09.003 10.1016/j.comcom.2017.02.003 10.1016/j.future.2019.05.041 10.1109/TSUSC.2018.2809665 10.1002/nem.2039 10.1016/j.dcan.2017.10.002 10.1109/TETCI.2017.2772792 10.1109/ACCESS.2017.2762418 10.1016/j.procs.2018.07.183 10.1109/TEVC.2004.826074 10.1038/nature14539 10.1109/MSP.2017.4251117 10.1016/j.diin.2015.05.003 10.3390/s18030817 10.1016/j.jocs.2017.09.007 10.1109/SURV.2013.031413.00127  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2020 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.future.2020.03.042 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-7115 | 
    
| EndPage | 106 | 
    
| ExternalDocumentID | 10_1016_j_future_2020_03_042 S0167739X19325105  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c372t-c4b5af9648cc849e3344ad7debc985bbfbb1f72175e98d3ec29d54b94812a6e73 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0167-739X | 
    
| IngestDate | Thu Oct 02 04:24:24 EDT 2025 Thu Apr 24 23:12:28 EDT 2025 Fri Feb 23 02:48:08 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Deep learning Network forensics Threat detection Particle swarm optimization Attack tracing  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c372t-c4b5af9648cc849e3344ad7debc985bbfbb1f72175e98d3ec29d54b94812a6e73 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_future_2020_03_042 crossref_citationtrail_10_1016_j_future_2020_03_042 elsevier_sciencedirect_doi_10_1016_j_future_2020_03_042  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | September 2020 2020-09-00  | 
    
| PublicationDateYYYYMMDD | 2020-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2020 text: September 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Future generation computer systems | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Cebe, Erdin, Akkaya, Aksu, Uluagac (b13) 2018; 56 Chen, Zheng, Yan, Jiang, Moreau, Ceze, Guestrin, Krishnamurthy (b20) 2018 Armknecht, Dewald (b64) 2015; 14 Lu, Liu (b65) 2015 Van, Thinh, Sach (b44) 2017 Prabakaran, Mitra (b15) 2018; 1000 Palmer (b28) 2001 Nikabadi, Ebadzadeh (b56) 2008 Moustafa, Slay (b27) 2015 Schmidhuber (b70) 2015; 61 Wang (b16) 2015; 24 A. Zela, A. Klein, S. Falkner, F. Hutter, Towards automated deep learning: Efficient joint neural architecture and hyperparameter search, in: ICML 2018 AutoML Workshop, 2018. Houimli, Kahloul, Benaoun (b72) 2017 Robberts, Toft (b5) 2019 Alrawashdeh, Purdy (b39) 2016 Shone, Ngoc, Phai, Shi (b14) 2018; 2 Stamoulis, Cai, Juan, Marculescu (b22) 2018 Brun, Yin, Gelenbe (b43) 2018; 134 M.M. Hossain, R. Hasan, S. Zawoad, Probe-IoT: A public digital ledger based forensic investigation framework for IoT, in: INFOCOM Workshops, 2018, pp. 1–2. Zhao, Zhang, Zheng (b17) 2017 Van den Bergh, Engelbrecht (b63) 2004; 8 Yin, Zhu, Fei, He (b79) 2017; 5 Homayoun, Ahmadzadeh, Hashemi, Dehghantanha, Khayami (b49) 2018 Corporation (b4) 2019 Ronen, Shamir, Weingarten, O’Flynn (b6) 2017 Nguyen, Tran, Ma, Sharma (b38) 2014 Eberhart, Shi (b60) 2000 Azmoodeh, Dehghantanha, Choo (b40) 2018; 4 Clerc (b59) 1999 Koroniotis, Moustafa, Sitnikova, Slay (b84) 2017 Marini, Walczak (b53) 2015; 149 Pektaş, Acarman (b45) 2018 Eberhart, Shi (b55) 2001 Parsopoulos (b57) 2016 Mahdavinejad, Rezvan, Barekatain, Adibi, Barnaghi, Sheth (b76) 2018; 4 Wang, Gong (b19) 2018 Wang, Tan, Liu (b52) 2018; 22 Eberhart, Simpson, Dobbins (b58) 1996 Kennedy, Eberhart (b61) 1997 Conti, Dehghantanha, Franke, Watson (b9) 2018; 78 Watson, Dehghantanha (b23) 2016; 2016 Liao, Tian, Wang (b35) 2009; 32 Cheng, Watson (b46) 2018 Couceiro, Ghamisi (b68) 2016 Babun, Sikder, Acar, Uluagac (b34) 2018 Hossain, Karim, Hasan (b11) 2018 Chalapathy, Chawla (b78) 2019 Jesudoss, Subramaniam (b83) 2014; 5 Al-Sarawi, Anbar, Alieyan, Alzubaidi (b8) 2017 Moustafa, Slay (b26) 2015 Cook (b1) 2019 Le, Boydell, Mac Namee, Scanlon (b47) 2018; 26 De La Torre, Rad, Choo (b50) 2019 Zargar, Joshi, Tipper (b82) 2013; 15 Ahmed, Mohammed (b36) 2018; 25 Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (b75) 2018; 4 Noriega (b69) 2005 HaddadPajouh, Dehghantanha, Khayami, Choo (b77) 2018; 85 Hoque, Bhuyan, Baishya, Bhattacharyya, Kalita (b80) 2014; 40 Behal, Kumar (b81) 2017; 103 Meffert, Clark, Baggili, Breitinger (b7) 2017 Le, Meng, Su, Yeo, Thing (b30) 2018 Ab Wahab, Nefti-Meziani, Atyabi (b66) 2015; 10 LeCun, Bengio, Hinton (b41) 2015; 521 Mendes, Kennedy, Neves (b62) 2004; 8 Caviglione, Wendzel, Mazurczyk (b32) 2017; 15 Yudhana, Riadi, Ridho (b37) 2018; 9 Kaur, Kaur (b10) 2012; 50 Koroniotis, Moustafa, Sitnikova, Turnbull (b25) 2019 Claesen, Simm, Popovic, Moor (b74) 2014 Bonyadi, Michalewicz (b67) 2017 Zhang, Sabuncu (b71) 2018 Koroniotis, Moustafa, Sitnikova (b2) 2019; 7 Chernyshev, Zeadally, Baig, Woodward (b24) 2018; 20 Han, Kwon, Hahn, Koo, Hur (b33) 2016 Valjarevic, Venter (b31) 2015; 60 Ali, Awad (b3) 2018; 18 Shi, Eberhart (b54) 1998 Yuan, Li, Li (b42) 2017 Alrashdi, Alqazzaz, Aloufi, Alharthi, Zohdy, Ming (b48) 2019 J. Kennedy, R. Eberhart, Particle swarm optimization (PSO), in: Proc. IEEE International Conference on Neural Networks, Perth, Australia, 1995, pp. 1942–1948. Celesti, Mulfari, Fazio, Villari, Puliafito (b73) 2016 Wang, Xu, Wang (b21) 2018 Joseph, Norman (b29) 2019 Chernyshev (10.1016/j.future.2020.03.042_b24) 2018; 20 Kaur (10.1016/j.future.2020.03.042_b10) 2012; 50 Wang (10.1016/j.future.2020.03.042_b52) 2018; 22 Ronen (10.1016/j.future.2020.03.042_b6) 2017 Chalapathy (10.1016/j.future.2020.03.042_b78) 2019 Lu (10.1016/j.future.2020.03.042_b65) 2015 Meffert (10.1016/j.future.2020.03.042_b7) 2017 Eberhart (10.1016/j.future.2020.03.042_b55) 2001 Nikabadi (10.1016/j.future.2020.03.042_b56) 2008 Chen (10.1016/j.future.2020.03.042_b20) 2018 Schmidhuber (10.1016/j.future.2020.03.042_b70) 2015; 61 Moustafa (10.1016/j.future.2020.03.042_b26) 2015 Valjarevic (10.1016/j.future.2020.03.042_b31) 2015; 60 Eberhart (10.1016/j.future.2020.03.042_b58) 1996 Abiodun (10.1016/j.future.2020.03.042_b75) 2018; 4 Armknecht (10.1016/j.future.2020.03.042_b64) 2015; 14 HaddadPajouh (10.1016/j.future.2020.03.042_b77) 2018; 85 Clerc (10.1016/j.future.2020.03.042_b59) 1999 Wang (10.1016/j.future.2020.03.042_b19) 2018 Moustafa (10.1016/j.future.2020.03.042_b27) 2015 Mahdavinejad (10.1016/j.future.2020.03.042_b76) 2018; 4 Azmoodeh (10.1016/j.future.2020.03.042_b40) 2018; 4 Yin (10.1016/j.future.2020.03.042_b79) 2017; 5 Parsopoulos (10.1016/j.future.2020.03.042_b57) 2016 Conti (10.1016/j.future.2020.03.042_b9) 2018; 78 Zhang (10.1016/j.future.2020.03.042_b71) 2018 Ahmed (10.1016/j.future.2020.03.042_b36) 2018; 25 Koroniotis (10.1016/j.future.2020.03.042_b2) 2019; 7 Wang (10.1016/j.future.2020.03.042_b16) 2015; 24 Ab Wahab (10.1016/j.future.2020.03.042_b66) 2015; 10 LeCun (10.1016/j.future.2020.03.042_b41) 2015; 521 Cebe (10.1016/j.future.2020.03.042_b13) 2018; 56 Yuan (10.1016/j.future.2020.03.042_b42) 2017 De La Torre (10.1016/j.future.2020.03.042_b50) 2019 Caviglione (10.1016/j.future.2020.03.042_b32) 2017; 15 Nguyen (10.1016/j.future.2020.03.042_b38) 2014 Kennedy (10.1016/j.future.2020.03.042_b61) 1997 Wang (10.1016/j.future.2020.03.042_b21) 2018 Liao (10.1016/j.future.2020.03.042_b35) 2009; 32 Stamoulis (10.1016/j.future.2020.03.042_b22) 2018 Jesudoss (10.1016/j.future.2020.03.042_b83) 2014; 5 Han (10.1016/j.future.2020.03.042_b33) 2016 Bonyadi (10.1016/j.future.2020.03.042_b67) 2017 Yudhana (10.1016/j.future.2020.03.042_b37) 2018; 9 10.1016/j.future.2020.03.042_b51 Ali (10.1016/j.future.2020.03.042_b3) 2018; 18 Cheng (10.1016/j.future.2020.03.042_b46) 2018 Homayoun (10.1016/j.future.2020.03.042_b49) 2018 10.1016/j.future.2020.03.042_b12 Shone (10.1016/j.future.2020.03.042_b14) 2018; 2 Alrawashdeh (10.1016/j.future.2020.03.042_b39) 2016 Claesen (10.1016/j.future.2020.03.042_b74) 2014 Koroniotis (10.1016/j.future.2020.03.042_b84) 2017 Al-Sarawi (10.1016/j.future.2020.03.042_b8) 2017 Mendes (10.1016/j.future.2020.03.042_b62) 2004; 8 Cook (10.1016/j.future.2020.03.042_b1) 2019 Eberhart (10.1016/j.future.2020.03.042_b60) 2000 Zhao (10.1016/j.future.2020.03.042_b17) 2017 10.1016/j.future.2020.03.042_b18 Koroniotis (10.1016/j.future.2020.03.042_b25) 2019 Shi (10.1016/j.future.2020.03.042_b54) 1998 Van den Bergh (10.1016/j.future.2020.03.042_b63) 2004; 8 Le (10.1016/j.future.2020.03.042_b30) 2018 Pektaş (10.1016/j.future.2020.03.042_b45) 2018 Robberts (10.1016/j.future.2020.03.042_b5) 2019 Marini (10.1016/j.future.2020.03.042_b53) 2015; 149 Behal (10.1016/j.future.2020.03.042_b81) 2017; 103 Corporation (10.1016/j.future.2020.03.042_b4) 2019 Zargar (10.1016/j.future.2020.03.042_b82) 2013; 15 Prabakaran (10.1016/j.future.2020.03.042_b15) 2018; 1000 Couceiro (10.1016/j.future.2020.03.042_b68) 2016 Hossain (10.1016/j.future.2020.03.042_b11) 2018 Van (10.1016/j.future.2020.03.042_b44) 2017 Brun (10.1016/j.future.2020.03.042_b43) 2018; 134 Babun (10.1016/j.future.2020.03.042_b34) 2018 Houimli (10.1016/j.future.2020.03.042_b72) 2017 Noriega (10.1016/j.future.2020.03.042_b69) 2005 Le (10.1016/j.future.2020.03.042_b47) 2018; 26 Celesti (10.1016/j.future.2020.03.042_b73) 2016 Watson (10.1016/j.future.2020.03.042_b23) 2016; 2016 Joseph (10.1016/j.future.2020.03.042_b29) 2019 Palmer (10.1016/j.future.2020.03.042_b28) 2001 Hoque (10.1016/j.future.2020.03.042_b80) 2014; 40 Alrashdi (10.1016/j.future.2020.03.042_b48) 2019  | 
    
| References_xml | – volume: 5 start-page: 21954 year: 2017 end-page: 21961 ident: b79 article-title: A deep learning approach for intrusion detection using recurrent neural networks publication-title: Ieee Access – start-page: 69 year: 1998 end-page: 73 ident: b54 article-title: A modified particle swarm optimizer publication-title: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360) – volume: 20 start-page: 40 year: 2018 end-page: 49 ident: b24 article-title: Internet of things forensics: The need, process models, and open issues publication-title: IT Prof. – volume: 10 year: 2015 ident: b66 article-title: A comprehensive review of swarm optimization algorithms publication-title: PLoS One – start-page: 685 year: 2017 end-page: 690 ident: b8 article-title: Internet of Things (IoT) Communication protocols publication-title: 2017 8th International Conference on Information Technology (ICIT) – start-page: 701 year: 2019 end-page: 708 ident: b29 article-title: An analysis of digital forensics in cyber security publication-title: First International Conference on Artificial Intelligence and Cognitive Computing – volume: 14 start-page: S127 year: 2015 end-page: S136 ident: b64 article-title: Privacy-preserving email forensics publication-title: Digit. Invest. – volume: 25 start-page: 467 year: 2018 end-page: 473 ident: b36 article-title: SAIRF: A similarity approach for attack intention recognition using fuzzy min-max neural network publication-title: J. Comput. Sci. – start-page: 8778 year: 2018 end-page: 8788 ident: b71 article-title: Generalized cross entropy loss for training deep neural networks with noisy labels publication-title: Advances in Neural Information Processing Systems – volume: 26 start-page: S118 year: 2018 end-page: S126 ident: b47 article-title: Deep learning at the shallow end: Malware classification for non-domain experts publication-title: Digit. Invest. – start-page: 195 year: 2017 end-page: 212 ident: b6 article-title: Iot goes nuclear: Creating a ZigBee chain reaction publication-title: 2017 IEEE Symposium on Security and Privacy (SP) – year: 2018 ident: b45 article-title: Botnet detection based on network flow summary and deep learning publication-title: Int. J. Netw. Manag. – volume: 4 start-page: 88 year: 2018 end-page: 95 ident: b40 article-title: Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning publication-title: IEEE Trans. Sustain. Comput. – start-page: 84 year: 2000 end-page: 88 ident: b60 article-title: Comparing inertia weights and constriction factors in particle swarm optimization publication-title: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), vol. 1 – volume: 8 start-page: 204 year: 2004 end-page: 210 ident: b62 article-title: The fully informed particle swarm: simpler, maybe better publication-title: IEEE Trans. Evol. Comput. – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b70 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. – start-page: 33 year: 2018 end-page: 40 ident: b11 article-title: FIF-IoT: A forensic investigation framework for IoT using a public digital ledger publication-title: 2018 IEEE International Congress on Internet of Things (ICIOT) – volume: 85 start-page: 88 year: 2018 end-page: 96 ident: b77 article-title: A deep recurrent neural network based approach for Internet of Things malware threat hunting publication-title: Future Gener. Comput. Syst. – year: 1996 ident: b58 article-title: Computational Intelligence PC Tools – volume: 4 year: 2018 ident: b75 article-title: State-of-the-art in artificial neural network applications: A survey publication-title: Heliyon – volume: 56 start-page: 50 year: 2018 end-page: 57 ident: b13 article-title: Block4forensic: An integrated lightweight blockchain framework for forensics applications of connected vehicles publication-title: IEEE Commun. Mag. – volume: 60 start-page: 1467 year: 2015 end-page: 1483 ident: b31 article-title: A comprehensive and harmonized digital forensic investigation process model publication-title: J. Forensic Sci. – start-page: 4104 year: 1997 end-page: 4108 ident: b61 article-title: A discrete binary version of the particle swarm algorithm publication-title: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5 – start-page: 0305 year: 2019 end-page: 0310 ident: b48 article-title: AD-IoT: anomaly detection of IoT cyberattacks in smart city using machine learning publication-title: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC) – start-page: 56 year: 2017 ident: b7 article-title: Forensic state acquisition from Internet of Things (FSAIoT): A general framework and practical approach for IoT forensics through IoT device state acquisition publication-title: Proceedings of the 12th International Conference on Availability, Reliability and Security – volume: 149 start-page: 153 year: 2015 end-page: 165 ident: b53 article-title: Particle swarm optimization (PSO). A tutorial publication-title: Chemometr. Intell. Lab. Syst. – volume: 8 start-page: 225 year: 2004 end-page: 239 ident: b63 article-title: A cooperative approach to particle swarm optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 3389 year: 2018 end-page: 3400 ident: b20 article-title: Learning to optimize tensor programs publication-title: Advances in Neural Information Processing Systems – start-page: 724 year: 2016 end-page: 729 ident: b33 article-title: A survey on MITM and its countermeasures in the TLS handshake protocol publication-title: 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN) – reference: J. Kennedy, R. Eberhart, Particle swarm optimization (PSO), in: Proc. IEEE International Conference on Neural Networks, Perth, Australia, 1995, pp. 1942–1948. – year: 2019 ident: b1 article-title: 60+ IoT statistics and facts publication-title: Comparitech – start-page: 36 year: 2018 end-page: 52 ident: b19 article-title: Stealing hyperparameters in machine learning publication-title: 2018 IEEE Symposium on Security and Privacy (SP) – year: 2019 ident: b5 article-title: Finding vulnerabilities in IoT devices: Ethical hacking of electronic locks – start-page: 655 year: 2014 end-page: 660 ident: b38 article-title: An approach to detect network attacks applied for network forensics publication-title: 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) – year: 2019 ident: b78 article-title: Deep learning for anomaly detection: A survey – volume: 521 start-page: 436 year: 2015 ident: b41 article-title: Deep learning publication-title: Nature – start-page: 19 year: 2018 end-page: 24 ident: b22 article-title: Hyperpower: Power-and memory-constrained hyper-parameter optimization for neural networks publication-title: 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE) – start-page: 94 year: 2001 end-page: 100 ident: b55 article-title: Tracking and optimizing dynamic systems with particle swarms publication-title: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 1 – start-page: 195 year: 2016 end-page: 200 ident: b39 article-title: Toward an online anomaly intrusion detection system based on deep learning publication-title: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA) – start-page: 004345 year: 2015 end-page: 004351 ident: b65 article-title: A fuzzy logic controller tuned with PSO for delta robot trajectory control publication-title: IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society – reference: A. Zela, A. Klein, S. Falkner, F. Hutter, Towards automated deep learning: Efficient joint neural architecture and hyperparameter search, in: ICML 2018 AutoML Workshop, 2018. – year: 2019 ident: b4 article-title: Internet Security Threat Report, Volume 24 – start-page: 1 year: 2016 end-page: 6 ident: b73 article-title: Exploring container virtualization in IoT clouds publication-title: 2016 IEEE International Conference on Smart Computing (SMARTCOMP) – volume: 5 start-page: 71 year: 2014 end-page: 77 ident: b83 article-title: A survey on authentication attacks and countermeasures in a distributed environment publication-title: Indian J. Comput. Sci. Eng. IJCSE – volume: 1000 start-page: 012046 year: 2018 ident: b15 article-title: Survey of analysis of crime detection techniques using data mining and machine learning publication-title: J. Phys.: Conf. Ser. – volume: 78 start-page: 544 year: 2018 end-page: 546 ident: b9 article-title: Internet of things security and forensics: Challenges and opportunities publication-title: Future Gener. Comput. Syst. – year: 2005 ident: b69 article-title: Multilayer perceptron tutorial – volume: 22 start-page: 387 year: 2018 end-page: 408 ident: b52 article-title: Particle swarm optimization algorithm: an overview publication-title: Soft Comput. – year: 2018 ident: b34 article-title: IoTDots: A digital forensics framework for smart environments – volume: 4 start-page: 161 year: 2018 end-page: 175 ident: b76 article-title: Machine learning for Internet of Things data analysis: A survey publication-title: Digit. Commun. Netw. – start-page: 1 year: 2015 end-page: 6 ident: b27 article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-nb15 network data set) publication-title: Military Communications and Information Systems Conference (MilCIS), 2015 – year: 2008 ident: b56 article-title: Particle swarm optimization algorithms with adaptive inertia weight: A survey of the state of the art and a novel method publication-title: IEEE J. Evol. Comput. – volume: 103 start-page: 18 year: 2017 end-page: 28 ident: b81 article-title: Detection of DDoS attacks and flash events using information theory metrics–An empirical investigation publication-title: Comput. Commun. – start-page: 30 year: 2017 end-page: 44 ident: b84 article-title: Towards developing network forensic mechanism for botnet activities in the IoT based on machine learning techniques publication-title: International Conference on Mobile Networks and Management – volume: 9 start-page: 177 year: 2018 end-page: 183 ident: b37 article-title: DDoS classification using neural network and Naïve Bayes methods for network forensics publication-title: Int. J. Adv. Comput. Sci. Appl. – start-page: 1 year: 2001 end-page: 48 ident: b28 article-title: A Road Map for Digital Forensics Research-Report from the First Digital Forensics Research Workshop (DFRWS)(Technical Report DTR-T001-01 Final) – volume: 2 start-page: 41 year: 2018 end-page: 50 ident: b14 article-title: A deep learning approach to network intrusion detection publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – volume: 24 year: 2015 ident: b16 article-title: The applications of deep learning on traffic identification publication-title: BlackHat USA – year: 2019 ident: b25 article-title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset publication-title: Future Gener. Comput. Syst. – start-page: 2372 year: 2018 end-page: 2377 ident: b30 article-title: Biff: A blockchain-based IoT forensics framework with identity privacy publication-title: TENCON 2018-2018 IEEE Region 10 Conference – volume: 134 start-page: 458 year: 2018 end-page: 463 ident: b43 article-title: Deep learning with dense random neural network for detecting attacks against IoT-connected home environments publication-title: Procedia Comput. Sci. – year: 2019 ident: b50 article-title: Implementation of deep packet inspection in smart grids and industrial Internet of Things: Challenges and opportunities publication-title: J. Netw. Comput. Appl. – volume: 50 year: 2012 ident: b10 article-title: Digital forensics publication-title: Int. J. Comput. Appl. – volume: 2016 start-page: 5 year: 2016 end-page: 8 ident: b23 article-title: Digital forensics: the missing piece of the internet of things promise publication-title: Comput. Fraud Secur. – start-page: 1 year: 2015 end-page: 6 ident: b26 article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-nb15 network data set) publication-title: 2015 Military Communications and Information Systems Conference (MilCIS) – start-page: 137 year: 2018 end-page: 153 ident: b49 article-title: Botshark: A deep learning approach for botnet traffic detection publication-title: Cyber Threat Intelligence – start-page: 639 year: 2017 end-page: 642 ident: b17 article-title: Intrusion detection using deep belief network and probabilistic neural network publication-title: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1 – year: 2018 ident: b46 article-title: D2PI: Identifying malware through deep packet inspection with deep learning – year: 2017 ident: b67 article-title: Particle Swarm Optimization for Single Objective Continuous Space Problems: a Review – start-page: 1 year: 2017 end-page: 8 ident: b42 article-title: Deepdefense: identifying DDoS attack via deep learning publication-title: 2017 IEEE International Conference on Smart Computing (SMARTCOMP) – start-page: 1951 year: 1999 end-page: 1957 ident: b59 article-title: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization publication-title: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3 – start-page: 1 year: 2016 end-page: 47 ident: b57 article-title: Particle swarm methods publication-title: Handbook of Heuristics – start-page: 3 year: 2014 ident: b74 article-title: Hyperparameter tuning in python using optunity publication-title: Proceedings of the International Workshop on Technical Computing for Machine Learning and Mathematical Engineering, vol. 1 – volume: 32 start-page: 1881 year: 2009 end-page: 1892 ident: b35 article-title: Network forensics based on fuzzy logic and expert system publication-title: Comput. Commun. – year: 2018 ident: b21 article-title: Combination of hyperband and Bayesian optimization for hyperparameter optimization in deep learning – start-page: 1 year: 2016 end-page: 10 ident: b68 article-title: Particle swarm optimization publication-title: Fractional Order Darwinian Particle Swarm Optimization: Applications and Evaluation of an Evolutionary Algorithm – start-page: 210 year: 2017 end-page: 214 ident: b44 article-title: An anomaly-based network intrusion detection system using deep learning publication-title: 2017 International Conference on System Science and Engineering (ICSSE) – reference: M.M. Hossain, R. Hasan, S. Zawoad, Probe-IoT: A public digital ledger based forensic investigation framework for IoT, in: INFOCOM Workshops, 2018, pp. 1–2. – volume: 40 start-page: 307 year: 2014 end-page: 324 ident: b80 article-title: Network attacks: Taxonomy, tools and systems publication-title: J. Netw. Comput. Appl. – volume: 7 start-page: 61764 year: 2019 end-page: 61785 ident: b2 article-title: Forensics and deep learning mechanisms for botnets in internet of things: A survey of challenges and solutions publication-title: IEEE Access – volume: 18 start-page: 817 year: 2018 ident: b3 article-title: Cyber and physical security vulnerability assessment for IoT-based smart homes publication-title: Sensors – volume: 15 start-page: 12 year: 2017 end-page: 17 ident: b32 article-title: The future of digital forensics: Challenges and the road ahead publication-title: IEEE Secur. Privacy – volume: 15 start-page: 2046 year: 2013 end-page: 2069 ident: b82 article-title: A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks publication-title: IEEE Commun. Surv. Tutor. – start-page: 214 year: 2017 end-page: 221 ident: b72 article-title: Formal specification, verification and evaluation of the MQTT protocol in the internet of things publication-title: 2017 International Conference on Mathematics and Information Technology (ICMIT) – start-page: 1 year: 2016 ident: 10.1016/j.future.2020.03.042_b57 article-title: Particle swarm methods – start-page: 655 year: 2014 ident: 10.1016/j.future.2020.03.042_b38 article-title: An approach to detect network attacks applied for network forensics – volume: 10 issue: 5 year: 2015 ident: 10.1016/j.future.2020.03.042_b66 article-title: A comprehensive review of swarm optimization algorithms publication-title: PLoS One – volume: 40 start-page: 307 year: 2014 ident: 10.1016/j.future.2020.03.042_b80 article-title: Network attacks: Taxonomy, tools and systems publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2013.08.001 – start-page: 639 year: 2017 ident: 10.1016/j.future.2020.03.042_b17 article-title: Intrusion detection using deep belief network and probabilistic neural network – year: 1996 ident: 10.1016/j.future.2020.03.042_b58 – year: 2019 ident: 10.1016/j.future.2020.03.042_b4 – start-page: 94 year: 2001 ident: 10.1016/j.future.2020.03.042_b55 article-title: Tracking and optimizing dynamic systems with particle swarms – volume: 24 year: 2015 ident: 10.1016/j.future.2020.03.042_b16 article-title: The applications of deep learning on traffic identification publication-title: BlackHat USA – start-page: 3389 year: 2018 ident: 10.1016/j.future.2020.03.042_b20 article-title: Learning to optimize tensor programs – year: 2019 ident: 10.1016/j.future.2020.03.042_b78 – start-page: 56 year: 2017 ident: 10.1016/j.future.2020.03.042_b7 article-title: Forensic state acquisition from Internet of Things (FSAIoT): A general framework and practical approach for IoT forensics through IoT device state acquisition – ident: 10.1016/j.future.2020.03.042_b12 doi: 10.1109/INFCOMW.2018.8406875 – volume: 60 start-page: 1467 issue: 6 year: 2015 ident: 10.1016/j.future.2020.03.042_b31 article-title: A comprehensive and harmonized digital forensic investigation process model publication-title: J. Forensic Sci. doi: 10.1111/1556-4029.12823 – volume: 7 start-page: 61764 year: 2019 ident: 10.1016/j.future.2020.03.042_b2 article-title: Forensics and deep learning mechanisms for botnets in internet of things: A survey of challenges and solutions publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916717 – volume: 78 start-page: 544 year: 2018 ident: 10.1016/j.future.2020.03.042_b9 article-title: Internet of things security and forensics: Challenges and opportunities publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.07.060 – start-page: 3 year: 2014 ident: 10.1016/j.future.2020.03.042_b74 article-title: Hyperparameter tuning in python using optunity – start-page: 0305 year: 2019 ident: 10.1016/j.future.2020.03.042_b48 article-title: AD-IoT: anomaly detection of IoT cyberattacks in smart city using machine learning – start-page: 004345 year: 2015 ident: 10.1016/j.future.2020.03.042_b65 article-title: A fuzzy logic controller tuned with PSO for delta robot trajectory control – start-page: 685 year: 2017 ident: 10.1016/j.future.2020.03.042_b8 article-title: Internet of Things (IoT) Communication protocols – ident: 10.1016/j.future.2020.03.042_b51 doi: 10.1109/ICNN.1995.488968 – year: 2018 ident: 10.1016/j.future.2020.03.042_b34 – start-page: 137 year: 2018 ident: 10.1016/j.future.2020.03.042_b49 article-title: Botshark: A deep learning approach for botnet traffic detection – start-page: 1 year: 2015 ident: 10.1016/j.future.2020.03.042_b26 article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-nb15 network data set) – volume: 26 start-page: S118 year: 2018 ident: 10.1016/j.future.2020.03.042_b47 article-title: Deep learning at the shallow end: Malware classification for non-domain experts publication-title: Digit. Invest. doi: 10.1016/j.diin.2018.04.024 – year: 2018 ident: 10.1016/j.future.2020.03.042_b46 – year: 2005 ident: 10.1016/j.future.2020.03.042_b69 – start-page: 724 year: 2016 ident: 10.1016/j.future.2020.03.042_b33 article-title: A survey on MITM and its countermeasures in the TLS handshake protocol – volume: 149 start-page: 153 year: 2015 ident: 10.1016/j.future.2020.03.042_b53 article-title: Particle swarm optimization (PSO). A tutorial publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.08.020 – volume: 8 start-page: 225 issue: 3 year: 2004 ident: 10.1016/j.future.2020.03.042_b63 article-title: A cooperative approach to particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826069 – start-page: 30 year: 2017 ident: 10.1016/j.future.2020.03.042_b84 article-title: Towards developing network forensic mechanism for botnet activities in the IoT based on machine learning techniques – volume: 22 start-page: 387 issue: 2 year: 2018 ident: 10.1016/j.future.2020.03.042_b52 article-title: Particle swarm optimization algorithm: an overview publication-title: Soft Comput. doi: 10.1007/s00500-016-2474-6 – start-page: 1 year: 2016 ident: 10.1016/j.future.2020.03.042_b68 article-title: Particle swarm optimization – start-page: 210 year: 2017 ident: 10.1016/j.future.2020.03.042_b44 article-title: An anomaly-based network intrusion detection system using deep learning – year: 2019 ident: 10.1016/j.future.2020.03.042_b50 article-title: Implementation of deep packet inspection in smart grids and industrial Internet of Things: Challenges and opportunities publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2019.02.022 – volume: 4 issue: 11 year: 2018 ident: 10.1016/j.future.2020.03.042_b75 article-title: State-of-the-art in artificial neural network applications: A survey publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00938 – volume: 20 start-page: 40 issue: 3 year: 2018 ident: 10.1016/j.future.2020.03.042_b24 article-title: Internet of things forensics: The need, process models, and open issues publication-title: IT Prof. doi: 10.1109/MITP.2018.032501747 – volume: 2016 start-page: 5 issue: 6 year: 2016 ident: 10.1016/j.future.2020.03.042_b23 article-title: Digital forensics: the missing piece of the internet of things promise publication-title: Comput. Fraud Secur. doi: 10.1016/S1361-3723(15)30045-2 – year: 2019 ident: 10.1016/j.future.2020.03.042_b1 article-title: 60+ IoT statistics and facts publication-title: Comparitech – start-page: 33 year: 2018 ident: 10.1016/j.future.2020.03.042_b11 article-title: FIF-IoT: A forensic investigation framework for IoT using a public digital ledger – volume: 56 start-page: 50 issue: 10 year: 2018 ident: 10.1016/j.future.2020.03.042_b13 article-title: Block4forensic: An integrated lightweight blockchain framework for forensics applications of connected vehicles publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2018.1800137 – start-page: 84 year: 2000 ident: 10.1016/j.future.2020.03.042_b60 article-title: Comparing inertia weights and constriction factors in particle swarm optimization – volume: 9 start-page: 177 issue: 11 year: 2018 ident: 10.1016/j.future.2020.03.042_b37 article-title: DDoS classification using neural network and Naïve Bayes methods for network forensics publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 32 start-page: 1881 issue: 17 year: 2009 ident: 10.1016/j.future.2020.03.042_b35 article-title: Network forensics based on fuzzy logic and expert system publication-title: Comput. Commun. doi: 10.1016/j.comcom.2009.07.013 – start-page: 195 year: 2016 ident: 10.1016/j.future.2020.03.042_b39 article-title: Toward an online anomaly intrusion detection system based on deep learning – year: 2019 ident: 10.1016/j.future.2020.03.042_b5 – volume: 85 start-page: 88 year: 2018 ident: 10.1016/j.future.2020.03.042_b77 article-title: A deep recurrent neural network based approach for Internet of Things malware threat hunting publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.03.007 – year: 2018 ident: 10.1016/j.future.2020.03.042_b21 – start-page: 1 year: 2015 ident: 10.1016/j.future.2020.03.042_b27 article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-nb15 network data set) – start-page: 1951 year: 1999 ident: 10.1016/j.future.2020.03.042_b59 article-title: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.future.2020.03.042_b70 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – start-page: 19 year: 2018 ident: 10.1016/j.future.2020.03.042_b22 article-title: Hyperpower: Power-and memory-constrained hyper-parameter optimization for neural networks – volume: 103 start-page: 18 year: 2017 ident: 10.1016/j.future.2020.03.042_b81 article-title: Detection of DDoS attacks and flash events using information theory metrics–An empirical investigation publication-title: Comput. Commun. doi: 10.1016/j.comcom.2017.02.003 – year: 2019 ident: 10.1016/j.future.2020.03.042_b25 article-title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.05.041 – start-page: 69 year: 1998 ident: 10.1016/j.future.2020.03.042_b54 article-title: A modified particle swarm optimizer – volume: 1000 start-page: 012046 issue: 1 year: 2018 ident: 10.1016/j.future.2020.03.042_b15 article-title: Survey of analysis of crime detection techniques using data mining and machine learning publication-title: J. Phys.: Conf. Ser. – volume: 4 start-page: 88 issue: 1 year: 2018 ident: 10.1016/j.future.2020.03.042_b40 article-title: Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning publication-title: IEEE Trans. Sustain. Comput. doi: 10.1109/TSUSC.2018.2809665 – year: 2017 ident: 10.1016/j.future.2020.03.042_b67 – start-page: 701 year: 2019 ident: 10.1016/j.future.2020.03.042_b29 article-title: An analysis of digital forensics in cyber security – year: 2018 ident: 10.1016/j.future.2020.03.042_b45 article-title: Botnet detection based on network flow summary and deep learning publication-title: Int. J. Netw. Manag. doi: 10.1002/nem.2039 – volume: 5 start-page: 71 year: 2014 ident: 10.1016/j.future.2020.03.042_b83 article-title: A survey on authentication attacks and countermeasures in a distributed environment publication-title: Indian J. Comput. Sci. Eng. IJCSE – start-page: 1 year: 2001 ident: 10.1016/j.future.2020.03.042_b28 – start-page: 214 year: 2017 ident: 10.1016/j.future.2020.03.042_b72 article-title: Formal specification, verification and evaluation of the MQTT protocol in the internet of things – volume: 4 start-page: 161 issue: 3 year: 2018 ident: 10.1016/j.future.2020.03.042_b76 article-title: Machine learning for Internet of Things data analysis: A survey publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2017.10.002 – start-page: 195 year: 2017 ident: 10.1016/j.future.2020.03.042_b6 article-title: Iot goes nuclear: Creating a ZigBee chain reaction – ident: 10.1016/j.future.2020.03.042_b18 – volume: 2 start-page: 41 issue: 1 year: 2018 ident: 10.1016/j.future.2020.03.042_b14 article-title: A deep learning approach to network intrusion detection publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2017.2772792 – start-page: 2372 year: 2018 ident: 10.1016/j.future.2020.03.042_b30 article-title: Biff: A blockchain-based IoT forensics framework with identity privacy – volume: 5 start-page: 21954 year: 2017 ident: 10.1016/j.future.2020.03.042_b79 article-title: A deep learning approach for intrusion detection using recurrent neural networks publication-title: Ieee Access doi: 10.1109/ACCESS.2017.2762418 – start-page: 36 year: 2018 ident: 10.1016/j.future.2020.03.042_b19 article-title: Stealing hyperparameters in machine learning – start-page: 1 year: 2016 ident: 10.1016/j.future.2020.03.042_b73 article-title: Exploring container virtualization in IoT clouds – volume: 134 start-page: 458 year: 2018 ident: 10.1016/j.future.2020.03.042_b43 article-title: Deep learning with dense random neural network for detecting attacks against IoT-connected home environments publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.07.183 – volume: 8 start-page: 204 issue: 3 year: 2004 ident: 10.1016/j.future.2020.03.042_b62 article-title: The fully informed particle swarm: simpler, maybe better publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826074 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.future.2020.03.042_b41 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 8778 year: 2018 ident: 10.1016/j.future.2020.03.042_b71 article-title: Generalized cross entropy loss for training deep neural networks with noisy labels – volume: 50 issue: 5 year: 2012 ident: 10.1016/j.future.2020.03.042_b10 article-title: Digital forensics publication-title: Int. J. Comput. Appl. – volume: 15 start-page: 12 issue: 6 year: 2017 ident: 10.1016/j.future.2020.03.042_b32 article-title: The future of digital forensics: Challenges and the road ahead publication-title: IEEE Secur. Privacy doi: 10.1109/MSP.2017.4251117 – start-page: 4104 year: 1997 ident: 10.1016/j.future.2020.03.042_b61 article-title: A discrete binary version of the particle swarm algorithm – volume: 14 start-page: S127 year: 2015 ident: 10.1016/j.future.2020.03.042_b64 article-title: Privacy-preserving email forensics publication-title: Digit. Invest. doi: 10.1016/j.diin.2015.05.003 – volume: 18 start-page: 817 issue: 3 year: 2018 ident: 10.1016/j.future.2020.03.042_b3 article-title: Cyber and physical security vulnerability assessment for IoT-based smart homes publication-title: Sensors doi: 10.3390/s18030817 – start-page: 1 year: 2017 ident: 10.1016/j.future.2020.03.042_b42 article-title: Deepdefense: identifying DDoS attack via deep learning – volume: 25 start-page: 467 year: 2018 ident: 10.1016/j.future.2020.03.042_b36 article-title: SAIRF: A similarity approach for attack intention recognition using fuzzy min-max neural network publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.09.007 – volume: 15 start-page: 2046 issue: 4 year: 2013 ident: 10.1016/j.future.2020.03.042_b82 article-title: A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2013.031413.00127 – year: 2008 ident: 10.1016/j.future.2020.03.042_b56 article-title: Particle swarm optimization algorithms with adaptive inertia weight: A survey of the state of the art and a novel method publication-title: IEEE J. Evol. Comput.  | 
    
| SSID | ssj0001731 | 
    
| Score | 2.5942824 | 
    
| Snippet | With the prevalence of Internet of Things (IoT) systems, inconspicuous everyday household devices are connected to the Internet, providing automation and... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 91 | 
    
| SubjectTerms | Attack tracing Deep learning Network forensics Particle swarm optimization Threat detection  | 
    
| Title | A new network forensic framework based on deep learning for Internet of Things networks: A particle deep framework | 
    
| URI | https://dx.doi.org/10.1016/j.future.2020.03.042 | 
    
| Volume | 110 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5w_Rg5e67omaRpvZTimwi462K0kaSIT2cqsV_9285p0KoiChx5a3gvlJX3vS_nyPoQuhTBAriARc_ghotKUUUZZHFnNCLXKUunZFtN0MqN3czbvoFF7FgZolSH3-5zeZOvwZBCiOagWi8EDEOg5EXOAIAAT4AQ75aBicPX-SfMY8qBJ6BICWLfH5xqOl-_b4XaJSdy0OqXJz-XpS8kZ76GdgBVx7l9nH3XM8gDttjoMOHyWh2idYweO3dUwurGDocBK19i2xCsMtarEqyUujalwUIp4AkvsfwmaGq8s9iKe7UCv1zjHVQiG99yMeIRm45vH0SQKWgqRJjypI00Vk1akNNM6o8IQQqkseWmUFhlTyio1tG43yJkRWUmMTkTJqIJeLolMDSfHqLtcLc0JkKGYy5CwE6KS2jQWboKHVnKHXSRPiOwh0oaw0KHROOhdvBQto-y58IEvIPBFTAoX-B6KNl6Vb7Txhz1vZ6f4tmAKVwt-9Tz9t-cZ2oY7TzE7R916_WYuHCapVb9ZdH20ld_eT6YfckvjAA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbCGtrEdx2xVRVWgdKGVulm2Y6MilEYlrPx27NgpICGQGLIkPit6du7eRc93AFwypp24AkXE8ocIC51FKSadyCiCsJEGC6-2GCfDKb6bkVkD9OuzME5WGXy_9-mVtw532gHNdjGftx-dgJ4iNnMUxNGENbCOSUxdBnb1_qnz6NLQlNB6BDe8Pj9Xibx84Q6bJsadqtYpjn-OT19izmAHbAWyCHv-fXZBQ-d7YLtuxADDd7kPlj1o2bG9Kkk3tDzUydIVNLXyCrpglcFFDjOtCxhaRTy5kdD_E9QlXBjou3jWE71ewx4sAhrecjXjAZgObib9YRSaKUQK0biMFJZEGJbgVKkUM40QxiKjmZaKpURKI2XX2HSQEs3SDGkVs4xg6Yq5xCLRFB2CZr7I9ZFTQxHrIl0qhAU2SYfZFe4aQS15ETRGogVQDSFXodK4a3jxwmtJ2TP3wHMHPO8gboFvgWhlVfhKG3-Mp_Xq8G87httg8Kvl8b8tL8DGcPIw4qPb8f0J2HRPvN7sFDTL5Zs-swSllOfVBvwAyA3klQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+network+forensic+framework+based+on+deep+learning+for+Internet+of+Things+networks%3A+A+particle+deep+framework&rft.jtitle=Future+generation+computer+systems&rft.au=Koroniotis%2C+Nickolaos&rft.au=Moustafa%2C+Nour&rft.au=Sitnikova%2C+Elena&rft.date=2020-09-01&rft.issn=0167-739X&rft.volume=110&rft.spage=91&rft.epage=106&rft_id=info:doi/10.1016%2Fj.future.2020.03.042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2020_03_042 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |