A new network forensic framework based on deep learning for Internet of Things networks: A particle deep framework

With the prevalence of Internet of Things (IoT) systems, inconspicuous everyday household devices are connected to the Internet, providing automation and real-time services to their users. In spite of their light-weight design and low power, their vulnerabilities often give rise to cyber risks that...

Full description

Saved in:
Bibliographic Details
Published inFuture generation computer systems Vol. 110; pp. 91 - 106
Main Authors Koroniotis, Nickolaos, Moustafa, Nour, Sitnikova, Elena
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2020
Subjects
Online AccessGet full text
ISSN0167-739X
1872-7115
DOI10.1016/j.future.2020.03.042

Cover

Abstract With the prevalence of Internet of Things (IoT) systems, inconspicuous everyday household devices are connected to the Internet, providing automation and real-time services to their users. In spite of their light-weight design and low power, their vulnerabilities often give rise to cyber risks that harm their operations over network systems. One of the key challenges of securing IoT networks is tracing sources of cyber-attack events, along with obfuscating and encrypting network traffic. This study proposes a new network forensics framework , called a Particle Deep Framework (PDF), which describes the digital investigation phases for identifying and tracing attack behaviors in IoT networks. The proposed framework includes three new functions: (1) extracting network data flows and verifying their integrity to deal with encrypted networks; (2) utilizing a Particle Swarm Optimization (PSO) algorithm to automatically adapt parameters of deep learning; and (3) developing a Deep Neural Network (DNN) based on the PSO algorithm to discover and trace abnormal events from IoT network of smart homes. The proposed PDF is evaluated using the Bot-IoT and UNSW_NB15 datasets and compared with various deep learning techniques. Experimental results reveal a high performance of the proposed framework for discovering and tracing cyber-attack events compared with the other techniques. •Particle Deep Framework for Internet of things Network Forensics presented.•Deep Neural Network optimization through Particle Swarm Optimization.•Analysis of experimental results indicate high accuracy, precision and recall.
AbstractList With the prevalence of Internet of Things (IoT) systems, inconspicuous everyday household devices are connected to the Internet, providing automation and real-time services to their users. In spite of their light-weight design and low power, their vulnerabilities often give rise to cyber risks that harm their operations over network systems. One of the key challenges of securing IoT networks is tracing sources of cyber-attack events, along with obfuscating and encrypting network traffic. This study proposes a new network forensics framework , called a Particle Deep Framework (PDF), which describes the digital investigation phases for identifying and tracing attack behaviors in IoT networks. The proposed framework includes three new functions: (1) extracting network data flows and verifying their integrity to deal with encrypted networks; (2) utilizing a Particle Swarm Optimization (PSO) algorithm to automatically adapt parameters of deep learning; and (3) developing a Deep Neural Network (DNN) based on the PSO algorithm to discover and trace abnormal events from IoT network of smart homes. The proposed PDF is evaluated using the Bot-IoT and UNSW_NB15 datasets and compared with various deep learning techniques. Experimental results reveal a high performance of the proposed framework for discovering and tracing cyber-attack events compared with the other techniques. •Particle Deep Framework for Internet of things Network Forensics presented.•Deep Neural Network optimization through Particle Swarm Optimization.•Analysis of experimental results indicate high accuracy, precision and recall.
Author Koroniotis, Nickolaos
Moustafa, Nour
Sitnikova, Elena
Author_xml – sequence: 1
  givenname: Nickolaos
  surname: Koroniotis
  fullname: Koroniotis, Nickolaos
  email: n.koroniotis@student.adfa.edu.au
– sequence: 2
  givenname: Nour
  surname: Moustafa
  fullname: Moustafa, Nour
– sequence: 3
  givenname: Elena
  surname: Sitnikova
  fullname: Sitnikova, Elena
BookMark eNqFkM1KAzEURoNUsK2-gYu8wIzJJNPMdCGU4k-h4KaCu5BkbjS1zZQktfj2Th114UIXlwuX7xy43wgNfOsBoUtKckro5Gqd233aB8gLUpCcsJzw4gQNaSWKTFBaDtCwi4lMsPrpDI1iXBNCqGB0iMIMezh0kw5teMW2DeCjM9gGtYXPk1YRGtx63ADs8AZU8M4_H5N44ROEDsWtxauX7hq_RXGKZ3inQnJmAz35YzxHp1ZtIlx87TF6vL1Zze-z5cPdYj5bZoaJImWG61LZesIrYypeA2Ocq0Y0oE1dlVpbrakVBRUl1FXDwBR1U3Jd84oWagKCjRHvvSa0MQawchfcVoV3SYk89ibXsu9NHnuThMmutw6b_sKMSyq51qeg3OY_-LqHoXvszUGQ0TjwBhoXwCTZtO5vwQdUdpDp
CitedBy_id crossref_primary_10_3390_electronics10111257
crossref_primary_10_1016_j_jisa_2024_103961
crossref_primary_10_1109_JIOT_2022_3229722
crossref_primary_10_1016_j_jksuci_2024_102164
crossref_primary_10_1016_j_cose_2023_103384
crossref_primary_10_1109_JIOT_2021_3100755
crossref_primary_10_3390_electronics13091671
crossref_primary_10_1587_transcom_2022EBP3169
crossref_primary_10_3390_s21092985
crossref_primary_10_1007_s13218_022_00763_9
crossref_primary_10_1145_3691634
crossref_primary_10_1007_s00500_025_10425_1
crossref_primary_10_1016_j_fsidi_2024_301748
crossref_primary_10_28925_2663_4023_2024_26_684
crossref_primary_10_1016_j_jnca_2024_103925
crossref_primary_10_1007_s13042_024_02269_2
crossref_primary_10_1016_j_cosrev_2024_100717
crossref_primary_10_1016_j_neucom_2023_126886
crossref_primary_10_1016_j_inffus_2023_101853
crossref_primary_10_1016_j_aej_2024_10_102
crossref_primary_10_1109_TII_2021_3108464
crossref_primary_10_3390_app13137774
crossref_primary_10_1016_j_future_2020_10_001
crossref_primary_10_1016_j_future_2021_03_019
crossref_primary_10_1109_TEM_2023_3304409
crossref_primary_10_1080_1206212X_2024_2443504
crossref_primary_10_3390_healthcare10061110
crossref_primary_10_3390_electronics11071126
crossref_primary_10_3390_su14148707
crossref_primary_10_1007_s11042_023_15918_5
crossref_primary_10_1002_cpe_6881
crossref_primary_10_1007_s10489_023_05176_1
crossref_primary_10_1109_ACCESS_2021_3118642
crossref_primary_10_3390_app132011145
crossref_primary_10_1007_s00354_022_00158_2
crossref_primary_10_1016_j_physa_2022_127764
crossref_primary_10_3390_electronics13142685
crossref_primary_10_1007_s42979_022_01321_8
crossref_primary_10_3390_sym13050767
crossref_primary_10_1007_s42979_024_03613_7
crossref_primary_10_1007_s00500_023_08256_z
crossref_primary_10_1007_s10586_024_04531_2
crossref_primary_10_1080_1206212X_2021_1885150
crossref_primary_10_1016_j_fsidi_2022_301441
crossref_primary_10_32604_cmc_2022_026226
crossref_primary_10_1109_ACCESS_2025_3531216
crossref_primary_10_1007_s11042_023_16436_0
crossref_primary_10_1109_ACCESS_2024_3375368
crossref_primary_10_48084_etasr_6316
crossref_primary_10_1016_j_compeleceng_2021_107039
crossref_primary_10_2478_cait_2022_0033
crossref_primary_10_1016_j_isatra_2023_12_005
crossref_primary_10_1057_s41288_022_00266_6
crossref_primary_10_1007_s10207_023_00807_7
crossref_primary_10_1109_TII_2020_3025755
crossref_primary_10_3390_electronics11040569
crossref_primary_10_1016_j_iot_2024_101162
crossref_primary_10_3390_electronics10091104
crossref_primary_10_3390_electronics13163318
crossref_primary_10_12720_jait_15_12_1400_1412
crossref_primary_10_36548_jucct_2021_4_005
crossref_primary_10_1016_j_comcom_2023_06_020
crossref_primary_10_1016_j_heliyon_2024_e31631
crossref_primary_10_3390_electronics12051260
crossref_primary_10_1109_JIOT_2022_3167005
crossref_primary_10_1007_s10586_022_03810_0
crossref_primary_10_1155_2022_3576419
crossref_primary_10_1016_j_csa_2023_100034
crossref_primary_10_1080_08839514_2022_2137639
crossref_primary_10_3390_network3040023
crossref_primary_10_1007_s11227_022_04390_x
crossref_primary_10_1016_j_compeleceng_2024_109609
crossref_primary_10_32604_csse_2023_038085
crossref_primary_10_1007_s13042_025_02544_w
crossref_primary_10_1149_2754_2726_ac7abc
crossref_primary_10_1002_spy2_70009
crossref_primary_10_1142_S0218539323500122
crossref_primary_10_3390_electronics13142827
crossref_primary_10_1109_ACCESS_2021_3104113
crossref_primary_10_1155_2023_7107663
crossref_primary_10_3233_JHS_200641
crossref_primary_10_3390_su151813887
crossref_primary_10_3390_s22166133
crossref_primary_10_1016_j_future_2021_01_012
crossref_primary_10_1155_2021_9562579
crossref_primary_10_1109_ACCESS_2023_3292181
crossref_primary_10_4236_jcc_2020_812002
crossref_primary_10_3390_s23167215
crossref_primary_10_1109_ACCESS_2020_3036728
crossref_primary_10_3390_s23167135
crossref_primary_10_1080_00051144_2023_2288486
crossref_primary_10_1109_ACCESS_2021_3124262
crossref_primary_10_1007_s00170_022_10259_3
crossref_primary_10_1186_s40537_021_00558_z
Cites_doi 10.1016/j.jnca.2013.08.001
10.1109/INFCOMW.2018.8406875
10.1111/1556-4029.12823
10.1109/ACCESS.2019.2916717
10.1016/j.future.2017.07.060
10.1109/ICNN.1995.488968
10.1016/j.diin.2018.04.024
10.1016/j.chemolab.2015.08.020
10.1109/TEVC.2004.826069
10.1007/s00500-016-2474-6
10.1016/j.jnca.2019.02.022
10.1016/j.heliyon.2018.e00938
10.1109/MITP.2018.032501747
10.1016/S1361-3723(15)30045-2
10.1109/MCOM.2018.1800137
10.1016/j.comcom.2009.07.013
10.1016/j.future.2018.03.007
10.1016/j.neunet.2014.09.003
10.1016/j.comcom.2017.02.003
10.1016/j.future.2019.05.041
10.1109/TSUSC.2018.2809665
10.1002/nem.2039
10.1016/j.dcan.2017.10.002
10.1109/TETCI.2017.2772792
10.1109/ACCESS.2017.2762418
10.1016/j.procs.2018.07.183
10.1109/TEVC.2004.826074
10.1038/nature14539
10.1109/MSP.2017.4251117
10.1016/j.diin.2015.05.003
10.3390/s18030817
10.1016/j.jocs.2017.09.007
10.1109/SURV.2013.031413.00127
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2020.03.042
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 106
ExternalDocumentID 10_1016_j_future_2020_03_042
S0167739X19325105
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c372t-c4b5af9648cc849e3344ad7debc985bbfbb1f72175e98d3ec29d54b94812a6e73
IEDL.DBID .~1
ISSN 0167-739X
IngestDate Thu Oct 02 04:24:24 EDT 2025
Thu Apr 24 23:12:28 EDT 2025
Fri Feb 23 02:48:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Network forensics
Threat detection
Particle swarm optimization
Attack tracing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-c4b5af9648cc849e3344ad7debc985bbfbb1f72175e98d3ec29d54b94812a6e73
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_future_2020_03_042
crossref_citationtrail_10_1016_j_future_2020_03_042
elsevier_sciencedirect_doi_10_1016_j_future_2020_03_042
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cebe, Erdin, Akkaya, Aksu, Uluagac (b13) 2018; 56
Chen, Zheng, Yan, Jiang, Moreau, Ceze, Guestrin, Krishnamurthy (b20) 2018
Armknecht, Dewald (b64) 2015; 14
Lu, Liu (b65) 2015
Van, Thinh, Sach (b44) 2017
Prabakaran, Mitra (b15) 2018; 1000
Palmer (b28) 2001
Nikabadi, Ebadzadeh (b56) 2008
Moustafa, Slay (b27) 2015
Schmidhuber (b70) 2015; 61
Wang (b16) 2015; 24
A. Zela, A. Klein, S. Falkner, F. Hutter, Towards automated deep learning: Efficient joint neural architecture and hyperparameter search, in: ICML 2018 AutoML Workshop, 2018.
Houimli, Kahloul, Benaoun (b72) 2017
Robberts, Toft (b5) 2019
Alrawashdeh, Purdy (b39) 2016
Shone, Ngoc, Phai, Shi (b14) 2018; 2
Stamoulis, Cai, Juan, Marculescu (b22) 2018
Brun, Yin, Gelenbe (b43) 2018; 134
M.M. Hossain, R. Hasan, S. Zawoad, Probe-IoT: A public digital ledger based forensic investigation framework for IoT, in: INFOCOM Workshops, 2018, pp. 1–2.
Zhao, Zhang, Zheng (b17) 2017
Van den Bergh, Engelbrecht (b63) 2004; 8
Yin, Zhu, Fei, He (b79) 2017; 5
Homayoun, Ahmadzadeh, Hashemi, Dehghantanha, Khayami (b49) 2018
Corporation (b4) 2019
Ronen, Shamir, Weingarten, O’Flynn (b6) 2017
Nguyen, Tran, Ma, Sharma (b38) 2014
Eberhart, Shi (b60) 2000
Azmoodeh, Dehghantanha, Choo (b40) 2018; 4
Clerc (b59) 1999
Koroniotis, Moustafa, Sitnikova, Slay (b84) 2017
Marini, Walczak (b53) 2015; 149
Pektaş, Acarman (b45) 2018
Eberhart, Shi (b55) 2001
Parsopoulos (b57) 2016
Mahdavinejad, Rezvan, Barekatain, Adibi, Barnaghi, Sheth (b76) 2018; 4
Wang, Gong (b19) 2018
Wang, Tan, Liu (b52) 2018; 22
Eberhart, Simpson, Dobbins (b58) 1996
Kennedy, Eberhart (b61) 1997
Conti, Dehghantanha, Franke, Watson (b9) 2018; 78
Watson, Dehghantanha (b23) 2016; 2016
Liao, Tian, Wang (b35) 2009; 32
Cheng, Watson (b46) 2018
Couceiro, Ghamisi (b68) 2016
Babun, Sikder, Acar, Uluagac (b34) 2018
Hossain, Karim, Hasan (b11) 2018
Chalapathy, Chawla (b78) 2019
Jesudoss, Subramaniam (b83) 2014; 5
Al-Sarawi, Anbar, Alieyan, Alzubaidi (b8) 2017
Moustafa, Slay (b26) 2015
Cook (b1) 2019
Le, Boydell, Mac Namee, Scanlon (b47) 2018; 26
De La Torre, Rad, Choo (b50) 2019
Zargar, Joshi, Tipper (b82) 2013; 15
Ahmed, Mohammed (b36) 2018; 25
Abiodun, Jantan, Omolara, Dada, Mohamed, Arshad (b75) 2018; 4
Noriega (b69) 2005
HaddadPajouh, Dehghantanha, Khayami, Choo (b77) 2018; 85
Hoque, Bhuyan, Baishya, Bhattacharyya, Kalita (b80) 2014; 40
Behal, Kumar (b81) 2017; 103
Meffert, Clark, Baggili, Breitinger (b7) 2017
Le, Meng, Su, Yeo, Thing (b30) 2018
Ab Wahab, Nefti-Meziani, Atyabi (b66) 2015; 10
LeCun, Bengio, Hinton (b41) 2015; 521
Mendes, Kennedy, Neves (b62) 2004; 8
Caviglione, Wendzel, Mazurczyk (b32) 2017; 15
Yudhana, Riadi, Ridho (b37) 2018; 9
Kaur, Kaur (b10) 2012; 50
Koroniotis, Moustafa, Sitnikova, Turnbull (b25) 2019
Claesen, Simm, Popovic, Moor (b74) 2014
Bonyadi, Michalewicz (b67) 2017
Zhang, Sabuncu (b71) 2018
Koroniotis, Moustafa, Sitnikova (b2) 2019; 7
Chernyshev, Zeadally, Baig, Woodward (b24) 2018; 20
Han, Kwon, Hahn, Koo, Hur (b33) 2016
Valjarevic, Venter (b31) 2015; 60
Ali, Awad (b3) 2018; 18
Shi, Eberhart (b54) 1998
Yuan, Li, Li (b42) 2017
Alrashdi, Alqazzaz, Aloufi, Alharthi, Zohdy, Ming (b48) 2019
J. Kennedy, R. Eberhart, Particle swarm optimization (PSO), in: Proc. IEEE International Conference on Neural Networks, Perth, Australia, 1995, pp. 1942–1948.
Celesti, Mulfari, Fazio, Villari, Puliafito (b73) 2016
Wang, Xu, Wang (b21) 2018
Joseph, Norman (b29) 2019
Chernyshev (10.1016/j.future.2020.03.042_b24) 2018; 20
Kaur (10.1016/j.future.2020.03.042_b10) 2012; 50
Wang (10.1016/j.future.2020.03.042_b52) 2018; 22
Ronen (10.1016/j.future.2020.03.042_b6) 2017
Chalapathy (10.1016/j.future.2020.03.042_b78) 2019
Lu (10.1016/j.future.2020.03.042_b65) 2015
Meffert (10.1016/j.future.2020.03.042_b7) 2017
Eberhart (10.1016/j.future.2020.03.042_b55) 2001
Nikabadi (10.1016/j.future.2020.03.042_b56) 2008
Chen (10.1016/j.future.2020.03.042_b20) 2018
Schmidhuber (10.1016/j.future.2020.03.042_b70) 2015; 61
Moustafa (10.1016/j.future.2020.03.042_b26) 2015
Valjarevic (10.1016/j.future.2020.03.042_b31) 2015; 60
Eberhart (10.1016/j.future.2020.03.042_b58) 1996
Abiodun (10.1016/j.future.2020.03.042_b75) 2018; 4
Armknecht (10.1016/j.future.2020.03.042_b64) 2015; 14
HaddadPajouh (10.1016/j.future.2020.03.042_b77) 2018; 85
Clerc (10.1016/j.future.2020.03.042_b59) 1999
Wang (10.1016/j.future.2020.03.042_b19) 2018
Moustafa (10.1016/j.future.2020.03.042_b27) 2015
Mahdavinejad (10.1016/j.future.2020.03.042_b76) 2018; 4
Azmoodeh (10.1016/j.future.2020.03.042_b40) 2018; 4
Yin (10.1016/j.future.2020.03.042_b79) 2017; 5
Parsopoulos (10.1016/j.future.2020.03.042_b57) 2016
Conti (10.1016/j.future.2020.03.042_b9) 2018; 78
Zhang (10.1016/j.future.2020.03.042_b71) 2018
Ahmed (10.1016/j.future.2020.03.042_b36) 2018; 25
Koroniotis (10.1016/j.future.2020.03.042_b2) 2019; 7
Wang (10.1016/j.future.2020.03.042_b16) 2015; 24
Ab Wahab (10.1016/j.future.2020.03.042_b66) 2015; 10
LeCun (10.1016/j.future.2020.03.042_b41) 2015; 521
Cebe (10.1016/j.future.2020.03.042_b13) 2018; 56
Yuan (10.1016/j.future.2020.03.042_b42) 2017
De La Torre (10.1016/j.future.2020.03.042_b50) 2019
Caviglione (10.1016/j.future.2020.03.042_b32) 2017; 15
Nguyen (10.1016/j.future.2020.03.042_b38) 2014
Kennedy (10.1016/j.future.2020.03.042_b61) 1997
Wang (10.1016/j.future.2020.03.042_b21) 2018
Liao (10.1016/j.future.2020.03.042_b35) 2009; 32
Stamoulis (10.1016/j.future.2020.03.042_b22) 2018
Jesudoss (10.1016/j.future.2020.03.042_b83) 2014; 5
Han (10.1016/j.future.2020.03.042_b33) 2016
Bonyadi (10.1016/j.future.2020.03.042_b67) 2017
Yudhana (10.1016/j.future.2020.03.042_b37) 2018; 9
10.1016/j.future.2020.03.042_b51
Ali (10.1016/j.future.2020.03.042_b3) 2018; 18
Cheng (10.1016/j.future.2020.03.042_b46) 2018
Homayoun (10.1016/j.future.2020.03.042_b49) 2018
10.1016/j.future.2020.03.042_b12
Shone (10.1016/j.future.2020.03.042_b14) 2018; 2
Alrawashdeh (10.1016/j.future.2020.03.042_b39) 2016
Claesen (10.1016/j.future.2020.03.042_b74) 2014
Koroniotis (10.1016/j.future.2020.03.042_b84) 2017
Al-Sarawi (10.1016/j.future.2020.03.042_b8) 2017
Mendes (10.1016/j.future.2020.03.042_b62) 2004; 8
Cook (10.1016/j.future.2020.03.042_b1) 2019
Eberhart (10.1016/j.future.2020.03.042_b60) 2000
Zhao (10.1016/j.future.2020.03.042_b17) 2017
10.1016/j.future.2020.03.042_b18
Koroniotis (10.1016/j.future.2020.03.042_b25) 2019
Shi (10.1016/j.future.2020.03.042_b54) 1998
Van den Bergh (10.1016/j.future.2020.03.042_b63) 2004; 8
Le (10.1016/j.future.2020.03.042_b30) 2018
Pektaş (10.1016/j.future.2020.03.042_b45) 2018
Robberts (10.1016/j.future.2020.03.042_b5) 2019
Marini (10.1016/j.future.2020.03.042_b53) 2015; 149
Behal (10.1016/j.future.2020.03.042_b81) 2017; 103
Corporation (10.1016/j.future.2020.03.042_b4) 2019
Zargar (10.1016/j.future.2020.03.042_b82) 2013; 15
Prabakaran (10.1016/j.future.2020.03.042_b15) 2018; 1000
Couceiro (10.1016/j.future.2020.03.042_b68) 2016
Hossain (10.1016/j.future.2020.03.042_b11) 2018
Van (10.1016/j.future.2020.03.042_b44) 2017
Brun (10.1016/j.future.2020.03.042_b43) 2018; 134
Babun (10.1016/j.future.2020.03.042_b34) 2018
Houimli (10.1016/j.future.2020.03.042_b72) 2017
Noriega (10.1016/j.future.2020.03.042_b69) 2005
Le (10.1016/j.future.2020.03.042_b47) 2018; 26
Celesti (10.1016/j.future.2020.03.042_b73) 2016
Watson (10.1016/j.future.2020.03.042_b23) 2016; 2016
Joseph (10.1016/j.future.2020.03.042_b29) 2019
Palmer (10.1016/j.future.2020.03.042_b28) 2001
Hoque (10.1016/j.future.2020.03.042_b80) 2014; 40
Alrashdi (10.1016/j.future.2020.03.042_b48) 2019
References_xml – volume: 5
  start-page: 21954
  year: 2017
  end-page: 21961
  ident: b79
  article-title: A deep learning approach for intrusion detection using recurrent neural networks
  publication-title: Ieee Access
– start-page: 69
  year: 1998
  end-page: 73
  ident: b54
  article-title: A modified particle swarm optimizer
  publication-title: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360)
– volume: 20
  start-page: 40
  year: 2018
  end-page: 49
  ident: b24
  article-title: Internet of things forensics: The need, process models, and open issues
  publication-title: IT Prof.
– volume: 10
  year: 2015
  ident: b66
  article-title: A comprehensive review of swarm optimization algorithms
  publication-title: PLoS One
– start-page: 685
  year: 2017
  end-page: 690
  ident: b8
  article-title: Internet of Things (IoT) Communication protocols
  publication-title: 2017 8th International Conference on Information Technology (ICIT)
– start-page: 701
  year: 2019
  end-page: 708
  ident: b29
  article-title: An analysis of digital forensics in cyber security
  publication-title: First International Conference on Artificial Intelligence and Cognitive Computing
– volume: 14
  start-page: S127
  year: 2015
  end-page: S136
  ident: b64
  article-title: Privacy-preserving email forensics
  publication-title: Digit. Invest.
– volume: 25
  start-page: 467
  year: 2018
  end-page: 473
  ident: b36
  article-title: SAIRF: A similarity approach for attack intention recognition using fuzzy min-max neural network
  publication-title: J. Comput. Sci.
– start-page: 8778
  year: 2018
  end-page: 8788
  ident: b71
  article-title: Generalized cross entropy loss for training deep neural networks with noisy labels
  publication-title: Advances in Neural Information Processing Systems
– volume: 26
  start-page: S118
  year: 2018
  end-page: S126
  ident: b47
  article-title: Deep learning at the shallow end: Malware classification for non-domain experts
  publication-title: Digit. Invest.
– start-page: 195
  year: 2017
  end-page: 212
  ident: b6
  article-title: Iot goes nuclear: Creating a ZigBee chain reaction
  publication-title: 2017 IEEE Symposium on Security and Privacy (SP)
– year: 2018
  ident: b45
  article-title: Botnet detection based on network flow summary and deep learning
  publication-title: Int. J. Netw. Manag.
– volume: 4
  start-page: 88
  year: 2018
  end-page: 95
  ident: b40
  article-title: Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning
  publication-title: IEEE Trans. Sustain. Comput.
– start-page: 84
  year: 2000
  end-page: 88
  ident: b60
  article-title: Comparing inertia weights and constriction factors in particle swarm optimization
  publication-title: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), vol. 1
– volume: 8
  start-page: 204
  year: 2004
  end-page: 210
  ident: b62
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans. Evol. Comput.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b70
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
– start-page: 33
  year: 2018
  end-page: 40
  ident: b11
  article-title: FIF-IoT: A forensic investigation framework for IoT using a public digital ledger
  publication-title: 2018 IEEE International Congress on Internet of Things (ICIOT)
– volume: 85
  start-page: 88
  year: 2018
  end-page: 96
  ident: b77
  article-title: A deep recurrent neural network based approach for Internet of Things malware threat hunting
  publication-title: Future Gener. Comput. Syst.
– year: 1996
  ident: b58
  article-title: Computational Intelligence PC Tools
– volume: 4
  year: 2018
  ident: b75
  article-title: State-of-the-art in artificial neural network applications: A survey
  publication-title: Heliyon
– volume: 56
  start-page: 50
  year: 2018
  end-page: 57
  ident: b13
  article-title: Block4forensic: An integrated lightweight blockchain framework for forensics applications of connected vehicles
  publication-title: IEEE Commun. Mag.
– volume: 60
  start-page: 1467
  year: 2015
  end-page: 1483
  ident: b31
  article-title: A comprehensive and harmonized digital forensic investigation process model
  publication-title: J. Forensic Sci.
– start-page: 4104
  year: 1997
  end-page: 4108
  ident: b61
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, vol. 5
– start-page: 0305
  year: 2019
  end-page: 0310
  ident: b48
  article-title: AD-IoT: anomaly detection of IoT cyberattacks in smart city using machine learning
  publication-title: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC)
– start-page: 56
  year: 2017
  ident: b7
  article-title: Forensic state acquisition from Internet of Things (FSAIoT): A general framework and practical approach for IoT forensics through IoT device state acquisition
  publication-title: Proceedings of the 12th International Conference on Availability, Reliability and Security
– volume: 149
  start-page: 153
  year: 2015
  end-page: 165
  ident: b53
  article-title: Particle swarm optimization (PSO). A tutorial
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 8
  start-page: 225
  year: 2004
  end-page: 239
  ident: b63
  article-title: A cooperative approach to particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 3389
  year: 2018
  end-page: 3400
  ident: b20
  article-title: Learning to optimize tensor programs
  publication-title: Advances in Neural Information Processing Systems
– start-page: 724
  year: 2016
  end-page: 729
  ident: b33
  article-title: A survey on MITM and its countermeasures in the TLS handshake protocol
  publication-title: 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN)
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization (PSO), in: Proc. IEEE International Conference on Neural Networks, Perth, Australia, 1995, pp. 1942–1948.
– year: 2019
  ident: b1
  article-title: 60+ IoT statistics and facts
  publication-title: Comparitech
– start-page: 36
  year: 2018
  end-page: 52
  ident: b19
  article-title: Stealing hyperparameters in machine learning
  publication-title: 2018 IEEE Symposium on Security and Privacy (SP)
– year: 2019
  ident: b5
  article-title: Finding vulnerabilities in IoT devices: Ethical hacking of electronic locks
– start-page: 655
  year: 2014
  end-page: 660
  ident: b38
  article-title: An approach to detect network attacks applied for network forensics
  publication-title: 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)
– year: 2019
  ident: b78
  article-title: Deep learning for anomaly detection: A survey
– volume: 521
  start-page: 436
  year: 2015
  ident: b41
  article-title: Deep learning
  publication-title: Nature
– start-page: 19
  year: 2018
  end-page: 24
  ident: b22
  article-title: Hyperpower: Power-and memory-constrained hyper-parameter optimization for neural networks
  publication-title: 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE)
– start-page: 94
  year: 2001
  end-page: 100
  ident: b55
  article-title: Tracking and optimizing dynamic systems with particle swarms
  publication-title: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 1
– start-page: 195
  year: 2016
  end-page: 200
  ident: b39
  article-title: Toward an online anomaly intrusion detection system based on deep learning
  publication-title: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)
– start-page: 004345
  year: 2015
  end-page: 004351
  ident: b65
  article-title: A fuzzy logic controller tuned with PSO for delta robot trajectory control
  publication-title: IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society
– reference: A. Zela, A. Klein, S. Falkner, F. Hutter, Towards automated deep learning: Efficient joint neural architecture and hyperparameter search, in: ICML 2018 AutoML Workshop, 2018.
– year: 2019
  ident: b4
  article-title: Internet Security Threat Report, Volume 24
– start-page: 1
  year: 2016
  end-page: 6
  ident: b73
  article-title: Exploring container virtualization in IoT clouds
  publication-title: 2016 IEEE International Conference on Smart Computing (SMARTCOMP)
– volume: 5
  start-page: 71
  year: 2014
  end-page: 77
  ident: b83
  article-title: A survey on authentication attacks and countermeasures in a distributed environment
  publication-title: Indian J. Comput. Sci. Eng. IJCSE
– volume: 1000
  start-page: 012046
  year: 2018
  ident: b15
  article-title: Survey of analysis of crime detection techniques using data mining and machine learning
  publication-title: J. Phys.: Conf. Ser.
– volume: 78
  start-page: 544
  year: 2018
  end-page: 546
  ident: b9
  article-title: Internet of things security and forensics: Challenges and opportunities
  publication-title: Future Gener. Comput. Syst.
– year: 2005
  ident: b69
  article-title: Multilayer perceptron tutorial
– volume: 22
  start-page: 387
  year: 2018
  end-page: 408
  ident: b52
  article-title: Particle swarm optimization algorithm: an overview
  publication-title: Soft Comput.
– year: 2018
  ident: b34
  article-title: IoTDots: A digital forensics framework for smart environments
– volume: 4
  start-page: 161
  year: 2018
  end-page: 175
  ident: b76
  article-title: Machine learning for Internet of Things data analysis: A survey
  publication-title: Digit. Commun. Netw.
– start-page: 1
  year: 2015
  end-page: 6
  ident: b27
  article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-nb15 network data set)
  publication-title: Military Communications and Information Systems Conference (MilCIS), 2015
– year: 2008
  ident: b56
  article-title: Particle swarm optimization algorithms with adaptive inertia weight: A survey of the state of the art and a novel method
  publication-title: IEEE J. Evol. Comput.
– volume: 103
  start-page: 18
  year: 2017
  end-page: 28
  ident: b81
  article-title: Detection of DDoS attacks and flash events using information theory metrics–An empirical investigation
  publication-title: Comput. Commun.
– start-page: 30
  year: 2017
  end-page: 44
  ident: b84
  article-title: Towards developing network forensic mechanism for botnet activities in the IoT based on machine learning techniques
  publication-title: International Conference on Mobile Networks and Management
– volume: 9
  start-page: 177
  year: 2018
  end-page: 183
  ident: b37
  article-title: DDoS classification using neural network and Naïve Bayes methods for network forensics
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– start-page: 1
  year: 2001
  end-page: 48
  ident: b28
  article-title: A Road Map for Digital Forensics Research-Report from the First Digital Forensics Research Workshop (DFRWS)(Technical Report DTR-T001-01 Final)
– volume: 2
  start-page: 41
  year: 2018
  end-page: 50
  ident: b14
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 24
  year: 2015
  ident: b16
  article-title: The applications of deep learning on traffic identification
  publication-title: BlackHat USA
– year: 2019
  ident: b25
  article-title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset
  publication-title: Future Gener. Comput. Syst.
– start-page: 2372
  year: 2018
  end-page: 2377
  ident: b30
  article-title: Biff: A blockchain-based IoT forensics framework with identity privacy
  publication-title: TENCON 2018-2018 IEEE Region 10 Conference
– volume: 134
  start-page: 458
  year: 2018
  end-page: 463
  ident: b43
  article-title: Deep learning with dense random neural network for detecting attacks against IoT-connected home environments
  publication-title: Procedia Comput. Sci.
– year: 2019
  ident: b50
  article-title: Implementation of deep packet inspection in smart grids and industrial Internet of Things: Challenges and opportunities
  publication-title: J. Netw. Comput. Appl.
– volume: 50
  year: 2012
  ident: b10
  article-title: Digital forensics
  publication-title: Int. J. Comput. Appl.
– volume: 2016
  start-page: 5
  year: 2016
  end-page: 8
  ident: b23
  article-title: Digital forensics: the missing piece of the internet of things promise
  publication-title: Comput. Fraud Secur.
– start-page: 1
  year: 2015
  end-page: 6
  ident: b26
  article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-nb15 network data set)
  publication-title: 2015 Military Communications and Information Systems Conference (MilCIS)
– start-page: 137
  year: 2018
  end-page: 153
  ident: b49
  article-title: Botshark: A deep learning approach for botnet traffic detection
  publication-title: Cyber Threat Intelligence
– start-page: 639
  year: 2017
  end-page: 642
  ident: b17
  article-title: Intrusion detection using deep belief network and probabilistic neural network
  publication-title: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1
– year: 2018
  ident: b46
  article-title: D2PI: Identifying malware through deep packet inspection with deep learning
– year: 2017
  ident: b67
  article-title: Particle Swarm Optimization for Single Objective Continuous Space Problems: a Review
– start-page: 1
  year: 2017
  end-page: 8
  ident: b42
  article-title: Deepdefense: identifying DDoS attack via deep learning
  publication-title: 2017 IEEE International Conference on Smart Computing (SMARTCOMP)
– start-page: 1951
  year: 1999
  end-page: 1957
  ident: b59
  article-title: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization
  publication-title: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3
– start-page: 1
  year: 2016
  end-page: 47
  ident: b57
  article-title: Particle swarm methods
  publication-title: Handbook of Heuristics
– start-page: 3
  year: 2014
  ident: b74
  article-title: Hyperparameter tuning in python using optunity
  publication-title: Proceedings of the International Workshop on Technical Computing for Machine Learning and Mathematical Engineering, vol. 1
– volume: 32
  start-page: 1881
  year: 2009
  end-page: 1892
  ident: b35
  article-title: Network forensics based on fuzzy logic and expert system
  publication-title: Comput. Commun.
– year: 2018
  ident: b21
  article-title: Combination of hyperband and Bayesian optimization for hyperparameter optimization in deep learning
– start-page: 1
  year: 2016
  end-page: 10
  ident: b68
  article-title: Particle swarm optimization
  publication-title: Fractional Order Darwinian Particle Swarm Optimization: Applications and Evaluation of an Evolutionary Algorithm
– start-page: 210
  year: 2017
  end-page: 214
  ident: b44
  article-title: An anomaly-based network intrusion detection system using deep learning
  publication-title: 2017 International Conference on System Science and Engineering (ICSSE)
– reference: M.M. Hossain, R. Hasan, S. Zawoad, Probe-IoT: A public digital ledger based forensic investigation framework for IoT, in: INFOCOM Workshops, 2018, pp. 1–2.
– volume: 40
  start-page: 307
  year: 2014
  end-page: 324
  ident: b80
  article-title: Network attacks: Taxonomy, tools and systems
  publication-title: J. Netw. Comput. Appl.
– volume: 7
  start-page: 61764
  year: 2019
  end-page: 61785
  ident: b2
  article-title: Forensics and deep learning mechanisms for botnets in internet of things: A survey of challenges and solutions
  publication-title: IEEE Access
– volume: 18
  start-page: 817
  year: 2018
  ident: b3
  article-title: Cyber and physical security vulnerability assessment for IoT-based smart homes
  publication-title: Sensors
– volume: 15
  start-page: 12
  year: 2017
  end-page: 17
  ident: b32
  article-title: The future of digital forensics: Challenges and the road ahead
  publication-title: IEEE Secur. Privacy
– volume: 15
  start-page: 2046
  year: 2013
  end-page: 2069
  ident: b82
  article-title: A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks
  publication-title: IEEE Commun. Surv. Tutor.
– start-page: 214
  year: 2017
  end-page: 221
  ident: b72
  article-title: Formal specification, verification and evaluation of the MQTT protocol in the internet of things
  publication-title: 2017 International Conference on Mathematics and Information Technology (ICMIT)
– start-page: 1
  year: 2016
  ident: 10.1016/j.future.2020.03.042_b57
  article-title: Particle swarm methods
– start-page: 655
  year: 2014
  ident: 10.1016/j.future.2020.03.042_b38
  article-title: An approach to detect network attacks applied for network forensics
– volume: 10
  issue: 5
  year: 2015
  ident: 10.1016/j.future.2020.03.042_b66
  article-title: A comprehensive review of swarm optimization algorithms
  publication-title: PLoS One
– volume: 40
  start-page: 307
  year: 2014
  ident: 10.1016/j.future.2020.03.042_b80
  article-title: Network attacks: Taxonomy, tools and systems
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2013.08.001
– start-page: 639
  year: 2017
  ident: 10.1016/j.future.2020.03.042_b17
  article-title: Intrusion detection using deep belief network and probabilistic neural network
– year: 1996
  ident: 10.1016/j.future.2020.03.042_b58
– year: 2019
  ident: 10.1016/j.future.2020.03.042_b4
– start-page: 94
  year: 2001
  ident: 10.1016/j.future.2020.03.042_b55
  article-title: Tracking and optimizing dynamic systems with particle swarms
– volume: 24
  year: 2015
  ident: 10.1016/j.future.2020.03.042_b16
  article-title: The applications of deep learning on traffic identification
  publication-title: BlackHat USA
– start-page: 3389
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b20
  article-title: Learning to optimize tensor programs
– year: 2019
  ident: 10.1016/j.future.2020.03.042_b78
– start-page: 56
  year: 2017
  ident: 10.1016/j.future.2020.03.042_b7
  article-title: Forensic state acquisition from Internet of Things (FSAIoT): A general framework and practical approach for IoT forensics through IoT device state acquisition
– ident: 10.1016/j.future.2020.03.042_b12
  doi: 10.1109/INFCOMW.2018.8406875
– volume: 60
  start-page: 1467
  issue: 6
  year: 2015
  ident: 10.1016/j.future.2020.03.042_b31
  article-title: A comprehensive and harmonized digital forensic investigation process model
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.12823
– volume: 7
  start-page: 61764
  year: 2019
  ident: 10.1016/j.future.2020.03.042_b2
  article-title: Forensics and deep learning mechanisms for botnets in internet of things: A survey of challenges and solutions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916717
– volume: 78
  start-page: 544
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b9
  article-title: Internet of things security and forensics: Challenges and opportunities
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.07.060
– start-page: 3
  year: 2014
  ident: 10.1016/j.future.2020.03.042_b74
  article-title: Hyperparameter tuning in python using optunity
– start-page: 0305
  year: 2019
  ident: 10.1016/j.future.2020.03.042_b48
  article-title: AD-IoT: anomaly detection of IoT cyberattacks in smart city using machine learning
– start-page: 004345
  year: 2015
  ident: 10.1016/j.future.2020.03.042_b65
  article-title: A fuzzy logic controller tuned with PSO for delta robot trajectory control
– start-page: 685
  year: 2017
  ident: 10.1016/j.future.2020.03.042_b8
  article-title: Internet of Things (IoT) Communication protocols
– ident: 10.1016/j.future.2020.03.042_b51
  doi: 10.1109/ICNN.1995.488968
– year: 2018
  ident: 10.1016/j.future.2020.03.042_b34
– start-page: 137
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b49
  article-title: Botshark: A deep learning approach for botnet traffic detection
– start-page: 1
  year: 2015
  ident: 10.1016/j.future.2020.03.042_b26
  article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-nb15 network data set)
– volume: 26
  start-page: S118
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b47
  article-title: Deep learning at the shallow end: Malware classification for non-domain experts
  publication-title: Digit. Invest.
  doi: 10.1016/j.diin.2018.04.024
– year: 2018
  ident: 10.1016/j.future.2020.03.042_b46
– year: 2005
  ident: 10.1016/j.future.2020.03.042_b69
– start-page: 724
  year: 2016
  ident: 10.1016/j.future.2020.03.042_b33
  article-title: A survey on MITM and its countermeasures in the TLS handshake protocol
– volume: 149
  start-page: 153
  year: 2015
  ident: 10.1016/j.future.2020.03.042_b53
  article-title: Particle swarm optimization (PSO). A tutorial
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.08.020
– volume: 8
  start-page: 225
  issue: 3
  year: 2004
  ident: 10.1016/j.future.2020.03.042_b63
  article-title: A cooperative approach to particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826069
– start-page: 30
  year: 2017
  ident: 10.1016/j.future.2020.03.042_b84
  article-title: Towards developing network forensic mechanism for botnet activities in the IoT based on machine learning techniques
– volume: 22
  start-page: 387
  issue: 2
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b52
  article-title: Particle swarm optimization algorithm: an overview
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2474-6
– start-page: 1
  year: 2016
  ident: 10.1016/j.future.2020.03.042_b68
  article-title: Particle swarm optimization
– start-page: 210
  year: 2017
  ident: 10.1016/j.future.2020.03.042_b44
  article-title: An anomaly-based network intrusion detection system using deep learning
– year: 2019
  ident: 10.1016/j.future.2020.03.042_b50
  article-title: Implementation of deep packet inspection in smart grids and industrial Internet of Things: Challenges and opportunities
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2019.02.022
– volume: 4
  issue: 11
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b75
  article-title: State-of-the-art in artificial neural network applications: A survey
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00938
– volume: 20
  start-page: 40
  issue: 3
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b24
  article-title: Internet of things forensics: The need, process models, and open issues
  publication-title: IT Prof.
  doi: 10.1109/MITP.2018.032501747
– volume: 2016
  start-page: 5
  issue: 6
  year: 2016
  ident: 10.1016/j.future.2020.03.042_b23
  article-title: Digital forensics: the missing piece of the internet of things promise
  publication-title: Comput. Fraud Secur.
  doi: 10.1016/S1361-3723(15)30045-2
– year: 2019
  ident: 10.1016/j.future.2020.03.042_b1
  article-title: 60+ IoT statistics and facts
  publication-title: Comparitech
– start-page: 33
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b11
  article-title: FIF-IoT: A forensic investigation framework for IoT using a public digital ledger
– volume: 56
  start-page: 50
  issue: 10
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b13
  article-title: Block4forensic: An integrated lightweight blockchain framework for forensics applications of connected vehicles
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2018.1800137
– start-page: 84
  year: 2000
  ident: 10.1016/j.future.2020.03.042_b60
  article-title: Comparing inertia weights and constriction factors in particle swarm optimization
– volume: 9
  start-page: 177
  issue: 11
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b37
  article-title: DDoS classification using neural network and Naïve Bayes methods for network forensics
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 32
  start-page: 1881
  issue: 17
  year: 2009
  ident: 10.1016/j.future.2020.03.042_b35
  article-title: Network forensics based on fuzzy logic and expert system
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2009.07.013
– start-page: 195
  year: 2016
  ident: 10.1016/j.future.2020.03.042_b39
  article-title: Toward an online anomaly intrusion detection system based on deep learning
– year: 2019
  ident: 10.1016/j.future.2020.03.042_b5
– volume: 85
  start-page: 88
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b77
  article-title: A deep recurrent neural network based approach for Internet of Things malware threat hunting
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.03.007
– year: 2018
  ident: 10.1016/j.future.2020.03.042_b21
– start-page: 1
  year: 2015
  ident: 10.1016/j.future.2020.03.042_b27
  article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-nb15 network data set)
– start-page: 1951
  year: 1999
  ident: 10.1016/j.future.2020.03.042_b59
  article-title: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.future.2020.03.042_b70
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– start-page: 19
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b22
  article-title: Hyperpower: Power-and memory-constrained hyper-parameter optimization for neural networks
– volume: 103
  start-page: 18
  year: 2017
  ident: 10.1016/j.future.2020.03.042_b81
  article-title: Detection of DDoS attacks and flash events using information theory metrics–An empirical investigation
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2017.02.003
– year: 2019
  ident: 10.1016/j.future.2020.03.042_b25
  article-title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.05.041
– start-page: 69
  year: 1998
  ident: 10.1016/j.future.2020.03.042_b54
  article-title: A modified particle swarm optimizer
– volume: 1000
  start-page: 012046
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b15
  article-title: Survey of analysis of crime detection techniques using data mining and machine learning
  publication-title: J. Phys.: Conf. Ser.
– volume: 4
  start-page: 88
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b40
  article-title: Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning
  publication-title: IEEE Trans. Sustain. Comput.
  doi: 10.1109/TSUSC.2018.2809665
– year: 2017
  ident: 10.1016/j.future.2020.03.042_b67
– start-page: 701
  year: 2019
  ident: 10.1016/j.future.2020.03.042_b29
  article-title: An analysis of digital forensics in cyber security
– year: 2018
  ident: 10.1016/j.future.2020.03.042_b45
  article-title: Botnet detection based on network flow summary and deep learning
  publication-title: Int. J. Netw. Manag.
  doi: 10.1002/nem.2039
– volume: 5
  start-page: 71
  year: 2014
  ident: 10.1016/j.future.2020.03.042_b83
  article-title: A survey on authentication attacks and countermeasures in a distributed environment
  publication-title: Indian J. Comput. Sci. Eng. IJCSE
– start-page: 1
  year: 2001
  ident: 10.1016/j.future.2020.03.042_b28
– start-page: 214
  year: 2017
  ident: 10.1016/j.future.2020.03.042_b72
  article-title: Formal specification, verification and evaluation of the MQTT protocol in the internet of things
– volume: 4
  start-page: 161
  issue: 3
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b76
  article-title: Machine learning for Internet of Things data analysis: A survey
  publication-title: Digit. Commun. Netw.
  doi: 10.1016/j.dcan.2017.10.002
– start-page: 195
  year: 2017
  ident: 10.1016/j.future.2020.03.042_b6
  article-title: Iot goes nuclear: Creating a ZigBee chain reaction
– ident: 10.1016/j.future.2020.03.042_b18
– volume: 2
  start-page: 41
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b14
  article-title: A deep learning approach to network intrusion detection
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2017.2772792
– start-page: 2372
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b30
  article-title: Biff: A blockchain-based IoT forensics framework with identity privacy
– volume: 5
  start-page: 21954
  year: 2017
  ident: 10.1016/j.future.2020.03.042_b79
  article-title: A deep learning approach for intrusion detection using recurrent neural networks
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2017.2762418
– start-page: 36
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b19
  article-title: Stealing hyperparameters in machine learning
– start-page: 1
  year: 2016
  ident: 10.1016/j.future.2020.03.042_b73
  article-title: Exploring container virtualization in IoT clouds
– volume: 134
  start-page: 458
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b43
  article-title: Deep learning with dense random neural network for detecting attacks against IoT-connected home environments
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.07.183
– volume: 8
  start-page: 204
  issue: 3
  year: 2004
  ident: 10.1016/j.future.2020.03.042_b62
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826074
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.future.2020.03.042_b41
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 8778
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b71
  article-title: Generalized cross entropy loss for training deep neural networks with noisy labels
– volume: 50
  issue: 5
  year: 2012
  ident: 10.1016/j.future.2020.03.042_b10
  article-title: Digital forensics
  publication-title: Int. J. Comput. Appl.
– volume: 15
  start-page: 12
  issue: 6
  year: 2017
  ident: 10.1016/j.future.2020.03.042_b32
  article-title: The future of digital forensics: Challenges and the road ahead
  publication-title: IEEE Secur. Privacy
  doi: 10.1109/MSP.2017.4251117
– start-page: 4104
  year: 1997
  ident: 10.1016/j.future.2020.03.042_b61
  article-title: A discrete binary version of the particle swarm algorithm
– volume: 14
  start-page: S127
  year: 2015
  ident: 10.1016/j.future.2020.03.042_b64
  article-title: Privacy-preserving email forensics
  publication-title: Digit. Invest.
  doi: 10.1016/j.diin.2015.05.003
– volume: 18
  start-page: 817
  issue: 3
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b3
  article-title: Cyber and physical security vulnerability assessment for IoT-based smart homes
  publication-title: Sensors
  doi: 10.3390/s18030817
– start-page: 1
  year: 2017
  ident: 10.1016/j.future.2020.03.042_b42
  article-title: Deepdefense: identifying DDoS attack via deep learning
– volume: 25
  start-page: 467
  year: 2018
  ident: 10.1016/j.future.2020.03.042_b36
  article-title: SAIRF: A similarity approach for attack intention recognition using fuzzy min-max neural network
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.09.007
– volume: 15
  start-page: 2046
  issue: 4
  year: 2013
  ident: 10.1016/j.future.2020.03.042_b82
  article-title: A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2013.031413.00127
– year: 2008
  ident: 10.1016/j.future.2020.03.042_b56
  article-title: Particle swarm optimization algorithms with adaptive inertia weight: A survey of the state of the art and a novel method
  publication-title: IEEE J. Evol. Comput.
SSID ssj0001731
Score 2.5942824
Snippet With the prevalence of Internet of Things (IoT) systems, inconspicuous everyday household devices are connected to the Internet, providing automation and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 91
SubjectTerms Attack tracing
Deep learning
Network forensics
Particle swarm optimization
Threat detection
Title A new network forensic framework based on deep learning for Internet of Things networks: A particle deep framework
URI https://dx.doi.org/10.1016/j.future.2020.03.042
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5w_Rg5e67omaRpvZTimwi462K0kaSIT2cqsV_9285p0KoiChx5a3gvlJX3vS_nyPoQuhTBAriARc_ghotKUUUZZHFnNCLXKUunZFtN0MqN3czbvoFF7FgZolSH3-5zeZOvwZBCiOagWi8EDEOg5EXOAIAAT4AQ75aBicPX-SfMY8qBJ6BICWLfH5xqOl-_b4XaJSdy0OqXJz-XpS8kZ76GdgBVx7l9nH3XM8gDttjoMOHyWh2idYweO3dUwurGDocBK19i2xCsMtarEqyUujalwUIp4AkvsfwmaGq8s9iKe7UCv1zjHVQiG99yMeIRm45vH0SQKWgqRJjypI00Vk1akNNM6o8IQQqkseWmUFhlTyio1tG43yJkRWUmMTkTJqIJeLolMDSfHqLtcLc0JkKGYy5CwE6KS2jQWboKHVnKHXSRPiOwh0oaw0KHROOhdvBQto-y58IEvIPBFTAoX-B6KNl6Vb7Txhz1vZ6f4tmAKVwt-9Tz9t-cZ2oY7TzE7R916_WYuHCapVb9ZdH20ld_eT6YfckvjAA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PbCGtrEdx2xVRVWgdKGVulm2Y6MilEYlrPx27NgpICGQGLIkPit6du7eRc93AFwypp24AkXE8ocIC51FKSadyCiCsJEGC6-2GCfDKb6bkVkD9OuzME5WGXy_9-mVtw532gHNdjGftx-dgJ4iNnMUxNGENbCOSUxdBnb1_qnz6NLQlNB6BDe8Pj9Xibx84Q6bJsadqtYpjn-OT19izmAHbAWyCHv-fXZBQ-d7YLtuxADDd7kPlj1o2bG9Kkk3tDzUydIVNLXyCrpglcFFDjOtCxhaRTy5kdD_E9QlXBjou3jWE71ewx4sAhrecjXjAZgObib9YRSaKUQK0biMFJZEGJbgVKkUM40QxiKjmZaKpURKI2XX2HSQEs3SDGkVs4xg6Yq5xCLRFB2CZr7I9ZFTQxHrIl0qhAU2SYfZFe4aQS15ETRGogVQDSFXodK4a3jxwmtJ2TP3wHMHPO8gboFvgWhlVfhKG3-Mp_Xq8G87httg8Kvl8b8tL8DGcPIw4qPb8f0J2HRPvN7sFDTL5Zs-swSllOfVBvwAyA3klQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+network+forensic+framework+based+on+deep+learning+for+Internet+of+Things+networks%3A+A+particle+deep+framework&rft.jtitle=Future+generation+computer+systems&rft.au=Koroniotis%2C+Nickolaos&rft.au=Moustafa%2C+Nour&rft.au=Sitnikova%2C+Elena&rft.date=2020-09-01&rft.issn=0167-739X&rft.volume=110&rft.spage=91&rft.epage=106&rft_id=info:doi/10.1016%2Fj.future.2020.03.042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2020_03_042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon