A minimal Maxey–Riley model for the drift of Sargassum rafts

Inertial particles (i.e. with mass and of finite size) immersed in a fluid in motion are unable to adapt their velocities to the carrying flow and thus they have been the subject of much interest in fluid mechanics. In this paper we consider an ocean setting with inertial particles elastically conne...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 904
Main Authors Beron-Vera, F. J., Miron, P.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.12.2020
Subjects
Online AccessGet full text
ISSN0022-1120
1469-7645
DOI10.1017/jfm.2020.666

Cover

Abstract Inertial particles (i.e. with mass and of finite size) immersed in a fluid in motion are unable to adapt their velocities to the carrying flow and thus they have been the subject of much interest in fluid mechanics. In this paper we consider an ocean setting with inertial particles elastically connected forming a network that floats at the interface with the atmosphere. The network evolves according to a recently derived and validated Maxey–Riley equation for inertial particle motion in the ocean. We rigorously show that, under sufficiently calm wind conditions, rotationally coherent quasigeostrophic vortices (which have material boundaries that resist outward filamentation) always possess finite-time attractors for elastic networks if they are anticyclonic, while if they are cyclonic provided that the networks are sufficiently stiff. This result is supported numerically under more general wind conditions and, most importantly, is consistent with observations of rafts of pelagic Sargassum, for which the elastic inertial networks represent a minimal model. Furthermore, our finding provides an effective mechanism for the long range transport of Sargassum, and thus for its connectivity between accumulation regions and remote sources.
AbstractList Inertial particles (i.e. with mass and of finite size) immersed in a fluid in motion are unable to adapt their velocities to the carrying flow and thus they have been the subject of much interest in fluid mechanics. In this paper we consider an ocean setting with inertial particles elastically connected forming a network that floats at the interface with the atmosphere. The network evolves according to a recently derived and validated Maxey–Riley equation for inertial particle motion in the ocean. We rigorously show that, under sufficiently calm wind conditions, rotationally coherent quasigeostrophic vortices (which have material boundaries that resist outward filamentation) always possess finite-time attractors for elastic networks if they are anticyclonic, while if they are cyclonic provided that the networks are sufficiently stiff. This result is supported numerically under more general wind conditions and, most importantly, is consistent with observations of rafts of pelagic Sargassum, for which the elastic inertial networks represent a minimal model. Furthermore, our finding provides an effective mechanism for the long range transport of Sargassum, and thus for its connectivity between accumulation regions and remote sources.
Inertial particles (i.e. with mass and of finite size) immersed in a fluid in motion are unable to adapt their velocities to the carrying flow and thus they have been the subject of much interest in fluid mechanics. In this paper we consider an ocean setting with inertial particles elastically connected forming a network that floats at the interface with the atmosphere. The network evolves according to a recently derived and validated Maxey–Riley equation for inertial particle motion in the ocean. We rigorously show that, under sufficiently calm wind conditions, rotationally coherent quasigeostrophic vortices (which have material boundaries that resist outward filamentation) always possess finite-time attractors for elastic networks if they are anticyclonic, while if they are cyclonic provided that the networks are sufficiently stiff. This result is supported numerically under more general wind conditions and, most importantly, is consistent with observations of rafts of pelagic Sargassum , for which the elastic inertial networks represent a minimal model. Furthermore, our finding provides an effective mechanism for the long range transport of Sargassum , and thus for its connectivity between accumulation regions and remote sources.
ArticleNumber A8
Author Miron, P.
Beron-Vera, F. J.
Author_xml – sequence: 1
  givenname: F. J.
  orcidid: 0000-0001-6197-4755
  surname: Beron-Vera
  fullname: Beron-Vera, F. J.
  email: fberon@miami.edu
  organization: 1Department of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
– sequence: 2
  givenname: P.
  orcidid: 0000-0002-8520-6221
  surname: Miron
  fullname: Miron, P.
  organization: 1Department of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
BookMark eNp1kMtKAzEUhoNUsK3ufICAW2dMMpNkZiOU4g0qgnYf0lzqlJlJTVKwO9_BN_RJTGlBEIUDZ_P95_KNwKB3vQHgHKMcI8yvVrbLCSIoZ4wdgSEuWZ1xVtIBGCJESIYxQSdgFMIKIVygmg_B9QR2Td90soWP8t1svz4-n5vWbGHntGmhdR7GVwO1b2yEzsIX6ZcyhE0HvbQxnIJjK9tgzg59DOa3N_PpfTZ7unuYTmaZKjiJmcKMcl3qghLFMVvwqtIlVQtDMK2ookTXklfpXsIWihapmK1UXStkuba2GIOL_di1d28bE6JYuY3v00ZByrKiHBVVmajLPaW8C8EbK9Y-fea3AiOxEySSILETJJKghJNfuGqijI3ro5dN-18oP4Rkt_CNXpqfU_4MfAMm5XoN
CitedBy_id crossref_primary_10_1063_5_0226779
crossref_primary_10_1063_5_0079055
crossref_primary_10_1029_2022GL099637
crossref_primary_10_1063_5_0117623
crossref_primary_10_1093_pnasnexus_pgae451
crossref_primary_10_1029_2023GL105545
crossref_primary_10_5194_gmd_14_4069_2021
crossref_primary_10_1017_jfm_2021_72
crossref_primary_10_1080_1755876X_2021_1902682
crossref_primary_10_1016_j_jmaa_2022_126467
crossref_primary_10_1371_journal_pclm_0000253
crossref_primary_10_1016_j_marpolbul_2023_114629
crossref_primary_10_1063_5_0229164
crossref_primary_10_1063_5_0175179
crossref_primary_10_1007_s11071_020_06053_z
crossref_primary_10_1103_PhysRevFluids_8_054501
crossref_primary_10_1029_2020GL089874
crossref_primary_10_1063_5_0040061
crossref_primary_10_1029_2022GL100189
crossref_primary_10_1063_5_0099859
Cites_doi 10.1017/S002211208700260X
10.1063/1.3632100
10.1017/jfm.2014.441
10.1126/science.aaw7912
10.1073/pnas.1718453115
10.1002/2015JC011620
10.1016/j.pocean.2018.06.009
10.1063/1.5110731
10.1371/journal.pone.0222584
10.1016/S1359-0278(97)00024-2
10.1175/1520-0485(1981)011<1662:OTIMOI>2.0.CO;2
10.1029/JC091iC04p05037
10.1002/2015GL064089
10.1016/S0167-2789(00)00142-1
10.1007/978-1-4757-2063-1
10.1063/5.0018272
10.1002/qj.828
10.1073/pnas.1720177115
10.1063/1.864230
10.1007/978-1-4612-4650-3
10.1016/j.pocean.2011.01.002
10.1073/pnas.1701392115
10.1080/01431160802178110
10.1103/PhysRevLett.84.5764
10.1016/j.euromechflu.2006.12.001
10.5670/oceanog.2010.02
10.1063/1.3272711
10.1016/j.marpolbul.2017.10.077
10.1029/2008GL033957
10.1017/jfm.2013.391
10.1146/annurev.fluid.31.1.55
10.1175/1520-0485(2000)030<2504:EOTESC>2.0.CO;2
10.1016/0167-2789(94)90259-3
10.1016/j.pocean.2020.102269
10.1002/2016GL071443
10.1007/978-3-642-04629-2_4
10.1209/0295-5075/123/44001
10.1063/1.5139045
10.1175/JPO-D-19-0238.1
10.1175/1520-0485(1990)020<0758:WMOME>2.0.CO;2
10.1016/0022-0396(79)90152-9
10.1080/2150704X.2013.796433
10.1063/1.4928693
10.1029/2004GL020974
10.1088/1361-6552/ab4d25
10.1103/PhysRevLett.121.244501
10.1007/BFb0095239
10.1017/S0022112088003246
10.1016/j.physd.2015.09.007
10.1017/jfm.2016.151
10.1038/s41598-018-29582-5
10.1175/1520-0485(1998)028<0740:OTWTOI>2.0.CO;2
10.1016/j.physd.2007.09.027
10.1016/B978-0-7506-4552-2.10001-0
ContentType Journal Article
Copyright The Author(s), 2020. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2020. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2020.666
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database (subscription)
Engineering Database (subscription)
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
ExternalDocumentID 10_1017_jfm_2020_666
GeographicLocations Caribbean Sea
GeographicLocations_xml – name: Caribbean Sea
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADOVH
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZYDXJ
~02
AAYXX
ABVKB
ABVZP
ABXAU
ABXHF
ACDLN
ADMLS
AEUYN
AFZFC
AKMAY
CITATION
PHGZM
PHGZT
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
Q9U
ID FETCH-LOGICAL-c372t-c1657d4d352c716b788d45cbe21585c52d9a7814626bc53c536f8c99c0f7dff3
IEDL.DBID 8FG
ISSN 0022-1120
IngestDate Tue Aug 26 04:11:56 EDT 2025
Tue Jul 01 03:01:22 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Wed Mar 13 05:55:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords ocean processes
chaotic advection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-c1657d4d352c716b788d45cbe21585c52d9a7814626bc53c536f8c99c0f7dff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8520-6221
0000-0001-6197-4755
PQID 2448570384
PQPubID 34769
PageCount 18
ParticipantIDs proquest_journals_2448570384
crossref_primary_10_1017_jfm_2020_666
crossref_citationtrail_10_1017_jfm_2020_666
cambridge_journals_10_1017_jfm_2020_666
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-10
PublicationDateYYYYMMDD 2020-12-10
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-10
  day: 10
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2020
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 1987; 183
2018; 121
2018; 165
2013; 4
2018; 360
1997; 119
2018; 123
2018; 126
2019; 14
2008; 35
1997; 2
2020; 55
1979; 31
2019; 365
2010; 23
2018; 8
2004; 31
2010; 20
2020; 50
2008; 29
2015; 42
2016; 43
2016; 795
2019; 116
2016; 315
2008; 237
2011; 23
2016; 49
1983; 26
2016; 472
2007; 26
1994; 76
2011; 137
1986; 91
1998; 28
2014; 755
2019; 31
2020; 182
2016; 121
2020; 32
1990; 20
2015; 25
2000; 147
2011; 91
2013; 731
2018; 115
2000; 30
2000; 84
1999; 31
1988; 197
1981; 11
Goldstein (S0022112020006667_ref23) 1981
S0022112020006667_ref20
S0022112020006667_ref21
S0022112020006667_ref62
S0022112020006667_ref63
S0022112020006667_ref24
S0022112020006667_ref25
S0022112020006667_ref22
S0022112020006667_ref29
S0022112020006667_ref26
S0022112020006667_ref27
McWilliams (S0022112020006667_ref40) 2016; 472
S0022112020006667_ref31
S0022112020006667_ref32
S0022112020006667_ref30
S0022112020006667_ref35
Michaelides (S0022112020006667_ref41) 1997; 119
S0022112020006667_ref36
S0022112020006667_ref33
S0022112020006667_ref34
S0022112020006667_ref39
S0022112020006667_ref37
S0022112020006667_ref50
S0022112020006667_ref42
S0022112020006667_ref43
S0022112020006667_ref46
S0022112020006667_ref47
S0022112020006667_ref44
S0022112020006667_ref45
S0022112020006667_ref48
S0022112020006667_ref49
Langin (S0022112020006667_ref38) 2018; 360
S0022112020006667_ref9
S0022112020006667_ref8
S0022112020006667_ref5
S0022112020006667_ref61
S0022112020006667_ref4
S0022112020006667_ref7
S0022112020006667_ref6
S0022112020006667_ref53
S0022112020006667_ref1
S0022112020006667_ref54
S0022112020006667_ref10
S0022112020006667_ref3
S0022112020006667_ref51
S0022112020006667_ref52
S0022112020006667_ref2
Haller (S0022112020006667_ref28) 2016; 49
S0022112020006667_ref57
S0022112020006667_ref58
S0022112020006667_ref14
S0022112020006667_ref11
S0022112020006667_ref56
S0022112020006667_ref12
Bird (S0022112020006667_ref13) 1977
S0022112020006667_ref17
S0022112020006667_ref18
S0022112020006667_ref59
S0022112020006667_ref15
S0022112020006667_ref16
S0022112020006667_ref19
References_xml – volume: 121
  start-page: 3944
  year: 2016
  end-page: 3954
  article-title: The life cycle of a coherent Lagrangian Agulhas ring
  publication-title: J. Geophys. Res.
– volume: 8
  start-page: 11275
  year: 2018
  article-title: Enduring Lagrangian coherence of a loop current ring assessed using independent observations
  publication-title: Sci. Rep.
– volume: 20
  start-page: 758
  year: 1990
  end-page: 768
  article-title: Westward motion of mesoscale eddies
  publication-title: J. Phys. Oceanogr.
– volume: 731
  start-page: R4
  year: 2013
  article-title: Coherent Lagrangian vortices: the black holes of turbulence
  publication-title: J. Fluid Mech.
– volume: 31
  start-page: 55
  year: 1999
  end-page: 93
  article-title: Transport by coherent barotropic vortices
  publication-title: Annu. Rev. Fluid Mech.
– volume: 182
  start-page: 102269
  year: 2020
  article-title: The establishment of a pelagic sargassum population in the tropical atlantic: biological consequences of a basin-scale long distance dispersal event
  publication-title: Prog. Oceanogr.
– volume: 119
  start-page: 233
  year: 1997
  end-page: 247
  article-title: Review – the transient equation of motion for particles, bubbles and droplets
  publication-title: Trans. ASME: J. Fluids Engng
– volume: 360
  start-page: 1157
  year: 2018
  end-page: 1158
  article-title: Mysterious masses of seaweed assault Caribbean islands
  publication-title: Sci. Mag.
– volume: 31
  start-page: L24311
  year: 2004
  article-title: Divergent pathways of cyclonic and anti-cyclonic ocean eddies
  publication-title: Geophys. Res. Lett.
– volume: 137
  start-page: 553
  year: 2011
  end-page: 597
  article-title: The ERA-interim reanalysis: configuration and performance of the data assimilation system
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 35
  start-page: L12603
  year: 2008
  article-title: Oceanic mesoscale vortices as revealed by Lagrangian coherent structures
  publication-title: Geophys. Res. Lett.
– volume: 121
  start-page: 244501
  year: 2018
  article-title: Preferential sampling of elastic chains in turbulent flows
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 14
  year: 2010
  end-page: 25
  article-title: Eddy dynamics from satellite altimetry
  publication-title: Oceanography
– volume: 2
  start-page: 173
  issue: 3
  year: 1997
  end-page: 181
  article-title: Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential
  publication-title: Folding and Design
– volume: 26
  start-page: 883
  year: 1983
  article-title: Equation of motion for a small rigid sphere in a nonuniform flow
  publication-title: Phys. Fluids
– volume: 115
  start-page: 1162
  year: 2018
  end-page: 1167
  article-title: Ocean convergence and the dispersion of flotsam
  publication-title: Proc. Natl Acad. Sci.
– volume: 14
  start-page: 1
  year: 2019
  end-page: 29
  article-title: From In Situ to satellite observations of pelagic Sargassum distribution and aggregation in the Tropical North Atlantic Ocean
  publication-title: PLoS ONE
– volume: 42
  start-page: 4072
  year: 2015
  end-page: 4079
  article-title: Coherent water transport across the South Atlantic
  publication-title: Geophys. Res. Lett.
– volume: 76
  start-page: 202
  year: 1994
  end-page: 215
  article-title: Dynamics of advected tracers with varying buoyancy
  publication-title: Physica D
– volume: 147
  start-page: 352
  year: 2000
  end-page: 370
  article-title: Lagrangian coherent structures and mixing in two-dimensional turbulence
  publication-title: Physica D
– volume: 49
  start-page: 1
  year: 2016
  end-page: 2
  article-title: Climate, black holes and vorticity: how on earth are they related?
  publication-title: SIAM News
– volume: 237
  start-page: 573
  year: 2008
  end-page: 583
  article-title: Where do inertial particles go in fluid flows?
  publication-title: Physica D
– volume: 50
  start-page: 1179
  year: 2020
  end-page: 1196
  article-title: Machine-learning mesoscale and submesoscale surface dynamics from Lagrangian ocean drifter trajectories
  publication-title: J. Phys. Oceanogr.
– volume: 165
  start-page: 205
  year: 2018
  end-page: 214
  article-title: Simulating transport pathways of pelagic Sargassum from the Equatorial Atlantic into the Caribbean Sea
  publication-title: Prog. Oceanogr.
– volume: 365
  start-page: 83
  year: 2019
  end-page: 87
  article-title: The great Atlantic Sargassum belt
  publication-title: Science
– volume: 126
  start-page: 191
  year: 2018
  end-page: 196
  article-title: Anticyclonic eddies increase accumulation of microplastic in the north atlantic subtropical gyre
  publication-title: Mar. Pollut. Bull.
– volume: 197
  start-page: 241
  year: 1988
  end-page: 257
  article-title: The force exerted on a body in inviscid unsteady non-uniform rotational flow
  publication-title: J. Fluid Mech.
– volume: 795
  start-page: 136
  year: 2016
  end-page: 173
  article-title: Defining coherent vortices objectively from the vorticity
  publication-title: J. Fluid Mech.
– volume: 30
  start-page: 2504
  year: 2000
  end-page: 2514
  article-title: Effects of the Earth's curvature on the dynamics of isolated objects. Part II: the uniformly translating vortex
  publication-title: J. Phys. Oceanogr.
– volume: 20
  start-page: 017515
  year: 2010
  article-title: Clustering criterion for inertial particles in two-dimensional time-periodic and three-dimensional steady flows
  publication-title: Chaos
– volume: 123
  start-page: 44001
  year: 2018
  article-title: Experimental demonstration of the water-holding property of three-dimensional vortices
  publication-title: EPL
– volume: 183
  start-page: 199
  year: 1987
  end-page: 218
  article-title: The lift force on a spherical body in a rotational flow
  publication-title: J. Fluid Mech.
– volume: 25
  start-page: 087412
  year: 2015
  article-title: Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean
  publication-title: Chaos
– volume: 755
  start-page: R3
  year: 2014
  article-title: Addendum to ‘Coherent Lagrangian vortices: the black holes of turbulence’
  publication-title: J. Fluid Mech.
– volume: 315
  start-page: 1
  year: 2016
  end-page: 12
  article-title: Polar rotation angle identifies elliptic islands in unsteady dynamical systems
  publication-title: Physica D
– volume: 29
  start-page: 6209
  year: 2008
  end-page: 6216
  article-title: Global monitoring of plankton blooms using MERIS MCI
  publication-title: Intl J. Remote Sens.
– volume: 116
  start-page: 18251
  year: 2019
  end-page: 18256
  article-title: Coherent Lagrangian swirls among submesoscale motions
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 26
  start-page: 738
  year: 2007
  end-page: 748
  article-title: Particle tracking in Taylor–Couette flow
  publication-title: Eur. J. Mech. (B/Fluids)
– volume: 91
  start-page: 167
  year: 2011
  end-page: 216
  article-title: Global observations of nonlinear mesoscale eddies
  publication-title: Prog. Oceanogr.
– volume: 31
  start-page: 096602
  year: 2019
  article-title: Building a Maxey–Riley framework for surface ocean inertial particle dynamics
  publication-title: Phys. Fluids
– volume: 115
  start-page: 9074
  year: 2018
  end-page: 9079
  article-title: Material barriers to diffusive and stochastic transport
  publication-title: Proc. Natl Acad. Sci.
– volume: 32
  start-page: 071703
  year: 2020
  article-title: Laboratory verification of a Maxey–Riley theory for inertial ocean dynamics
  publication-title: Phys. Fluids
– volume: 11
  start-page: 1662
  year: 1981
  end-page: 1672
  article-title: On the $\beta$-induced movement of isolated baroclinic eddies
  publication-title: J. Phys. Oceanogr.
– volume: 91
  start-page: 5037
  year: 1986
  end-page: 5046
  article-title: Interocean exchange of thermocline water
  publication-title: J. Geophys. Res.
– volume: 31
  start-page: 51
  year: 1979
  end-page: 98
  article-title: Geometric singular perturbation theory for ordinary differential equations
  publication-title: J. Differ. Equ.
– volume: 4
  start-page: 764
  year: 2013
  end-page: 773
  article-title: Satellite images suggest a new Sargassum source region in 2011
  publication-title: Remote Sens. Lett.
– volume: 28
  start-page: 740
  year: 1998
  end-page: 745
  article-title: On the westward translation of isolated eddies
  publication-title: J. Phys. Oceanogr.
– volume: 32
  start-page: 026601
  year: 2020
  article-title: Observation and quantification of inertial effects on the drift of floating objects at the ocean surface
  publication-title: Phys. Fluids
– volume: 23
  start-page: 093304
  year: 2011
  article-title: Neutrally buoyant particle dynamics in fluid flows: comparison of experiments with Lagrangian stochastic models
  publication-title: Phys. Fluids
– volume: 55
  start-page: 015007
  year: 2020
  article-title: Vortices capturing matter: a classroom demonstration
  publication-title: Phys. Educ.
– volume: 472
  start-page: 20160117
  year: 2016
  article-title: Submesoscale currents in the ocean
  publication-title: Proc. R. Soc. Lond. A
– volume: 84
  start-page: 5764
  year: 2000
  end-page: 5767
  article-title: Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems
  publication-title: Phys. Rev. Lett.
– volume: 43
  start-page: 12228
  year: 2016
  end-page: 12233
  article-title: Inertia-induced accumulation of flotsam in the subtropical gyres
  publication-title: Geophys. Res. Lett.
– ident: S0022112020006667_ref3
  doi: 10.1017/S002211208700260X
– ident: S0022112020006667_ref54
  doi: 10.1063/1.3632100
– ident: S0022112020006667_ref30
  doi: 10.1017/jfm.2014.441
– ident: S0022112020006667_ref61
  doi: 10.1126/science.aaw7912
– ident: S0022112020006667_ref18
  doi: 10.1073/pnas.1718453115
– ident: S0022112020006667_ref63
  doi: 10.1002/2015JC011620
– ident: S0022112020006667_ref51
  doi: 10.1016/j.pocean.2018.06.009
– ident: S0022112020006667_ref11
  doi: 10.1063/1.5110731
– ident: S0022112020006667_ref46
  doi: 10.1371/journal.pone.0222584
– ident: S0022112020006667_ref6
  doi: 10.1016/S1359-0278(97)00024-2
– ident: S0022112020006667_ref45
  doi: 10.1175/1520-0485(1981)011<1662:OTIMOI>2.0.CO;2
– ident: S0022112020006667_ref43
– ident: S0022112020006667_ref24
  doi: 10.1029/JC091iC04p05037
– ident: S0022112020006667_ref62
  doi: 10.1002/2015GL064089
– ident: S0022112020006667_ref34
  doi: 10.1016/S0167-2789(00)00142-1
– volume: 119
  start-page: 233
  year: 1997
  ident: S0022112020006667_ref41
  article-title: Review – the transient equation of motion for particles, bubbles and droplets
  publication-title: Trans. ASME: J. Fluids Engng
– ident: S0022112020006667_ref2
  doi: 10.1007/978-1-4757-2063-1
– ident: S0022112020006667_ref42
  doi: 10.1063/5.0018272
– ident: S0022112020006667_ref19
  doi: 10.1002/qj.828
– ident: S0022112020006667_ref32
  doi: 10.1073/pnas.1720177115
– volume: 360
  start-page: 1157
  year: 2018
  ident: S0022112020006667_ref38
  article-title: Mysterious masses of seaweed assault Caribbean islands
  publication-title: Sci. Mag.
– ident: S0022112020006667_ref39
  doi: 10.1063/1.864230
– ident: S0022112020006667_ref48
  doi: 10.1007/978-1-4612-4650-3
– ident: S0022112020006667_ref16
  doi: 10.1016/j.pocean.2011.01.002
– ident: S0022112020006667_ref7
  doi: 10.1073/pnas.1701392115
– ident: S0022112020006667_ref25
  doi: 10.1080/01431160802178110
– ident: S0022112020006667_ref5
  doi: 10.1103/PhysRevLett.84.5764
– ident: S0022112020006667_ref35
  doi: 10.1016/j.euromechflu.2006.12.001
– ident: S0022112020006667_ref22
  doi: 10.5670/oceanog.2010.02
– ident: S0022112020006667_ref53
  doi: 10.1063/1.3272711
– ident: S0022112020006667_ref14
  doi: 10.1016/j.marpolbul.2017.10.077
– ident: S0022112020006667_ref8
  doi: 10.1029/2008GL033957
– ident: S0022112020006667_ref29
  doi: 10.1017/jfm.2013.391
– ident: S0022112020006667_ref50
  doi: 10.1146/annurev.fluid.31.1.55
– ident: S0022112020006667_ref52
  doi: 10.1175/1520-0485(2000)030<2504:EOTESC>2.0.CO;2
– ident: S0022112020006667_ref57
  doi: 10.1016/0167-2789(94)90259-3
– ident: S0022112020006667_ref36
  doi: 10.1016/j.pocean.2020.102269
– volume: 49
  start-page: 1
  year: 2016
  ident: S0022112020006667_ref28
  article-title: Climate, black holes and vorticity: how on earth are they related?
  publication-title: SIAM News
– ident: S0022112020006667_ref10
  doi: 10.1002/2016GL071443
– ident: S0022112020006667_ref15
  doi: 10.1007/978-3-642-04629-2_4
– ident: S0022112020006667_ref58
  doi: 10.1209/0295-5075/123/44001
– volume-title: Dynamics of Polymeric Liquids
  year: 1977
  ident: S0022112020006667_ref13
– ident: S0022112020006667_ref47
  doi: 10.1063/1.5139045
– ident: S0022112020006667_ref1
  doi: 10.1175/JPO-D-19-0238.1
– ident: S0022112020006667_ref17
  doi: 10.1175/1520-0485(1990)020<0758:WMOME>2.0.CO;2
– ident: S0022112020006667_ref21
  doi: 10.1016/0022-0396(79)90152-9
– volume: 472
  start-page: 20160117
  year: 2016
  ident: S0022112020006667_ref40
  article-title: Submesoscale currents in the ocean
  publication-title: Proc. R. Soc. Lond. A
– ident: S0022112020006667_ref26
  doi: 10.1080/2150704X.2013.796433
– ident: S0022112020006667_ref9
  doi: 10.1063/1.4928693
– ident: S0022112020006667_ref44
  doi: 10.1029/2004GL020974
– ident: S0022112020006667_ref59
  doi: 10.1088/1361-6552/ab4d25
– ident: S0022112020006667_ref49
  doi: 10.1103/PhysRevLett.121.244501
– ident: S0022112020006667_ref37
  doi: 10.1007/BFb0095239
– ident: S0022112020006667_ref4
  doi: 10.1017/S0022112088003246
– ident: S0022112020006667_ref20
  doi: 10.1016/j.physd.2015.09.007
– ident: S0022112020006667_ref31
  doi: 10.1017/jfm.2016.151
– volume-title: Classical Mechanics
  year: 1981
  ident: S0022112020006667_ref23
– ident: S0022112020006667_ref12
  doi: 10.1038/s41598-018-29582-5
– ident: S0022112020006667_ref27
  doi: 10.1175/1520-0485(1998)028<0740:OTWTOI>2.0.CO;2
– ident: S0022112020006667_ref33
  doi: 10.1016/j.physd.2007.09.027
– ident: S0022112020006667_ref56
  doi: 10.1016/B978-0-7506-4552-2.10001-0
SSID ssj0013097
Score 2.4802759
Snippet Inertial particles (i.e. with mass and of finite size) immersed in a fluid in motion are unable to adapt their velocities to the carrying flow and thus they...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Computational fluid dynamics
Drifters
Dynamical systems
Filamentation
Floats
Fluid flow
Fluid mechanics
JFM Papers
Mathematical models
Networks
Ocean circulation
Ocean currents
Particle motion
Rafting
Rafts
Sargassum
Velocity
Wind
Title A minimal Maxey–Riley model for the drift of Sargassum rafts
URI https://www.cambridge.org/core/product/identifier/S0022112020006667/type/journal_article
https://www.proquest.com/docview/2448570384
Volume 904
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60RdCDj6pYrbIHxYNEk82ruShVW0WsSFXoLSS7WVDswyaC3vwP_kN_iTPptrWHCoFAsmxgdjPzzc7MNwD7vsUtL4o5hf4Dw1GyakRC-QbaKq6sBF2IhGqHm3fe9ZNz03bb-sAt1WmVI52YK2rZE3RGfoJmiLjY7apz1n8zqGsURVd1C415KFocbS1VijeuJlEEM_BHbOGIK0yd-E6U0S-KytC5eex5U7QK0-ZpWjvnJqexCssaK7LacHHXYC7plmBF40am_8q0BEt_SAVLsJAndYp0HU5rjJhDOjhHM_pIPn--vlukBFje_oYhXGUI_5gcPKuM9RR7oKa3uA4dNohUlm7AY6P-eHFt6H4JhrB9nhnC8lxfOhIxlUA3KEbvVjquiBM061VXuFwGETFcoQ8TC9fGy1NVEQTCVL5Uyt6EQrfXTbaAKV8EBBRdToFPFcUePrASHnjKlIFyy3A4llioN30aDhPG_BBlG5JsQ5RtGY5G8gyFZh2n5hevM0YfjEf3h2wbM8ZVRksz-fxkh2z__3oHFmkiSkqxzAoUssF7sovQIov38v2zB8XaZfP2Ae_n9bv71i8Pbs2y
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6FRAh6gBKKaElhD404IFN745_4EKoAidKfRCgEqTfL3h-pFU3a2BXk1nfo8_Rl-iTMOOuEHNJbJZ_s1VqaHc9845n5BmAvcLjjxwmn1H9ouVo2rVjowEJfxbWjMIRQ1DvcH_i9X-7RqXdagruiF4bKKgubmBtqORH0j3wf3RBxsTea7sHllUVToyi7WozQiM1oBdnKKcZMY8exmv3BEC5tHX7H865z3u2MvvUsM2XAEo2AZ5ZwfC-QrkQkIjB4SDAmlK4nEoXOsOkJj8swJl4oRP6J8Bp4-bopwlDYOpBaN3DbJ1Bx6f9JGSpfO4Mfw2Uaww6Dgq4cgY1tKu-Js_pcUx88tz_7_gqvw6p_XHUPuc_rbsILA1ZZe65dr6CkxlV4aYArM2YhrcLGf6yGVXiaV5WK9DV8aTOiLrnAPfrxXzW7v7kdkhVi-fwdhniZIf5kcnqmMzbR7CdN3UVFuGDTWGfpFoweQ5RvoDyejNVbYDoQISFVj1PmVceJjzccxUNf2zLU3jZ8XEgsMl9dGs0r1oIIZRuRbCOU7TZ8KuQZCUN7TtM3fq9ZXV-svpzTfaxZVyuOZvn6pYruPPz4Azzrjfon0cnh4PgdPKdNqULGsWtQzqbXahdxTpa8N9rEIHpk_f0HRWkM3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+minimal+Maxey%E2%80%93Riley+model+for+the+drift+of+Sargassum+rafts&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Beron-Vera%2C+F.+J.&rft.au=Miron%2C+P.&rft.date=2020-12-10&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=904&rft_id=info:doi/10.1017%2Fjfm.2020.666&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_jfm_2020_666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon