Mapping correlations of psychological and structural connectome properties of the dataset of the human connectome project with the maximum spanning tree method

Genome-wide association studies (GWAS) opened new horizons in genomics and medicine by discovering novel genetic factors in numerous health conditions. The analogous analysis of the correlations of large quantities of psychological and brain imaging measures may yield similarly striking results in t...

Full description

Saved in:
Bibliographic Details
Published inBrain imaging and behavior Vol. 13; no. 5; pp. 1185 - 1192
Main Authors Szalkai, Balázs, Varga, Bálint, Grolmusz, Vince
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1931-7557
1931-7565
1931-7565
DOI10.1007/s11682-018-9937-6

Cover

Abstract Genome-wide association studies (GWAS) opened new horizons in genomics and medicine by discovering novel genetic factors in numerous health conditions. The analogous analysis of the correlations of large quantities of psychological and brain imaging measures may yield similarly striking results in the brain science. Smith et al. (Nat Neurosci. 18(11): 1565–1567, 2015 ) presented a study of the associations between MRI-detected resting-state functional connectomes and behavioral data, based on the Human Connectome Project’s (HCP) data release. Here we analyze the pairwise correlations between 717 psychological-, anatomical- and structural connectome–properties, based also on the Human Connectome Project’s 500-subject dataset. For the connectome properties, we have focused on the structural (or anatomical) connectomes, instead of the functional connectomes. For the structural connectome analysis we have computed and publicly deposited structural braingraphs at the site http://braingraph.org . Numerous non-trivial and hard-to-compute graph-theoretical parameters (like minimum bisection width, minimum vertex cover, eigenvalue gap, maximum matching number, maximum fractional matching number) were computed for braingraphs of each subject, gained from the left- and right hemispheres and the whole brain. The correlations of these parameters, as well as other anatomical and behavioral measures were detected and analyzed. For discovering and visualizing the most interesting correlations in the 717 x 717 matrix, we have applied the maximum spanning tree method. Apart from numerous natural correlations, which describe parameters computable or approximable from one another, we have found several significant, novel correlations in the dataset, e.g., between the score of the NIH Toolbox 9-hole Pegboard Dexterity Test and the maximum weight graph theoretical matching in the left hemisphere. We also have found correlations described very recently and independently from the HCP-dataset: e.g., between gambling behavior and the number of the connections leaving the insula: these already known findings independently validate the power of our method.
AbstractList Genome-wide association studies (GWAS) opened new horizons in genomics and medicine by discovering novel genetic factors in numerous health conditions. The analogous analysis of the correlations of large quantities of psychological and brain imaging measures may yield similarly striking results in the brain science. Smith et al. (Nat Neurosci. 18(11): 1565–1567, 2015) presented a study of the associations between MRI-detected resting-state functional connectomes and behavioral data, based on the Human Connectome Project’s (HCP) data release. Here we analyze the pairwise correlations between 717 psychological-, anatomical- and structural connectome–properties, based also on the Human Connectome Project’s 500-subject dataset. For the connectome properties, we have focused on the structural (or anatomical) connectomes, instead of the functional connectomes. For the structural connectome analysis we have computed and publicly deposited structural braingraphs at the site http://braingraph.org. Numerous non-trivial and hard-to-compute graph-theoretical parameters (like minimum bisection width, minimum vertex cover, eigenvalue gap, maximum matching number, maximum fractional matching number) were computed for braingraphs of each subject, gained from the left- and right hemispheres and the whole brain. The correlations of these parameters, as well as other anatomical and behavioral measures were detected and analyzed. For discovering and visualizing the most interesting correlations in the 717 x 717 matrix, we have applied the maximum spanning tree method. Apart from numerous natural correlations, which describe parameters computable or approximable from one another, we have found several significant, novel correlations in the dataset, e.g., between the score of the NIH Toolbox 9-hole Pegboard Dexterity Test and the maximum weight graph theoretical matching in the left hemisphere. We also have found correlations described very recently and independently from the HCP-dataset: e.g., between gambling behavior and the number of the connections leaving the insula: these already known findings independently validate the power of our method.
Genome-wide association studies (GWAS) opened new horizons in genomics and medicine by discovering novel genetic factors in numerous health conditions. The analogous analysis of the correlations of large quantities of psychological and brain imaging measures may yield similarly striking results in the brain science. Smith et al. (Nat Neurosci. 18(11): 1565-1567, 2015) presented a study of the associations between MRI-detected resting-state functional connectomes and behavioral data, based on the Human Connectome Project's (HCP) data release. Here we analyze the pairwise correlations between 717 psychological-, anatomical- and structural connectome-properties, based also on the Human Connectome Project's 500-subject dataset. For the connectome properties, we have focused on the structural (or anatomical) connectomes, instead of the functional connectomes. For the structural connectome analysis we have computed and publicly deposited structural braingraphs at the site http://braingraph.org . Numerous non-trivial and hard-to-compute graph-theoretical parameters (like minimum bisection width, minimum vertex cover, eigenvalue gap, maximum matching number, maximum fractional matching number) were computed for braingraphs of each subject, gained from the left- and right hemispheres and the whole brain. The correlations of these parameters, as well as other anatomical and behavioral measures were detected and analyzed. For discovering and visualizing the most interesting correlations in the 717 x 717 matrix, we have applied the maximum spanning tree method. Apart from numerous natural correlations, which describe parameters computable or approximable from one another, we have found several significant, novel correlations in the dataset, e.g., between the score of the NIH Toolbox 9-hole Pegboard Dexterity Test and the maximum weight graph theoretical matching in the left hemisphere. We also have found correlations described very recently and independently from the HCP-dataset: e.g., between gambling behavior and the number of the connections leaving the insula: these already known findings independently validate the power of our method.Genome-wide association studies (GWAS) opened new horizons in genomics and medicine by discovering novel genetic factors in numerous health conditions. The analogous analysis of the correlations of large quantities of psychological and brain imaging measures may yield similarly striking results in the brain science. Smith et al. (Nat Neurosci. 18(11): 1565-1567, 2015) presented a study of the associations between MRI-detected resting-state functional connectomes and behavioral data, based on the Human Connectome Project's (HCP) data release. Here we analyze the pairwise correlations between 717 psychological-, anatomical- and structural connectome-properties, based also on the Human Connectome Project's 500-subject dataset. For the connectome properties, we have focused on the structural (or anatomical) connectomes, instead of the functional connectomes. For the structural connectome analysis we have computed and publicly deposited structural braingraphs at the site http://braingraph.org . Numerous non-trivial and hard-to-compute graph-theoretical parameters (like minimum bisection width, minimum vertex cover, eigenvalue gap, maximum matching number, maximum fractional matching number) were computed for braingraphs of each subject, gained from the left- and right hemispheres and the whole brain. The correlations of these parameters, as well as other anatomical and behavioral measures were detected and analyzed. For discovering and visualizing the most interesting correlations in the 717 x 717 matrix, we have applied the maximum spanning tree method. Apart from numerous natural correlations, which describe parameters computable or approximable from one another, we have found several significant, novel correlations in the dataset, e.g., between the score of the NIH Toolbox 9-hole Pegboard Dexterity Test and the maximum weight graph theoretical matching in the left hemisphere. We also have found correlations described very recently and independently from the HCP-dataset: e.g., between gambling behavior and the number of the connections leaving the insula: these already known findings independently validate the power of our method.
Genome-wide association studies (GWAS) opened new horizons in genomics and medicine by discovering novel genetic factors in numerous health conditions. The analogous analysis of the correlations of large quantities of psychological and brain imaging measures may yield similarly striking results in the brain science. Smith et al. (Nat Neurosci. 18(11): 1565–1567, 2015 ) presented a study of the associations between MRI-detected resting-state functional connectomes and behavioral data, based on the Human Connectome Project’s (HCP) data release. Here we analyze the pairwise correlations between 717 psychological-, anatomical- and structural connectome–properties, based also on the Human Connectome Project’s 500-subject dataset. For the connectome properties, we have focused on the structural (or anatomical) connectomes, instead of the functional connectomes. For the structural connectome analysis we have computed and publicly deposited structural braingraphs at the site http://braingraph.org . Numerous non-trivial and hard-to-compute graph-theoretical parameters (like minimum bisection width, minimum vertex cover, eigenvalue gap, maximum matching number, maximum fractional matching number) were computed for braingraphs of each subject, gained from the left- and right hemispheres and the whole brain. The correlations of these parameters, as well as other anatomical and behavioral measures were detected and analyzed. For discovering and visualizing the most interesting correlations in the 717 x 717 matrix, we have applied the maximum spanning tree method. Apart from numerous natural correlations, which describe parameters computable or approximable from one another, we have found several significant, novel correlations in the dataset, e.g., between the score of the NIH Toolbox 9-hole Pegboard Dexterity Test and the maximum weight graph theoretical matching in the left hemisphere. We also have found correlations described very recently and independently from the HCP-dataset: e.g., between gambling behavior and the number of the connections leaving the insula: these already known findings independently validate the power of our method.
Author Varga, Bálint
Szalkai, Balázs
Grolmusz, Vince
Author_xml – sequence: 1
  givenname: Balázs
  surname: Szalkai
  fullname: Szalkai, Balázs
  email: szalkai@pitgroup.org
  organization: PIT Bioinformatics Group, Eötvös University
– sequence: 2
  givenname: Bálint
  surname: Varga
  fullname: Varga, Bálint
  organization: PIT Bioinformatics Group, Eötvös University
– sequence: 3
  givenname: Vince
  orcidid: 0000-0001-9456-8876
  surname: Grolmusz
  fullname: Grolmusz, Vince
  email: grolmusz@pitgroup.org
  organization: PIT Bioinformatics Group, Eötvös University, Uratim Ltd
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30088220$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u3CAUhVGVKP8P0E2E1E03bgHbgJdRlP5IqbpJ1gjj6zEjGxzAavI0edUyM0kqjZSuuBd9h3u45xQdOO8AoY-UfKGEiK-RUi5ZQagsmqYUBf-ATmhT0kLUvD54q2txjE5jXBNSV7KhR-i4JERKxsgJev6l59m6FTY-BBh1st5F7Hs8xycz-NGvrNEj1q7DMYXFpCXk1njnwCQ_AZ6DnyEkC1tVGgB3OukI6bUdlkm7PcU6l_iPTcOWmPSjnZYJx1k7t_GSAuRbSIPvztFhr8cIFy_nGbr_dnN3_aO4_f395_XVbWFKwVLRGg4tMNbXFIQkhpuybUxXMZG_yQyFDoBXlNBWsrrlUHWyJX3DTVMbAVqWZ-jz7t3s7mGBmNRko4Fx1A78EhUjMu-0obXI6Kc9dO2X4LK7DVVxLknFMnX5Qi3tBJ2ag510eFKvq88A3QEm-BgD9G8IJWoTr9rFq3K8ahOv4lkj9jTGpm1mKWg7_lfJdsqYp7gVhH-m3xf9BRwJvNw
CitedBy_id crossref_primary_10_1038_s41590_022_01152_y
crossref_primary_10_1007_s11571_021_09687_w
crossref_primary_10_1002_hbm_24960
crossref_primary_10_1007_s11571_021_09670_5
crossref_primary_10_1016_j_neulet_2022_136913
crossref_primary_10_1016_j_bpsc_2020_02_006
crossref_primary_10_1007_s11571_018_9508_y
crossref_primary_10_1038_s41598_020_68914_2
crossref_primary_10_1371_journal_pone_0292613
crossref_primary_10_1080_00051144_2021_1885890
Cites_doi 10.1007/s100510050929
10.1007/s11682-017-9720-0
10.1002/jtr.1980
10.1016/S0006-3223(01)01357-9
10.1093/brain/awh696
10.1038/nn.4125
10.1177/0956797610370159
10.1017/CBO9780511753893
10.1056/NEJMra0905980
10.1371/journal.pone.0130045
10.1016/j.physa.2008.10.007
10.1007/s00213-002-1115-1
10.1016/j.neuroimage.2012.01.021
10.1109/ICOSC.2015.7050820
10.1016/j.neuroimage.2013.05.074
10.1212/WNL.0b013e3182872e5f
10.1212/WNL.0b013e3182872ded
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Brain Imaging and Behavior is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Brain Imaging and Behavior is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TK
7X7
7XB
88E
88G
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2M
M7P
NAPCQ
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
DOI 10.1007/s11682-018-9937-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1931-7565
EndPage 1192
ExternalDocumentID 30088220
10_1007_s11682_018_9937_6
Genre Journal Article
Comparative Study
GrantInformation_xml – fundername: Nemzeti Kutatási és Technológiai Hivatal
  grantid: NKFI-126472
  funderid: https://doi.org/10.13039/501100003827
– fundername: Nemzeti Kutatási és Technológiai Hivatal
  grantid: NKFI-126472
GroupedDBID ---
-55
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06D
0R~
0VY
1N0
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6J9
6NX
7RV
7X7
875
88E
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
AXYYD
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMOBN
ESBYG
EX3
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LK8
LLZTM
M1P
M2M
M4Y
M7P
MA-
NAPCQ
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P62
P9L
PF0
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SBS
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
YLTOR
Z45
Z82
Z83
ZMTXR
ZOVNA
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c372t-bc6ebe22f51e780c6c3b9cd4278222c1edee64101b825b6e4d8b0f96c95c7ea83
IEDL.DBID AGYKE
ISSN 1931-7557
1931-7565
IngestDate Fri Sep 05 07:47:48 EDT 2025
Tue Oct 07 06:31:14 EDT 2025
Thu Apr 03 07:04:04 EDT 2025
Wed Oct 01 04:43:22 EDT 2025
Thu Apr 24 23:03:28 EDT 2025
Fri Feb 21 02:37:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Maximum spanning tree
Braingraph
Connectome
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-bc6ebe22f51e780c6c3b9cd4278222c1edee64101b825b6e4d8b0f96c95c7ea83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0001-9456-8876
PMID 30088220
PQID 2084668042
PQPubID 1486349
PageCount 8
ParticipantIDs proquest_miscellaneous_2085659157
proquest_journals_2084668042
pubmed_primary_30088220
crossref_primary_10_1007_s11682_018_9937_6
crossref_citationtrail_10_1007_s11682_018_9937_6
springer_journals_10_1007_s11682_018_9937_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191000
2019-10-00
2019-Oct
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 20191000
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Indianapolis
PublicationTitle Brain imaging and behavior
PublicationTitleAbbrev Brain Imaging and Behavior
PublicationTitleAlternate Brain Imaging Behav
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DeYoungCGHirshJBShaneMSPapademetrisXRajeevanNGrayJRTesting predictions from personality neuroscience. brain structure and the big fivePsychological Science20102182082810.1177/0956797610370159204359513049165
FischlBFreesurferNeuroimage201262277478110.1016/j.neuroimage.2012.01.02136854763685476
BouchaudJ-PPottersMTheory of financial risk and derivative pricing: from statistical physics to risk management2003CambridgeCambridge University Press10.1017/CBO9780511753893
BridaJGDeiddaMGarridoNManuelaPAnalyzing the performance of the south tyrolean hospitality sector: a dynamic approachInternational Journal of Tourism Research201517219620810.1002/jtr.1980
LawlerELCombinatorial optimization: networks and matroids1976USACourier Dover Publications
MantegnaRNHierarchical structure in financial marketsThe European Physical Journal B-Condensed Matter and Complex Systems199911119319710.1007/s1005100509291:CAS:528:DyaK1MXmslCitbw%3D
McNabJAEdlowBLWitzelTHuangSYBhatHHeberleinKFeiweierTLiuKKeilBCohen-AdadJTisdallMDFolkerthRDKinneyHCWaldLLThe Human Connectome Project and beyond: initial applications of 300 mT/m gradientsNeuroImage20138023424510.1016/j.neuroimage.2013.05.07423711537
WonnacottTHWonnacottRJIntroductory statistics, Vol. 196901972New YorkWiley
SwannACBjorkJMMoellerFGDoughertyDMTwo models of impulsivity: relationship to personality traits and psychopathologyBiological psychiatry20025198899410.1016/S0006-3223(01)01357-912062883
HeimoTKaskiKSaramäkiJMaximal spanning trees, asset graphs and random matrix denoising in the analysis of dynamics of financial networksPhysica A: Statistical Mechanics and its Applications2009388214515610.1016/j.physa.2008.10.007
Szalkai, B., & Grolmusz, V. (2018). Human sexual dimorphism of the relative cerebral area volumes in the data of the human connectome project, European Journal of Anatomy, 22,(3).
SzalkaiBVargaBGrolmuszVGraph theoretical analysis reveals: Women’s brains are better connected than men’sPLoS One2015107e013004510.1371/journal.pone.01300451:CAS:528:DC%2BC2MXhtlGru7jF261327644488527
Szalkai, B., Varga, B., Grolmusz, V. (2017). Brain size bias-compensated graph-theoretical parameters are also better in women’s connectomes. Brain Imaging and Behavior. Also in arXiv:1512.01156.
živkovićJMitrovićMTadićBCorrelation patterns in gene expressions along the cell cycle of yeast, volume Complex Networks of Studies in Computational Intelligence2009BerlinSpringer
Jr., P.T.C., & McCrae, R.R. (1992). Revised NEO personality inventory and NEO Five-Factor inventory professional manual. Psychological Assessment Resources, Inc.
Szalkai, B., Varga, B., Grolmusz, V. (2016). The graph of our mind. arXiv:1603.00904.
WeintraubSDikmenSSHeatonRKTulskyDSZelazoPDBauerPJCarlozziNESlotkinJBlitzDWallner-AllenKCognition assessment using the nih toolboxNeurology20138011 Supplement 3S54S6410.1212/WNL.0b013e3182872ded234795463662346
ManolioTAGenomewide association studies and assessment of the risk of diseaseThe New England journal of medicine201036316617610.1056/NEJMra09059801:CAS:528:DC%2BC3cXptFWmt7w%3D20647212
RiccelliRToschiNNigroSTerraccianoAPassamontiLSurface-based morphometry reveals the neuroanatomical basis of the five-factor model of personalitySocial Cognitive and Affective Neuroscience201712671684281229615390726
GershonRCWagsterMVHendrieHCFoxNACookKFNowinskiCJNih toolbox for assessment of neurological and behavioral functionNeurology201380S2S610.1212/WNL.0b013e3182872e5f234795383662335
Ha, H.-Y., Chen, S.-C., Chen, M. (2015). Fc-mst: Feature correlation maximum spanning tree for multimedia concept classification. In 2015 IEEE International Conference on Semantic Computing (ICSC) (pp. 276–283): IEEE.
PetryNMDiscounting of delayed rewards in substance abusers: relationship to antisocial personality disorderPsychopharmacology200216242543210.1007/s00213-002-1115-11:CAS:528:DC%2BD38XmvFCktbg%3D12172697
SmithSMNicholsTEVidaurreDWinklerAMBehrensTEJGlasserMFUgurbilKBarchDMVan EssenDCMillerKLA positive-negative mode of population covariation links brain connectivity, demographics and behaviorNature neuroscience2015181565156710.1038/nn.41251:CAS:528:DC%2BC2MXhsFKqu7vN264146164625579
WitelsonSFBereshHKigarDLIntelligence and brain size in 100 postmortem brains: sex, lateralization and age factorsBrain: A Journal of Neurology2006129Pt 238639810.1093/brain/awh6961:STN:280:DC%2BD28%2FksFejuw%3D%3D
B Fischl (9937_CR4) 2012; 62
9937_CR19
SF Witelson (9937_CR22) 2006; 129
9937_CR17
B Szalkai (9937_CR18) 2015; 10
TA Manolio (9937_CR10) 2010; 363
JG Brida (9937_CR2) 2015; 17
CG DeYoung (9937_CR3) 2010; 21
RN Mantegna (9937_CR11) 1999; 11
R Riccelli (9937_CR14) 2017; 12
SM Smith (9937_CR15) 2015; 18
9937_CR6
JA McNab (9937_CR12) 2013; 80
9937_CR8
AC Swann (9937_CR16) 2002; 51
RC Gershon (9937_CR5) 2013; 80
J-P Bouchaud (9937_CR1) 2003
NM Petry (9937_CR13) 2002; 162
EL Lawler (9937_CR9) 1976
TH Wonnacott (9937_CR23) 1972
9937_CR20
T Heimo (9937_CR7) 2009; 388
S Weintraub (9937_CR21) 2013; 80
J živković (9937_CR24) 2009
References_xml – reference: McNabJAEdlowBLWitzelTHuangSYBhatHHeberleinKFeiweierTLiuKKeilBCohen-AdadJTisdallMDFolkerthRDKinneyHCWaldLLThe Human Connectome Project and beyond: initial applications of 300 mT/m gradientsNeuroImage20138023424510.1016/j.neuroimage.2013.05.07423711537
– reference: BouchaudJ-PPottersMTheory of financial risk and derivative pricing: from statistical physics to risk management2003CambridgeCambridge University Press10.1017/CBO9780511753893
– reference: FischlBFreesurferNeuroimage201262277478110.1016/j.neuroimage.2012.01.02136854763685476
– reference: WonnacottTHWonnacottRJIntroductory statistics, Vol. 196901972New YorkWiley
– reference: HeimoTKaskiKSaramäkiJMaximal spanning trees, asset graphs and random matrix denoising in the analysis of dynamics of financial networksPhysica A: Statistical Mechanics and its Applications2009388214515610.1016/j.physa.2008.10.007
– reference: WeintraubSDikmenSSHeatonRKTulskyDSZelazoPDBauerPJCarlozziNESlotkinJBlitzDWallner-AllenKCognition assessment using the nih toolboxNeurology20138011 Supplement 3S54S6410.1212/WNL.0b013e3182872ded234795463662346
– reference: živkovićJMitrovićMTadićBCorrelation patterns in gene expressions along the cell cycle of yeast, volume Complex Networks of Studies in Computational Intelligence2009BerlinSpringer
– reference: Jr., P.T.C., & McCrae, R.R. (1992). Revised NEO personality inventory and NEO Five-Factor inventory professional manual. Psychological Assessment Resources, Inc.
– reference: Szalkai, B., Varga, B., Grolmusz, V. (2017). Brain size bias-compensated graph-theoretical parameters are also better in women’s connectomes. Brain Imaging and Behavior. Also in arXiv:1512.01156.
– reference: DeYoungCGHirshJBShaneMSPapademetrisXRajeevanNGrayJRTesting predictions from personality neuroscience. brain structure and the big fivePsychological Science20102182082810.1177/0956797610370159204359513049165
– reference: SmithSMNicholsTEVidaurreDWinklerAMBehrensTEJGlasserMFUgurbilKBarchDMVan EssenDCMillerKLA positive-negative mode of population covariation links brain connectivity, demographics and behaviorNature neuroscience2015181565156710.1038/nn.41251:CAS:528:DC%2BC2MXhsFKqu7vN264146164625579
– reference: SwannACBjorkJMMoellerFGDoughertyDMTwo models of impulsivity: relationship to personality traits and psychopathologyBiological psychiatry20025198899410.1016/S0006-3223(01)01357-912062883
– reference: Szalkai, B., Varga, B., Grolmusz, V. (2016). The graph of our mind. arXiv:1603.00904.
– reference: LawlerELCombinatorial optimization: networks and matroids1976USACourier Dover Publications
– reference: ManolioTAGenomewide association studies and assessment of the risk of diseaseThe New England journal of medicine201036316617610.1056/NEJMra09059801:CAS:528:DC%2BC3cXptFWmt7w%3D20647212
– reference: MantegnaRNHierarchical structure in financial marketsThe European Physical Journal B-Condensed Matter and Complex Systems199911119319710.1007/s1005100509291:CAS:528:DyaK1MXmslCitbw%3D
– reference: PetryNMDiscounting of delayed rewards in substance abusers: relationship to antisocial personality disorderPsychopharmacology200216242543210.1007/s00213-002-1115-11:CAS:528:DC%2BD38XmvFCktbg%3D12172697
– reference: GershonRCWagsterMVHendrieHCFoxNACookKFNowinskiCJNih toolbox for assessment of neurological and behavioral functionNeurology201380S2S610.1212/WNL.0b013e3182872e5f234795383662335
– reference: SzalkaiBVargaBGrolmuszVGraph theoretical analysis reveals: Women’s brains are better connected than men’sPLoS One2015107e013004510.1371/journal.pone.01300451:CAS:528:DC%2BC2MXhtlGru7jF261327644488527
– reference: BridaJGDeiddaMGarridoNManuelaPAnalyzing the performance of the south tyrolean hospitality sector: a dynamic approachInternational Journal of Tourism Research201517219620810.1002/jtr.1980
– reference: WitelsonSFBereshHKigarDLIntelligence and brain size in 100 postmortem brains: sex, lateralization and age factorsBrain: A Journal of Neurology2006129Pt 238639810.1093/brain/awh6961:STN:280:DC%2BD28%2FksFejuw%3D%3D
– reference: RiccelliRToschiNNigroSTerraccianoAPassamontiLSurface-based morphometry reveals the neuroanatomical basis of the five-factor model of personalitySocial Cognitive and Affective Neuroscience201712671684281229615390726
– reference: Szalkai, B., & Grolmusz, V. (2018). Human sexual dimorphism of the relative cerebral area volumes in the data of the human connectome project, European Journal of Anatomy, 22,(3).
– reference: Ha, H.-Y., Chen, S.-C., Chen, M. (2015). Fc-mst: Feature correlation maximum spanning tree for multimedia concept classification. In 2015 IEEE International Conference on Semantic Computing (ICSC) (pp. 276–283): IEEE.
– volume: 11
  start-page: 193
  issue: 1
  year: 1999
  ident: 9937_CR11
  publication-title: The European Physical Journal B-Condensed Matter and Complex Systems
  doi: 10.1007/s100510050929
– ident: 9937_CR20
  doi: 10.1007/s11682-017-9720-0
– volume-title: Correlation patterns in gene expressions along the cell cycle of yeast, volume Complex Networks of Studies in Computational Intelligence
  year: 2009
  ident: 9937_CR24
– ident: 9937_CR8
– volume: 17
  start-page: 196
  issue: 2
  year: 2015
  ident: 9937_CR2
  publication-title: International Journal of Tourism Research
  doi: 10.1002/jtr.1980
– volume: 51
  start-page: 988
  year: 2002
  ident: 9937_CR16
  publication-title: Biological psychiatry
  doi: 10.1016/S0006-3223(01)01357-9
– volume: 129
  start-page: 386
  issue: Pt 2
  year: 2006
  ident: 9937_CR22
  publication-title: Brain: A Journal of Neurology
  doi: 10.1093/brain/awh696
– volume: 18
  start-page: 1565
  year: 2015
  ident: 9937_CR15
  publication-title: Nature neuroscience
  doi: 10.1038/nn.4125
– volume: 21
  start-page: 820
  year: 2010
  ident: 9937_CR3
  publication-title: Psychological Science
  doi: 10.1177/0956797610370159
– volume-title: Theory of financial risk and derivative pricing: from statistical physics to risk management
  year: 2003
  ident: 9937_CR1
  doi: 10.1017/CBO9780511753893
– volume: 363
  start-page: 166
  year: 2010
  ident: 9937_CR10
  publication-title: The New England journal of medicine
  doi: 10.1056/NEJMra0905980
– volume: 10
  start-page: e0130045
  issue: 7
  year: 2015
  ident: 9937_CR18
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0130045
– volume: 388
  start-page: 145
  issue: 2
  year: 2009
  ident: 9937_CR7
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2008.10.007
– volume: 162
  start-page: 425
  year: 2002
  ident: 9937_CR13
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-002-1115-1
– volume: 62
  start-page: 774
  issue: 2
  year: 2012
  ident: 9937_CR4
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– ident: 9937_CR6
  doi: 10.1109/ICOSC.2015.7050820
– volume: 80
  start-page: 234
  year: 2013
  ident: 9937_CR12
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.074
– volume: 80
  start-page: S2
  year: 2013
  ident: 9937_CR5
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182872e5f
– volume: 80
  start-page: S54
  issue: 11 Supplement 3
  year: 2013
  ident: 9937_CR21
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182872ded
– ident: 9937_CR17
– ident: 9937_CR19
– volume-title: Introductory statistics, Vol. 19690
  year: 1972
  ident: 9937_CR23
– volume: 12
  start-page: 671
  year: 2017
  ident: 9937_CR14
  publication-title: Social Cognitive and Affective Neuroscience
– volume-title: Combinatorial optimization: networks and matroids
  year: 1976
  ident: 9937_CR9
SSID ssj0054891
Score 2.2420208
Snippet Genome-wide association studies (GWAS) opened new horizons in genomics and medicine by discovering novel genetic factors in numerous health conditions. The...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1185
SubjectTerms Biomedical and Life Sciences
Biomedicine
Brain
Brain - anatomy & histology
Brain - diagnostic imaging
Cerebral hemispheres
Computation
Connectome
Correlation analysis
Data processing
Datasets
Eigenvalues
Functional magnetic resonance imaging
Gambling
Gene mapping
Genetic factors
Genomics
Graph matching
Hemispheres
Hemispheric laterality
Human behavior
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Nerve Net - diagnostic imaging
Neural Pathways - diagnostic imaging
Neuroimaging
Neuropsychological Tests
Neuropsychology
Neuroradiology
Neurosciences
Original Research
Parameters
Properties (attributes)
Psychiatry
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS-QwEB72VjjuRfxxav1FBJ-UQttt0vRBRMVFhF2OQ8G3kqRZEdx2dVfwv_FfdSZtdr0TfVw2aUNnMvmSmXwfwCE3Sgo-kqHlMsINSspDzXMRahmliI5xkXI824OhuLpNr-_4XQeG_i4MlVX6mOgCdVkbOiPHTTqulAKfkJxOnkJSjaLsqpfQUK20QnniKMZ-wFJCzFhdWDq_HP7562MzwnOnoYeoJQ5xGJnPc7rLdLGQVKaAASCnu3P_rlSf4Oen1KlbkforsNxCSXbW2H4VOrZag5-DNlm-Dm8DReQL98yQAkdb88bqEZt8DHpMVSVrWGSJgQMbY-Q1s3ps2YQO6p-JcZV6IVJkVE86tTP_0wn8_deDznUYne66FmP1-jB-GTOMW04biVESnDWy1b_htn95c3EVtnoMoellySzURqDJk2TEY5vJyAjT07kpSawDUYaJbWmtSHGOa9x2amHTUupolAuTc5NZJXsb0K3qym4BE4nNlMZoESuT8gQ75PgOLdE-pRGxDCDy374wLVk5aWY8FguaZTJXgeYqyFyFCOBo3mXSMHV813jXG7RoJ-20WLhYAAfzv3G6UQ5FVbZ-cW0QAucxzwLYbBxh_rZeRPuVJArg2HvG4uFfDmX7-6HswC_EaHlTP7gLXfQHu4c4aKb3W-d-BwaLBcM
  priority: 102
  providerName: ProQuest
Title Mapping correlations of psychological and structural connectome properties of the dataset of the human connectome project with the maximum spanning tree method
URI https://link.springer.com/article/10.1007/s11682-018-9937-6
https://www.ncbi.nlm.nih.gov/pubmed/30088220
https://www.proquest.com/docview/2084668042
https://www.proquest.com/docview/2085659157
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1931-7565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054891
  issn: 1931-7557
  databaseCode: AFBBN
  dateStart: 20070601
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1931-7565
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0054891
  issn: 1931-7557
  databaseCode: 8FG
  dateStart: 20070601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1931-7565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0054891
  issn: 1931-7557
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1931-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0054891
  issn: 1931-7557
  databaseCode: U2A
  dateStart: 20070601
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_aFMZeunZf9doVDfa04WIrliw_piVp6UgZo4HsyViyUsYWJywOjP0z-1d7J1tJ1y_oS0Kck2TLp9NPutPvAD4KUygpJiq0QkW4QElEqEUmQ62iBNExTlKOZ3t4Ic9GyflYjNtz3Asf7e5dks5Srw-7xVJRGAEO0IzOtm3ClqPb6sBW7_T7l743wIjBXaI8hCZxiG2l3pl5XyX_T0d3MOYd_6ibdgYv4NLfcBNt8vNoWesj8_cWl-MTn2gHtlsYynqN3uzChq1ewrNh62h_Bf-GBRE3XDFD2TvaeDk2m7D5TYPJiqpkDQMtsXegMFptU8-mls1pk_83sbVSKUSZjGJRF7b2P11ywFslaE-I0c6wk5gWf35Ml1OGNs_lVWLkQGdNyuvXMBr0L0_OwjaXQ2i6Ka9DbSSqC-cTEdtURUaars5MSYk-EKGY2JbWygTtg8Ylq5Y2KZWOJpk0mTCpLVT3DXSqWWX3gElu00KjpYkLkwiOBTJsQyt87aWRsQog8q80Ny3ROeXb-JWvKZqp43Ps-Jw6PpcBfFoVmTcsH48JH3g9ydsBv8h5hEBOooLzAD6s_sahSv6XorKzpZNB-JzFIg3gbaNfq9a6Ea11eBTAZ68r68ofvJV3T5Leh-cI97ImFPEAOqge9j1CqlofwmY6TvFTDU4P2-GE38f9i6_f8OqI964BGJ0dGg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiGdJacFIcAFFysuOfahQW1ptaXeFUCv1FmLHi5DYZOluBfwa_gm_jRnH3gUqeutxtbbzmMk8POPvA3jBTS0FH8vYcplgglLwWHMlYi2TAqNjdFIOZ3s4EoPT4t0ZP1uBX-EsDLVVBpvoDHXTGdojxyQdPaXAFbI3068xsUZRdTVQaNSeWqHZdhBj_mDHkf3xDVO42fbhW5T3yyw72D_ZG8SeZSA2eZnNY20EPkiWjXlqS5kYYXKtTEMUFOg7TWoba0WBmqsxmdLCFo3UyVgJo7gpbS1zXPcGrBV5oTD5W9vdH73_EHwBpgOOsw-jpDTGxy5DXdUd3kuFpLYINDiKzur97RkvhbuXSrXOAx7chTs-dGU7va7dgxXb3oebQ1-cfwA_hzWBPXxihhg_fI8d68Zs-qeRZXXbsB61lhA_cDBaejPvJpZNqTBwTgivNAsjU0b9qzM7Dz8doeA_M2gfidFushsxqb9_nlxMGNpJx8XEqOjOeprsh3B6LZJ5BKtt19rHwERmy1qjdUprU_AMJyi8hpYon8aIVEaQhHdfGQ-OThwdX6olrDOJq0JxVSSuSkTwajFl2iODXDV4Mwi08kZiVi1VOoLni7_x86aaTd3a7sKNwZBbpbyMYL1XhMXV8oTyoyyJ4HXQjOXi_72Vjatv5RncGpwMj6vjw9HRE7iN8aHqexc3YRV1w25hDDbXT72iM_h43d_WbydNQ6c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61Rap6QUBpGyjgSuXSKmrixI59QAhRVn1txYFKe0tjx6mQ2GRhtwJ-Df-DX8eMk-wWKnrrMYofcWY8D894PoBdYQslRaVCJ1SEDkoqQiO0DI2KUrSOUUn5OtvDc3l0kZ6MxGgJfvd3YSitspeJXlCXjaUzcnTSUVNKHIEfVF1axMfDwdvJ15AQpCjS2sNptCxy6n5-R_dt-ub4EGn9mvPBh0_vj8IOYSC0ScZnobESF8F5JWKXqchKmxhtS4KfQL1pY1c6J1PkWoOOlJEuLZWJKi2tFjZzhUpw3GV4kCWJpnTCbDR39tAR8Gh9aB_FIS446yOq_tpeLBUlRKCo0XRL72-deMvQvRWk9bpv8AgedkYre9dy2WNYcvUTWB12Yfl1-DUsqMzDFbOE9dFl17GmYpOb4pUVdcnaerVU6wMbo4y3s2bs2IRCAt-otiv1QpuUUebq1M36Rw8l-E8POkFidI7sW4yLH5_H12OGEtKjMDEKt7MWIPspXNwLXTZgpW5qtwVMcpcVBuVSXNhUcOygcQ6jkD6llbEKIOr_fW67suiEzvElXxR0JnLlSK6cyJXLAPbmXSZtTZC7Gm_3BM078TDNF8wcwM78NW5sitYUtWuufRs0tnUssgA2W0aYz5ZE5BnxKID9njMWg__3U57d_SmvYBV3VH52fH76HNbQMNRt0uI2rCBruBdofM3MS8_lDC7ve1v9AVCZQUE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+correlations+of+psychological+and+structural+connectome+properties+of+the+dataset+of+the+human+connectome+project+with+the+maximum+spanning+tree+method&rft.jtitle=Brain+imaging+and+behavior&rft.au=Szalkai%2C+Bal%C3%A1zs&rft.au=Varga%2C+B%C3%A1lint&rft.au=Grolmusz%2C+Vince&rft.date=2019-10-01&rft.issn=1931-7565&rft.eissn=1931-7565&rft.volume=13&rft.issue=5&rft.spage=1185&rft_id=info:doi/10.1007%2Fs11682-018-9937-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-7557&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-7557&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-7557&client=summon