Kinematically aligned total knee arthroplasty limits high tibial forces, differences in tibial forces between compartments, and abnormal tibial contact kinematics during passive flexion
Purpose Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee functi...
Saved in:
Published in | Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA Vol. 26; no. 6; pp. 1589 - 1601 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2018
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0942-2056 1433-7347 1433-7347 |
DOI | 10.1007/s00167-017-4670-z |
Cover
Abstract | Purpose
Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion.
Methods
Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor.
Results
The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N,
p
= 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (
p
< 0.0001) and 18 mm (
p
< 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion.
Conclusions
After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion. |
---|---|
AbstractList | Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion.PURPOSEFollowing total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion.Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor.METHODSUsing cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor.The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion.RESULTSThe average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion.After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion.CONCLUSIONSAfter kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion. Purpose Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Methods Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. Results The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm ( p < 0.0001) and 18 mm ( p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. Conclusions After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion. PurposeFollowing total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion.MethodsUsing cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor.ResultsThe average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion.ConclusionsAfter kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion. Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion. |
Author | Howell, Stephen M. Hull, Maury L. Roth, Joshua D. |
Author_xml | – sequence: 1 givenname: Joshua D. surname: Roth fullname: Roth, Joshua D. organization: Biomedical Engineering Graduate Group, University of California, Davis – sequence: 2 givenname: Stephen M. surname: Howell fullname: Howell, Stephen M. organization: Biomedical Engineering Graduate Group, University of California, Davis, Department of Biomedical Engineering, University of California, Davis – sequence: 3 givenname: Maury L. surname: Hull fullname: Hull, Maury L. email: mlhull@ucdavis.edu organization: Biomedical Engineering Graduate Group, University of California, Davis, Department of Biomedical Engineering, University of California, Davis, Department of Mechanical and Aerospace Engineering, University of California, Davis, Department of Orthopaedic Surgery, University of California, Davis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28884312$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcuOFCEUhokZ4_SMPoAbQ-LGhaXcqqhamom3OIkbXROKOnQzQ0EJ9GjPm_l20ukejZNoWADh-04O5z9DJyEGQOgpJa8oIfJ1JoR2siFUNqKTpLl9gFZUcN5ILuQJWpFBsIaRtjtFZzlfEVKPYniETlnf94JTtkI_P7kAsy7OaO93WHu3DjDhEov2-DoAYJ3KJsXF61x22LvZlYw3br3BxY2uQjYmA_klnpy1kCDUC3bh71c8QvkOELCJ81ILzhBKVXSYsB5DTHMlj4KJoWhT8PVdXxlP2-TCGi86Z3cD2Hr44WJ4jB5a7TM8Oe7n6Ou7t18uPjSXn99_vHhz2RguWWnGwfZSD9PQTUxQwbrOStoPmtfvs5bbyRpOaTtp2tu2LikoFaBbCWyUo2n5OXpxqLuk-G0LuajZZQPe6wBxmxUduGyZZB2p6PN76FXcplC7U4wITmjf9l2lnh2p7TjDpJbkZp126i6UCtADYFLMOYH9jVCi9sGrQ_CqBq_2wavb6sh7jnGljq9OM2nn_2uyg5mX_Zgh_Wn639Iv6TzGYA |
CitedBy_id | crossref_primary_10_1002_ksa_12132 crossref_primary_10_1016_j_arth_2018_07_020 crossref_primary_10_2174_1874440001812010120 crossref_primary_10_1007_s00167_019_05558_4 crossref_primary_10_1016_j_otsr_2019_03_011 crossref_primary_10_18019_1028_4427_2025_31_1_12_18 crossref_primary_10_1002_ksa_12118 crossref_primary_10_1302_2633_1462_35_BJO_2022_0021_R2 crossref_primary_10_3390_jpm11060516 crossref_primary_10_1002_jor_24779 crossref_primary_10_1016_j_arth_2023_08_080 crossref_primary_10_3928_01477447_20190424_02 crossref_primary_10_3390_jpm12081274 crossref_primary_10_1007_s00402_021_04054_0 crossref_primary_10_1007_s00167_019_05658_1 crossref_primary_10_1007_s00167_022_07171_4 crossref_primary_10_1007_s00132_020_03929_1 crossref_primary_10_1007_s00167_021_06840_0 crossref_primary_10_1007_s00167_018_5270_2 crossref_primary_10_1111_os_12826 crossref_primary_10_3390_jpm12091468 crossref_primary_10_1007_s00167_020_06427_1 crossref_primary_10_1007_s00167_022_06939_y crossref_primary_10_1007_s00167_018_4946_y crossref_primary_10_1007_s00167_019_05547_7 crossref_primary_10_1115_1_4065813 crossref_primary_10_3390_bioengineering11090910 crossref_primary_10_1007_s00167_018_5220_z crossref_primary_10_3389_fbioe_2021_673275 crossref_primary_10_1302_0301_620X_101B8_BJJ_2018_0755_R3 crossref_primary_10_1016_j_arth_2019_08_055 crossref_primary_10_1007_s00132_020_03931_7 crossref_primary_10_1007_s00132_020_03932_6 crossref_primary_10_1080_21681163_2020_1835551 crossref_primary_10_1055_s_0039_1693000 crossref_primary_10_1055_s_0041_1739147 crossref_primary_10_1007_s00167_018_5105_1 crossref_primary_10_1097_CORR_0000000000000600 |
Cites_doi | 10.1016/j.jbiomech.2006.08.009 10.1002/jor.20755 10.1002/jor.22926 10.1016/j.knee.2007.09.007 10.1007/s00167-011-1824-2 10.1115/1.3138397 10.1002/art.1780330612 10.1016/j.arth.2013.09.037 10.1016/j.arth.2012.06.030 10.1007/s10439-009-9852-5 10.1016/j.arth.2016.03.046 10.1007/s00421-009-1085-7 10.1016/j.arth.2016.03.054 10.1016/j.jbiomech.2004.05.034 10.1007/s00167-012-2220-2 10.2106/00004623-200408000-00017 10.1097/01.blo.0000063121.39522.19 10.4081/or.2009.e26 10.1302/0301-620X.86B6.14589 10.1115/1.2794195 10.1177/0363546504274143 10.1007/s00167-013-2621-x 10.1016/j.arth.2013.10.020 10.1302/0301-620X.73B2.2005151 10.1002/jor.22645 10.1016/S0021-9290(98)00119-5 10.1007/s11999-012-2613-z 10.1007/s00167-009-0903-0 10.2106/00004623-199072040-00014 10.1007/s00264-015-2743-5 10.3928/01477447-20120123-04 10.1002/1529-0131(199905)42:5<861::AID-ANR4>3.0.CO;2-N 10.1007/s00167-005-0686-x 10.1302/0301-620X.96B7.32812 10.1302/0301-620X.96B10.34068 10.1007/s11999-008-0594-8 10.1115/1.4035471 10.2106/JBJS.N.01256 10.1016/0021-9290(88)90280-1 10.1115/1.4000852 10.1054/arth.2002.33264 10.1016/j.jbiomech.2017.05.008 10.1007/978-3-662-54082-4_2 10.1016/S0021-9290(99)00206-7 10.1007/s00167-014-3306-9 10.1016/S0021-9290(98)00181-X 10.1016/j.medengphy.2008.03.001 10.1302/0301-620X.84B1.12432 10.1053/otsm.2001.21759 10.1016/j.ocl.2015.08.006 10.1016/0021-9290(94)90028-0 10.1016/j.jbiomech.2012.05.029 10.1302/0301-620X.96B11.34152 10.1097/00003086-200011000-00007 10.1115/1.4036147 10.1016/j.clinbiomech.2013.06.006 |
ContentType | Journal Article |
Copyright | European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2017 Knee Surgery, Sports Traumatology, Arthroscopy is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2017 – notice: Knee Surgery, Sports Traumatology, Arthroscopy is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7TS 7X7 7XB 88E 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FR3 FYUFA GHDGH K9. KB0 M0S M1P NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00167-017-4670-z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1433-7347 |
EndPage | 1601 |
ExternalDocumentID | 28884312 10_1007_s00167_017_4670_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: CBET-1067527 funderid: http://dx.doi.org/10.13039/100000001 – fundername: Zimmer grantid: CW88095 funderid: http://dx.doi.org/10.13039/100006338 – fundername: Zimmer grantid: CW88095 – fundername: National Science Foundation grantid: CBET-1067527 |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1OC 1SB 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2QV 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAHQN AAIAL AAIPD AAJBT AAJKR AAMNL AANXM AANZL AARHV AARTL AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABPLI ABQBU ABQSL ABQWH ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACUDM ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFFPM AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBTC AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AITGF AITYG AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DCZOG DDRTE DL5 DNIVK DPUIP DU5 DXH EBD EBS EIOEI EJD EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HF~ HG5 HG6 HGLYW HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LLZTM M1P M4Y MA- MEWTI N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9S PF0 PQQKQ PROAC PSQYO PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SUPJJ SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW WXSBR YLTOR Z45 Z7U Z7X Z82 Z83 Z87 Z8O Z8V Z8W Z91 Z92 ZMTXR ZOVNA ~EX AAYXX ABFSG ACSTC ADHKG AEYWJ AEZWR AFHIU AGHNM AGQPQ AGYGG AHPBZ AHWEU AIXLP AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7TS 7XB 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 EBLON LH4 PUEGO |
ID | FETCH-LOGICAL-c372t-b9f87a9d96d2414266f7189a3312253fdfc3115da18f5f5f74114ea57e2b7bc53 |
IEDL.DBID | U2A |
ISSN | 0942-2056 1433-7347 |
IngestDate | Fri Sep 05 09:13:34 EDT 2025 Fri Jul 25 20:12:27 EDT 2025 Thu Apr 03 07:05:09 EDT 2025 Tue Jul 01 02:59:37 EDT 2025 Thu Apr 24 23:03:15 EDT 2025 Fri Feb 21 02:37:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Tibial force sensor Kinematic alignment Anterior sliding Soft tissue balancing Intra-articular load Contact force imbalance Tibiofemoral joint |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-b9f87a9d96d2414266f7189a3312253fdfc3115da18f5f5f74114ea57e2b7bc53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28884312 |
PQID | 2043018586 |
PQPubID | 54177 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1937527260 proquest_journals_2043018586 pubmed_primary_28884312 crossref_primary_10_1007_s00167_017_4670_z crossref_citationtrail_10_1007_s00167_017_4670_z springer_journals_10_1007_s00167_017_4670_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180600 2018-6-00 2018-Jun 20180601 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 6 year: 2018 text: 20180600 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Hoboken |
PublicationTitle | Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA |
PublicationTitleAbbrev | Knee Surg Sports Traumatol Arthrosc |
PublicationTitleAlternate | Knee Surg Sports Traumatol Arthrosc |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg John Wiley & Sons, Inc |
Publisher_xml | – name: Springer Berlin Heidelberg – name: John Wiley & Sons, Inc |
References | Nam, Nunley, Barrack (CR37) 2014; 96-B Pottenger, Phillips, Draganich (CR41) 1990; 33 Amis, Dawkins (CR1) 1991; 73 CR39 Wilson, Feikes, Zavatsky, O’Connor (CR58) 2000; 33 Howell, Papadopoulos, Kuznik, Ghaly, Hull (CR27) 2015; 39 Roth, Howell, Matsuda, Lustig, van der Merwe (CR45) 2017 Babazadeh, Stoney, Lim, Choong (CR4) 2009 Merican, Ghosh, Deehan, Amis (CR36) 2009; 27 Whiteside, Saeki, Mihalko (CR56) 2000; 380 Bach, Hull (CR5) 1995; 117 Gustke, Golladay, Roche, Elson, Anderson (CR19) 2014; 29 Hunt, Ghosh, Blain, Athwal, Rushton, Amis, Longstaff, Deehan (CR29) 2014; 32 Grood, Suntay (CR18) 1983; 105 Dossett, Estrada, Swartz, LeFevre, Kwasman (CR13) 2014; 96-B Li, Most, Sultan, Schule, Zayontz, Park, Rubash (CR31) 2004; 86-A Markolf, Gorek, Kabo, Shapiro (CR34) 1990; 72 Howell, Hodapp, Vernace, Hull, Meade (CR24) 2013; 21 Pinskerova, Johal, Nakagawa, Sosna, Williams, Gedroyc, Freeman (CR40) 2004; 86 Robinson, Bull, Amis (CR44) 2005; 38 CR47 Sharma, Lou, Felson, Dunlop, Kirwan-Mellis, Hayes, Weinrach, Buchanan (CR51) 1999; 42 Banks, Bellemans, Nozaki, Whiteside, Harman, Hodge (CR6) 2003; 410 Roth, Howell, Hull (CR48) 2017; 139 LaPrade, Bollom, Wentorf, Wills, Meister (CR30) 2005; 33 Sharma, Dennis, Zingde, Mahfouz, Komistek (CR50) 2014; 29 Ward, Eng, Smallwood, Lieber (CR53) 2009; 467 Whiteside (CR55) 2002; 17 Meneghini, Ziemba-Davis, Lovro, Ireland, Damer (CR35) 2016; 31 Blankevoort, Huiskes, de Lange (CR10) 1988; 21 Ghosh, Merican, Iranpour, Deehan, Amis (CR17) 2012; 20 Belvedere, Ensini, Feliciangeli, Cenni, D’Angeli, Giannini, Leardini (CR9) 2012; 45 Watanabe, Ishizuki, Muneta, Banks (CR54) 2013; 28 Gustke, Golladay, Roche, Jerry, Elson, Anderson (CR20) 2014; 96-B Verstraete, Meere, Salvadore, Victor, Walker (CR52) 2017; 58 CR12 Heesterbeek, Verdonschot, Wymenga (CR22) 2008; 15 Li, Rudy, Sakane, Kanamori, Ma, Woo (CR32) 1999; 32 Lu, Tsai, Kuo, Hsu, Chen (CR33) 2008; 30 Arnold, Ward, Lieber, Delp (CR3) 2010; 38 Elmallah, Mistry, Cherian, Chughtai, Bhave, Roche, Mont (CR15) 2016; 31 Bellemans, Vandenneucker, Vanlauwe, Victor (CR8) 2010; 18 Dossett, Swartz, Estrada, LeFevre, Kwasman (CR14) 2012; 35 Amis, Gupte, Bull, Edwards (CR2) 2006; 14 Roth, Hull, Howell (CR49) 2015; 33 Roth, Howell, Hull (CR46) 2015; 97 Hosseini, Qi, Tsai, Liu, Rubash, Li (CR23) 2015; 23 Harner, Giffin, Vogrin, Woo (CR21) 2001; 9 Nedopil, Howell, Hull (CR38) 2016; 47 Bellemans, Banks, Victor, Vandenneucker, Moemans (CR7) 2002; 84 Wilson, Feikes, O’Connor (CR57) 1998; 31 Erskine, Jones, Maganaris, Degens (CR16) 2009; 106 Powers, Chen, Scher, Lee (CR42) 2010; 132 Defrate, Nha, Papannagari, Moses, Gill, Li (CR11) 2007; 40 Howell, Howell, Kuznik, Cohen, Hull (CR25) 2012; 471 Howell, Papadopoulos, Kuznik, Hull (CR28) 2013; 21 Race, Amis (CR43) 1994; 27 Howell, Hull, Mahfouz, Scott (CR26) 2017 LE Defrate (4670_CR11) 2007; 40 JD Roth (4670_CR46) 2015; 97 JR Robinson (4670_CR44) 2005; 38 S Banks (4670_CR6) 2003; 410 4670_CR47 SM Howell (4670_CR25) 2012; 471 AM Merican (4670_CR36) 2009; 27 LA Pottenger (4670_CR41) 1990; 33 CD Harner (4670_CR21) 2001; 9 SM Howell (4670_CR27) 2015; 39 KM Ghosh (4670_CR17) 2012; 20 A Hosseini (4670_CR23) 2015; 23 KL Markolf (4670_CR34) 1990; 72 TW Lu (4670_CR33) 2008; 30 S Babazadeh (4670_CR4) 2009 PJ Heesterbeek (4670_CR22) 2008; 15 JD Roth (4670_CR48) 2017; 139 EM Arnold (4670_CR3) 2010; 38 4670_CR12 HG Dossett (4670_CR14) 2012; 35 G Li (4670_CR32) 1999; 32 RK Elmallah (4670_CR15) 2016; 31 SR Ward (4670_CR53) 2009; 467 MA Verstraete (4670_CR52) 2017; 58 NC Hunt (4670_CR29) 2014; 32 ES Grood (4670_CR18) 1983; 105 JD Roth (4670_CR45) 2017 KA Gustke (4670_CR19) 2014; 29 LA Whiteside (4670_CR55) 2002; 17 HG Dossett (4670_CR13) 2014; 96-B V Pinskerova (4670_CR40) 2004; 86 L Sharma (4670_CR51) 1999; 42 G Li (4670_CR31) 2004; 86-A C Belvedere (4670_CR9) 2012; 45 RF LaPrade (4670_CR30) 2005; 33 AA Amis (4670_CR1) 1991; 73 AA Amis (4670_CR2) 2006; 14 JD Roth (4670_CR49) 2015; 33 RM Erskine (4670_CR16) 2009; 106 L Blankevoort (4670_CR10) 1988; 21 KA Gustke (4670_CR20) 2014; 96-B SM Howell (4670_CR26) 2017 A Sharma (4670_CR50) 2014; 29 A Race (4670_CR43) 1994; 27 JM Bach (4670_CR5) 1995; 117 AJ Nedopil (4670_CR38) 2016; 47 CM Powers (4670_CR42) 2010; 132 J Bellemans (4670_CR7) 2002; 84 SM Howell (4670_CR24) 2013; 21 4670_CR39 DR Wilson (4670_CR57) 1998; 31 D Nam (4670_CR37) 2014; 96-B DR Wilson (4670_CR58) 2000; 33 SM Howell (4670_CR28) 2013; 21 LA Whiteside (4670_CR56) 2000; 380 RM Meneghini (4670_CR35) 2016; 31 J Bellemans (4670_CR8) 2010; 18 T Watanabe (4670_CR54) 2013; 28 18846554 - J Orthop Res. 2009 Mar;27(3):330-4 23948721 - Knee Surg Sports Traumatol Arthrosc. 2013 Oct;21(10 ):2271-80 19468746 - Eur J Appl Physiol. 2009 Aug;106(6):827-38 2005151 - J Bone Joint Surg Br. 1991 Mar;73(2):260-7 24986944 - Bone Joint J. 2014 Jul;96-B(7):907-13 26218329 - J Orthop Res. 2015 Nov;33(11):1594-602 16228178 - Knee Surg Sports Traumatol Arthrosc. 2006 Mar;14(3):257-63 11837832 - J Bone Joint Surg Br. 2002 Jan;84(1):50-3 17070815 - J Biomech. 2007;40(8):1716-22 10213029 - J Biomech. 1999 Apr;32(4):395-400 24269069 - J Arthroplasty. 2014 May;29(5):955-60 15797588 - J Biomech. 2005 May;38(5):1067-74 18417412 - Med Eng Phys. 2008 Oct;30(8):1004-12 22186922 - Knee Surg Sports Traumatol Arthrosc. 2012 Jul;20(7):1349-56 19730815 - Knee Surg Sports Traumatol Arthrosc. 2010 Feb;18(2):152-6 12771823 - Clin Orthop Relat Res. 2003 May;(410):131-8 20370249 - J Biomech Eng. 2010 Feb;132(2):024503 25274917 - Bone Joint J. 2014 Oct;96-B(10):1333-8 2324143 - J Bone Joint Surg Am. 1990 Apr;72(4):557-67 23820027 - Clin Biomech (Bristol, Avon). 2013 Aug;28(7):777-82 26614919 - Orthop Clin North Am. 2016 Jan;47(1):41-50 26491132 - J Bone Joint Surg Am. 2015 Oct 21;97(20):1678-84 18006318 - Knee. 2008 Jan;15(1):45-9 28267191 - J Biomech Eng. 2017 Jun 1;139(6):null 27155997 - J Arthroplasty. 2016 Oct;31(10 ):2181-7 18972175 - Clin Orthop Relat Res. 2009 Apr;467(4):1074-82 15292421 - J Bone Joint Surg Am. 2004 Aug;86-A(8):1721-9 27155994 - J Arthroplasty. 2016 Sep;31(9 Suppl):102-5 22677336 - J Biomech. 2012 Jul 26;45(11):1886-92 2363739 - Arthritis Rheum. 1990 Jun;33(6):853-8 11064972 - Clin Orthop Relat Res. 2000 Nov;(380):45-57 25381418 - Bone Joint J. 2014 Nov;96-B(11 Supple A):96-100 9882045 - J Biomech. 1998 Dec;31(12):1127-36 22310400 - Orthopedics. 2012 Feb 17;35(2):e160-9 3182875 - J Biomech. 1988;21(9):705-20 8748517 - J Biomech Eng. 1995 Nov;117(4):373-82 16002488 - Am J Sports Med. 2005 Sep;33(9):1386-91 25239504 - Knee Surg Sports Traumatol Arthrosc. 2015 Oct;23 (10 ):3055-61 23122654 - J Arthroplasty. 2013 Apr;28(4):548-52 27987299 - J Biomech Eng. 2017 Apr 1;139(4):null 8106532 - J Biomech. 1994 Jan;27(1):13-24 15330038 - J Bone Joint Surg Br. 2004 Aug;86(6):925-31 6865355 - J Biomech Eng. 1983 May;105(2):136-44 24157225 - J Arthroplasty. 2014 May;29(5):945-9 12068398 - J Arthroplasty. 2002 Jun;17(4 Suppl 1):23-7 21808688 - Orthop Rev (Pavia). 2009 Oct 10;1(2):e26 10768395 - J Biomech. 2000 Apr;33(4):465-73 25823516 - Int Orthop. 2015 Nov;39(11):2117-24 19957039 - Ann Biomed Eng. 2010 Feb;38(2):269-79 28579262 - J Biomech. 2017 Jun 14;58:195-202 23052114 - Knee Surg Sports Traumatol Arthrosc. 2013 Oct;21(10):2281-7 24841798 - J Orthop Res. 2014 Sep;32(9):1208-13 22996362 - Clin Orthop Relat Res. 2013 Mar;471(3):1000-7 10323441 - Arthritis Rheum. 1999 May;42(5):861-70 |
References_xml | – volume: 40 start-page: 1716 issue: 8 year: 2007 end-page: 1722 ident: CR11 article-title: The biomechanical function of the patellar tendon during in vivo weight-bearing flexion publication-title: J Biomech doi: 10.1016/j.jbiomech.2006.08.009 – volume: 27 start-page: 330 issue: 3 year: 2009 end-page: 334 ident: CR36 article-title: The transpatellar approach for the knee in the laboratory publication-title: J Orthop Res doi: 10.1002/jor.20755 – volume: 33 start-page: 1594 issue: 11 year: 2015 end-page: 1602 ident: CR49 article-title: The limits of passive motion are variable between and unrelated within normal tibiofemoral joints publication-title: J Orthop Res doi: 10.1002/jor.22926 – volume: 15 start-page: 45 issue: 1 year: 2008 end-page: 49 ident: CR22 article-title: In vivo knee laxity in flexion and extension: a radiographic study in 30 older healthy subjects publication-title: Knee doi: 10.1016/j.knee.2007.09.007 – volume: 20 start-page: 1349 issue: 7 year: 2012 end-page: 1356 ident: CR17 article-title: Length-change patterns of the collateral ligaments after total knee arthroplasty publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-011-1824-2 – volume: 105 start-page: 136 issue: 2 year: 1983 end-page: 144 ident: CR18 article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee publication-title: J Biomech Eng doi: 10.1115/1.3138397 – volume: 33 start-page: 853 issue: 6 year: 1990 end-page: 858 ident: CR41 article-title: The effect of marginal osteophytes on reduction of varus-valgus instability in osteoarthritic knees publication-title: Arthritis Rheum doi: 10.1002/art.1780330612 – ident: CR39 – ident: CR12 – volume: 29 start-page: 945 issue: 5 year: 2014 end-page: 949 ident: CR50 article-title: Femoral condylar contact points start and remain posterior in high flexing patients publication-title: J Arthroplasty doi: 10.1016/j.arth.2013.09.037 – start-page: 1784 year: 2017 end-page: 1796 ident: CR26 article-title: Kinematically aligned total knee arthroplasty publication-title: Insall and Scott Surgery of the Knee – volume: 28 start-page: 548 issue: 4 year: 2013 end-page: 552 ident: CR54 article-title: Knee kinematics in anterior cruciate ligament-substituting arthroplasty with or without the posterior cruciate ligament publication-title: J Arthroplasty doi: 10.1016/j.arth.2012.06.030 – volume: 38 start-page: 269 issue: 2 year: 2010 end-page: 279 ident: CR3 article-title: A model of the lower limb for analysis of human movement publication-title: Ann Biomed Eng doi: 10.1007/s10439-009-9852-5 – volume: 31 start-page: 2181 issue: 10 year: 2016 end-page: 2187 ident: CR35 article-title: Can intraoperative sensors determine the “target” ligament balance? Early outcomes in total knee arthroplasty publication-title: J Arthroplasty doi: 10.1016/j.arth.2016.03.046 – volume: 106 start-page: 827 issue: 6 year: 2009 end-page: 838 ident: CR16 article-title: In vivo specific tension of the human quadriceps femoris muscle publication-title: Eur J Appl Physiol doi: 10.1007/s00421-009-1085-7 – volume: 31 start-page: 102 issue: 9 Suppl year: 2016 end-page: 105 ident: CR15 article-title: Can we really "Feel" a balanced total knee arthroplasty? publication-title: J Arthroplasty doi: 10.1016/j.arth.2016.03.054 – volume: 38 start-page: 1067 issue: 5 year: 2005 end-page: 1074 ident: CR44 article-title: Structural properties of the medial collateral ligament complex of the human knee publication-title: J Biomech doi: 10.1016/j.jbiomech.2004.05.034 – volume: 21 start-page: 2281 issue: 10 year: 2013 end-page: 2287 ident: CR24 article-title: Are undesirable contact kinematics minimized after kinematically aligned total knee arthroplasty? An intersurgeon analysis of consecutive patients publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-012-2220-2 – volume: 86-A start-page: 1721 issue: 8 year: 2004 end-page: 1729 ident: CR31 article-title: Knee kinematics with a high-flexion posterior stabilized total knee prosthesis: an in vitro robotic experimental investigation publication-title: J Bone Joint Surg Am doi: 10.2106/00004623-200408000-00017 – volume: 410 start-page: 131 issue: 5 year: 2003 end-page: 138 ident: CR6 article-title: Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties publication-title: Clin Orthop Relat Res doi: 10.1097/01.blo.0000063121.39522.19 – year: 2009 ident: CR4 article-title: The relevance of ligament balancing in total knee arthroplasty: how important is it? A systematic review of the literature publication-title: Orthop Rev (Pavia) doi: 10.4081/or.2009.e26 – volume: 86 start-page: 925 issue: 6 year: 2004 end-page: 931 ident: CR40 article-title: Does the femur roll-back with flexion? publication-title: J Bone Joint Surg Br doi: 10.1302/0301-620X.86B6.14589 – volume: 117 start-page: 373 issue: 4 year: 1995 end-page: 382 ident: CR5 article-title: A new load application system for in vitro study of ligamentous injuries to the human knee joint publication-title: J Biomech Eng doi: 10.1115/1.2794195 – volume: 33 start-page: 1386 issue: 9 year: 2005 end-page: 1391 ident: CR30 article-title: Mechanical properties of the posterolateral structures of the knee publication-title: Am J Sports Med doi: 10.1177/0363546504274143 – volume: 21 start-page: 2271 issue: 10 year: 2013 end-page: 2280 ident: CR28 article-title: Accurate alignment and high function after kinematically aligned TKA performed with generic instruments publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-013-2621-x – volume: 29 start-page: 955 issue: 5 year: 2014 end-page: 960 ident: CR19 article-title: A new method for defining balance: promising short-term clinical outcomes of sensor-guided TKA publication-title: J Arthroplasty doi: 10.1016/j.arth.2013.10.020 – volume: 73 start-page: 260 issue: 2 year: 1991 end-page: 267 ident: CR1 article-title: Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries publication-title: J Bone Joint Surg Br doi: 10.1302/0301-620X.73B2.2005151 – volume: 32 start-page: 1208 issue: 9 year: 2014 end-page: 1213 ident: CR29 article-title: How does laxity after single radius total knee arthroplasty compare with the native knee? publication-title: J Orthop Res doi: 10.1002/jor.22645 – ident: CR47 – volume: 31 start-page: 1127 issue: 12 year: 1998 end-page: 1136 ident: CR57 article-title: Ligaments and articular contact guide passive knee flexion publication-title: J Biomech doi: 10.1016/S0021-9290(98)00119-5 – volume: 471 start-page: 1000 issue: 3 year: 2012 end-page: 1007 ident: CR25 article-title: Does a kinematically aligned total knee arthroplasty restore function without failure regardless of alignment category? publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-012-2613-z – volume: 18 start-page: 152 issue: 2 year: 2010 end-page: 156 ident: CR8 article-title: The influence of coronal plane deformity on mediolateral ligament status: an observational study in varus knees publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-009-0903-0 – volume: 72 start-page: 557 issue: 4 year: 1990 end-page: 567 ident: CR34 article-title: Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique publication-title: J Bone Joint Surg Am doi: 10.2106/00004623-199072040-00014 – volume: 39 start-page: 2117 issue: 11 year: 2015 end-page: 2124 ident: CR27 article-title: Does varus alignment adversely affect implant survival and function six years after kinematically aligned total knee arthroplasty? publication-title: Int Orthop doi: 10.1007/s00264-015-2743-5 – volume: 35 start-page: e160 issue: 2 year: 2012 end-page: e169 ident: CR14 article-title: Kinematically versus mechanically aligned total knee arthroplasty publication-title: Orthopedics doi: 10.3928/01477447-20120123-04 – volume: 42 start-page: 861 issue: 5 year: 1999 end-page: 870 ident: CR51 article-title: Laxity in healthy and osteoarthritic knees publication-title: Arthritis Rheum doi: 10.1002/1529-0131(199905)42:5<861::AID-ANR4>3.0.CO;2-N – volume: 14 start-page: 257 issue: 3 year: 2006 end-page: 263 ident: CR2 article-title: Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-005-0686-x – volume: 96-B start-page: 907 issue: 7 year: 2014 end-page: 913 ident: CR13 article-title: A randomised controlled trial of kinematically and mechanically aligned total knee replacements: two-year clinical results publication-title: Bone Joint J doi: 10.1302/0301-620X.96B7.32812 – volume: 96-B start-page: 1333 issue: 10 year: 2014 end-page: 1338 ident: CR20 article-title: Increased satisfaction after total knee replacement using sensor-guided technology publication-title: Bone Joint J doi: 10.1302/0301-620X.96B10.34068 – volume: 467 start-page: 1074 issue: 4 year: 2009 end-page: 1082 ident: CR53 article-title: Are current measurements of lower extremity muscle architecture accurate? publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-008-0594-8 – volume: 139 start-page: 041001 issue: 4 year: 2017 end-page: 041008 ident: CR48 article-title: An improved tibial force sensor to compute contact forces and contact locations in vitro after total knee arthroplasty publication-title: J Biomech Eng doi: 10.1115/1.4035471 – volume: 97 start-page: 1678 issue: 20 year: 2015 end-page: 1684 ident: CR46 article-title: Native knee laxities at 0°, 45°, and 90° of flexion and their relationship to the goal of the gap-balancing alignment method of total knee arthroplasty publication-title: J Bone Joint Surg Am doi: 10.2106/JBJS.N.01256 – volume: 21 start-page: 705 issue: 9 year: 1988 end-page: 720 ident: CR10 article-title: The envelope of passive knee joint motion publication-title: J Biomech doi: 10.1016/0021-9290(88)90280-1 – volume: 132 start-page: 024503 issue: 2 year: 2010 ident: CR42 article-title: Multiplane loading of the extensor mechanism alters the patellar ligament force/quadriceps force ratio publication-title: J Biomech Eng doi: 10.1115/1.4000852 – volume: 17 start-page: 23 issue: 4 Suppl 1 year: 2002 end-page: 27 ident: CR55 article-title: Soft tissue balancing: the knee publication-title: J Arthroplasty doi: 10.1054/arth.2002.33264 – volume: 58 start-page: 195 year: 2017 end-page: 202 ident: CR52 article-title: Contact forces in the tibiofemoral joint from soft tissue tensions: implications to soft tissue balancing in total knee arthroplasty publication-title: J Biomech doi: 10.1016/j.jbiomech.2017.05.008 – start-page: 17 year: 2017 end-page: 27 ident: CR45 article-title: Soft tissue balance of the native knee provides guidance for balancing a total knee arthroplasty publication-title: Soft Tissue Balancing in Total Knee Arthroplasty doi: 10.1007/978-3-662-54082-4_2 – volume: 33 start-page: 465 issue: 4 year: 2000 end-page: 473 ident: CR58 article-title: The components of passive knee movement are coupled to flexion angle publication-title: J Biomech doi: 10.1016/S0021-9290(99)00206-7 – volume: 23 start-page: 3055 issue: 10 year: 2015 end-page: 3061 ident: CR23 article-title: In vivo length change patterns of the medial and lateral collateral ligaments along the flexion path of the knee publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-014-3306-9 – volume: 32 start-page: 395 issue: 4 year: 1999 end-page: 400 ident: CR32 article-title: The importance of quadriceps and hamstring muscle loading on knee kinematics and in situ forces in the ACL publication-title: J Biomech doi: 10.1016/S0021-9290(98)00181-X – volume: 30 start-page: 1004 issue: 8 year: 2008 end-page: 1012 ident: CR33 article-title: In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2008.03.001 – volume: 84 start-page: 50 issue: 1 year: 2002 end-page: 53 ident: CR7 article-title: Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset publication-title: J Bone Joint Surg Br doi: 10.1302/0301-620X.84B1.12432 – volume: 9 start-page: 39 issue: 2 year: 2001 end-page: 46 ident: CR21 article-title: Anatomy and biomechanics of theposterior cruciate ligament and posterolateral corner publication-title: Oper Techn Sport Med doi: 10.1053/otsm.2001.21759 – volume: 47 start-page: 41 issue: 1 year: 2016 end-page: 50 ident: CR38 article-title: Does malrotation of the tibial and femoral components compromise function in kinematically aligned total knee arthroplasty? publication-title: Orthop Clin North Am doi: 10.1016/j.ocl.2015.08.006 – volume: 27 start-page: 13 issue: 1 year: 1994 end-page: 24 ident: CR43 article-title: The mechanical properties of the two bundles of the human posterior cruciate ligament publication-title: J Biomech doi: 10.1016/0021-9290(94)90028-0 – volume: 45 start-page: 1886 issue: 11 year: 2012 end-page: 1892 ident: CR9 article-title: Geometrical changes of knee ligaments and patellar tendon during passive flexion publication-title: J Biomech doi: 10.1016/j.jbiomech.2012.05.029 – volume: 96-B start-page: 96 issue: 11 Supple A year: 2014 end-page: 100 ident: CR37 article-title: Patient dissatisfaction following total knee replacement: a growing concern? publication-title: Bone Joint J doi: 10.1302/0301-620X.96B11.34152 – volume: 380 start-page: 45 issue: 11 year: 2000 end-page: 57 ident: CR56 article-title: Functional medial ligament balancing in total knee arthroplasty publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-200011000-00007 – volume: 105 start-page: 136 issue: 2 year: 1983 ident: 4670_CR18 publication-title: J Biomech Eng doi: 10.1115/1.3138397 – volume: 47 start-page: 41 issue: 1 year: 2016 ident: 4670_CR38 publication-title: Orthop Clin North Am doi: 10.1016/j.ocl.2015.08.006 – volume: 38 start-page: 269 issue: 2 year: 2010 ident: 4670_CR3 publication-title: Ann Biomed Eng doi: 10.1007/s10439-009-9852-5 – volume: 30 start-page: 1004 issue: 8 year: 2008 ident: 4670_CR33 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2008.03.001 – volume: 20 start-page: 1349 issue: 7 year: 2012 ident: 4670_CR17 publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-011-1824-2 – volume: 21 start-page: 2281 issue: 10 year: 2013 ident: 4670_CR24 publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-012-2220-2 – volume: 33 start-page: 1594 issue: 11 year: 2015 ident: 4670_CR49 publication-title: J Orthop Res doi: 10.1002/jor.22926 – volume: 39 start-page: 2117 issue: 11 year: 2015 ident: 4670_CR27 publication-title: Int Orthop doi: 10.1007/s00264-015-2743-5 – volume: 72 start-page: 557 issue: 4 year: 1990 ident: 4670_CR34 publication-title: J Bone Joint Surg Am doi: 10.2106/00004623-199072040-00014 – volume: 31 start-page: 1127 issue: 12 year: 1998 ident: 4670_CR57 publication-title: J Biomech doi: 10.1016/S0021-9290(98)00119-5 – volume: 21 start-page: 2271 issue: 10 year: 2013 ident: 4670_CR28 publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-013-2621-x – volume: 106 start-page: 827 issue: 6 year: 2009 ident: 4670_CR16 publication-title: Eur J Appl Physiol doi: 10.1007/s00421-009-1085-7 – volume: 28 start-page: 548 issue: 4 year: 2013 ident: 4670_CR54 publication-title: J Arthroplasty doi: 10.1016/j.arth.2012.06.030 – volume: 40 start-page: 1716 issue: 8 year: 2007 ident: 4670_CR11 publication-title: J Biomech doi: 10.1016/j.jbiomech.2006.08.009 – volume: 471 start-page: 1000 issue: 3 year: 2012 ident: 4670_CR25 publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-012-2613-z – volume: 18 start-page: 152 issue: 2 year: 2010 ident: 4670_CR8 publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-009-0903-0 – volume: 15 start-page: 45 issue: 1 year: 2008 ident: 4670_CR22 publication-title: Knee doi: 10.1016/j.knee.2007.09.007 – volume: 27 start-page: 330 issue: 3 year: 2009 ident: 4670_CR36 publication-title: J Orthop Res doi: 10.1002/jor.20755 – volume: 96-B start-page: 1333 issue: 10 year: 2014 ident: 4670_CR20 publication-title: Bone Joint J doi: 10.1302/0301-620X.96B10.34068 – volume: 96-B start-page: 96 issue: 11 Supple A year: 2014 ident: 4670_CR37 publication-title: Bone Joint J doi: 10.1302/0301-620X.96B11.34152 – volume: 42 start-page: 861 issue: 5 year: 1999 ident: 4670_CR51 publication-title: Arthritis Rheum doi: 10.1002/1529-0131(199905)42:5<861::AID-ANR4>3.0.CO;2-N – start-page: 17 volume-title: Soft Tissue Balancing in Total Knee Arthroplasty year: 2017 ident: 4670_CR45 doi: 10.1007/978-3-662-54082-4_2 – volume: 38 start-page: 1067 issue: 5 year: 2005 ident: 4670_CR44 publication-title: J Biomech doi: 10.1016/j.jbiomech.2004.05.034 – volume: 29 start-page: 945 issue: 5 year: 2014 ident: 4670_CR50 publication-title: J Arthroplasty doi: 10.1016/j.arth.2013.09.037 – volume: 380 start-page: 45 issue: 11 year: 2000 ident: 4670_CR56 publication-title: Clin Orthop Relat Res doi: 10.1097/00003086-200011000-00007 – volume: 84 start-page: 50 issue: 1 year: 2002 ident: 4670_CR7 publication-title: J Bone Joint Surg Br doi: 10.1302/0301-620X.84B1.12432 – volume: 73 start-page: 260 issue: 2 year: 1991 ident: 4670_CR1 publication-title: J Bone Joint Surg Br doi: 10.1302/0301-620X.73B2.2005151 – year: 2009 ident: 4670_CR4 publication-title: Orthop Rev (Pavia) doi: 10.4081/or.2009.e26 – volume: 117 start-page: 373 issue: 4 year: 1995 ident: 4670_CR5 publication-title: J Biomech Eng doi: 10.1115/1.2794195 – volume: 410 start-page: 131 issue: 5 year: 2003 ident: 4670_CR6 publication-title: Clin Orthop Relat Res doi: 10.1097/01.blo.0000063121.39522.19 – ident: 4670_CR39 – volume: 96-B start-page: 907 issue: 7 year: 2014 ident: 4670_CR13 publication-title: Bone Joint J doi: 10.1302/0301-620X.96B7.32812 – start-page: 1784 volume-title: Insall and Scott Surgery of the Knee year: 2017 ident: 4670_CR26 – volume: 35 start-page: e160 issue: 2 year: 2012 ident: 4670_CR14 publication-title: Orthopedics doi: 10.3928/01477447-20120123-04 – volume: 97 start-page: 1678 issue: 20 year: 2015 ident: 4670_CR46 publication-title: J Bone Joint Surg Am doi: 10.2106/JBJS.N.01256 – volume: 45 start-page: 1886 issue: 11 year: 2012 ident: 4670_CR9 publication-title: J Biomech doi: 10.1016/j.jbiomech.2012.05.029 – volume: 467 start-page: 1074 issue: 4 year: 2009 ident: 4670_CR53 publication-title: Clin Orthop Relat Res doi: 10.1007/s11999-008-0594-8 – volume: 9 start-page: 39 issue: 2 year: 2001 ident: 4670_CR21 publication-title: Oper Techn Sport Med doi: 10.1053/otsm.2001.21759 – volume: 139 start-page: 041001 issue: 4 year: 2017 ident: 4670_CR48 publication-title: J Biomech Eng doi: 10.1115/1.4035471 – volume: 132 start-page: 024503 issue: 2 year: 2010 ident: 4670_CR42 publication-title: J Biomech Eng doi: 10.1115/1.4000852 – volume: 17 start-page: 23 issue: 4 Suppl 1 year: 2002 ident: 4670_CR55 publication-title: J Arthroplasty doi: 10.1054/arth.2002.33264 – volume: 33 start-page: 465 issue: 4 year: 2000 ident: 4670_CR58 publication-title: J Biomech doi: 10.1016/S0021-9290(99)00206-7 – volume: 23 start-page: 3055 issue: 10 year: 2015 ident: 4670_CR23 publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-014-3306-9 – volume: 31 start-page: 2181 issue: 10 year: 2016 ident: 4670_CR35 publication-title: J Arthroplasty doi: 10.1016/j.arth.2016.03.046 – volume: 14 start-page: 257 issue: 3 year: 2006 ident: 4670_CR2 publication-title: Knee Surg Sports Traumatol Arthrosc doi: 10.1007/s00167-005-0686-x – volume: 33 start-page: 853 issue: 6 year: 1990 ident: 4670_CR41 publication-title: Arthritis Rheum doi: 10.1002/art.1780330612 – volume: 27 start-page: 13 issue: 1 year: 1994 ident: 4670_CR43 publication-title: J Biomech doi: 10.1016/0021-9290(94)90028-0 – ident: 4670_CR47 doi: 10.1115/1.4036147 – volume: 31 start-page: 102 issue: 9 Suppl year: 2016 ident: 4670_CR15 publication-title: J Arthroplasty doi: 10.1016/j.arth.2016.03.054 – volume: 58 start-page: 195 year: 2017 ident: 4670_CR52 publication-title: J Biomech doi: 10.1016/j.jbiomech.2017.05.008 – volume: 86-A start-page: 1721 issue: 8 year: 2004 ident: 4670_CR31 publication-title: J Bone Joint Surg Am doi: 10.2106/00004623-200408000-00017 – volume: 32 start-page: 395 issue: 4 year: 1999 ident: 4670_CR32 publication-title: J Biomech doi: 10.1016/S0021-9290(98)00181-X – volume: 86 start-page: 925 issue: 6 year: 2004 ident: 4670_CR40 publication-title: J Bone Joint Surg Br doi: 10.1302/0301-620X.86B6.14589 – volume: 32 start-page: 1208 issue: 9 year: 2014 ident: 4670_CR29 publication-title: J Orthop Res doi: 10.1002/jor.22645 – volume: 33 start-page: 1386 issue: 9 year: 2005 ident: 4670_CR30 publication-title: Am J Sports Med doi: 10.1177/0363546504274143 – volume: 21 start-page: 705 issue: 9 year: 1988 ident: 4670_CR10 publication-title: J Biomech doi: 10.1016/0021-9290(88)90280-1 – volume: 29 start-page: 955 issue: 5 year: 2014 ident: 4670_CR19 publication-title: J Arthroplasty doi: 10.1016/j.arth.2013.10.020 – ident: 4670_CR12 doi: 10.1016/j.clinbiomech.2013.06.006 – reference: 18846554 - J Orthop Res. 2009 Mar;27(3):330-4 – reference: 2324143 - J Bone Joint Surg Am. 1990 Apr;72(4):557-67 – reference: 24157225 - J Arthroplasty. 2014 May;29(5):945-9 – reference: 16002488 - Am J Sports Med. 2005 Sep;33(9):1386-91 – reference: 3182875 - J Biomech. 1988;21(9):705-20 – reference: 12068398 - J Arthroplasty. 2002 Jun;17(4 Suppl 1):23-7 – reference: 15330038 - J Bone Joint Surg Br. 2004 Aug;86(6):925-31 – reference: 22310400 - Orthopedics. 2012 Feb 17;35(2):e160-9 – reference: 25823516 - Int Orthop. 2015 Nov;39(11):2117-24 – reference: 12771823 - Clin Orthop Relat Res. 2003 May;(410):131-8 – reference: 22996362 - Clin Orthop Relat Res. 2013 Mar;471(3):1000-7 – reference: 24841798 - J Orthop Res. 2014 Sep;32(9):1208-13 – reference: 10213029 - J Biomech. 1999 Apr;32(4):395-400 – reference: 11837832 - J Bone Joint Surg Br. 2002 Jan;84(1):50-3 – reference: 24986944 - Bone Joint J. 2014 Jul;96-B(7):907-13 – reference: 26491132 - J Bone Joint Surg Am. 2015 Oct 21;97(20):1678-84 – reference: 9882045 - J Biomech. 1998 Dec;31(12):1127-36 – reference: 6865355 - J Biomech Eng. 1983 May;105(2):136-44 – reference: 26614919 - Orthop Clin North Am. 2016 Jan;47(1):41-50 – reference: 28579262 - J Biomech. 2017 Jun 14;58:195-202 – reference: 2005151 - J Bone Joint Surg Br. 1991 Mar;73(2):260-7 – reference: 24269069 - J Arthroplasty. 2014 May;29(5):955-60 – reference: 27987299 - J Biomech Eng. 2017 Apr 1;139(4):null – reference: 19468746 - Eur J Appl Physiol. 2009 Aug;106(6):827-38 – reference: 8106532 - J Biomech. 1994 Jan;27(1):13-24 – reference: 23122654 - J Arthroplasty. 2013 Apr;28(4):548-52 – reference: 15797588 - J Biomech. 2005 May;38(5):1067-74 – reference: 20370249 - J Biomech Eng. 2010 Feb;132(2):024503 – reference: 11064972 - Clin Orthop Relat Res. 2000 Nov;(380):45-57 – reference: 10323441 - Arthritis Rheum. 1999 May;42(5):861-70 – reference: 22186922 - Knee Surg Sports Traumatol Arthrosc. 2012 Jul;20(7):1349-56 – reference: 18417412 - Med Eng Phys. 2008 Oct;30(8):1004-12 – reference: 23820027 - Clin Biomech (Bristol, Avon). 2013 Aug;28(7):777-82 – reference: 16228178 - Knee Surg Sports Traumatol Arthrosc. 2006 Mar;14(3):257-63 – reference: 25239504 - Knee Surg Sports Traumatol Arthrosc. 2015 Oct;23 (10 ):3055-61 – reference: 27155997 - J Arthroplasty. 2016 Oct;31(10 ):2181-7 – reference: 10768395 - J Biomech. 2000 Apr;33(4):465-73 – reference: 8748517 - J Biomech Eng. 1995 Nov;117(4):373-82 – reference: 25381418 - Bone Joint J. 2014 Nov;96-B(11 Supple A):96-100 – reference: 15292421 - J Bone Joint Surg Am. 2004 Aug;86-A(8):1721-9 – reference: 26218329 - J Orthop Res. 2015 Nov;33(11):1594-602 – reference: 28267191 - J Biomech Eng. 2017 Jun 1;139(6):null – reference: 18972175 - Clin Orthop Relat Res. 2009 Apr;467(4):1074-82 – reference: 19730815 - Knee Surg Sports Traumatol Arthrosc. 2010 Feb;18(2):152-6 – reference: 17070815 - J Biomech. 2007;40(8):1716-22 – reference: 25274917 - Bone Joint J. 2014 Oct;96-B(10):1333-8 – reference: 23052114 - Knee Surg Sports Traumatol Arthrosc. 2013 Oct;21(10):2281-7 – reference: 22677336 - J Biomech. 2012 Jul 26;45(11):1886-92 – reference: 19957039 - Ann Biomed Eng. 2010 Feb;38(2):269-79 – reference: 23948721 - Knee Surg Sports Traumatol Arthrosc. 2013 Oct;21(10 ):2271-80 – reference: 18006318 - Knee. 2008 Jan;15(1):45-9 – reference: 21808688 - Orthop Rev (Pavia). 2009 Oct 10;1(2):e26 – reference: 27155994 - J Arthroplasty. 2016 Sep;31(9 Suppl):102-5 – reference: 2363739 - Arthritis Rheum. 1990 Jun;33(6):853-8 |
SSID | ssj0005649 |
Score | 2.4184904 |
Snippet | Purpose
Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and... Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior... PurposeFollowing total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1589 |
SubjectTerms | Aged Aged, 80 and over Alignment Arthroplasty (knee) Arthroplasty, Replacement, Knee - adverse effects Arthroplasty, Replacement, Knee - methods Biomechanical Phenomena Biomedical materials Bone Malalignment - etiology Bone Malalignment - physiopathology Bone Malalignment - prevention & control Cadaver Cadavers Compartments Femoral components Femur Human performance Humans Joint surgery Kinematics Knee Knee Joint - physiopathology Knee Joint - surgery Knee Prosthesis Medical personnel Medicine Medicine & Public Health Middle Aged Orthopedics Range of Motion, Articular Recovery of function Surgery Surgical implants Tibia - physiopathology Tibia - surgery Tibial components Translation |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7WDkZfxn7PbTdusKdtprEdW9LTGGOlbGxPC-TNyLI0Soycze5D85_1v-udLSeEspIHY2wlIne6-6S7-w7gvaE_3ua1ia3TOp5rPmiqVEG7FCeEM4J9Dmdb_CouFvPvy3wZDty6kFY52cTBUNet4TPyM67hnJFzkcXn9d-Yu0ZxdDW00DiAhwkhEW7dIJZil-JRjPBXcQkK3U1RzdlAIsqM32yjyVTM4s2-X7oDNu8ESgf_c_4EHgfgiF9GST-FB9Y_g0c_Q2j8Odz8oMvAv6qb5hoJXv8hC4p9S-gaV95aJCXhnggEl_trbLiwqUNmK8axbAQJvpLR-IRTzxS6wUu__xRDXheOuetDijoN0b5GXXnGv800gJPgtelxNc2rw7EmEtcE2MnIomMyzta_gMX5t99fL-LQlyE2mUj7uFJOCq1qVdTk_9nFO_JwSmdZQtYhc7UzzOFT60S6nD4EWpK51bmwaSUqk2cv4dC33r4GlEIqyRw4vDOa51Yrl-uKUJyrtLIuiWA2SaU0gbSce2c05ZZueRBkSYIsWZDlJoIP2yHrkbHjvpdPJ1GXYfF25U7VIni3fUzLjmMp2tv2qitJ20SeCtoNRvBqVJHtr6VSSsJlaQQfJ53Zffl_p3J8_1RO4IjWjRyz1E7hsP93Zd8QHuqrt4PS3wKNGQnq priority: 102 providerName: ProQuest |
Title | Kinematically aligned total knee arthroplasty limits high tibial forces, differences in tibial forces between compartments, and abnormal tibial contact kinematics during passive flexion |
URI | https://link.springer.com/article/10.1007/s00167-017-4670-z https://www.ncbi.nlm.nih.gov/pubmed/28884312 https://www.proquest.com/docview/2043018586 https://www.proquest.com/docview/1937527260 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7WFsZexn7XWxdusKdthsSOLOkxLenKysoYC2RPRralMWqUUrsP7X_W_653tuVSug1GHoyx5Zic7u5T7rtPAO9L-uGtqMrYOmPiueE_mgqd0SrFSelKyTmH2RYn2dFq_mUt1kMfdxPY7qEk2UXqsdmtY8zHHFXJuafx1RbsCJaTokm8Sha3vI6sx7ya-07oLJQy__SIu8noHsK8Vx3tks7hE3g8oEVc9OZ9Cg-sfwYPvw718OdwfUyHTnTV1PUlEqb-RWET2w1Bajz11iLNDN4IgTBye4k1dzM1yBLF2PeKIGFWihSfMGyUQif429-9igOZC3vCesdLpyHGV2gKz6C3DgOY-W7KFk_DezXYN0LiGaF0iqzoWIFz41_A6nD54-AoHjZjiMtUJm1caKek0ZXOKkr6nNcdpTVt0nRGISF1lStZuKcyM-UEfQipzObWCGmTQhalSF_Ctt94uwuopNKKhW94OTQX1mgnTEHQzRVGWzeLYBqskpeDUjlvmFHno8ZyZ8icDJmzIfOrCD6MQ856mY5_3bwXTJ0PHtvk3CM8JfCisgjejZfJ17iAYrzdXDQ5gV0pEklLwAhe9VNk_LZEKUVgLIngY5gztw__66u8_q-738Aj8h3VM9X2YLs9v7BvCRO1xQS25FpOYGfx-efxko77y5Nv3yedZ9wAvsULKQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB7KFdQX8bextY6gL2rwLpdkNw9FqrZcvfYQaaFvcZPsijQkZ5Mi1__MF_82Z5LdO0qxb-UeQkj2brmZnflmd-YbgFc5_fE6KnJfG6X8UPFGU5bEFKUYIUwu2OdwtsUsnhyHX06ikzX462phOK3S2cTOUBd1znvk77mGc0jORcYf5r987hrFp6uuhYayrRWK7Y5izBZ2TPXiN4Vwzfb-Z5L36yDY2z36NPFtlwE_H4ug9bPESKGSIokL8mbssAzZ60SNxyPS9bEpTM6MNIUaSRPRh1zwKNQqEjrIRJZz1whyAeshb6AMYP3j7uzrt1WSSdwD8ISLYOjOnasOOxpT5hxnL0HGauhfXPaMV-DulaPazgPu3YO7FrriTq9r92FNVw_g1qE9nH8If6Z06RhgVVkukAD-D7Lh2NaE7_G00hpJTbkrAwH2doEll1Y1yHzJ2BeuIAFoMlvv0HVtoRv8WV1-ijazDPvs-S5JnoaoqkCVVYzASzeA0_BV3uKpm1eDfVUmzilkIDOPhulA6-oRHN-IzB7DoKor_RRQCplIZuHh2CyMtEpMpDJSIpOpRJuRB0MnlTS3tOncvaNMl4TPnSBTEmTKgkwvPHizHDLvOUOue3nTiTq15qNJV8ruwcvlY1r4fJqjKl2fNykhbxEFguJRD570KrL8tUBKScgw8OCt05nVl_93Ks-un8oLuD05OjxID_Zn0w24Q6tY9jlzmzBoz871c0JnbbZllwDC95tedf8AAQJMhA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9NADLemTZp4QYy_gQFGghcgWps2ucvDhICt2ihUE2LS3o5LcofQoqQsmVD3zfgKfCrs5K7VNLG3qQ9VlF57qn32z7H9M8DLnP54Exd5aKzW4Vjzg6YsTShKsULYXLDP4WqLWXJwPP50Ep-swV_fC8Nlld4mdoa6qHN-Rr7DPZwDci4y2bGuLOJob_Ju_ivkCVKcafXjNLQbs1DsdnRjrsljaha_KZxrdg_3SPavomiy_-3jQegmDoT5SERtmKVWCp0WaVKQZ2PnZcl2p3o0GpLej2xhc2anKfRQ2phe5I6HY6NjYaJMZDlPkCB3sCHI61MguPFhf3b0dVVwkvRgPOWGGLryOdZBR2nK_OPsMchwDcKLy17yCvS9krbtvOHkDtx2MBbf93q3BWumugubX1yi_h78mdJbxwary3KBBPZ_kD3Htiasj6eVMUgqyxMaCLy3Cyy5zapB5k7GvokFCUyTCXuLfoILXeDP6vJddFVm2FfSdwXztERXBeqsYjRe-gVckq_zFk_9vhrsOzRxTuEDmXy0TA1aV_fh-EZk9gDWq7oyjwClkKlkRh6O08ax0amNdUZKZDOdGjsMYOClonJHoc6TPEq1JH_uBKlIkIoFqS4CeL1cMu_5Q6778LYXtXKmpFErxQ_gxfI2GQHO7OjK1OeNIhQu4khQbBrAw15Flr8WSSkJJUYBvPE6s_ry_27l8fVbeQ6bdPrU58PZ9AncogMt-_K5bVhvz87NUwJqbfbMnQCE7zd96P4BsFFQyA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinematically+aligned+total+knee+arthroplasty+limits+high+tibial+forces%2C+differences+in+tibial+forces+between+compartments%2C+and+abnormal+tibial+contact+kinematics+during+passive+flexion&rft.jtitle=Knee+surgery%2C+sports+traumatology%2C+arthroscopy+%3A+official+journal+of+the+ESSKA&rft.au=Roth%2C+Joshua+D.&rft.au=Howell%2C+Stephen+M.&rft.au=Hull%2C+Maury+L.&rft.date=2018-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0942-2056&rft.eissn=1433-7347&rft.volume=26&rft.issue=6&rft.spage=1589&rft.epage=1601&rft_id=info:doi/10.1007%2Fs00167-017-4670-z&rft.externalDocID=10_1007_s00167_017_4670_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-2056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-2056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-2056&client=summon |