Can we share data? – Kinematic consistency during walking in three different treadmill-based laboratories

Three-dimensional gait analysis is crucial for diagnosis and treatment planning. Treadmill-based laboratories efficiently collect 3D gait data over many consecutive steps. Pooling/sharing data across treadmill-based laboratories could enhance clinical utility. However, the inter-laboratory consisten...

Full description

Saved in:
Bibliographic Details
Published inGait & posture Vol. 122; pp. 99 - 105
Main Authors Van Bladel, Anke, Senden, Rachel, Meijer, Kenneth, Meyns, Pieter, Bar-On, Lynn
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.10.2025
Subjects
Online AccessGet full text
ISSN0966-6362
1879-2219
1879-2219
DOI10.1016/j.gaitpost.2025.07.308

Cover

Abstract Three-dimensional gait analysis is crucial for diagnosis and treatment planning. Treadmill-based laboratories efficiently collect 3D gait data over many consecutive steps. Pooling/sharing data across treadmill-based laboratories could enhance clinical utility. However, the inter-laboratory consistency of gait kinematics from treadmill-based systems is unknown. How consistent are lower-limb kinematics of healthy subjects measured in three different treadmill-based gait laboratories? Eighteen volunteers (14 women; 27 ± 9 years; BMI 24 ± 3 kg/m2) walked in three treadmill-based laboratories (Motek Medical, The Netherlands) within one week. Per laboratory, participants completed 3-minute walking trials (0.9, 1.1, 1.3 m/s) wearing a non-weight-bearing harness and identical clothes and shoes. The same marker-set (Human-Body Model 2) and virtual reality configurations were used. Statistical Parametric Mapping was used to compare time-normalized kinematic curves of the lower-limb, averaged over 40 steps, between laboratories. Root mean square differences (RMSD) calculated over periods of the gait cycle with statistically significant differences were considered clinically meaningful when > 5°. Kinematics curves from all laboratories followed similar patterns. Only 17 % of all curves displayed clinically relevant differences. These differences included more knee flexion in laboratory 2 compared to the others (RMSD 6.0–8.6°) and less hip flexion in laboratory 3 compared to laboratory 2 (all speeds) and to laboratory 1 (1.3 m/s; RMSD 5.4–6.4°). Reported differences are likely due to varying operator protocols rather than to the measurement system. The findings indicate that inter-laboratory data sharing using such infrastructure is possible but training to align protocols is essential. •Overall kinematic curves measured in different treadmill-based labs are consistent.•Clinically relevant differences (>5°) were mainly present in the sagittal plane.•Differences are likely due to varying operator protocols rather than to the device.•Standardized training to align maker-placement protocols is essential.
AbstractList Three-dimensional gait analysis is crucial for diagnosis and treatment planning. Treadmill-based laboratories efficiently collect 3D gait data over many consecutive steps. Pooling/sharing data across treadmill-based laboratories could enhance clinical utility. However, the inter-laboratory consistency of gait kinematics from treadmill-based systems is unknown. How consistent are lower-limb kinematics of healthy subjects measured in three different treadmill-based gait laboratories? Eighteen volunteers (14 women; 27 ± 9 years; BMI 24 ± 3 kg/m ) walked in three treadmill-based laboratories (Motek Medical, The Netherlands) within one week. Per laboratory, participants completed 3-minute walking trials (0.9, 1.1, 1.3 m/s) wearing a non-weight-bearing harness and identical clothes and shoes. The same marker-set (Human-Body Model 2) and virtual reality configurations were used. Statistical Parametric Mapping was used to compare time-normalized kinematic curves of the lower-limb, averaged over 40 steps, between laboratories. Root mean square differences (RMSD) calculated over periods of the gait cycle with statistically significant differences were considered clinically meaningful when > 5°. Kinematics curves from all laboratories followed similar patterns. Only 17 % of all curves displayed clinically relevant differences. These differences included more knee flexion in laboratory 2 compared to the others (RMSD 6.0-8.6°) and less hip flexion in laboratory 3 compared to laboratory 2 (all speeds) and to laboratory 1 (1.3 m/s; RMSD 5.4-6.4°). Reported differences are likely due to varying operator protocols rather than to the measurement system. The findings indicate that inter-laboratory data sharing using such infrastructure is possible but training to align protocols is essential.
Three-dimensional gait analysis is crucial for diagnosis and treatment planning. Treadmill-based laboratories efficiently collect 3D gait data over many consecutive steps. Pooling/sharing data across treadmill-based laboratories could enhance clinical utility. However, the inter-laboratory consistency of gait kinematics from treadmill-based systems is unknown. How consistent are lower-limb kinematics of healthy subjects measured in three different treadmill-based gait laboratories? Eighteen volunteers (14 women; 27 ± 9 years; BMI 24 ± 3 kg/m2) walked in three treadmill-based laboratories (Motek Medical, The Netherlands) within one week. Per laboratory, participants completed 3-minute walking trials (0.9, 1.1, 1.3 m/s) wearing a non-weight-bearing harness and identical clothes and shoes. The same marker-set (Human-Body Model 2) and virtual reality configurations were used. Statistical Parametric Mapping was used to compare time-normalized kinematic curves of the lower-limb, averaged over 40 steps, between laboratories. Root mean square differences (RMSD) calculated over periods of the gait cycle with statistically significant differences were considered clinically meaningful when > 5°. Kinematics curves from all laboratories followed similar patterns. Only 17 % of all curves displayed clinically relevant differences. These differences included more knee flexion in laboratory 2 compared to the others (RMSD 6.0–8.6°) and less hip flexion in laboratory 3 compared to laboratory 2 (all speeds) and to laboratory 1 (1.3 m/s; RMSD 5.4–6.4°). Reported differences are likely due to varying operator protocols rather than to the measurement system. The findings indicate that inter-laboratory data sharing using such infrastructure is possible but training to align protocols is essential. •Overall kinematic curves measured in different treadmill-based labs are consistent.•Clinically relevant differences (>5°) were mainly present in the sagittal plane.•Differences are likely due to varying operator protocols rather than to the device.•Standardized training to align maker-placement protocols is essential.
Three-dimensional gait analysis is crucial for diagnosis and treatment planning. Treadmill-based laboratories efficiently collect 3D gait data over many consecutive steps. Pooling/sharing data across treadmill-based laboratories could enhance clinical utility. However, the inter-laboratory consistency of gait kinematics from treadmill-based systems is unknown.BACKGROUNDThree-dimensional gait analysis is crucial for diagnosis and treatment planning. Treadmill-based laboratories efficiently collect 3D gait data over many consecutive steps. Pooling/sharing data across treadmill-based laboratories could enhance clinical utility. However, the inter-laboratory consistency of gait kinematics from treadmill-based systems is unknown.How consistent are lower-limb kinematics of healthy subjects measured in three different treadmill-based gait laboratories?RESEARCH QUESTIONHow consistent are lower-limb kinematics of healthy subjects measured in three different treadmill-based gait laboratories?Eighteen volunteers (14 women; 27 ± 9 years; BMI 24 ± 3 kg/m2) walked in three treadmill-based laboratories (Motek Medical, The Netherlands) within one week. Per laboratory, participants completed 3-minute walking trials (0.9, 1.1, 1.3 m/s) wearing a non-weight-bearing harness and identical clothes and shoes. The same marker-set (Human-Body Model 2) and virtual reality configurations were used. Statistical Parametric Mapping was used to compare time-normalized kinematic curves of the lower-limb, averaged over 40 steps, between laboratories. Root mean square differences (RMSD) calculated over periods of the gait cycle with statistically significant differences were considered clinically meaningful when > 5°.METHODSEighteen volunteers (14 women; 27 ± 9 years; BMI 24 ± 3 kg/m2) walked in three treadmill-based laboratories (Motek Medical, The Netherlands) within one week. Per laboratory, participants completed 3-minute walking trials (0.9, 1.1, 1.3 m/s) wearing a non-weight-bearing harness and identical clothes and shoes. The same marker-set (Human-Body Model 2) and virtual reality configurations were used. Statistical Parametric Mapping was used to compare time-normalized kinematic curves of the lower-limb, averaged over 40 steps, between laboratories. Root mean square differences (RMSD) calculated over periods of the gait cycle with statistically significant differences were considered clinically meaningful when > 5°.Kinematics curves from all laboratories followed similar patterns. Only 17 % of all curves displayed clinically relevant differences. These differences included more knee flexion in laboratory 2 compared to the others (RMSD 6.0-8.6°) and less hip flexion in laboratory 3 compared to laboratory 2 (all speeds) and to laboratory 1 (1.3 m/s; RMSD 5.4-6.4°). Reported differences are likely due to varying operator protocols rather than to the measurement system. The findings indicate that inter-laboratory data sharing using such infrastructure is possible but training to align protocols is essential.RESULTS AND SIGNIFICANCEKinematics curves from all laboratories followed similar patterns. Only 17 % of all curves displayed clinically relevant differences. These differences included more knee flexion in laboratory 2 compared to the others (RMSD 6.0-8.6°) and less hip flexion in laboratory 3 compared to laboratory 2 (all speeds) and to laboratory 1 (1.3 m/s; RMSD 5.4-6.4°). Reported differences are likely due to varying operator protocols rather than to the measurement system. The findings indicate that inter-laboratory data sharing using such infrastructure is possible but training to align protocols is essential.
Author Van Bladel, Anke
Senden, Rachel
Meijer, Kenneth
Meyns, Pieter
Bar-On, Lynn
Author_xml – sequence: 1
  givenname: Anke
  orcidid: 0000-0003-4478-2836
  surname: Van Bladel
  fullname: Van Bladel, Anke
  email: Anke.VanBladel@ugent.be
  organization: Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
– sequence: 2
  givenname: Rachel
  surname: Senden
  fullname: Senden, Rachel
  organization: Department of Physical Therapy, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
– sequence: 3
  givenname: Kenneth
  surname: Meijer
  fullname: Meijer, Kenneth
  organization: Department of Nutrition and Movement Sciences, NUTRIM Institute for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
– sequence: 4
  givenname: Pieter
  surname: Meyns
  fullname: Meyns, Pieter
  organization: Rehabilitation Research group (REVAL), Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
– sequence: 5
  givenname: Lynn
  surname: Bar-On
  fullname: Bar-On, Lynn
  organization: Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40633263$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1uFDEQhS0URCaBK0ResunGXe643Rt-NOJPRGIDa8ttlxNPuu3B9hDNjjtwQ06CR5OwYAObKqn0vSfVe2fkJMSAhFx0rO1YJ15s2mvtyzbm0gKDy5YNLWfyEVl1chgbgG48ISs2CtEILuCUnOW8YYz1XMITctozwTkIviK3ax3oHdJ8oxNSq4t-RX_9-Ek_-YCLLt5QE0P2uWAwe2p3yYdreqfn28P2gZabhFXnncOEodCSUNvFz3Mz6YyWznqKSZeYPOan5LHTc8Zn9_ucfH339sv6Q3P1-f3H9ZurxvABSp0aAMzomDRoxGjNNKJzFo1zlzD0_dQ7wfTEDzdw3I4M5YCDHSQ4MQl-Tp4ffbcpftthLmrx2eA864BxlxUHkBJ6CVDRi3t0Ny1o1Tb5Rae9egioAuIImBRzTuj-IB1ThybURj00oQ5NKDao2kQVvj4KsX763WNS2fgaIlqf0BRlo_-3xcu_LMzsgzc1fdz_j8FvK6Gt0w
Cites_doi 10.1016/j.gaitpost.2003.09.011
10.1016/j.gaitpost.2007.07.007
10.1016/j.humov.2020.102585
10.1016/j.gaitpost.2020.05.005
10.1002/jor.1100070611
10.1016/0966-6362(96)80573-X
10.5435/JAAOS-D-21-00785
10.1016/j.gaitpost.2008.10.060
10.1016/j.gaitpost.2017.08.003
10.1007/s11517-013-1076-z
10.1016/j.gaitpost.2024.04.014
10.1109/RBME.2018.2830805
10.1016/j.gaitpost.2014.07.003
10.1186/s12984-015-0002-z
10.1016/S0966-6362(97)01122-3
10.1016/j.gaitpost.2008.09.003
10.1016/j.gaitpost.2006.04.011
10.1371/journal.pone.0142083
10.1038/s41598-019-41721-0
10.1016/j.gaitpost.2014.06.004
10.1016/j.jbiomech.2020.110182
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright © 2025 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2025 Elsevier B.V.
– notice: Copyright © 2025 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.gaitpost.2025.07.308
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1879-2219
EndPage 105
ExternalDocumentID 40633263
10_1016_j_gaitpost_2025_07_308
S0966636225005648
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29H
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UPT
UV1
WH7
WUQ
YRY
Z5R
~G-
~HD
AAYXX
CITATION
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c372t-c3a222c9f08cec69dcb9effdecff52744b4f60ab3ffde2f3d90e87e7d782f6b63
IEDL.DBID .~1
ISSN 0966-6362
1879-2219
IngestDate Thu Oct 02 22:25:08 EDT 2025
Wed Sep 17 02:07:45 EDT 2025
Wed Oct 01 05:25:34 EDT 2025
Sat Oct 11 16:53:15 EDT 2025
Sat Oct 11 07:35:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Gait - kinematics - treadmill - data pooling - inter-laboratory - consistency
Language English
License Copyright © 2025 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-c3a222c9f08cec69dcb9effdecff52744b4f60ab3ffde2f3d90e87e7d782f6b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4478-2836
PMID 40633263
PQID 3228824822
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_3228824822
pubmed_primary_40633263
crossref_primary_10_1016_j_gaitpost_2025_07_308
elsevier_sciencedirect_doi_10_1016_j_gaitpost_2025_07_308
elsevier_clinicalkey_doi_10_1016_j_gaitpost_2025_07_308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Gait & posture
PublicationTitleAlternate Gait Posture
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kleissen (bib23) 1997; 6
Kadaba (bib19) 1989; 7
Parvataneni (bib10) 2009
Sinclair, Hebron, Taylor (bib20) 2014; 40
Rábago, Dingwell, Wilken (bib13) 2015; 10
Pinto (bib12) 2020; 80
Schwartz, Trost, Wervey (bib18) 2004; 20
Monaghan, Delahunt, Caulfield (bib9) 2007; 25
van den Bogert (bib15) 2013; 51
Plotnik (bib8) 2015; 12
Chambers, Goode (bib22) 1996; 4
van der Krogt, Sloot, Harlaar (bib7) 2014; 40
Armand (bib3) 2024; 111
CMAS. CMAS standards. [cited 2024; 18:[Available from
Deng (bib25) 2018; 11
Flux (bib16) 2020; 70
Charlton (bib24) 2021; 115
Zeni Jr, Richards, Higginson (bib17) 2008; 27
Hecht (bib26) 2022; 30
.
Baker, Hart (bib11) 2013; 1
Gorton, 3rd, Hebert, Gannotti (bib21) 2009; 29
Meyer (bib14) 2019; 9
CMLA. Commission for Motion Laboratory Accreditation. 2023; Available from
McGinley (bib1) 2009; 29
Baker (bib2) 2016; 52
Benedetti (bib4) 2017; 58
Flux (10.1016/j.gaitpost.2025.07.308_bib16) 2020; 70
Kleissen (10.1016/j.gaitpost.2025.07.308_bib23) 1997; 6
Rábago (10.1016/j.gaitpost.2025.07.308_bib13) 2015; 10
Pinto (10.1016/j.gaitpost.2025.07.308_bib12) 2020; 80
Schwartz (10.1016/j.gaitpost.2025.07.308_bib18) 2004; 20
Charlton (10.1016/j.gaitpost.2025.07.308_bib24) 2021; 115
Hecht (10.1016/j.gaitpost.2025.07.308_bib26) 2022; 30
Sinclair (10.1016/j.gaitpost.2025.07.308_bib20) 2014; 40
Baker (10.1016/j.gaitpost.2025.07.308_bib2) 2016; 52
Parvataneni (10.1016/j.gaitpost.2025.07.308_bib10) 2009
Benedetti (10.1016/j.gaitpost.2025.07.308_bib4) 2017; 58
van den Bogert (10.1016/j.gaitpost.2025.07.308_bib15) 2013; 51
Zeni Jr (10.1016/j.gaitpost.2025.07.308_bib17) 2008; 27
Meyer (10.1016/j.gaitpost.2025.07.308_bib14) 2019; 9
10.1016/j.gaitpost.2025.07.308_bib6
10.1016/j.gaitpost.2025.07.308_bib5
Plotnik (10.1016/j.gaitpost.2025.07.308_bib8) 2015; 12
Armand (10.1016/j.gaitpost.2025.07.308_bib3) 2024; 111
Deng (10.1016/j.gaitpost.2025.07.308_bib25) 2018; 11
Baker (10.1016/j.gaitpost.2025.07.308_bib11) 2013; 1
McGinley (10.1016/j.gaitpost.2025.07.308_bib1) 2009; 29
Kadaba (10.1016/j.gaitpost.2025.07.308_bib19) 1989; 7
Monaghan (10.1016/j.gaitpost.2025.07.308_bib9) 2007; 25
van der Krogt (10.1016/j.gaitpost.2025.07.308_bib7) 2014; 40
Chambers (10.1016/j.gaitpost.2025.07.308_bib22) 1996; 4
Gorton (10.1016/j.gaitpost.2025.07.308_bib21) 2009; 29
References_xml – volume: 70
  year: 2020
  ident: bib16
  article-title: The Human Body Model versus conventional gait models for kinematic gait analysis in children with cerebral palsy
  publication-title: Hum. Mov. Sci.
– volume: 7
  start-page: 849
  year: 1989
  end-page: 860
  ident: bib19
  article-title: Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait
  publication-title: J. Orthop. Res
– volume: 51
  start-page: 1069
  year: 2013
  end-page: 1077
  ident: bib15
  article-title: A real-time system for biomechanical analysis of human movement and muscle function
  publication-title: Med Biol. Eng. Comput.
– volume: 30
  start-page: e1366
  year: 2022
  end-page: e1373
  ident: bib26
  article-title: Gait analysis in orthopaedic surgery: history, limitations, and future directions
  publication-title: J. Am. Acad. Orthop. Surg.
– volume: 20
  start-page: 196
  year: 2004
  end-page: 203
  ident: bib18
  article-title: Measurement and management of errors in quantitative gait data
  publication-title: Gait Posture
– volume: 4
  start-page: 167
  year: 1996
  ident: bib22
  article-title: Variability in gait measurements across multiple sites
  publication-title: Gait Posture
– volume: 40
  start-page: 707
  year: 2014
  end-page: 711
  ident: bib20
  article-title: The influence of tester experience on the reliability of 3D kinematic information during running
  publication-title: Gait Posture
– reference: CMLA. Commission for Motion Laboratory Accreditation. 2023; Available from:
– volume: 111
  start-page: 65
  year: 2024
  end-page: 74
  ident: bib3
  article-title: Current practices in clinical gait analysis in Europe: a comprehensive survey-based study from the European society for movement analysis in adults and children (ESMAC) standard initiative
  publication-title: Gait Posture
– volume: 52
  start-page: 560
  year: 2016
  end-page: 574
  ident: bib2
  article-title: Gait analysis: clinical facts
  publication-title: Eur. J. Phys. Rehabil. Med.
– volume: 115
  year: 2021
  ident: bib24
  article-title: Knee-specific gait biomechanics are reliable when collected in multiple laboratories by independent raters
  publication-title: J. Biomech.
– volume: 25
  start-page: 303
  year: 2007
  end-page: 315
  ident: bib9
  article-title: Increasing the number of gait trial recordings maximises intra-rater reliability of the CODA motion analysis system
  publication-title: Gait Posture
– volume: 29
  start-page: 398
  year: 2009
  end-page: 402
  ident: bib21
  article-title: Assessment of the kinematic variability among 12 motion analysis laboratories
  publication-title: Gait Posture
– volume: 11
  start-page: 289
  year: 2018
  end-page: 305
  ident: bib25
  article-title: Advances in automation technologies for lower extremity neurorehabilitation: a review and future challenges
  publication-title: IEEE Rev. Biomed. Eng.
– reference: CMAS. CMAS standards. [cited 2024; 18:[Available from:
– volume: 1
  year: 2013
  ident: bib11
  publication-title: Measuring WALKIng: a Handbook of Clinical Gait Analysis
– year: 2009
  ident: bib10
  article-title: Biomechanics and metabolic costs of overground and treadmill walking in healthy
  publication-title: Adults Stroke Subj.
– volume: 10
  year: 2015
  ident: bib13
  article-title: Reliability and minimum detectable change of temporal-spatial, kinematic, and dynamic stability measures during perturbed gait
  publication-title: PLoS One
– reference: .
– volume: 58
  start-page: 252
  year: 2017
  end-page: 260
  ident: bib4
  article-title: SIAMOC position paper on gait analysis in clinical practice: General requirements, methods and appropriateness. Results of an Italian consensus conference
  publication-title: Gait Posture
– volume: 9
  start-page: 5232
  year: 2019
  ident: bib14
  article-title: Familiarization with treadmill walking: how much is enough?
  publication-title: Sci. Rep.
– volume: 27
  start-page: 710
  year: 2008
  end-page: 714
  ident: bib17
  article-title: Two simple methods for determining gait events during treadmill and overground walking using kinematic data
  publication-title: Gait Posture
– volume: 80
  start-page: 155
  year: 2020
  end-page: 161
  ident: bib12
  article-title: Reliability and validity of knee angles and moments in patients with osteoarthritis using a treadmill-based gait analysis system
  publication-title: Gait Posture
– volume: 6
  start-page: 200
  year: 1997
  end-page: 209
  ident: bib23
  article-title: Consistency of surface EMG patterns obtained during gait from three laboratories using standardised measurement technique
  publication-title: Gait Posture
– volume: 29
  start-page: 360
  year: 2009
  end-page: 369
  ident: bib1
  article-title: The reliability of three-dimensional kinematic gait measurements: a systematic review
  publication-title: Gait Posture
– volume: 12
  start-page: 20
  year: 2015
  ident: bib8
  article-title: Self-selected gait speed--over ground versus self-paced treadmill walking, a solution for a paradox
  publication-title: J. Neuroeng. Rehabil.
– volume: 40
  start-page: 587
  year: 2014
  end-page: 593
  ident: bib7
  article-title: Overground versus self-paced treadmill walking in a virtual environment in children with cerebral palsy
  publication-title: Gait Posture
– volume: 20
  start-page: 196
  issue: 2
  year: 2004
  ident: 10.1016/j.gaitpost.2025.07.308_bib18
  article-title: Measurement and management of errors in quantitative gait data
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2003.09.011
– volume: 27
  start-page: 710
  issue: 4
  year: 2008
  ident: 10.1016/j.gaitpost.2025.07.308_bib17
  article-title: Two simple methods for determining gait events during treadmill and overground walking using kinematic data
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2007.07.007
– volume: 70
  year: 2020
  ident: 10.1016/j.gaitpost.2025.07.308_bib16
  article-title: The Human Body Model versus conventional gait models for kinematic gait analysis in children with cerebral palsy
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/j.humov.2020.102585
– volume: 80
  start-page: 155
  year: 2020
  ident: 10.1016/j.gaitpost.2025.07.308_bib12
  article-title: Reliability and validity of knee angles and moments in patients with osteoarthritis using a treadmill-based gait analysis system
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2020.05.005
– volume: 7
  start-page: 849
  issue: 6
  year: 1989
  ident: 10.1016/j.gaitpost.2025.07.308_bib19
  article-title: Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait
  publication-title: J. Orthop. Res
  doi: 10.1002/jor.1100070611
– volume: 4
  start-page: 167
  year: 1996
  ident: 10.1016/j.gaitpost.2025.07.308_bib22
  article-title: Variability in gait measurements across multiple sites
  publication-title: Gait Posture
  doi: 10.1016/0966-6362(96)80573-X
– volume: 30
  start-page: e1366
  issue: 21
  year: 2022
  ident: 10.1016/j.gaitpost.2025.07.308_bib26
  article-title: Gait analysis in orthopaedic surgery: history, limitations, and future directions
  publication-title: J. Am. Acad. Orthop. Surg.
  doi: 10.5435/JAAOS-D-21-00785
– year: 2009
  ident: 10.1016/j.gaitpost.2025.07.308_bib10
  article-title: Biomechanics and metabolic costs of overground and treadmill walking in healthy
  publication-title: Adults Stroke Subj.
– volume: 29
  start-page: 398
  issue: 3
  year: 2009
  ident: 10.1016/j.gaitpost.2025.07.308_bib21
  article-title: Assessment of the kinematic variability among 12 motion analysis laboratories
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.10.060
– volume: 58
  start-page: 252
  year: 2017
  ident: 10.1016/j.gaitpost.2025.07.308_bib4
  article-title: SIAMOC position paper on gait analysis in clinical practice: General requirements, methods and appropriateness. Results of an Italian consensus conference
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.08.003
– volume: 51
  start-page: 1069
  issue: 10
  year: 2013
  ident: 10.1016/j.gaitpost.2025.07.308_bib15
  article-title: A real-time system for biomechanical analysis of human movement and muscle function
  publication-title: Med Biol. Eng. Comput.
  doi: 10.1007/s11517-013-1076-z
– volume: 111
  start-page: 65
  year: 2024
  ident: 10.1016/j.gaitpost.2025.07.308_bib3
  article-title: Current practices in clinical gait analysis in Europe: a comprehensive survey-based study from the European society for movement analysis in adults and children (ESMAC) standard initiative
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2024.04.014
– volume: 11
  start-page: 289
  year: 2018
  ident: 10.1016/j.gaitpost.2025.07.308_bib25
  article-title: Advances in automation technologies for lower extremity neurorehabilitation: a review and future challenges
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2018.2830805
– ident: 10.1016/j.gaitpost.2025.07.308_bib5
– volume: 40
  start-page: 587
  issue: 4
  year: 2014
  ident: 10.1016/j.gaitpost.2025.07.308_bib7
  article-title: Overground versus self-paced treadmill walking in a virtual environment in children with cerebral palsy
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.07.003
– volume: 12
  start-page: 20
  year: 2015
  ident: 10.1016/j.gaitpost.2025.07.308_bib8
  article-title: Self-selected gait speed--over ground versus self-paced treadmill walking, a solution for a paradox
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-015-0002-z
– volume: 6
  start-page: 200
  issue: 3
  year: 1997
  ident: 10.1016/j.gaitpost.2025.07.308_bib23
  article-title: Consistency of surface EMG patterns obtained during gait from three laboratories using standardised measurement technique
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(97)01122-3
– volume: 29
  start-page: 360
  issue: 3
  year: 2009
  ident: 10.1016/j.gaitpost.2025.07.308_bib1
  article-title: The reliability of three-dimensional kinematic gait measurements: a systematic review
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.09.003
– volume: 25
  start-page: 303
  issue: 2
  year: 2007
  ident: 10.1016/j.gaitpost.2025.07.308_bib9
  article-title: Increasing the number of gait trial recordings maximises intra-rater reliability of the CODA motion analysis system
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2006.04.011
– volume: 1
  year: 2013
  ident: 10.1016/j.gaitpost.2025.07.308_bib11
– volume: 10
  issue: 11
  year: 2015
  ident: 10.1016/j.gaitpost.2025.07.308_bib13
  article-title: Reliability and minimum detectable change of temporal-spatial, kinematic, and dynamic stability measures during perturbed gait
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0142083
– volume: 52
  start-page: 560
  issue: 4
  year: 2016
  ident: 10.1016/j.gaitpost.2025.07.308_bib2
  article-title: Gait analysis: clinical facts
  publication-title: Eur. J. Phys. Rehabil. Med.
– volume: 9
  start-page: 5232
  issue: 1
  year: 2019
  ident: 10.1016/j.gaitpost.2025.07.308_bib14
  article-title: Familiarization with treadmill walking: how much is enough?
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41721-0
– volume: 40
  start-page: 707
  issue: 4
  year: 2014
  ident: 10.1016/j.gaitpost.2025.07.308_bib20
  article-title: The influence of tester experience on the reliability of 3D kinematic information during running
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.06.004
– volume: 115
  year: 2021
  ident: 10.1016/j.gaitpost.2025.07.308_bib24
  article-title: Knee-specific gait biomechanics are reliable when collected in multiple laboratories by independent raters
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.110182
– ident: 10.1016/j.gaitpost.2025.07.308_bib6
SSID ssj0004382
Score 2.468765
Snippet Three-dimensional gait analysis is crucial for diagnosis and treatment planning. Treadmill-based laboratories efficiently collect 3D gait data over many...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 99
SubjectTerms Adult
Biomechanical Phenomena
Exercise Test - methods
Female
Gait - kinematics - treadmill - data pooling - inter-laboratory - consistency
Gait - physiology
Gait Analysis - methods
Healthy Volunteers
Humans
Lower Extremity - physiology
Male
Walking - physiology
Young Adult
Title Can we share data? – Kinematic consistency during walking in three different treadmill-based laboratories
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0966636225005648
https://dx.doi.org/10.1016/j.gaitpost.2025.07.308
https://www.ncbi.nlm.nih.gov/pubmed/40633263
https://www.proquest.com/docview/3228824822
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 0966-6362
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 0966-6362
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 0966-6362
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 0966-6362
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 0966-6362
  databaseCode: AKRWK
  dateStart: 19930301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hKiEuFQVKF-jKSBW3sNl14qxPaLUq2paHEA-Jm2U7drs8sis2CO0F8R_4h_ySzuQBVKICqZdEeVhJPOPxN_E3MwDfutK2uYuTwJlIBpTQO5AuMQEODm99O7S6KNO5fyAGp9HPs_hsBvp1LAzRKivbX9r0wlpXZ1pVb7bGw2HrGME3TpcCFZLyWUYU8BtFCVUx2Lp7pnnQQleRb0-IgO5-ESV8vvVLD_PxaEKcyk5MSTw5lZl8fYL6FwAtJqKdBfhYIUjWK1_yE8y4bBGWehl6z1dTtskKTmfxs3wR5varpfMluOjrjN06Nvmtrx0jYug2e7x_YLt4tUjbyixxZSeEoaesjF5kt_qSfqWzYcZyFDq2q-qp5IwY6inVLApoIkxZpU0jcr2X4XTn-0l_EFSVFgLLk06OW404wUofdq2zQqbWSOd96qz3MeUQNJEXoTacznU8T2XouolLUsQXXhjBP8NsNsrcF2Bcti3n6K-Tv-sRjkjHjbDtVHeFFiZuQKvuXjUuE2qomml2rmqBKBKIChOFAmlAUktB1eGiaOAU2vw3W8qnln8p1bvabtQCVzjiaBlFZ250M1FoAtEtiRBZNWCl1ISnL0F4xBEQ89X_ePIazNNRyRhch9n8-sZ9ReSTm2ah2k340Osf7R3S_sfu4OAPY90IVQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkFouFY9SthRqJNRb2Ow6ceJTtVqBlsJyASRulu3Y7W7b7IoNQnup-h_4h_0lncmDh9SqSFxycGIl8YzH39jfzADspdJ2uIuTwJlIBpTQO5AuMQFODm99J7S6LNM5PBWDi-jzZXy5AP0mFoZolbXtr2x6aa3rlnY9mu3paNQ-Q_CNy6VAhaR8llH6ApaiuJuQB7b_857nQSddZcI9IQJ6_EGY8Hj_ix4V08mMSJXdmLJ4cqoz-fcV6l8ItFyJDlfgdQ0hWa_6ylVYcPkarPdydJ9_zNlHVpI6y93yNXg5rM_O1-FbX-fsxrHZV33lGDFDP7Hfv27ZMd4t87YyS2TZGYHoOavCF9mN_k576WyUswKljv3qgioFI4p6RkWLAloJM1ar04R87zdwcXhw3h8EdamFwPKkW-BVI1Cw0oepdVbIzBrpvM-c9T6mJIIm8iLUhlNb1_NMhi5NXJIhwPDCCL4Bi_kkd5vAuOxYztFhJ4fXIx6RjhthO5lOhRYmbkG7GV41rTJqqIZqNlaNQBQJRIWJQoG0IGmkoJp4UbRwCo3-f3vKu56PtOpJfXcbgSuccnSOonM3uZ4ptIHol0QIrVrwttKEuz9BfMQREfN3z3jzB3g1OB-eqJOj0-MtWKY7FX3wPSwWV9duG2FQYXZKNf8DI-cIVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+we+share+data%3F+%E2%80%93+Kinematic+consistency+during+walking+in+three+different+treadmill-based+laboratories&rft.jtitle=Gait+%26+posture&rft.au=Van+Bladel%2C+Anke&rft.au=Senden%2C+Rachel&rft.au=Meijer%2C+Kenneth&rft.au=Meyns%2C+Pieter&rft.date=2025-10-01&rft.pub=Elsevier+B.V&rft.issn=0966-6362&rft.volume=122&rft.spage=99&rft.epage=105&rft_id=info:doi/10.1016%2Fj.gaitpost.2025.07.308&rft.externalDocID=S0966636225005648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0966-6362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0966-6362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0966-6362&client=summon