A minimal Maxey–Riley model for the drift of Sargassum rafts
Inertial particles (i.e. with mass and of finite size) immersed in a fluid in motion are unable to adapt their velocities to the carrying flow and thus they have been the subject of much interest in fluid mechanics. In this paper we consider an ocean setting with inertial particles elastically conne...
Saved in:
Published in | Journal of fluid mechanics Vol. 904 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
10.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1120 1469-7645 |
DOI | 10.1017/jfm.2020.666 |
Cover
Abstract | Inertial particles (i.e. with mass and of finite size) immersed in a fluid in motion are unable to adapt their velocities to the carrying flow and thus they have been the subject of much interest in fluid mechanics. In this paper we consider an ocean setting with inertial particles elastically connected forming a network that floats at the interface with the atmosphere. The network evolves according to a recently derived and validated Maxey–Riley equation for inertial particle motion in the ocean. We rigorously show that, under sufficiently calm wind conditions, rotationally coherent quasigeostrophic vortices (which have material boundaries that resist outward filamentation) always possess finite-time attractors for elastic networks if they are anticyclonic, while if they are cyclonic provided that the networks are sufficiently stiff. This result is supported numerically under more general wind conditions and, most importantly, is consistent with observations of rafts of pelagic Sargassum, for which the elastic inertial networks represent a minimal model. Furthermore, our finding provides an effective mechanism for the long range transport of Sargassum, and thus for its connectivity between accumulation regions and remote sources. |
---|---|
AbstractList | Inertial particles (i.e. with mass and of finite size) immersed in a fluid in motion are unable to adapt their velocities to the carrying flow and thus they have been the subject of much interest in fluid mechanics. In this paper we consider an ocean setting with inertial particles elastically connected forming a network that floats at the interface with the atmosphere. The network evolves according to a recently derived and validated Maxey–Riley equation for inertial particle motion in the ocean. We rigorously show that, under sufficiently calm wind conditions, rotationally coherent quasigeostrophic vortices (which have material boundaries that resist outward filamentation) always possess finite-time attractors for elastic networks if they are anticyclonic, while if they are cyclonic provided that the networks are sufficiently stiff. This result is supported numerically under more general wind conditions and, most importantly, is consistent with observations of rafts of pelagic Sargassum, for which the elastic inertial networks represent a minimal model. Furthermore, our finding provides an effective mechanism for the long range transport of Sargassum, and thus for its connectivity between accumulation regions and remote sources. Inertial particles (i.e. with mass and of finite size) immersed in a fluid in motion are unable to adapt their velocities to the carrying flow and thus they have been the subject of much interest in fluid mechanics. In this paper we consider an ocean setting with inertial particles elastically connected forming a network that floats at the interface with the atmosphere. The network evolves according to a recently derived and validated Maxey–Riley equation for inertial particle motion in the ocean. We rigorously show that, under sufficiently calm wind conditions, rotationally coherent quasigeostrophic vortices (which have material boundaries that resist outward filamentation) always possess finite-time attractors for elastic networks if they are anticyclonic, while if they are cyclonic provided that the networks are sufficiently stiff. This result is supported numerically under more general wind conditions and, most importantly, is consistent with observations of rafts of pelagic Sargassum , for which the elastic inertial networks represent a minimal model. Furthermore, our finding provides an effective mechanism for the long range transport of Sargassum , and thus for its connectivity between accumulation regions and remote sources. |
ArticleNumber | A8 |
Author | Miron, P. Beron-Vera, F. J. |
Author_xml | – sequence: 1 givenname: F. J. orcidid: 0000-0001-6197-4755 surname: Beron-Vera fullname: Beron-Vera, F. J. email: fberon@miami.edu organization: 1Department of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA – sequence: 2 givenname: P. orcidid: 0000-0002-8520-6221 surname: Miron fullname: Miron, P. organization: 1Department of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA |
BookMark | eNp1kMtKAzEUhoNUsK3ufICAW2dMMpNkZiOU4g0qgnYf0lzqlJlJTVKwO9_BN_RJTGlBEIUDZ_P95_KNwKB3vQHgHKMcI8yvVrbLCSIoZ4wdgSEuWZ1xVtIBGCJESIYxQSdgFMIKIVygmg_B9QR2Td90soWP8t1svz4-n5vWbGHntGmhdR7GVwO1b2yEzsIX6ZcyhE0HvbQxnIJjK9tgzg59DOa3N_PpfTZ7unuYTmaZKjiJmcKMcl3qghLFMVvwqtIlVQtDMK2ookTXklfpXsIWihapmK1UXStkuba2GIOL_di1d28bE6JYuY3v00ZByrKiHBVVmajLPaW8C8EbK9Y-fea3AiOxEySSILETJJKghJNfuGqijI3ro5dN-18oP4Rkt_CNXpqfU_4MfAMm5XoN |
CitedBy_id | crossref_primary_10_1063_5_0226779 crossref_primary_10_1063_5_0079055 crossref_primary_10_1029_2022GL099637 crossref_primary_10_1063_5_0117623 crossref_primary_10_1093_pnasnexus_pgae451 crossref_primary_10_1029_2023GL105545 crossref_primary_10_5194_gmd_14_4069_2021 crossref_primary_10_1017_jfm_2021_72 crossref_primary_10_1080_1755876X_2021_1902682 crossref_primary_10_1016_j_jmaa_2022_126467 crossref_primary_10_1371_journal_pclm_0000253 crossref_primary_10_1016_j_marpolbul_2023_114629 crossref_primary_10_1063_5_0229164 crossref_primary_10_1063_5_0175179 crossref_primary_10_1007_s11071_020_06053_z crossref_primary_10_1103_PhysRevFluids_8_054501 crossref_primary_10_1029_2020GL089874 crossref_primary_10_1063_5_0040061 crossref_primary_10_1029_2022GL100189 crossref_primary_10_1063_5_0099859 |
Cites_doi | 10.1017/S002211208700260X 10.1063/1.3632100 10.1017/jfm.2014.441 10.1126/science.aaw7912 10.1073/pnas.1718453115 10.1002/2015JC011620 10.1016/j.pocean.2018.06.009 10.1063/1.5110731 10.1371/journal.pone.0222584 10.1016/S1359-0278(97)00024-2 10.1175/1520-0485(1981)011<1662:OTIMOI>2.0.CO;2 10.1029/JC091iC04p05037 10.1002/2015GL064089 10.1016/S0167-2789(00)00142-1 10.1007/978-1-4757-2063-1 10.1063/5.0018272 10.1002/qj.828 10.1073/pnas.1720177115 10.1063/1.864230 10.1007/978-1-4612-4650-3 10.1016/j.pocean.2011.01.002 10.1073/pnas.1701392115 10.1080/01431160802178110 10.1103/PhysRevLett.84.5764 10.1016/j.euromechflu.2006.12.001 10.5670/oceanog.2010.02 10.1063/1.3272711 10.1016/j.marpolbul.2017.10.077 10.1029/2008GL033957 10.1017/jfm.2013.391 10.1146/annurev.fluid.31.1.55 10.1175/1520-0485(2000)030<2504:EOTESC>2.0.CO;2 10.1016/0167-2789(94)90259-3 10.1016/j.pocean.2020.102269 10.1002/2016GL071443 10.1007/978-3-642-04629-2_4 10.1209/0295-5075/123/44001 10.1063/1.5139045 10.1175/JPO-D-19-0238.1 10.1175/1520-0485(1990)020<0758:WMOME>2.0.CO;2 10.1016/0022-0396(79)90152-9 10.1080/2150704X.2013.796433 10.1063/1.4928693 10.1029/2004GL020974 10.1088/1361-6552/ab4d25 10.1103/PhysRevLett.121.244501 10.1007/BFb0095239 10.1017/S0022112088003246 10.1016/j.physd.2015.09.007 10.1017/jfm.2016.151 10.1038/s41598-018-29582-5 10.1175/1520-0485(1998)028<0740:OTWTOI>2.0.CO;2 10.1016/j.physd.2007.09.027 10.1016/B978-0-7506-4552-2.10001-0 |
ContentType | Journal Article |
Copyright | The Author(s), 2020. Published by Cambridge University Press |
Copyright_xml | – notice: The Author(s), 2020. Published by Cambridge University Press |
DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U S0W |
DOI | 10.1017/jfm.2020.666 |
DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database (subscription) Engineering Database (subscription) Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
ExternalDocumentID | 10_1017_jfm_2020_666 |
GeographicLocations | Caribbean Sea |
GeographicLocations_xml | – name: Caribbean Sea |
GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADOVH ADVJH AEBAK AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZYDXJ ~02 AAYXX ABVKB ABVZP ABXAU ABXHF ACDLN ADMLS AEUYN AFZFC AKMAY CITATION PHGZM PHGZT 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI PUEGO Q9U |
ID | FETCH-LOGICAL-c372t-c1657d4d352c716b788d45cbe21585c52d9a7814626bc53c536f8c99c0f7dff3 |
IEDL.DBID | 8FG |
ISSN | 0022-1120 |
IngestDate | Tue Aug 26 04:11:56 EDT 2025 Tue Jul 01 03:01:22 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Wed Mar 13 05:55:02 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ocean processes chaotic advection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-c1657d4d352c716b788d45cbe21585c52d9a7814626bc53c536f8c99c0f7dff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8520-6221 0000-0001-6197-4755 |
PQID | 2448570384 |
PQPubID | 34769 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2448570384 crossref_primary_10_1017_jfm_2020_666 crossref_citationtrail_10_1017_jfm_2020_666 cambridge_journals_10_1017_jfm_2020_666 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-10 |
PublicationDateYYYYMMDD | 2020-12-10 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2020 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 1987; 183 2018; 121 2018; 165 2013; 4 2018; 360 1997; 119 2018; 123 2018; 126 2019; 14 2008; 35 1997; 2 2020; 55 1979; 31 2019; 365 2010; 23 2018; 8 2004; 31 2010; 20 2020; 50 2008; 29 2015; 42 2016; 43 2016; 795 2019; 116 2016; 315 2008; 237 2011; 23 2016; 49 1983; 26 2016; 472 2007; 26 1994; 76 2011; 137 1986; 91 1998; 28 2014; 755 2019; 31 2020; 182 2016; 121 2020; 32 1990; 20 2015; 25 2000; 147 2011; 91 2013; 731 2018; 115 2000; 30 2000; 84 1999; 31 1988; 197 1981; 11 Goldstein (S0022112020006667_ref23) 1981 S0022112020006667_ref20 S0022112020006667_ref21 S0022112020006667_ref62 S0022112020006667_ref63 S0022112020006667_ref24 S0022112020006667_ref25 S0022112020006667_ref22 S0022112020006667_ref29 S0022112020006667_ref26 S0022112020006667_ref27 McWilliams (S0022112020006667_ref40) 2016; 472 S0022112020006667_ref31 S0022112020006667_ref32 S0022112020006667_ref30 S0022112020006667_ref35 Michaelides (S0022112020006667_ref41) 1997; 119 S0022112020006667_ref36 S0022112020006667_ref33 S0022112020006667_ref34 S0022112020006667_ref39 S0022112020006667_ref37 S0022112020006667_ref50 S0022112020006667_ref42 S0022112020006667_ref43 S0022112020006667_ref46 S0022112020006667_ref47 S0022112020006667_ref44 S0022112020006667_ref45 S0022112020006667_ref48 S0022112020006667_ref49 Langin (S0022112020006667_ref38) 2018; 360 S0022112020006667_ref9 S0022112020006667_ref8 S0022112020006667_ref5 S0022112020006667_ref61 S0022112020006667_ref4 S0022112020006667_ref7 S0022112020006667_ref6 S0022112020006667_ref53 S0022112020006667_ref1 S0022112020006667_ref54 S0022112020006667_ref10 S0022112020006667_ref3 S0022112020006667_ref51 S0022112020006667_ref52 S0022112020006667_ref2 Haller (S0022112020006667_ref28) 2016; 49 S0022112020006667_ref57 S0022112020006667_ref58 S0022112020006667_ref14 S0022112020006667_ref11 S0022112020006667_ref56 S0022112020006667_ref12 Bird (S0022112020006667_ref13) 1977 S0022112020006667_ref17 S0022112020006667_ref18 S0022112020006667_ref59 S0022112020006667_ref15 S0022112020006667_ref16 S0022112020006667_ref19 |
References_xml | – volume: 121 start-page: 3944 year: 2016 end-page: 3954 article-title: The life cycle of a coherent Lagrangian Agulhas ring publication-title: J. Geophys. Res. – volume: 8 start-page: 11275 year: 2018 article-title: Enduring Lagrangian coherence of a loop current ring assessed using independent observations publication-title: Sci. Rep. – volume: 20 start-page: 758 year: 1990 end-page: 768 article-title: Westward motion of mesoscale eddies publication-title: J. Phys. Oceanogr. – volume: 731 start-page: R4 year: 2013 article-title: Coherent Lagrangian vortices: the black holes of turbulence publication-title: J. Fluid Mech. – volume: 31 start-page: 55 year: 1999 end-page: 93 article-title: Transport by coherent barotropic vortices publication-title: Annu. Rev. Fluid Mech. – volume: 182 start-page: 102269 year: 2020 article-title: The establishment of a pelagic sargassum population in the tropical atlantic: biological consequences of a basin-scale long distance dispersal event publication-title: Prog. Oceanogr. – volume: 119 start-page: 233 year: 1997 end-page: 247 article-title: Review – the transient equation of motion for particles, bubbles and droplets publication-title: Trans. ASME: J. Fluids Engng – volume: 360 start-page: 1157 year: 2018 end-page: 1158 article-title: Mysterious masses of seaweed assault Caribbean islands publication-title: Sci. Mag. – volume: 31 start-page: L24311 year: 2004 article-title: Divergent pathways of cyclonic and anti-cyclonic ocean eddies publication-title: Geophys. Res. Lett. – volume: 137 start-page: 553 year: 2011 end-page: 597 article-title: The ERA-interim reanalysis: configuration and performance of the data assimilation system publication-title: Q. J. R. Meteorol. Soc. – volume: 35 start-page: L12603 year: 2008 article-title: Oceanic mesoscale vortices as revealed by Lagrangian coherent structures publication-title: Geophys. Res. Lett. – volume: 121 start-page: 244501 year: 2018 article-title: Preferential sampling of elastic chains in turbulent flows publication-title: Phys. Rev. Lett. – volume: 23 start-page: 14 year: 2010 end-page: 25 article-title: Eddy dynamics from satellite altimetry publication-title: Oceanography – volume: 2 start-page: 173 issue: 3 year: 1997 end-page: 181 article-title: Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential publication-title: Folding and Design – volume: 26 start-page: 883 year: 1983 article-title: Equation of motion for a small rigid sphere in a nonuniform flow publication-title: Phys. Fluids – volume: 115 start-page: 1162 year: 2018 end-page: 1167 article-title: Ocean convergence and the dispersion of flotsam publication-title: Proc. Natl Acad. Sci. – volume: 14 start-page: 1 year: 2019 end-page: 29 article-title: From In Situ to satellite observations of pelagic Sargassum distribution and aggregation in the Tropical North Atlantic Ocean publication-title: PLoS ONE – volume: 42 start-page: 4072 year: 2015 end-page: 4079 article-title: Coherent water transport across the South Atlantic publication-title: Geophys. Res. Lett. – volume: 76 start-page: 202 year: 1994 end-page: 215 article-title: Dynamics of advected tracers with varying buoyancy publication-title: Physica D – volume: 147 start-page: 352 year: 2000 end-page: 370 article-title: Lagrangian coherent structures and mixing in two-dimensional turbulence publication-title: Physica D – volume: 49 start-page: 1 year: 2016 end-page: 2 article-title: Climate, black holes and vorticity: how on earth are they related? publication-title: SIAM News – volume: 237 start-page: 573 year: 2008 end-page: 583 article-title: Where do inertial particles go in fluid flows? publication-title: Physica D – volume: 50 start-page: 1179 year: 2020 end-page: 1196 article-title: Machine-learning mesoscale and submesoscale surface dynamics from Lagrangian ocean drifter trajectories publication-title: J. Phys. Oceanogr. – volume: 165 start-page: 205 year: 2018 end-page: 214 article-title: Simulating transport pathways of pelagic Sargassum from the Equatorial Atlantic into the Caribbean Sea publication-title: Prog. Oceanogr. – volume: 365 start-page: 83 year: 2019 end-page: 87 article-title: The great Atlantic Sargassum belt publication-title: Science – volume: 126 start-page: 191 year: 2018 end-page: 196 article-title: Anticyclonic eddies increase accumulation of microplastic in the north atlantic subtropical gyre publication-title: Mar. Pollut. Bull. – volume: 197 start-page: 241 year: 1988 end-page: 257 article-title: The force exerted on a body in inviscid unsteady non-uniform rotational flow publication-title: J. Fluid Mech. – volume: 795 start-page: 136 year: 2016 end-page: 173 article-title: Defining coherent vortices objectively from the vorticity publication-title: J. Fluid Mech. – volume: 30 start-page: 2504 year: 2000 end-page: 2514 article-title: Effects of the Earth's curvature on the dynamics of isolated objects. Part II: the uniformly translating vortex publication-title: J. Phys. Oceanogr. – volume: 20 start-page: 017515 year: 2010 article-title: Clustering criterion for inertial particles in two-dimensional time-periodic and three-dimensional steady flows publication-title: Chaos – volume: 123 start-page: 44001 year: 2018 article-title: Experimental demonstration of the water-holding property of three-dimensional vortices publication-title: EPL – volume: 183 start-page: 199 year: 1987 end-page: 218 article-title: The lift force on a spherical body in a rotational flow publication-title: J. Fluid Mech. – volume: 25 start-page: 087412 year: 2015 article-title: Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean publication-title: Chaos – volume: 755 start-page: R3 year: 2014 article-title: Addendum to ‘Coherent Lagrangian vortices: the black holes of turbulence’ publication-title: J. Fluid Mech. – volume: 315 start-page: 1 year: 2016 end-page: 12 article-title: Polar rotation angle identifies elliptic islands in unsteady dynamical systems publication-title: Physica D – volume: 29 start-page: 6209 year: 2008 end-page: 6216 article-title: Global monitoring of plankton blooms using MERIS MCI publication-title: Intl J. Remote Sens. – volume: 116 start-page: 18251 year: 2019 end-page: 18256 article-title: Coherent Lagrangian swirls among submesoscale motions publication-title: Proc. Natl Acad. Sci. USA – volume: 26 start-page: 738 year: 2007 end-page: 748 article-title: Particle tracking in Taylor–Couette flow publication-title: Eur. J. Mech. (B/Fluids) – volume: 91 start-page: 167 year: 2011 end-page: 216 article-title: Global observations of nonlinear mesoscale eddies publication-title: Prog. Oceanogr. – volume: 31 start-page: 096602 year: 2019 article-title: Building a Maxey–Riley framework for surface ocean inertial particle dynamics publication-title: Phys. Fluids – volume: 115 start-page: 9074 year: 2018 end-page: 9079 article-title: Material barriers to diffusive and stochastic transport publication-title: Proc. Natl Acad. Sci. – volume: 32 start-page: 071703 year: 2020 article-title: Laboratory verification of a Maxey–Riley theory for inertial ocean dynamics publication-title: Phys. Fluids – volume: 11 start-page: 1662 year: 1981 end-page: 1672 article-title: On the $\beta$-induced movement of isolated baroclinic eddies publication-title: J. Phys. Oceanogr. – volume: 91 start-page: 5037 year: 1986 end-page: 5046 article-title: Interocean exchange of thermocline water publication-title: J. Geophys. Res. – volume: 31 start-page: 51 year: 1979 end-page: 98 article-title: Geometric singular perturbation theory for ordinary differential equations publication-title: J. Differ. Equ. – volume: 4 start-page: 764 year: 2013 end-page: 773 article-title: Satellite images suggest a new Sargassum source region in 2011 publication-title: Remote Sens. Lett. – volume: 28 start-page: 740 year: 1998 end-page: 745 article-title: On the westward translation of isolated eddies publication-title: J. Phys. Oceanogr. – volume: 32 start-page: 026601 year: 2020 article-title: Observation and quantification of inertial effects on the drift of floating objects at the ocean surface publication-title: Phys. Fluids – volume: 23 start-page: 093304 year: 2011 article-title: Neutrally buoyant particle dynamics in fluid flows: comparison of experiments with Lagrangian stochastic models publication-title: Phys. Fluids – volume: 55 start-page: 015007 year: 2020 article-title: Vortices capturing matter: a classroom demonstration publication-title: Phys. Educ. – volume: 472 start-page: 20160117 year: 2016 article-title: Submesoscale currents in the ocean publication-title: Proc. R. Soc. Lond. A – volume: 84 start-page: 5764 year: 2000 end-page: 5767 article-title: Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems publication-title: Phys. Rev. Lett. – volume: 43 start-page: 12228 year: 2016 end-page: 12233 article-title: Inertia-induced accumulation of flotsam in the subtropical gyres publication-title: Geophys. Res. Lett. – ident: S0022112020006667_ref3 doi: 10.1017/S002211208700260X – ident: S0022112020006667_ref54 doi: 10.1063/1.3632100 – ident: S0022112020006667_ref30 doi: 10.1017/jfm.2014.441 – ident: S0022112020006667_ref61 doi: 10.1126/science.aaw7912 – ident: S0022112020006667_ref18 doi: 10.1073/pnas.1718453115 – ident: S0022112020006667_ref63 doi: 10.1002/2015JC011620 – ident: S0022112020006667_ref51 doi: 10.1016/j.pocean.2018.06.009 – ident: S0022112020006667_ref11 doi: 10.1063/1.5110731 – ident: S0022112020006667_ref46 doi: 10.1371/journal.pone.0222584 – ident: S0022112020006667_ref6 doi: 10.1016/S1359-0278(97)00024-2 – ident: S0022112020006667_ref45 doi: 10.1175/1520-0485(1981)011<1662:OTIMOI>2.0.CO;2 – ident: S0022112020006667_ref43 – ident: S0022112020006667_ref24 doi: 10.1029/JC091iC04p05037 – ident: S0022112020006667_ref62 doi: 10.1002/2015GL064089 – ident: S0022112020006667_ref34 doi: 10.1016/S0167-2789(00)00142-1 – volume: 119 start-page: 233 year: 1997 ident: S0022112020006667_ref41 article-title: Review – the transient equation of motion for particles, bubbles and droplets publication-title: Trans. ASME: J. Fluids Engng – ident: S0022112020006667_ref2 doi: 10.1007/978-1-4757-2063-1 – ident: S0022112020006667_ref42 doi: 10.1063/5.0018272 – ident: S0022112020006667_ref19 doi: 10.1002/qj.828 – ident: S0022112020006667_ref32 doi: 10.1073/pnas.1720177115 – volume: 360 start-page: 1157 year: 2018 ident: S0022112020006667_ref38 article-title: Mysterious masses of seaweed assault Caribbean islands publication-title: Sci. Mag. – ident: S0022112020006667_ref39 doi: 10.1063/1.864230 – ident: S0022112020006667_ref48 doi: 10.1007/978-1-4612-4650-3 – ident: S0022112020006667_ref16 doi: 10.1016/j.pocean.2011.01.002 – ident: S0022112020006667_ref7 doi: 10.1073/pnas.1701392115 – ident: S0022112020006667_ref25 doi: 10.1080/01431160802178110 – ident: S0022112020006667_ref5 doi: 10.1103/PhysRevLett.84.5764 – ident: S0022112020006667_ref35 doi: 10.1016/j.euromechflu.2006.12.001 – ident: S0022112020006667_ref22 doi: 10.5670/oceanog.2010.02 – ident: S0022112020006667_ref53 doi: 10.1063/1.3272711 – ident: S0022112020006667_ref14 doi: 10.1016/j.marpolbul.2017.10.077 – ident: S0022112020006667_ref8 doi: 10.1029/2008GL033957 – ident: S0022112020006667_ref29 doi: 10.1017/jfm.2013.391 – ident: S0022112020006667_ref50 doi: 10.1146/annurev.fluid.31.1.55 – ident: S0022112020006667_ref52 doi: 10.1175/1520-0485(2000)030<2504:EOTESC>2.0.CO;2 – ident: S0022112020006667_ref57 doi: 10.1016/0167-2789(94)90259-3 – ident: S0022112020006667_ref36 doi: 10.1016/j.pocean.2020.102269 – volume: 49 start-page: 1 year: 2016 ident: S0022112020006667_ref28 article-title: Climate, black holes and vorticity: how on earth are they related? publication-title: SIAM News – ident: S0022112020006667_ref10 doi: 10.1002/2016GL071443 – ident: S0022112020006667_ref15 doi: 10.1007/978-3-642-04629-2_4 – ident: S0022112020006667_ref58 doi: 10.1209/0295-5075/123/44001 – volume-title: Dynamics of Polymeric Liquids year: 1977 ident: S0022112020006667_ref13 – ident: S0022112020006667_ref47 doi: 10.1063/1.5139045 – ident: S0022112020006667_ref1 doi: 10.1175/JPO-D-19-0238.1 – ident: S0022112020006667_ref17 doi: 10.1175/1520-0485(1990)020<0758:WMOME>2.0.CO;2 – ident: S0022112020006667_ref21 doi: 10.1016/0022-0396(79)90152-9 – volume: 472 start-page: 20160117 year: 2016 ident: S0022112020006667_ref40 article-title: Submesoscale currents in the ocean publication-title: Proc. R. Soc. Lond. A – ident: S0022112020006667_ref26 doi: 10.1080/2150704X.2013.796433 – ident: S0022112020006667_ref9 doi: 10.1063/1.4928693 – ident: S0022112020006667_ref44 doi: 10.1029/2004GL020974 – ident: S0022112020006667_ref59 doi: 10.1088/1361-6552/ab4d25 – ident: S0022112020006667_ref49 doi: 10.1103/PhysRevLett.121.244501 – ident: S0022112020006667_ref37 doi: 10.1007/BFb0095239 – ident: S0022112020006667_ref4 doi: 10.1017/S0022112088003246 – ident: S0022112020006667_ref20 doi: 10.1016/j.physd.2015.09.007 – ident: S0022112020006667_ref31 doi: 10.1017/jfm.2016.151 – volume-title: Classical Mechanics year: 1981 ident: S0022112020006667_ref23 – ident: S0022112020006667_ref12 doi: 10.1038/s41598-018-29582-5 – ident: S0022112020006667_ref27 doi: 10.1175/1520-0485(1998)028<0740:OTWTOI>2.0.CO;2 – ident: S0022112020006667_ref33 doi: 10.1016/j.physd.2007.09.027 – ident: S0022112020006667_ref56 doi: 10.1016/B978-0-7506-4552-2.10001-0 |
SSID | ssj0013097 |
Score | 2.4802759 |
Snippet | Inertial particles (i.e. with mass and of finite size) immersed in a fluid in motion are unable to adapt their velocities to the carrying flow and thus they... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Computational fluid dynamics Drifters Dynamical systems Filamentation Floats Fluid flow Fluid mechanics JFM Papers Mathematical models Networks Ocean circulation Ocean currents Particle motion Rafting Rafts Sargassum Velocity Wind |
Title | A minimal Maxey–Riley model for the drift of Sargassum rafts |
URI | https://www.cambridge.org/core/product/identifier/S0022112020006667/type/journal_article https://www.proquest.com/docview/2448570384 |
Volume | 904 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60RdCDj6pYrbIHxYNEk82ruShVW0WsSFXoLSS7WVDswyaC3vwP_kN_iTPptrWHCoFAsmxgdjPzzc7MNwD7vsUtL4o5hf4Dw1GyakRC-QbaKq6sBF2IhGqHm3fe9ZNz03bb-sAt1WmVI52YK2rZE3RGfoJmiLjY7apz1n8zqGsURVd1C415KFocbS1VijeuJlEEM_BHbOGIK0yd-E6U0S-KytC5eex5U7QK0-ZpWjvnJqexCssaK7LacHHXYC7plmBF40am_8q0BEt_SAVLsJAndYp0HU5rjJhDOjhHM_pIPn--vlukBFje_oYhXGUI_5gcPKuM9RR7oKa3uA4dNohUlm7AY6P-eHFt6H4JhrB9nhnC8lxfOhIxlUA3KEbvVjquiBM061VXuFwGETFcoQ8TC9fGy1NVEQTCVL5Uyt6EQrfXTbaAKV8EBBRdToFPFcUePrASHnjKlIFyy3A4llioN30aDhPG_BBlG5JsQ5RtGY5G8gyFZh2n5hevM0YfjEf3h2wbM8ZVRksz-fxkh2z__3oHFmkiSkqxzAoUssF7sovQIov38v2zB8XaZfP2Ae_n9bv71i8Pbs2y |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6FRAh6gBKKaElhD404IFN745_4EKoAidKfRCgEqTfL3h-pFU3a2BXk1nfo8_Rl-iTMOOuEHNJbJZ_s1VqaHc9845n5BmAvcLjjxwmn1H9ouVo2rVjowEJfxbWjMIRQ1DvcH_i9X-7RqXdagruiF4bKKgubmBtqORH0j3wf3RBxsTea7sHllUVToyi7WozQiM1oBdnKKcZMY8exmv3BEC5tHX7H865z3u2MvvUsM2XAEo2AZ5ZwfC-QrkQkIjB4SDAmlK4nEoXOsOkJj8swJl4oRP6J8Bp4-bopwlDYOpBaN3DbJ1Bx6f9JGSpfO4Mfw2Uaww6Dgq4cgY1tKu-Js_pcUx88tz_7_gqvw6p_XHUPuc_rbsILA1ZZe65dr6CkxlV4aYArM2YhrcLGf6yGVXiaV5WK9DV8aTOiLrnAPfrxXzW7v7kdkhVi-fwdhniZIf5kcnqmMzbR7CdN3UVFuGDTWGfpFoweQ5RvoDyejNVbYDoQISFVj1PmVceJjzccxUNf2zLU3jZ8XEgsMl9dGs0r1oIIZRuRbCOU7TZ8KuQZCUN7TtM3fq9ZXV-svpzTfaxZVyuOZvn6pYruPPz4Azzrjfon0cnh4PgdPKdNqULGsWtQzqbXahdxTpa8N9rEIHpk_f0HRWkM3g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+minimal+Maxey%E2%80%93Riley+model+for+the+drift+of+Sargassum+rafts&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Beron-Vera%2C+F.+J.&rft.au=Miron%2C+P.&rft.date=2020-12-10&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=904&rft_id=info:doi/10.1017%2Fjfm.2020.666&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_jfm_2020_666 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |