Mapping correlations of psychological and structural connectome properties of the dataset of the human connectome project with the maximum spanning tree method
Genome-wide association studies (GWAS) opened new horizons in genomics and medicine by discovering novel genetic factors in numerous health conditions. The analogous analysis of the correlations of large quantities of psychological and brain imaging measures may yield similarly striking results in t...
Saved in:
| Published in | Brain imaging and behavior Vol. 13; no. 5; pp. 1185 - 1192 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1931-7557 1931-7565 1931-7565 |
| DOI | 10.1007/s11682-018-9937-6 |
Cover
| Abstract | Genome-wide association studies (GWAS) opened new horizons in genomics and medicine by discovering novel genetic factors in numerous health conditions. The analogous analysis of the correlations of large quantities of psychological and brain imaging measures may yield similarly striking results in the brain science. Smith et al. (Nat Neurosci. 18(11): 1565–1567,
2015
) presented a study of the associations between MRI-detected resting-state functional connectomes and behavioral data, based on the Human Connectome Project’s (HCP) data release. Here we analyze the pairwise correlations between 717 psychological-, anatomical- and structural connectome–properties, based also on the Human Connectome Project’s 500-subject dataset. For the connectome properties, we have focused on the structural (or anatomical) connectomes, instead of the functional connectomes. For the structural connectome analysis we have computed and publicly deposited structural braingraphs at the site
http://braingraph.org
. Numerous non-trivial and hard-to-compute graph-theoretical parameters (like minimum bisection width, minimum vertex cover, eigenvalue gap, maximum matching number, maximum fractional matching number) were computed for braingraphs of each subject, gained from the left- and right hemispheres and the whole brain. The correlations of these parameters, as well as other anatomical and behavioral measures were detected and analyzed. For discovering and visualizing the most interesting correlations in the 717 x 717 matrix, we have applied the maximum spanning tree method. Apart from numerous natural correlations, which describe parameters computable or approximable from one another, we have found several significant, novel correlations in the dataset, e.g., between the score of the NIH Toolbox 9-hole Pegboard Dexterity Test and the maximum weight graph theoretical matching in the left hemisphere. We also have found correlations described very recently and independently from the HCP-dataset: e.g., between gambling behavior and the number of the connections leaving the insula: these already known findings independently validate the power of our method. |
|---|---|
| AbstractList | Genome-wide association studies (GWAS) opened new horizons in genomics and medicine by discovering novel genetic factors in numerous health conditions. The analogous analysis of the correlations of large quantities of psychological and brain imaging measures may yield similarly striking results in the brain science. Smith et al. (Nat Neurosci. 18(11): 1565–1567, 2015) presented a study of the associations between MRI-detected resting-state functional connectomes and behavioral data, based on the Human Connectome Project’s (HCP) data release. Here we analyze the pairwise correlations between 717 psychological-, anatomical- and structural connectome–properties, based also on the Human Connectome Project’s 500-subject dataset. For the connectome properties, we have focused on the structural (or anatomical) connectomes, instead of the functional connectomes. For the structural connectome analysis we have computed and publicly deposited structural braingraphs at the site http://braingraph.org. Numerous non-trivial and hard-to-compute graph-theoretical parameters (like minimum bisection width, minimum vertex cover, eigenvalue gap, maximum matching number, maximum fractional matching number) were computed for braingraphs of each subject, gained from the left- and right hemispheres and the whole brain. The correlations of these parameters, as well as other anatomical and behavioral measures were detected and analyzed. For discovering and visualizing the most interesting correlations in the 717 x 717 matrix, we have applied the maximum spanning tree method. Apart from numerous natural correlations, which describe parameters computable or approximable from one another, we have found several significant, novel correlations in the dataset, e.g., between the score of the NIH Toolbox 9-hole Pegboard Dexterity Test and the maximum weight graph theoretical matching in the left hemisphere. We also have found correlations described very recently and independently from the HCP-dataset: e.g., between gambling behavior and the number of the connections leaving the insula: these already known findings independently validate the power of our method. Genome-wide association studies (GWAS) opened new horizons in genomics and medicine by discovering novel genetic factors in numerous health conditions. The analogous analysis of the correlations of large quantities of psychological and brain imaging measures may yield similarly striking results in the brain science. Smith et al. (Nat Neurosci. 18(11): 1565-1567, 2015) presented a study of the associations between MRI-detected resting-state functional connectomes and behavioral data, based on the Human Connectome Project's (HCP) data release. Here we analyze the pairwise correlations between 717 psychological-, anatomical- and structural connectome-properties, based also on the Human Connectome Project's 500-subject dataset. For the connectome properties, we have focused on the structural (or anatomical) connectomes, instead of the functional connectomes. For the structural connectome analysis we have computed and publicly deposited structural braingraphs at the site http://braingraph.org . Numerous non-trivial and hard-to-compute graph-theoretical parameters (like minimum bisection width, minimum vertex cover, eigenvalue gap, maximum matching number, maximum fractional matching number) were computed for braingraphs of each subject, gained from the left- and right hemispheres and the whole brain. The correlations of these parameters, as well as other anatomical and behavioral measures were detected and analyzed. For discovering and visualizing the most interesting correlations in the 717 x 717 matrix, we have applied the maximum spanning tree method. Apart from numerous natural correlations, which describe parameters computable or approximable from one another, we have found several significant, novel correlations in the dataset, e.g., between the score of the NIH Toolbox 9-hole Pegboard Dexterity Test and the maximum weight graph theoretical matching in the left hemisphere. We also have found correlations described very recently and independently from the HCP-dataset: e.g., between gambling behavior and the number of the connections leaving the insula: these already known findings independently validate the power of our method.Genome-wide association studies (GWAS) opened new horizons in genomics and medicine by discovering novel genetic factors in numerous health conditions. The analogous analysis of the correlations of large quantities of psychological and brain imaging measures may yield similarly striking results in the brain science. Smith et al. (Nat Neurosci. 18(11): 1565-1567, 2015) presented a study of the associations between MRI-detected resting-state functional connectomes and behavioral data, based on the Human Connectome Project's (HCP) data release. Here we analyze the pairwise correlations between 717 psychological-, anatomical- and structural connectome-properties, based also on the Human Connectome Project's 500-subject dataset. For the connectome properties, we have focused on the structural (or anatomical) connectomes, instead of the functional connectomes. For the structural connectome analysis we have computed and publicly deposited structural braingraphs at the site http://braingraph.org . Numerous non-trivial and hard-to-compute graph-theoretical parameters (like minimum bisection width, minimum vertex cover, eigenvalue gap, maximum matching number, maximum fractional matching number) were computed for braingraphs of each subject, gained from the left- and right hemispheres and the whole brain. The correlations of these parameters, as well as other anatomical and behavioral measures were detected and analyzed. For discovering and visualizing the most interesting correlations in the 717 x 717 matrix, we have applied the maximum spanning tree method. Apart from numerous natural correlations, which describe parameters computable or approximable from one another, we have found several significant, novel correlations in the dataset, e.g., between the score of the NIH Toolbox 9-hole Pegboard Dexterity Test and the maximum weight graph theoretical matching in the left hemisphere. We also have found correlations described very recently and independently from the HCP-dataset: e.g., between gambling behavior and the number of the connections leaving the insula: these already known findings independently validate the power of our method. Genome-wide association studies (GWAS) opened new horizons in genomics and medicine by discovering novel genetic factors in numerous health conditions. The analogous analysis of the correlations of large quantities of psychological and brain imaging measures may yield similarly striking results in the brain science. Smith et al. (Nat Neurosci. 18(11): 1565–1567, 2015 ) presented a study of the associations between MRI-detected resting-state functional connectomes and behavioral data, based on the Human Connectome Project’s (HCP) data release. Here we analyze the pairwise correlations between 717 psychological-, anatomical- and structural connectome–properties, based also on the Human Connectome Project’s 500-subject dataset. For the connectome properties, we have focused on the structural (or anatomical) connectomes, instead of the functional connectomes. For the structural connectome analysis we have computed and publicly deposited structural braingraphs at the site http://braingraph.org . Numerous non-trivial and hard-to-compute graph-theoretical parameters (like minimum bisection width, minimum vertex cover, eigenvalue gap, maximum matching number, maximum fractional matching number) were computed for braingraphs of each subject, gained from the left- and right hemispheres and the whole brain. The correlations of these parameters, as well as other anatomical and behavioral measures were detected and analyzed. For discovering and visualizing the most interesting correlations in the 717 x 717 matrix, we have applied the maximum spanning tree method. Apart from numerous natural correlations, which describe parameters computable or approximable from one another, we have found several significant, novel correlations in the dataset, e.g., between the score of the NIH Toolbox 9-hole Pegboard Dexterity Test and the maximum weight graph theoretical matching in the left hemisphere. We also have found correlations described very recently and independently from the HCP-dataset: e.g., between gambling behavior and the number of the connections leaving the insula: these already known findings independently validate the power of our method. |
| Author | Varga, Bálint Szalkai, Balázs Grolmusz, Vince |
| Author_xml | – sequence: 1 givenname: Balázs surname: Szalkai fullname: Szalkai, Balázs email: szalkai@pitgroup.org organization: PIT Bioinformatics Group, Eötvös University – sequence: 2 givenname: Bálint surname: Varga fullname: Varga, Bálint organization: PIT Bioinformatics Group, Eötvös University – sequence: 3 givenname: Vince orcidid: 0000-0001-9456-8876 surname: Grolmusz fullname: Grolmusz, Vince email: grolmusz@pitgroup.org organization: PIT Bioinformatics Group, Eötvös University, Uratim Ltd |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30088220$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u3CAUhVGVKP8P0E2E1E03bgHbgJdRlP5IqbpJ1gjj6zEjGxzAavI0edUyM0kqjZSuuBd9h3u45xQdOO8AoY-UfKGEiK-RUi5ZQagsmqYUBf-ATmhT0kLUvD54q2txjE5jXBNSV7KhR-i4JERKxsgJev6l59m6FTY-BBh1st5F7Hs8xycz-NGvrNEj1q7DMYXFpCXk1njnwCQ_AZ6DnyEkC1tVGgB3OukI6bUdlkm7PcU6l_iPTcOWmPSjnZYJx1k7t_GSAuRbSIPvztFhr8cIFy_nGbr_dnN3_aO4_f395_XVbWFKwVLRGg4tMNbXFIQkhpuybUxXMZG_yQyFDoBXlNBWsrrlUHWyJX3DTVMbAVqWZ-jz7t3s7mGBmNRko4Fx1A78EhUjMu-0obXI6Kc9dO2X4LK7DVVxLknFMnX5Qi3tBJ2ag510eFKvq88A3QEm-BgD9G8IJWoTr9rFq3K8ahOv4lkj9jTGpm1mKWg7_lfJdsqYp7gVhH-m3xf9BRwJvNw |
| CitedBy_id | crossref_primary_10_1038_s41590_022_01152_y crossref_primary_10_1007_s11571_021_09687_w crossref_primary_10_1002_hbm_24960 crossref_primary_10_1007_s11571_021_09670_5 crossref_primary_10_1016_j_neulet_2022_136913 crossref_primary_10_1016_j_bpsc_2020_02_006 crossref_primary_10_1007_s11571_018_9508_y crossref_primary_10_1038_s41598_020_68914_2 crossref_primary_10_1371_journal_pone_0292613 crossref_primary_10_1080_00051144_2021_1885890 |
| Cites_doi | 10.1007/s100510050929 10.1007/s11682-017-9720-0 10.1002/jtr.1980 10.1016/S0006-3223(01)01357-9 10.1093/brain/awh696 10.1038/nn.4125 10.1177/0956797610370159 10.1017/CBO9780511753893 10.1056/NEJMra0905980 10.1371/journal.pone.0130045 10.1016/j.physa.2008.10.007 10.1007/s00213-002-1115-1 10.1016/j.neuroimage.2012.01.021 10.1109/ICOSC.2015.7050820 10.1016/j.neuroimage.2013.05.074 10.1212/WNL.0b013e3182872e5f 10.1212/WNL.0b013e3182872ded |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Brain Imaging and Behavior is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Brain Imaging and Behavior is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7X7 7XB 88E 88G 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M2M M7P NAPCQ P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 |
| DOI | 10.1007/s11682-018-9937-6 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1931-7565 |
| EndPage | 1192 |
| ExternalDocumentID | 30088220 10_1007_s11682_018_9937_6 |
| Genre | Journal Article Comparative Study |
| GrantInformation_xml | – fundername: Nemzeti Kutatási és Technológiai Hivatal grantid: NKFI-126472 funderid: https://doi.org/10.13039/501100003827 – fundername: Nemzeti Kutatási és Technológiai Hivatal grantid: NKFI-126472 |
| GroupedDBID | --- -55 -5G -BR -EM -Y2 -~C .86 .VR 04C 06D 0R~ 0VY 1N0 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6J9 6NX 7RV 7X7 875 88E 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ AXYYD AZQEC B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMOBN ESBYG EX3 F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LK8 LLZTM M1P M2M M4Y M7P MA- NAPCQ NPVJJ NQJWS NU0 O9- O93 O9J OAM P62 P9L PF0 PQQKQ PROAC PSQYO PSYQQ PT4 QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SBS SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW YLTOR Z45 Z82 Z83 ZMTXR ZOVNA ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c372t-bc6ebe22f51e780c6c3b9cd4278222c1edee64101b825b6e4d8b0f96c95c7ea83 |
| IEDL.DBID | AGYKE |
| ISSN | 1931-7557 1931-7565 |
| IngestDate | Fri Sep 05 07:47:48 EDT 2025 Tue Oct 07 06:31:14 EDT 2025 Thu Apr 03 07:04:04 EDT 2025 Wed Oct 01 04:43:22 EDT 2025 Thu Apr 24 23:03:28 EDT 2025 Fri Feb 21 02:37:10 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Maximum spanning tree Braingraph Connectome |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-bc6ebe22f51e780c6c3b9cd4278222c1edee64101b825b6e4d8b0f96c95c7ea83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ORCID | 0000-0001-9456-8876 |
| PMID | 30088220 |
| PQID | 2084668042 |
| PQPubID | 1486349 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2085659157 proquest_journals_2084668042 pubmed_primary_30088220 crossref_primary_10_1007_s11682_018_9937_6 crossref_citationtrail_10_1007_s11682_018_9937_6 springer_journals_10_1007_s11682_018_9937_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20191000 2019-10-00 2019-Oct 20191001 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 20191000 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States – name: Indianapolis |
| PublicationTitle | Brain imaging and behavior |
| PublicationTitleAbbrev | Brain Imaging and Behavior |
| PublicationTitleAlternate | Brain Imaging Behav |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | DeYoungCGHirshJBShaneMSPapademetrisXRajeevanNGrayJRTesting predictions from personality neuroscience. brain structure and the big fivePsychological Science20102182082810.1177/0956797610370159204359513049165 FischlBFreesurferNeuroimage201262277478110.1016/j.neuroimage.2012.01.02136854763685476 BouchaudJ-PPottersMTheory of financial risk and derivative pricing: from statistical physics to risk management2003CambridgeCambridge University Press10.1017/CBO9780511753893 BridaJGDeiddaMGarridoNManuelaPAnalyzing the performance of the south tyrolean hospitality sector: a dynamic approachInternational Journal of Tourism Research201517219620810.1002/jtr.1980 LawlerELCombinatorial optimization: networks and matroids1976USACourier Dover Publications MantegnaRNHierarchical structure in financial marketsThe European Physical Journal B-Condensed Matter and Complex Systems199911119319710.1007/s1005100509291:CAS:528:DyaK1MXmslCitbw%3D McNabJAEdlowBLWitzelTHuangSYBhatHHeberleinKFeiweierTLiuKKeilBCohen-AdadJTisdallMDFolkerthRDKinneyHCWaldLLThe Human Connectome Project and beyond: initial applications of 300 mT/m gradientsNeuroImage20138023424510.1016/j.neuroimage.2013.05.07423711537 WonnacottTHWonnacottRJIntroductory statistics, Vol. 196901972New YorkWiley SwannACBjorkJMMoellerFGDoughertyDMTwo models of impulsivity: relationship to personality traits and psychopathologyBiological psychiatry20025198899410.1016/S0006-3223(01)01357-912062883 HeimoTKaskiKSaramäkiJMaximal spanning trees, asset graphs and random matrix denoising in the analysis of dynamics of financial networksPhysica A: Statistical Mechanics and its Applications2009388214515610.1016/j.physa.2008.10.007 Szalkai, B., & Grolmusz, V. (2018). Human sexual dimorphism of the relative cerebral area volumes in the data of the human connectome project, European Journal of Anatomy, 22,(3). SzalkaiBVargaBGrolmuszVGraph theoretical analysis reveals: Women’s brains are better connected than men’sPLoS One2015107e013004510.1371/journal.pone.01300451:CAS:528:DC%2BC2MXhtlGru7jF261327644488527 Szalkai, B., Varga, B., Grolmusz, V. (2017). Brain size bias-compensated graph-theoretical parameters are also better in women’s connectomes. Brain Imaging and Behavior. Also in arXiv:1512.01156. živkovićJMitrovićMTadićBCorrelation patterns in gene expressions along the cell cycle of yeast, volume Complex Networks of Studies in Computational Intelligence2009BerlinSpringer Jr., P.T.C., & McCrae, R.R. (1992). Revised NEO personality inventory and NEO Five-Factor inventory professional manual. Psychological Assessment Resources, Inc. Szalkai, B., Varga, B., Grolmusz, V. (2016). The graph of our mind. arXiv:1603.00904. WeintraubSDikmenSSHeatonRKTulskyDSZelazoPDBauerPJCarlozziNESlotkinJBlitzDWallner-AllenKCognition assessment using the nih toolboxNeurology20138011 Supplement 3S54S6410.1212/WNL.0b013e3182872ded234795463662346 ManolioTAGenomewide association studies and assessment of the risk of diseaseThe New England journal of medicine201036316617610.1056/NEJMra09059801:CAS:528:DC%2BC3cXptFWmt7w%3D20647212 RiccelliRToschiNNigroSTerraccianoAPassamontiLSurface-based morphometry reveals the neuroanatomical basis of the five-factor model of personalitySocial Cognitive and Affective Neuroscience201712671684281229615390726 GershonRCWagsterMVHendrieHCFoxNACookKFNowinskiCJNih toolbox for assessment of neurological and behavioral functionNeurology201380S2S610.1212/WNL.0b013e3182872e5f234795383662335 Ha, H.-Y., Chen, S.-C., Chen, M. (2015). Fc-mst: Feature correlation maximum spanning tree for multimedia concept classification. In 2015 IEEE International Conference on Semantic Computing (ICSC) (pp. 276–283): IEEE. PetryNMDiscounting of delayed rewards in substance abusers: relationship to antisocial personality disorderPsychopharmacology200216242543210.1007/s00213-002-1115-11:CAS:528:DC%2BD38XmvFCktbg%3D12172697 SmithSMNicholsTEVidaurreDWinklerAMBehrensTEJGlasserMFUgurbilKBarchDMVan EssenDCMillerKLA positive-negative mode of population covariation links brain connectivity, demographics and behaviorNature neuroscience2015181565156710.1038/nn.41251:CAS:528:DC%2BC2MXhsFKqu7vN264146164625579 WitelsonSFBereshHKigarDLIntelligence and brain size in 100 postmortem brains: sex, lateralization and age factorsBrain: A Journal of Neurology2006129Pt 238639810.1093/brain/awh6961:STN:280:DC%2BD28%2FksFejuw%3D%3D B Fischl (9937_CR4) 2012; 62 9937_CR19 SF Witelson (9937_CR22) 2006; 129 9937_CR17 B Szalkai (9937_CR18) 2015; 10 TA Manolio (9937_CR10) 2010; 363 JG Brida (9937_CR2) 2015; 17 CG DeYoung (9937_CR3) 2010; 21 RN Mantegna (9937_CR11) 1999; 11 R Riccelli (9937_CR14) 2017; 12 SM Smith (9937_CR15) 2015; 18 9937_CR6 JA McNab (9937_CR12) 2013; 80 9937_CR8 AC Swann (9937_CR16) 2002; 51 RC Gershon (9937_CR5) 2013; 80 J-P Bouchaud (9937_CR1) 2003 NM Petry (9937_CR13) 2002; 162 EL Lawler (9937_CR9) 1976 TH Wonnacott (9937_CR23) 1972 9937_CR20 T Heimo (9937_CR7) 2009; 388 S Weintraub (9937_CR21) 2013; 80 J živković (9937_CR24) 2009 |
| References_xml | – reference: McNabJAEdlowBLWitzelTHuangSYBhatHHeberleinKFeiweierTLiuKKeilBCohen-AdadJTisdallMDFolkerthRDKinneyHCWaldLLThe Human Connectome Project and beyond: initial applications of 300 mT/m gradientsNeuroImage20138023424510.1016/j.neuroimage.2013.05.07423711537 – reference: BouchaudJ-PPottersMTheory of financial risk and derivative pricing: from statistical physics to risk management2003CambridgeCambridge University Press10.1017/CBO9780511753893 – reference: FischlBFreesurferNeuroimage201262277478110.1016/j.neuroimage.2012.01.02136854763685476 – reference: WonnacottTHWonnacottRJIntroductory statistics, Vol. 196901972New YorkWiley – reference: HeimoTKaskiKSaramäkiJMaximal spanning trees, asset graphs and random matrix denoising in the analysis of dynamics of financial networksPhysica A: Statistical Mechanics and its Applications2009388214515610.1016/j.physa.2008.10.007 – reference: WeintraubSDikmenSSHeatonRKTulskyDSZelazoPDBauerPJCarlozziNESlotkinJBlitzDWallner-AllenKCognition assessment using the nih toolboxNeurology20138011 Supplement 3S54S6410.1212/WNL.0b013e3182872ded234795463662346 – reference: živkovićJMitrovićMTadićBCorrelation patterns in gene expressions along the cell cycle of yeast, volume Complex Networks of Studies in Computational Intelligence2009BerlinSpringer – reference: Jr., P.T.C., & McCrae, R.R. (1992). Revised NEO personality inventory and NEO Five-Factor inventory professional manual. Psychological Assessment Resources, Inc. – reference: Szalkai, B., Varga, B., Grolmusz, V. (2017). Brain size bias-compensated graph-theoretical parameters are also better in women’s connectomes. Brain Imaging and Behavior. Also in arXiv:1512.01156. – reference: DeYoungCGHirshJBShaneMSPapademetrisXRajeevanNGrayJRTesting predictions from personality neuroscience. brain structure and the big fivePsychological Science20102182082810.1177/0956797610370159204359513049165 – reference: SmithSMNicholsTEVidaurreDWinklerAMBehrensTEJGlasserMFUgurbilKBarchDMVan EssenDCMillerKLA positive-negative mode of population covariation links brain connectivity, demographics and behaviorNature neuroscience2015181565156710.1038/nn.41251:CAS:528:DC%2BC2MXhsFKqu7vN264146164625579 – reference: SwannACBjorkJMMoellerFGDoughertyDMTwo models of impulsivity: relationship to personality traits and psychopathologyBiological psychiatry20025198899410.1016/S0006-3223(01)01357-912062883 – reference: Szalkai, B., Varga, B., Grolmusz, V. (2016). The graph of our mind. arXiv:1603.00904. – reference: LawlerELCombinatorial optimization: networks and matroids1976USACourier Dover Publications – reference: ManolioTAGenomewide association studies and assessment of the risk of diseaseThe New England journal of medicine201036316617610.1056/NEJMra09059801:CAS:528:DC%2BC3cXptFWmt7w%3D20647212 – reference: MantegnaRNHierarchical structure in financial marketsThe European Physical Journal B-Condensed Matter and Complex Systems199911119319710.1007/s1005100509291:CAS:528:DyaK1MXmslCitbw%3D – reference: PetryNMDiscounting of delayed rewards in substance abusers: relationship to antisocial personality disorderPsychopharmacology200216242543210.1007/s00213-002-1115-11:CAS:528:DC%2BD38XmvFCktbg%3D12172697 – reference: GershonRCWagsterMVHendrieHCFoxNACookKFNowinskiCJNih toolbox for assessment of neurological and behavioral functionNeurology201380S2S610.1212/WNL.0b013e3182872e5f234795383662335 – reference: SzalkaiBVargaBGrolmuszVGraph theoretical analysis reveals: Women’s brains are better connected than men’sPLoS One2015107e013004510.1371/journal.pone.01300451:CAS:528:DC%2BC2MXhtlGru7jF261327644488527 – reference: BridaJGDeiddaMGarridoNManuelaPAnalyzing the performance of the south tyrolean hospitality sector: a dynamic approachInternational Journal of Tourism Research201517219620810.1002/jtr.1980 – reference: WitelsonSFBereshHKigarDLIntelligence and brain size in 100 postmortem brains: sex, lateralization and age factorsBrain: A Journal of Neurology2006129Pt 238639810.1093/brain/awh6961:STN:280:DC%2BD28%2FksFejuw%3D%3D – reference: RiccelliRToschiNNigroSTerraccianoAPassamontiLSurface-based morphometry reveals the neuroanatomical basis of the five-factor model of personalitySocial Cognitive and Affective Neuroscience201712671684281229615390726 – reference: Szalkai, B., & Grolmusz, V. (2018). Human sexual dimorphism of the relative cerebral area volumes in the data of the human connectome project, European Journal of Anatomy, 22,(3). – reference: Ha, H.-Y., Chen, S.-C., Chen, M. (2015). Fc-mst: Feature correlation maximum spanning tree for multimedia concept classification. In 2015 IEEE International Conference on Semantic Computing (ICSC) (pp. 276–283): IEEE. – volume: 11 start-page: 193 issue: 1 year: 1999 ident: 9937_CR11 publication-title: The European Physical Journal B-Condensed Matter and Complex Systems doi: 10.1007/s100510050929 – ident: 9937_CR20 doi: 10.1007/s11682-017-9720-0 – volume-title: Correlation patterns in gene expressions along the cell cycle of yeast, volume Complex Networks of Studies in Computational Intelligence year: 2009 ident: 9937_CR24 – ident: 9937_CR8 – volume: 17 start-page: 196 issue: 2 year: 2015 ident: 9937_CR2 publication-title: International Journal of Tourism Research doi: 10.1002/jtr.1980 – volume: 51 start-page: 988 year: 2002 ident: 9937_CR16 publication-title: Biological psychiatry doi: 10.1016/S0006-3223(01)01357-9 – volume: 129 start-page: 386 issue: Pt 2 year: 2006 ident: 9937_CR22 publication-title: Brain: A Journal of Neurology doi: 10.1093/brain/awh696 – volume: 18 start-page: 1565 year: 2015 ident: 9937_CR15 publication-title: Nature neuroscience doi: 10.1038/nn.4125 – volume: 21 start-page: 820 year: 2010 ident: 9937_CR3 publication-title: Psychological Science doi: 10.1177/0956797610370159 – volume-title: Theory of financial risk and derivative pricing: from statistical physics to risk management year: 2003 ident: 9937_CR1 doi: 10.1017/CBO9780511753893 – volume: 363 start-page: 166 year: 2010 ident: 9937_CR10 publication-title: The New England journal of medicine doi: 10.1056/NEJMra0905980 – volume: 10 start-page: e0130045 issue: 7 year: 2015 ident: 9937_CR18 publication-title: PLoS One doi: 10.1371/journal.pone.0130045 – volume: 388 start-page: 145 issue: 2 year: 2009 ident: 9937_CR7 publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2008.10.007 – volume: 162 start-page: 425 year: 2002 ident: 9937_CR13 publication-title: Psychopharmacology doi: 10.1007/s00213-002-1115-1 – volume: 62 start-page: 774 issue: 2 year: 2012 ident: 9937_CR4 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – ident: 9937_CR6 doi: 10.1109/ICOSC.2015.7050820 – volume: 80 start-page: 234 year: 2013 ident: 9937_CR12 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.074 – volume: 80 start-page: S2 year: 2013 ident: 9937_CR5 publication-title: Neurology doi: 10.1212/WNL.0b013e3182872e5f – volume: 80 start-page: S54 issue: 11 Supplement 3 year: 2013 ident: 9937_CR21 publication-title: Neurology doi: 10.1212/WNL.0b013e3182872ded – ident: 9937_CR17 – ident: 9937_CR19 – volume-title: Introductory statistics, Vol. 19690 year: 1972 ident: 9937_CR23 – volume: 12 start-page: 671 year: 2017 ident: 9937_CR14 publication-title: Social Cognitive and Affective Neuroscience – volume-title: Combinatorial optimization: networks and matroids year: 1976 ident: 9937_CR9 |
| SSID | ssj0054891 |
| Score | 2.2420208 |
| Snippet | Genome-wide association studies (GWAS) opened new horizons in genomics and medicine by discovering novel genetic factors in numerous health conditions. The... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1185 |
| SubjectTerms | Biomedical and Life Sciences Biomedicine Brain Brain - anatomy & histology Brain - diagnostic imaging Cerebral hemispheres Computation Connectome Correlation analysis Data processing Datasets Eigenvalues Functional magnetic resonance imaging Gambling Gene mapping Genetic factors Genomics Graph matching Hemispheres Hemispheric laterality Human behavior Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Nerve Net - diagnostic imaging Neural Pathways - diagnostic imaging Neuroimaging Neuropsychological Tests Neuropsychology Neuroradiology Neurosciences Original Research Parameters Properties (attributes) Psychiatry |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS-QwEB72VjjuRfxxav1FBJ-UQttt0vRBRMVFhF2OQ8G3kqRZEdx2dVfwv_FfdSZtdr0TfVw2aUNnMvmSmXwfwCE3Sgo-kqHlMsINSspDzXMRahmliI5xkXI824OhuLpNr-_4XQeG_i4MlVX6mOgCdVkbOiPHTTqulAKfkJxOnkJSjaLsqpfQUK20QnniKMZ-wFJCzFhdWDq_HP7562MzwnOnoYeoJQ5xGJnPc7rLdLGQVKaAASCnu3P_rlSf4Oen1KlbkforsNxCSXbW2H4VOrZag5-DNlm-Dm8DReQL98yQAkdb88bqEZt8DHpMVSVrWGSJgQMbY-Q1s3ps2YQO6p-JcZV6IVJkVE86tTP_0wn8_deDznUYne66FmP1-jB-GTOMW04biVESnDWy1b_htn95c3EVtnoMoellySzURqDJk2TEY5vJyAjT07kpSawDUYaJbWmtSHGOa9x2amHTUupolAuTc5NZJXsb0K3qym4BE4nNlMZoESuT8gQ75PgOLdE-pRGxDCDy374wLVk5aWY8FguaZTJXgeYqyFyFCOBo3mXSMHV813jXG7RoJ-20WLhYAAfzv3G6UQ5FVbZ-cW0QAucxzwLYbBxh_rZeRPuVJArg2HvG4uFfDmX7-6HswC_EaHlTP7gLXfQHu4c4aKb3W-d-BwaLBcM priority: 102 providerName: ProQuest |
| Title | Mapping correlations of psychological and structural connectome properties of the dataset of the human connectome project with the maximum spanning tree method |
| URI | https://link.springer.com/article/10.1007/s11682-018-9937-6 https://www.ncbi.nlm.nih.gov/pubmed/30088220 https://www.proquest.com/docview/2084668042 https://www.proquest.com/docview/2085659157 |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1931-7565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054891 issn: 1931-7557 databaseCode: AFBBN dateStart: 20070601 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1931-7565 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0054891 issn: 1931-7557 databaseCode: 8FG dateStart: 20070601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1931-7565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0054891 issn: 1931-7557 databaseCode: AGYKE dateStart: 20070101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1931-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0054891 issn: 1931-7557 databaseCode: U2A dateStart: 20070601 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_aFMZeunZf9doVDfa04WIrliw_piVp6UgZo4HsyViyUsYWJywOjP0z-1d7J1tJ1y_oS0Kck2TLp9NPutPvAD4KUygpJiq0QkW4QElEqEUmQ62iBNExTlKOZ3t4Ic9GyflYjNtz3Asf7e5dks5Srw-7xVJRGAEO0IzOtm3ClqPb6sBW7_T7l743wIjBXaI8hCZxiG2l3pl5XyX_T0d3MOYd_6ibdgYv4NLfcBNt8vNoWesj8_cWl-MTn2gHtlsYynqN3uzChq1ewrNh62h_Bf-GBRE3XDFD2TvaeDk2m7D5TYPJiqpkDQMtsXegMFptU8-mls1pk_83sbVSKUSZjGJRF7b2P11ywFslaE-I0c6wk5gWf35Ml1OGNs_lVWLkQGdNyuvXMBr0L0_OwjaXQ2i6Ka9DbSSqC-cTEdtURUaars5MSYk-EKGY2JbWygTtg8Ylq5Y2KZWOJpk0mTCpLVT3DXSqWWX3gElu00KjpYkLkwiOBTJsQyt87aWRsQog8q80Ny3ROeXb-JWvKZqp43Ps-Jw6PpcBfFoVmTcsH48JH3g9ydsBv8h5hEBOooLzAD6s_sahSv6XorKzpZNB-JzFIg3gbaNfq9a6Ea11eBTAZ68r68ofvJV3T5Leh-cI97ImFPEAOqge9j1CqlofwmY6TvFTDU4P2-GE38f9i6_f8OqI964BGJ0dGg |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiGdJacFIcAFFysuOfahQW1ptaXeFUCv1FmLHi5DYZOluBfwa_gm_jRnH3gUqeutxtbbzmMk8POPvA3jBTS0FH8vYcplgglLwWHMlYi2TAqNjdFIOZ3s4EoPT4t0ZP1uBX-EsDLVVBpvoDHXTGdojxyQdPaXAFbI3068xsUZRdTVQaNSeWqHZdhBj_mDHkf3xDVO42fbhW5T3yyw72D_ZG8SeZSA2eZnNY20EPkiWjXlqS5kYYXKtTEMUFOg7TWoba0WBmqsxmdLCFo3UyVgJo7gpbS1zXPcGrBV5oTD5W9vdH73_EHwBpgOOsw-jpDTGxy5DXdUd3kuFpLYINDiKzur97RkvhbuXSrXOAx7chTs-dGU7va7dgxXb3oebQ1-cfwA_hzWBPXxihhg_fI8d68Zs-qeRZXXbsB61lhA_cDBaejPvJpZNqTBwTgivNAsjU0b9qzM7Dz8doeA_M2gfidFushsxqb9_nlxMGNpJx8XEqOjOeprsh3B6LZJ5BKtt19rHwERmy1qjdUprU_AMJyi8hpYon8aIVEaQhHdfGQ-OThwdX6olrDOJq0JxVSSuSkTwajFl2iODXDV4Mwi08kZiVi1VOoLni7_x86aaTd3a7sKNwZBbpbyMYL1XhMXV8oTyoyyJ4HXQjOXi_72Vjatv5RncGpwMj6vjw9HRE7iN8aHqexc3YRV1w25hDDbXT72iM_h43d_WbydNQ6c |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61Rap6QUBpGyjgSuXSKmrixI59QAhRVn1txYFKe0tjx6mQ2GRhtwJ-Df-DX8eMk-wWKnrrMYofcWY8D894PoBdYQslRaVCJ1SEDkoqQiO0DI2KUrSOUUn5OtvDc3l0kZ6MxGgJfvd3YSitspeJXlCXjaUzcnTSUVNKHIEfVF1axMfDwdvJ15AQpCjS2sNptCxy6n5-R_dt-ub4EGn9mvPBh0_vj8IOYSC0ScZnobESF8F5JWKXqchKmxhtS4KfQL1pY1c6J1PkWoOOlJEuLZWJKi2tFjZzhUpw3GV4kCWJpnTCbDR39tAR8Gh9aB_FIS446yOq_tpeLBUlRKCo0XRL72-deMvQvRWk9bpv8AgedkYre9dy2WNYcvUTWB12Yfl1-DUsqMzDFbOE9dFl17GmYpOb4pUVdcnaerVU6wMbo4y3s2bs2IRCAt-otiv1QpuUUebq1M36Rw8l-E8POkFidI7sW4yLH5_H12OGEtKjMDEKt7MWIPspXNwLXTZgpW5qtwVMcpcVBuVSXNhUcOygcQ6jkD6llbEKIOr_fW67suiEzvElXxR0JnLlSK6cyJXLAPbmXSZtTZC7Gm_3BM078TDNF8wcwM78NW5sitYUtWuufRs0tnUssgA2W0aYz5ZE5BnxKID9njMWg__3U57d_SmvYBV3VH52fH76HNbQMNRt0uI2rCBruBdofM3MS8_lDC7ve1v9AVCZQUE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+correlations+of+psychological+and+structural+connectome+properties+of+the+dataset+of+the+human+connectome+project+with+the+maximum+spanning+tree+method&rft.jtitle=Brain+imaging+and+behavior&rft.au=Szalkai%2C+Bal%C3%A1zs&rft.au=Varga%2C+B%C3%A1lint&rft.au=Grolmusz%2C+Vince&rft.date=2019-10-01&rft.issn=1931-7565&rft.eissn=1931-7565&rft.volume=13&rft.issue=5&rft.spage=1185&rft_id=info:doi/10.1007%2Fs11682-018-9937-6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-7557&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-7557&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-7557&client=summon |