Kinematically aligned total knee arthroplasty limits high tibial forces, differences in tibial forces between compartments, and abnormal tibial contact kinematics during passive flexion

Purpose Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee functi...

Full description

Saved in:
Bibliographic Details
Published inKnee surgery, sports traumatology, arthroscopy : official journal of the ESSKA Vol. 26; no. 6; pp. 1589 - 1601
Main Authors Roth, Joshua D., Howell, Stephen M., Hull, Maury L.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2018
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN0942-2056
1433-7347
1433-7347
DOI10.1007/s00167-017-4670-z

Cover

Abstract Purpose Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Methods Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. Results The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p  = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm ( p  < 0.0001) and 18 mm ( p  < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. Conclusions After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion.
AbstractList Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion.PURPOSEFollowing total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion.Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor.METHODSUsing cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor.The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion.RESULTSThe average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion.After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion.CONCLUSIONSAfter kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion.
Purpose Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Methods Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. Results The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p  = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm ( p  < 0.0001) and 18 mm ( p  < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. Conclusions After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion.
PurposeFollowing total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion.MethodsUsing cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor.ResultsThe average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion.ConclusionsAfter kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion.
Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion indicate abnormal knee function. Because the goal of kinematically aligned TKA is to restore native knee function without soft tissue release, the objectives were to determine how well kinematically aligned TKA limits high tibial forces, differences in tibial forces between compartments, and anterior translation of the contact locations of the femoral component on the tibial component during passive flexion. Using cruciate retaining components, kinematically aligned TKA was performed on thirteen human cadaveric knee specimens with use of manual instruments without soft tissue release. The tibial forces and tibial contact locations were measured in both the medial and lateral compartments from 0° to 120° of passive flexion using a custom tibial force sensor. The average total tibial force (i.e. sum of medial + lateral) ranged from 5 to 116 N. The only significant average differences in tibial force between compartments occurred at 0° of flexion (29 N, p = 0.0008). The contact locations in both compartments translated posteriorly in all thirteen kinematically aligned TKAs by an average of 14 mm (p < 0.0001) and 18 mm (p < 0.0001) in the medial and lateral compartments, respectively, from 0° to 120° of flexion. After kinematically aligned TKA, average total tibial forces due to the soft tissue restraints were limited to 116 N, average differences in tibial forces between compartments were limited to 29 N, and a net posterior translation of the tibial contact locations was observed in all kinematically aligned TKAs during passive flexion from 0° to 120°, which are similar to what has been measured previously in native knees. While confirmation in vivo is warranted, these findings give surgeons who perform kinematically aligned TKA confidence that the alignment method and surgical technique limit high tibial forces, differences in tibial forces between compartments, and anterior translation of the tibial contact locations during passive flexion.
Author Howell, Stephen M.
Hull, Maury L.
Roth, Joshua D.
Author_xml – sequence: 1
  givenname: Joshua D.
  surname: Roth
  fullname: Roth, Joshua D.
  organization: Biomedical Engineering Graduate Group, University of California, Davis
– sequence: 2
  givenname: Stephen M.
  surname: Howell
  fullname: Howell, Stephen M.
  organization: Biomedical Engineering Graduate Group, University of California, Davis, Department of Biomedical Engineering, University of California, Davis
– sequence: 3
  givenname: Maury L.
  surname: Hull
  fullname: Hull, Maury L.
  email: mlhull@ucdavis.edu
  organization: Biomedical Engineering Graduate Group, University of California, Davis, Department of Biomedical Engineering, University of California, Davis, Department of Mechanical and Aerospace Engineering, University of California, Davis, Department of Orthopaedic Surgery, University of California, Davis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28884312$$D View this record in MEDLINE/PubMed
BookMark eNp9kcuOFCEUhokZ4_SMPoAbQ-LGhaXcqqhamom3OIkbXROKOnQzQ0EJ9GjPm_l20ukejZNoWADh-04O5z9DJyEGQOgpJa8oIfJ1JoR2siFUNqKTpLl9gFZUcN5ILuQJWpFBsIaRtjtFZzlfEVKPYniETlnf94JTtkI_P7kAsy7OaO93WHu3DjDhEov2-DoAYJ3KJsXF61x22LvZlYw3br3BxY2uQjYmA_klnpy1kCDUC3bh71c8QvkOELCJ81ILzhBKVXSYsB5DTHMlj4KJoWhT8PVdXxlP2-TCGi86Z3cD2Hr44WJ4jB5a7TM8Oe7n6Ou7t18uPjSXn99_vHhz2RguWWnGwfZSD9PQTUxQwbrOStoPmtfvs5bbyRpOaTtp2tu2LikoFaBbCWyUo2n5OXpxqLuk-G0LuajZZQPe6wBxmxUduGyZZB2p6PN76FXcplC7U4wITmjf9l2lnh2p7TjDpJbkZp126i6UCtADYFLMOYH9jVCi9sGrQ_CqBq_2wavb6sh7jnGljq9OM2nn_2uyg5mX_Zgh_Wn639Iv6TzGYA
CitedBy_id crossref_primary_10_1002_ksa_12132
crossref_primary_10_1016_j_arth_2018_07_020
crossref_primary_10_2174_1874440001812010120
crossref_primary_10_1007_s00167_019_05558_4
crossref_primary_10_1016_j_otsr_2019_03_011
crossref_primary_10_18019_1028_4427_2025_31_1_12_18
crossref_primary_10_1002_ksa_12118
crossref_primary_10_1302_2633_1462_35_BJO_2022_0021_R2
crossref_primary_10_3390_jpm11060516
crossref_primary_10_1002_jor_24779
crossref_primary_10_1016_j_arth_2023_08_080
crossref_primary_10_3928_01477447_20190424_02
crossref_primary_10_3390_jpm12081274
crossref_primary_10_1007_s00402_021_04054_0
crossref_primary_10_1007_s00167_019_05658_1
crossref_primary_10_1007_s00167_022_07171_4
crossref_primary_10_1007_s00132_020_03929_1
crossref_primary_10_1007_s00167_021_06840_0
crossref_primary_10_1007_s00167_018_5270_2
crossref_primary_10_1111_os_12826
crossref_primary_10_3390_jpm12091468
crossref_primary_10_1007_s00167_020_06427_1
crossref_primary_10_1007_s00167_022_06939_y
crossref_primary_10_1007_s00167_018_4946_y
crossref_primary_10_1007_s00167_019_05547_7
crossref_primary_10_1115_1_4065813
crossref_primary_10_3390_bioengineering11090910
crossref_primary_10_1007_s00167_018_5220_z
crossref_primary_10_3389_fbioe_2021_673275
crossref_primary_10_1302_0301_620X_101B8_BJJ_2018_0755_R3
crossref_primary_10_1016_j_arth_2019_08_055
crossref_primary_10_1007_s00132_020_03931_7
crossref_primary_10_1007_s00132_020_03932_6
crossref_primary_10_1080_21681163_2020_1835551
crossref_primary_10_1055_s_0039_1693000
crossref_primary_10_1055_s_0041_1739147
crossref_primary_10_1007_s00167_018_5105_1
crossref_primary_10_1097_CORR_0000000000000600
Cites_doi 10.1016/j.jbiomech.2006.08.009
10.1002/jor.20755
10.1002/jor.22926
10.1016/j.knee.2007.09.007
10.1007/s00167-011-1824-2
10.1115/1.3138397
10.1002/art.1780330612
10.1016/j.arth.2013.09.037
10.1016/j.arth.2012.06.030
10.1007/s10439-009-9852-5
10.1016/j.arth.2016.03.046
10.1007/s00421-009-1085-7
10.1016/j.arth.2016.03.054
10.1016/j.jbiomech.2004.05.034
10.1007/s00167-012-2220-2
10.2106/00004623-200408000-00017
10.1097/01.blo.0000063121.39522.19
10.4081/or.2009.e26
10.1302/0301-620X.86B6.14589
10.1115/1.2794195
10.1177/0363546504274143
10.1007/s00167-013-2621-x
10.1016/j.arth.2013.10.020
10.1302/0301-620X.73B2.2005151
10.1002/jor.22645
10.1016/S0021-9290(98)00119-5
10.1007/s11999-012-2613-z
10.1007/s00167-009-0903-0
10.2106/00004623-199072040-00014
10.1007/s00264-015-2743-5
10.3928/01477447-20120123-04
10.1002/1529-0131(199905)42:5<861::AID-ANR4>3.0.CO;2-N
10.1007/s00167-005-0686-x
10.1302/0301-620X.96B7.32812
10.1302/0301-620X.96B10.34068
10.1007/s11999-008-0594-8
10.1115/1.4035471
10.2106/JBJS.N.01256
10.1016/0021-9290(88)90280-1
10.1115/1.4000852
10.1054/arth.2002.33264
10.1016/j.jbiomech.2017.05.008
10.1007/978-3-662-54082-4_2
10.1016/S0021-9290(99)00206-7
10.1007/s00167-014-3306-9
10.1016/S0021-9290(98)00181-X
10.1016/j.medengphy.2008.03.001
10.1302/0301-620X.84B1.12432
10.1053/otsm.2001.21759
10.1016/j.ocl.2015.08.006
10.1016/0021-9290(94)90028-0
10.1016/j.jbiomech.2012.05.029
10.1302/0301-620X.96B11.34152
10.1097/00003086-200011000-00007
10.1115/1.4036147
10.1016/j.clinbiomech.2013.06.006
ContentType Journal Article
Copyright European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2017
Knee Surgery, Sports Traumatology, Arthroscopy is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2017
– notice: Knee Surgery, Sports Traumatology, Arthroscopy is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7TS
7X7
7XB
88E
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FR3
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00167-017-4670-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1433-7347
EndPage 1601
ExternalDocumentID 28884312
10_1007_s00167_017_4670_z
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: CBET-1067527
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Zimmer
  grantid: CW88095
  funderid: http://dx.doi.org/10.13039/100006338
– fundername: Zimmer
  grantid: CW88095
– fundername: National Science Foundation
  grantid: CBET-1067527
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1OC
1SB
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2QV
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAHQN
AAIAL
AAIPD
AAJBT
AAJKR
AAMNL
AANXM
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABQWH
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFFPM
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBTC
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AITYG
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DCZOG
DDRTE
DL5
DNIVK
DPUIP
DU5
DXH
EBD
EBS
EIOEI
EJD
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HGLYW
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M1P
M4Y
MA-
MEWTI
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SUPJJ
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
WXSBR
YLTOR
Z45
Z7U
Z7X
Z82
Z83
Z87
Z8O
Z8V
Z8W
Z91
Z92
ZMTXR
ZOVNA
~EX
AAYXX
ABFSG
ACSTC
ADHKG
AEYWJ
AEZWR
AFHIU
AGHNM
AGQPQ
AGYGG
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TS
7XB
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
EBLON
LH4
PUEGO
ID FETCH-LOGICAL-c372t-b9f87a9d96d2414266f7189a3312253fdfc3115da18f5f5f74114ea57e2b7bc53
IEDL.DBID U2A
ISSN 0942-2056
1433-7347
IngestDate Fri Sep 05 09:13:34 EDT 2025
Fri Jul 25 20:12:27 EDT 2025
Thu Apr 03 07:05:09 EDT 2025
Tue Jul 01 02:59:37 EDT 2025
Thu Apr 24 23:03:15 EDT 2025
Fri Feb 21 02:37:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Tibial force sensor
Kinematic alignment
Anterior sliding
Soft tissue balancing
Intra-articular load
Contact force imbalance
Tibiofemoral joint
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-b9f87a9d96d2414266f7189a3312253fdfc3115da18f5f5f74114ea57e2b7bc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28884312
PQID 2043018586
PQPubID 54177
PageCount 13
ParticipantIDs proquest_miscellaneous_1937527260
proquest_journals_2043018586
pubmed_primary_28884312
crossref_primary_10_1007_s00167_017_4670_z
crossref_citationtrail_10_1007_s00167_017_4670_z
springer_journals_10_1007_s00167_017_4670_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180600
2018-6-00
2018-Jun
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 6
  year: 2018
  text: 20180600
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Hoboken
PublicationTitle Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA
PublicationTitleAbbrev Knee Surg Sports Traumatol Arthrosc
PublicationTitleAlternate Knee Surg Sports Traumatol Arthrosc
PublicationYear 2018
Publisher Springer Berlin Heidelberg
John Wiley & Sons, Inc
Publisher_xml – name: Springer Berlin Heidelberg
– name: John Wiley & Sons, Inc
References Nam, Nunley, Barrack (CR37) 2014; 96-B
Pottenger, Phillips, Draganich (CR41) 1990; 33
Amis, Dawkins (CR1) 1991; 73
CR39
Wilson, Feikes, Zavatsky, O’Connor (CR58) 2000; 33
Howell, Papadopoulos, Kuznik, Ghaly, Hull (CR27) 2015; 39
Roth, Howell, Matsuda, Lustig, van der Merwe (CR45) 2017
Babazadeh, Stoney, Lim, Choong (CR4) 2009
Merican, Ghosh, Deehan, Amis (CR36) 2009; 27
Whiteside, Saeki, Mihalko (CR56) 2000; 380
Bach, Hull (CR5) 1995; 117
Gustke, Golladay, Roche, Elson, Anderson (CR19) 2014; 29
Hunt, Ghosh, Blain, Athwal, Rushton, Amis, Longstaff, Deehan (CR29) 2014; 32
Grood, Suntay (CR18) 1983; 105
Dossett, Estrada, Swartz, LeFevre, Kwasman (CR13) 2014; 96-B
Li, Most, Sultan, Schule, Zayontz, Park, Rubash (CR31) 2004; 86-A
Markolf, Gorek, Kabo, Shapiro (CR34) 1990; 72
Howell, Hodapp, Vernace, Hull, Meade (CR24) 2013; 21
Pinskerova, Johal, Nakagawa, Sosna, Williams, Gedroyc, Freeman (CR40) 2004; 86
Robinson, Bull, Amis (CR44) 2005; 38
CR47
Sharma, Lou, Felson, Dunlop, Kirwan-Mellis, Hayes, Weinrach, Buchanan (CR51) 1999; 42
Banks, Bellemans, Nozaki, Whiteside, Harman, Hodge (CR6) 2003; 410
Roth, Howell, Hull (CR48) 2017; 139
LaPrade, Bollom, Wentorf, Wills, Meister (CR30) 2005; 33
Sharma, Dennis, Zingde, Mahfouz, Komistek (CR50) 2014; 29
Ward, Eng, Smallwood, Lieber (CR53) 2009; 467
Whiteside (CR55) 2002; 17
Meneghini, Ziemba-Davis, Lovro, Ireland, Damer (CR35) 2016; 31
Blankevoort, Huiskes, de Lange (CR10) 1988; 21
Ghosh, Merican, Iranpour, Deehan, Amis (CR17) 2012; 20
Belvedere, Ensini, Feliciangeli, Cenni, D’Angeli, Giannini, Leardini (CR9) 2012; 45
Watanabe, Ishizuki, Muneta, Banks (CR54) 2013; 28
Gustke, Golladay, Roche, Jerry, Elson, Anderson (CR20) 2014; 96-B
Verstraete, Meere, Salvadore, Victor, Walker (CR52) 2017; 58
CR12
Heesterbeek, Verdonschot, Wymenga (CR22) 2008; 15
Li, Rudy, Sakane, Kanamori, Ma, Woo (CR32) 1999; 32
Lu, Tsai, Kuo, Hsu, Chen (CR33) 2008; 30
Arnold, Ward, Lieber, Delp (CR3) 2010; 38
Elmallah, Mistry, Cherian, Chughtai, Bhave, Roche, Mont (CR15) 2016; 31
Bellemans, Vandenneucker, Vanlauwe, Victor (CR8) 2010; 18
Dossett, Swartz, Estrada, LeFevre, Kwasman (CR14) 2012; 35
Amis, Gupte, Bull, Edwards (CR2) 2006; 14
Roth, Hull, Howell (CR49) 2015; 33
Roth, Howell, Hull (CR46) 2015; 97
Hosseini, Qi, Tsai, Liu, Rubash, Li (CR23) 2015; 23
Harner, Giffin, Vogrin, Woo (CR21) 2001; 9
Nedopil, Howell, Hull (CR38) 2016; 47
Bellemans, Banks, Victor, Vandenneucker, Moemans (CR7) 2002; 84
Wilson, Feikes, O’Connor (CR57) 1998; 31
Erskine, Jones, Maganaris, Degens (CR16) 2009; 106
Powers, Chen, Scher, Lee (CR42) 2010; 132
Defrate, Nha, Papannagari, Moses, Gill, Li (CR11) 2007; 40
Howell, Howell, Kuznik, Cohen, Hull (CR25) 2012; 471
Howell, Papadopoulos, Kuznik, Hull (CR28) 2013; 21
Race, Amis (CR43) 1994; 27
Howell, Hull, Mahfouz, Scott (CR26) 2017
LE Defrate (4670_CR11) 2007; 40
JD Roth (4670_CR46) 2015; 97
JR Robinson (4670_CR44) 2005; 38
S Banks (4670_CR6) 2003; 410
4670_CR47
SM Howell (4670_CR25) 2012; 471
AM Merican (4670_CR36) 2009; 27
LA Pottenger (4670_CR41) 1990; 33
CD Harner (4670_CR21) 2001; 9
SM Howell (4670_CR27) 2015; 39
KM Ghosh (4670_CR17) 2012; 20
A Hosseini (4670_CR23) 2015; 23
KL Markolf (4670_CR34) 1990; 72
TW Lu (4670_CR33) 2008; 30
S Babazadeh (4670_CR4) 2009
PJ Heesterbeek (4670_CR22) 2008; 15
JD Roth (4670_CR48) 2017; 139
EM Arnold (4670_CR3) 2010; 38
4670_CR12
HG Dossett (4670_CR14) 2012; 35
G Li (4670_CR32) 1999; 32
RK Elmallah (4670_CR15) 2016; 31
SR Ward (4670_CR53) 2009; 467
MA Verstraete (4670_CR52) 2017; 58
NC Hunt (4670_CR29) 2014; 32
ES Grood (4670_CR18) 1983; 105
JD Roth (4670_CR45) 2017
KA Gustke (4670_CR19) 2014; 29
LA Whiteside (4670_CR55) 2002; 17
HG Dossett (4670_CR13) 2014; 96-B
V Pinskerova (4670_CR40) 2004; 86
L Sharma (4670_CR51) 1999; 42
G Li (4670_CR31) 2004; 86-A
C Belvedere (4670_CR9) 2012; 45
RF LaPrade (4670_CR30) 2005; 33
AA Amis (4670_CR1) 1991; 73
AA Amis (4670_CR2) 2006; 14
JD Roth (4670_CR49) 2015; 33
RM Erskine (4670_CR16) 2009; 106
L Blankevoort (4670_CR10) 1988; 21
KA Gustke (4670_CR20) 2014; 96-B
SM Howell (4670_CR26) 2017
A Sharma (4670_CR50) 2014; 29
A Race (4670_CR43) 1994; 27
JM Bach (4670_CR5) 1995; 117
AJ Nedopil (4670_CR38) 2016; 47
CM Powers (4670_CR42) 2010; 132
J Bellemans (4670_CR7) 2002; 84
SM Howell (4670_CR24) 2013; 21
4670_CR39
DR Wilson (4670_CR57) 1998; 31
D Nam (4670_CR37) 2014; 96-B
DR Wilson (4670_CR58) 2000; 33
SM Howell (4670_CR28) 2013; 21
LA Whiteside (4670_CR56) 2000; 380
RM Meneghini (4670_CR35) 2016; 31
J Bellemans (4670_CR8) 2010; 18
T Watanabe (4670_CR54) 2013; 28
18846554 - J Orthop Res. 2009 Mar;27(3):330-4
23948721 - Knee Surg Sports Traumatol Arthrosc. 2013 Oct;21(10 ):2271-80
19468746 - Eur J Appl Physiol. 2009 Aug;106(6):827-38
2005151 - J Bone Joint Surg Br. 1991 Mar;73(2):260-7
24986944 - Bone Joint J. 2014 Jul;96-B(7):907-13
26218329 - J Orthop Res. 2015 Nov;33(11):1594-602
16228178 - Knee Surg Sports Traumatol Arthrosc. 2006 Mar;14(3):257-63
11837832 - J Bone Joint Surg Br. 2002 Jan;84(1):50-3
17070815 - J Biomech. 2007;40(8):1716-22
10213029 - J Biomech. 1999 Apr;32(4):395-400
24269069 - J Arthroplasty. 2014 May;29(5):955-60
15797588 - J Biomech. 2005 May;38(5):1067-74
18417412 - Med Eng Phys. 2008 Oct;30(8):1004-12
22186922 - Knee Surg Sports Traumatol Arthrosc. 2012 Jul;20(7):1349-56
19730815 - Knee Surg Sports Traumatol Arthrosc. 2010 Feb;18(2):152-6
12771823 - Clin Orthop Relat Res. 2003 May;(410):131-8
20370249 - J Biomech Eng. 2010 Feb;132(2):024503
25274917 - Bone Joint J. 2014 Oct;96-B(10):1333-8
2324143 - J Bone Joint Surg Am. 1990 Apr;72(4):557-67
23820027 - Clin Biomech (Bristol, Avon). 2013 Aug;28(7):777-82
26614919 - Orthop Clin North Am. 2016 Jan;47(1):41-50
26491132 - J Bone Joint Surg Am. 2015 Oct 21;97(20):1678-84
18006318 - Knee. 2008 Jan;15(1):45-9
28267191 - J Biomech Eng. 2017 Jun 1;139(6):null
27155997 - J Arthroplasty. 2016 Oct;31(10 ):2181-7
18972175 - Clin Orthop Relat Res. 2009 Apr;467(4):1074-82
15292421 - J Bone Joint Surg Am. 2004 Aug;86-A(8):1721-9
27155994 - J Arthroplasty. 2016 Sep;31(9 Suppl):102-5
22677336 - J Biomech. 2012 Jul 26;45(11):1886-92
2363739 - Arthritis Rheum. 1990 Jun;33(6):853-8
11064972 - Clin Orthop Relat Res. 2000 Nov;(380):45-57
25381418 - Bone Joint J. 2014 Nov;96-B(11 Supple A):96-100
9882045 - J Biomech. 1998 Dec;31(12):1127-36
22310400 - Orthopedics. 2012 Feb 17;35(2):e160-9
3182875 - J Biomech. 1988;21(9):705-20
8748517 - J Biomech Eng. 1995 Nov;117(4):373-82
16002488 - Am J Sports Med. 2005 Sep;33(9):1386-91
25239504 - Knee Surg Sports Traumatol Arthrosc. 2015 Oct;23 (10 ):3055-61
23122654 - J Arthroplasty. 2013 Apr;28(4):548-52
27987299 - J Biomech Eng. 2017 Apr 1;139(4):null
8106532 - J Biomech. 1994 Jan;27(1):13-24
15330038 - J Bone Joint Surg Br. 2004 Aug;86(6):925-31
6865355 - J Biomech Eng. 1983 May;105(2):136-44
24157225 - J Arthroplasty. 2014 May;29(5):945-9
12068398 - J Arthroplasty. 2002 Jun;17(4 Suppl 1):23-7
21808688 - Orthop Rev (Pavia). 2009 Oct 10;1(2):e26
10768395 - J Biomech. 2000 Apr;33(4):465-73
25823516 - Int Orthop. 2015 Nov;39(11):2117-24
19957039 - Ann Biomed Eng. 2010 Feb;38(2):269-79
28579262 - J Biomech. 2017 Jun 14;58:195-202
23052114 - Knee Surg Sports Traumatol Arthrosc. 2013 Oct;21(10):2281-7
24841798 - J Orthop Res. 2014 Sep;32(9):1208-13
22996362 - Clin Orthop Relat Res. 2013 Mar;471(3):1000-7
10323441 - Arthritis Rheum. 1999 May;42(5):861-70
References_xml – volume: 40
  start-page: 1716
  issue: 8
  year: 2007
  end-page: 1722
  ident: CR11
  article-title: The biomechanical function of the patellar tendon during in vivo weight-bearing flexion
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2006.08.009
– volume: 27
  start-page: 330
  issue: 3
  year: 2009
  end-page: 334
  ident: CR36
  article-title: The transpatellar approach for the knee in the laboratory
  publication-title: J Orthop Res
  doi: 10.1002/jor.20755
– volume: 33
  start-page: 1594
  issue: 11
  year: 2015
  end-page: 1602
  ident: CR49
  article-title: The limits of passive motion are variable between and unrelated within normal tibiofemoral joints
  publication-title: J Orthop Res
  doi: 10.1002/jor.22926
– volume: 15
  start-page: 45
  issue: 1
  year: 2008
  end-page: 49
  ident: CR22
  article-title: In vivo knee laxity in flexion and extension: a radiographic study in 30 older healthy subjects
  publication-title: Knee
  doi: 10.1016/j.knee.2007.09.007
– volume: 20
  start-page: 1349
  issue: 7
  year: 2012
  end-page: 1356
  ident: CR17
  article-title: Length-change patterns of the collateral ligaments after total knee arthroplasty
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-011-1824-2
– volume: 105
  start-page: 136
  issue: 2
  year: 1983
  end-page: 144
  ident: CR18
  article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee
  publication-title: J Biomech Eng
  doi: 10.1115/1.3138397
– volume: 33
  start-page: 853
  issue: 6
  year: 1990
  end-page: 858
  ident: CR41
  article-title: The effect of marginal osteophytes on reduction of varus-valgus instability in osteoarthritic knees
  publication-title: Arthritis Rheum
  doi: 10.1002/art.1780330612
– ident: CR39
– ident: CR12
– volume: 29
  start-page: 945
  issue: 5
  year: 2014
  end-page: 949
  ident: CR50
  article-title: Femoral condylar contact points start and remain posterior in high flexing patients
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2013.09.037
– start-page: 1784
  year: 2017
  end-page: 1796
  ident: CR26
  article-title: Kinematically aligned total knee arthroplasty
  publication-title: Insall and Scott Surgery of the Knee
– volume: 28
  start-page: 548
  issue: 4
  year: 2013
  end-page: 552
  ident: CR54
  article-title: Knee kinematics in anterior cruciate ligament-substituting arthroplasty with or without the posterior cruciate ligament
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2012.06.030
– volume: 38
  start-page: 269
  issue: 2
  year: 2010
  end-page: 279
  ident: CR3
  article-title: A model of the lower limb for analysis of human movement
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-009-9852-5
– volume: 31
  start-page: 2181
  issue: 10
  year: 2016
  end-page: 2187
  ident: CR35
  article-title: Can intraoperative sensors determine the “target” ligament balance? Early outcomes in total knee arthroplasty
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2016.03.046
– volume: 106
  start-page: 827
  issue: 6
  year: 2009
  end-page: 838
  ident: CR16
  article-title: In vivo specific tension of the human quadriceps femoris muscle
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-009-1085-7
– volume: 31
  start-page: 102
  issue: 9 Suppl
  year: 2016
  end-page: 105
  ident: CR15
  article-title: Can we really "Feel" a balanced total knee arthroplasty?
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2016.03.054
– volume: 38
  start-page: 1067
  issue: 5
  year: 2005
  end-page: 1074
  ident: CR44
  article-title: Structural properties of the medial collateral ligament complex of the human knee
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2004.05.034
– volume: 21
  start-page: 2281
  issue: 10
  year: 2013
  end-page: 2287
  ident: CR24
  article-title: Are undesirable contact kinematics minimized after kinematically aligned total knee arthroplasty? An intersurgeon analysis of consecutive patients
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-012-2220-2
– volume: 86-A
  start-page: 1721
  issue: 8
  year: 2004
  end-page: 1729
  ident: CR31
  article-title: Knee kinematics with a high-flexion posterior stabilized total knee prosthesis: an in vitro robotic experimental investigation
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/00004623-200408000-00017
– volume: 410
  start-page: 131
  issue: 5
  year: 2003
  end-page: 138
  ident: CR6
  article-title: Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/01.blo.0000063121.39522.19
– year: 2009
  ident: CR4
  article-title: The relevance of ligament balancing in total knee arthroplasty: how important is it? A systematic review of the literature
  publication-title: Orthop Rev (Pavia)
  doi: 10.4081/or.2009.e26
– volume: 86
  start-page: 925
  issue: 6
  year: 2004
  end-page: 931
  ident: CR40
  article-title: Does the femur roll-back with flexion?
  publication-title: J Bone Joint Surg Br
  doi: 10.1302/0301-620X.86B6.14589
– volume: 117
  start-page: 373
  issue: 4
  year: 1995
  end-page: 382
  ident: CR5
  article-title: A new load application system for in vitro study of ligamentous injuries to the human knee joint
  publication-title: J Biomech Eng
  doi: 10.1115/1.2794195
– volume: 33
  start-page: 1386
  issue: 9
  year: 2005
  end-page: 1391
  ident: CR30
  article-title: Mechanical properties of the posterolateral structures of the knee
  publication-title: Am J Sports Med
  doi: 10.1177/0363546504274143
– volume: 21
  start-page: 2271
  issue: 10
  year: 2013
  end-page: 2280
  ident: CR28
  article-title: Accurate alignment and high function after kinematically aligned TKA performed with generic instruments
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-013-2621-x
– volume: 29
  start-page: 955
  issue: 5
  year: 2014
  end-page: 960
  ident: CR19
  article-title: A new method for defining balance: promising short-term clinical outcomes of sensor-guided TKA
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2013.10.020
– volume: 73
  start-page: 260
  issue: 2
  year: 1991
  end-page: 267
  ident: CR1
  article-title: Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries
  publication-title: J Bone Joint Surg Br
  doi: 10.1302/0301-620X.73B2.2005151
– volume: 32
  start-page: 1208
  issue: 9
  year: 2014
  end-page: 1213
  ident: CR29
  article-title: How does laxity after single radius total knee arthroplasty compare with the native knee?
  publication-title: J Orthop Res
  doi: 10.1002/jor.22645
– ident: CR47
– volume: 31
  start-page: 1127
  issue: 12
  year: 1998
  end-page: 1136
  ident: CR57
  article-title: Ligaments and articular contact guide passive knee flexion
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(98)00119-5
– volume: 471
  start-page: 1000
  issue: 3
  year: 2012
  end-page: 1007
  ident: CR25
  article-title: Does a kinematically aligned total knee arthroplasty restore function without failure regardless of alignment category?
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-012-2613-z
– volume: 18
  start-page: 152
  issue: 2
  year: 2010
  end-page: 156
  ident: CR8
  article-title: The influence of coronal plane deformity on mediolateral ligament status: an observational study in varus knees
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-009-0903-0
– volume: 72
  start-page: 557
  issue: 4
  year: 1990
  end-page: 567
  ident: CR34
  article-title: Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/00004623-199072040-00014
– volume: 39
  start-page: 2117
  issue: 11
  year: 2015
  end-page: 2124
  ident: CR27
  article-title: Does varus alignment adversely affect implant survival and function six years after kinematically aligned total knee arthroplasty?
  publication-title: Int Orthop
  doi: 10.1007/s00264-015-2743-5
– volume: 35
  start-page: e160
  issue: 2
  year: 2012
  end-page: e169
  ident: CR14
  article-title: Kinematically versus mechanically aligned total knee arthroplasty
  publication-title: Orthopedics
  doi: 10.3928/01477447-20120123-04
– volume: 42
  start-page: 861
  issue: 5
  year: 1999
  end-page: 870
  ident: CR51
  article-title: Laxity in healthy and osteoarthritic knees
  publication-title: Arthritis Rheum
  doi: 10.1002/1529-0131(199905)42:5<861::AID-ANR4>3.0.CO;2-N
– volume: 14
  start-page: 257
  issue: 3
  year: 2006
  end-page: 263
  ident: CR2
  article-title: Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-005-0686-x
– volume: 96-B
  start-page: 907
  issue: 7
  year: 2014
  end-page: 913
  ident: CR13
  article-title: A randomised controlled trial of kinematically and mechanically aligned total knee replacements: two-year clinical results
  publication-title: Bone Joint J
  doi: 10.1302/0301-620X.96B7.32812
– volume: 96-B
  start-page: 1333
  issue: 10
  year: 2014
  end-page: 1338
  ident: CR20
  article-title: Increased satisfaction after total knee replacement using sensor-guided technology
  publication-title: Bone Joint J
  doi: 10.1302/0301-620X.96B10.34068
– volume: 467
  start-page: 1074
  issue: 4
  year: 2009
  end-page: 1082
  ident: CR53
  article-title: Are current measurements of lower extremity muscle architecture accurate?
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-008-0594-8
– volume: 139
  start-page: 041001
  issue: 4
  year: 2017
  end-page: 041008
  ident: CR48
  article-title: An improved tibial force sensor to compute contact forces and contact locations in vitro after total knee arthroplasty
  publication-title: J Biomech Eng
  doi: 10.1115/1.4035471
– volume: 97
  start-page: 1678
  issue: 20
  year: 2015
  end-page: 1684
  ident: CR46
  article-title: Native knee laxities at 0°, 45°, and 90° of flexion and their relationship to the goal of the gap-balancing alignment method of total knee arthroplasty
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/JBJS.N.01256
– volume: 21
  start-page: 705
  issue: 9
  year: 1988
  end-page: 720
  ident: CR10
  article-title: The envelope of passive knee joint motion
  publication-title: J Biomech
  doi: 10.1016/0021-9290(88)90280-1
– volume: 132
  start-page: 024503
  issue: 2
  year: 2010
  ident: CR42
  article-title: Multiplane loading of the extensor mechanism alters the patellar ligament force/quadriceps force ratio
  publication-title: J Biomech Eng
  doi: 10.1115/1.4000852
– volume: 17
  start-page: 23
  issue: 4 Suppl 1
  year: 2002
  end-page: 27
  ident: CR55
  article-title: Soft tissue balancing: the knee
  publication-title: J Arthroplasty
  doi: 10.1054/arth.2002.33264
– volume: 58
  start-page: 195
  year: 2017
  end-page: 202
  ident: CR52
  article-title: Contact forces in the tibiofemoral joint from soft tissue tensions: implications to soft tissue balancing in total knee arthroplasty
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2017.05.008
– start-page: 17
  year: 2017
  end-page: 27
  ident: CR45
  article-title: Soft tissue balance of the native knee provides guidance for balancing a total knee arthroplasty
  publication-title: Soft Tissue Balancing in Total Knee Arthroplasty
  doi: 10.1007/978-3-662-54082-4_2
– volume: 33
  start-page: 465
  issue: 4
  year: 2000
  end-page: 473
  ident: CR58
  article-title: The components of passive knee movement are coupled to flexion angle
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(99)00206-7
– volume: 23
  start-page: 3055
  issue: 10
  year: 2015
  end-page: 3061
  ident: CR23
  article-title: In vivo length change patterns of the medial and lateral collateral ligaments along the flexion path of the knee
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-014-3306-9
– volume: 32
  start-page: 395
  issue: 4
  year: 1999
  end-page: 400
  ident: CR32
  article-title: The importance of quadriceps and hamstring muscle loading on knee kinematics and in situ forces in the ACL
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(98)00181-X
– volume: 30
  start-page: 1004
  issue: 8
  year: 2008
  end-page: 1012
  ident: CR33
  article-title: In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2008.03.001
– volume: 84
  start-page: 50
  issue: 1
  year: 2002
  end-page: 53
  ident: CR7
  article-title: Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset
  publication-title: J Bone Joint Surg Br
  doi: 10.1302/0301-620X.84B1.12432
– volume: 9
  start-page: 39
  issue: 2
  year: 2001
  end-page: 46
  ident: CR21
  article-title: Anatomy and biomechanics of theposterior cruciate ligament and posterolateral corner
  publication-title: Oper Techn Sport Med
  doi: 10.1053/otsm.2001.21759
– volume: 47
  start-page: 41
  issue: 1
  year: 2016
  end-page: 50
  ident: CR38
  article-title: Does malrotation of the tibial and femoral components compromise function in kinematically aligned total knee arthroplasty?
  publication-title: Orthop Clin North Am
  doi: 10.1016/j.ocl.2015.08.006
– volume: 27
  start-page: 13
  issue: 1
  year: 1994
  end-page: 24
  ident: CR43
  article-title: The mechanical properties of the two bundles of the human posterior cruciate ligament
  publication-title: J Biomech
  doi: 10.1016/0021-9290(94)90028-0
– volume: 45
  start-page: 1886
  issue: 11
  year: 2012
  end-page: 1892
  ident: CR9
  article-title: Geometrical changes of knee ligaments and patellar tendon during passive flexion
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2012.05.029
– volume: 96-B
  start-page: 96
  issue: 11 Supple A
  year: 2014
  end-page: 100
  ident: CR37
  article-title: Patient dissatisfaction following total knee replacement: a growing concern?
  publication-title: Bone Joint J
  doi: 10.1302/0301-620X.96B11.34152
– volume: 380
  start-page: 45
  issue: 11
  year: 2000
  end-page: 57
  ident: CR56
  article-title: Functional medial ligament balancing in total knee arthroplasty
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/00003086-200011000-00007
– volume: 105
  start-page: 136
  issue: 2
  year: 1983
  ident: 4670_CR18
  publication-title: J Biomech Eng
  doi: 10.1115/1.3138397
– volume: 47
  start-page: 41
  issue: 1
  year: 2016
  ident: 4670_CR38
  publication-title: Orthop Clin North Am
  doi: 10.1016/j.ocl.2015.08.006
– volume: 38
  start-page: 269
  issue: 2
  year: 2010
  ident: 4670_CR3
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-009-9852-5
– volume: 30
  start-page: 1004
  issue: 8
  year: 2008
  ident: 4670_CR33
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2008.03.001
– volume: 20
  start-page: 1349
  issue: 7
  year: 2012
  ident: 4670_CR17
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-011-1824-2
– volume: 21
  start-page: 2281
  issue: 10
  year: 2013
  ident: 4670_CR24
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-012-2220-2
– volume: 33
  start-page: 1594
  issue: 11
  year: 2015
  ident: 4670_CR49
  publication-title: J Orthop Res
  doi: 10.1002/jor.22926
– volume: 39
  start-page: 2117
  issue: 11
  year: 2015
  ident: 4670_CR27
  publication-title: Int Orthop
  doi: 10.1007/s00264-015-2743-5
– volume: 72
  start-page: 557
  issue: 4
  year: 1990
  ident: 4670_CR34
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/00004623-199072040-00014
– volume: 31
  start-page: 1127
  issue: 12
  year: 1998
  ident: 4670_CR57
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(98)00119-5
– volume: 21
  start-page: 2271
  issue: 10
  year: 2013
  ident: 4670_CR28
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-013-2621-x
– volume: 106
  start-page: 827
  issue: 6
  year: 2009
  ident: 4670_CR16
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-009-1085-7
– volume: 28
  start-page: 548
  issue: 4
  year: 2013
  ident: 4670_CR54
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2012.06.030
– volume: 40
  start-page: 1716
  issue: 8
  year: 2007
  ident: 4670_CR11
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2006.08.009
– volume: 471
  start-page: 1000
  issue: 3
  year: 2012
  ident: 4670_CR25
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-012-2613-z
– volume: 18
  start-page: 152
  issue: 2
  year: 2010
  ident: 4670_CR8
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-009-0903-0
– volume: 15
  start-page: 45
  issue: 1
  year: 2008
  ident: 4670_CR22
  publication-title: Knee
  doi: 10.1016/j.knee.2007.09.007
– volume: 27
  start-page: 330
  issue: 3
  year: 2009
  ident: 4670_CR36
  publication-title: J Orthop Res
  doi: 10.1002/jor.20755
– volume: 96-B
  start-page: 1333
  issue: 10
  year: 2014
  ident: 4670_CR20
  publication-title: Bone Joint J
  doi: 10.1302/0301-620X.96B10.34068
– volume: 96-B
  start-page: 96
  issue: 11 Supple A
  year: 2014
  ident: 4670_CR37
  publication-title: Bone Joint J
  doi: 10.1302/0301-620X.96B11.34152
– volume: 42
  start-page: 861
  issue: 5
  year: 1999
  ident: 4670_CR51
  publication-title: Arthritis Rheum
  doi: 10.1002/1529-0131(199905)42:5<861::AID-ANR4>3.0.CO;2-N
– start-page: 17
  volume-title: Soft Tissue Balancing in Total Knee Arthroplasty
  year: 2017
  ident: 4670_CR45
  doi: 10.1007/978-3-662-54082-4_2
– volume: 38
  start-page: 1067
  issue: 5
  year: 2005
  ident: 4670_CR44
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2004.05.034
– volume: 29
  start-page: 945
  issue: 5
  year: 2014
  ident: 4670_CR50
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2013.09.037
– volume: 380
  start-page: 45
  issue: 11
  year: 2000
  ident: 4670_CR56
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/00003086-200011000-00007
– volume: 84
  start-page: 50
  issue: 1
  year: 2002
  ident: 4670_CR7
  publication-title: J Bone Joint Surg Br
  doi: 10.1302/0301-620X.84B1.12432
– volume: 73
  start-page: 260
  issue: 2
  year: 1991
  ident: 4670_CR1
  publication-title: J Bone Joint Surg Br
  doi: 10.1302/0301-620X.73B2.2005151
– year: 2009
  ident: 4670_CR4
  publication-title: Orthop Rev (Pavia)
  doi: 10.4081/or.2009.e26
– volume: 117
  start-page: 373
  issue: 4
  year: 1995
  ident: 4670_CR5
  publication-title: J Biomech Eng
  doi: 10.1115/1.2794195
– volume: 410
  start-page: 131
  issue: 5
  year: 2003
  ident: 4670_CR6
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/01.blo.0000063121.39522.19
– ident: 4670_CR39
– volume: 96-B
  start-page: 907
  issue: 7
  year: 2014
  ident: 4670_CR13
  publication-title: Bone Joint J
  doi: 10.1302/0301-620X.96B7.32812
– start-page: 1784
  volume-title: Insall and Scott Surgery of the Knee
  year: 2017
  ident: 4670_CR26
– volume: 35
  start-page: e160
  issue: 2
  year: 2012
  ident: 4670_CR14
  publication-title: Orthopedics
  doi: 10.3928/01477447-20120123-04
– volume: 97
  start-page: 1678
  issue: 20
  year: 2015
  ident: 4670_CR46
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/JBJS.N.01256
– volume: 45
  start-page: 1886
  issue: 11
  year: 2012
  ident: 4670_CR9
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2012.05.029
– volume: 467
  start-page: 1074
  issue: 4
  year: 2009
  ident: 4670_CR53
  publication-title: Clin Orthop Relat Res
  doi: 10.1007/s11999-008-0594-8
– volume: 9
  start-page: 39
  issue: 2
  year: 2001
  ident: 4670_CR21
  publication-title: Oper Techn Sport Med
  doi: 10.1053/otsm.2001.21759
– volume: 139
  start-page: 041001
  issue: 4
  year: 2017
  ident: 4670_CR48
  publication-title: J Biomech Eng
  doi: 10.1115/1.4035471
– volume: 132
  start-page: 024503
  issue: 2
  year: 2010
  ident: 4670_CR42
  publication-title: J Biomech Eng
  doi: 10.1115/1.4000852
– volume: 17
  start-page: 23
  issue: 4 Suppl 1
  year: 2002
  ident: 4670_CR55
  publication-title: J Arthroplasty
  doi: 10.1054/arth.2002.33264
– volume: 33
  start-page: 465
  issue: 4
  year: 2000
  ident: 4670_CR58
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(99)00206-7
– volume: 23
  start-page: 3055
  issue: 10
  year: 2015
  ident: 4670_CR23
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-014-3306-9
– volume: 31
  start-page: 2181
  issue: 10
  year: 2016
  ident: 4670_CR35
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2016.03.046
– volume: 14
  start-page: 257
  issue: 3
  year: 2006
  ident: 4670_CR2
  publication-title: Knee Surg Sports Traumatol Arthrosc
  doi: 10.1007/s00167-005-0686-x
– volume: 33
  start-page: 853
  issue: 6
  year: 1990
  ident: 4670_CR41
  publication-title: Arthritis Rheum
  doi: 10.1002/art.1780330612
– volume: 27
  start-page: 13
  issue: 1
  year: 1994
  ident: 4670_CR43
  publication-title: J Biomech
  doi: 10.1016/0021-9290(94)90028-0
– ident: 4670_CR47
  doi: 10.1115/1.4036147
– volume: 31
  start-page: 102
  issue: 9 Suppl
  year: 2016
  ident: 4670_CR15
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2016.03.054
– volume: 58
  start-page: 195
  year: 2017
  ident: 4670_CR52
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2017.05.008
– volume: 86-A
  start-page: 1721
  issue: 8
  year: 2004
  ident: 4670_CR31
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/00004623-200408000-00017
– volume: 32
  start-page: 395
  issue: 4
  year: 1999
  ident: 4670_CR32
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(98)00181-X
– volume: 86
  start-page: 925
  issue: 6
  year: 2004
  ident: 4670_CR40
  publication-title: J Bone Joint Surg Br
  doi: 10.1302/0301-620X.86B6.14589
– volume: 32
  start-page: 1208
  issue: 9
  year: 2014
  ident: 4670_CR29
  publication-title: J Orthop Res
  doi: 10.1002/jor.22645
– volume: 33
  start-page: 1386
  issue: 9
  year: 2005
  ident: 4670_CR30
  publication-title: Am J Sports Med
  doi: 10.1177/0363546504274143
– volume: 21
  start-page: 705
  issue: 9
  year: 1988
  ident: 4670_CR10
  publication-title: J Biomech
  doi: 10.1016/0021-9290(88)90280-1
– volume: 29
  start-page: 955
  issue: 5
  year: 2014
  ident: 4670_CR19
  publication-title: J Arthroplasty
  doi: 10.1016/j.arth.2013.10.020
– ident: 4670_CR12
  doi: 10.1016/j.clinbiomech.2013.06.006
– reference: 18846554 - J Orthop Res. 2009 Mar;27(3):330-4
– reference: 2324143 - J Bone Joint Surg Am. 1990 Apr;72(4):557-67
– reference: 24157225 - J Arthroplasty. 2014 May;29(5):945-9
– reference: 16002488 - Am J Sports Med. 2005 Sep;33(9):1386-91
– reference: 3182875 - J Biomech. 1988;21(9):705-20
– reference: 12068398 - J Arthroplasty. 2002 Jun;17(4 Suppl 1):23-7
– reference: 15330038 - J Bone Joint Surg Br. 2004 Aug;86(6):925-31
– reference: 22310400 - Orthopedics. 2012 Feb 17;35(2):e160-9
– reference: 25823516 - Int Orthop. 2015 Nov;39(11):2117-24
– reference: 12771823 - Clin Orthop Relat Res. 2003 May;(410):131-8
– reference: 22996362 - Clin Orthop Relat Res. 2013 Mar;471(3):1000-7
– reference: 24841798 - J Orthop Res. 2014 Sep;32(9):1208-13
– reference: 10213029 - J Biomech. 1999 Apr;32(4):395-400
– reference: 11837832 - J Bone Joint Surg Br. 2002 Jan;84(1):50-3
– reference: 24986944 - Bone Joint J. 2014 Jul;96-B(7):907-13
– reference: 26491132 - J Bone Joint Surg Am. 2015 Oct 21;97(20):1678-84
– reference: 9882045 - J Biomech. 1998 Dec;31(12):1127-36
– reference: 6865355 - J Biomech Eng. 1983 May;105(2):136-44
– reference: 26614919 - Orthop Clin North Am. 2016 Jan;47(1):41-50
– reference: 28579262 - J Biomech. 2017 Jun 14;58:195-202
– reference: 2005151 - J Bone Joint Surg Br. 1991 Mar;73(2):260-7
– reference: 24269069 - J Arthroplasty. 2014 May;29(5):955-60
– reference: 27987299 - J Biomech Eng. 2017 Apr 1;139(4):null
– reference: 19468746 - Eur J Appl Physiol. 2009 Aug;106(6):827-38
– reference: 8106532 - J Biomech. 1994 Jan;27(1):13-24
– reference: 23122654 - J Arthroplasty. 2013 Apr;28(4):548-52
– reference: 15797588 - J Biomech. 2005 May;38(5):1067-74
– reference: 20370249 - J Biomech Eng. 2010 Feb;132(2):024503
– reference: 11064972 - Clin Orthop Relat Res. 2000 Nov;(380):45-57
– reference: 10323441 - Arthritis Rheum. 1999 May;42(5):861-70
– reference: 22186922 - Knee Surg Sports Traumatol Arthrosc. 2012 Jul;20(7):1349-56
– reference: 18417412 - Med Eng Phys. 2008 Oct;30(8):1004-12
– reference: 23820027 - Clin Biomech (Bristol, Avon). 2013 Aug;28(7):777-82
– reference: 16228178 - Knee Surg Sports Traumatol Arthrosc. 2006 Mar;14(3):257-63
– reference: 25239504 - Knee Surg Sports Traumatol Arthrosc. 2015 Oct;23 (10 ):3055-61
– reference: 27155997 - J Arthroplasty. 2016 Oct;31(10 ):2181-7
– reference: 10768395 - J Biomech. 2000 Apr;33(4):465-73
– reference: 8748517 - J Biomech Eng. 1995 Nov;117(4):373-82
– reference: 25381418 - Bone Joint J. 2014 Nov;96-B(11 Supple A):96-100
– reference: 15292421 - J Bone Joint Surg Am. 2004 Aug;86-A(8):1721-9
– reference: 26218329 - J Orthop Res. 2015 Nov;33(11):1594-602
– reference: 28267191 - J Biomech Eng. 2017 Jun 1;139(6):null
– reference: 18972175 - Clin Orthop Relat Res. 2009 Apr;467(4):1074-82
– reference: 19730815 - Knee Surg Sports Traumatol Arthrosc. 2010 Feb;18(2):152-6
– reference: 17070815 - J Biomech. 2007;40(8):1716-22
– reference: 25274917 - Bone Joint J. 2014 Oct;96-B(10):1333-8
– reference: 23052114 - Knee Surg Sports Traumatol Arthrosc. 2013 Oct;21(10):2281-7
– reference: 22677336 - J Biomech. 2012 Jul 26;45(11):1886-92
– reference: 19957039 - Ann Biomed Eng. 2010 Feb;38(2):269-79
– reference: 23948721 - Knee Surg Sports Traumatol Arthrosc. 2013 Oct;21(10 ):2271-80
– reference: 18006318 - Knee. 2008 Jan;15(1):45-9
– reference: 21808688 - Orthop Rev (Pavia). 2009 Oct 10;1(2):e26
– reference: 27155994 - J Arthroplasty. 2016 Sep;31(9 Suppl):102-5
– reference: 2363739 - Arthritis Rheum. 1990 Jun;33(6):853-8
SSID ssj0005649
Score 2.4184904
Snippet Purpose Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and...
Following total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and anterior...
PurposeFollowing total knee arthroplasty (TKA), high tibial forces, large differences in tibial forces between the medial and lateral compartments, and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1589
SubjectTerms Aged
Aged, 80 and over
Alignment
Arthroplasty (knee)
Arthroplasty, Replacement, Knee - adverse effects
Arthroplasty, Replacement, Knee - methods
Biomechanical Phenomena
Biomedical materials
Bone Malalignment - etiology
Bone Malalignment - physiopathology
Bone Malalignment - prevention & control
Cadaver
Cadavers
Compartments
Femoral components
Femur
Human performance
Humans
Joint surgery
Kinematics
Knee
Knee Joint - physiopathology
Knee Joint - surgery
Knee Prosthesis
Medical personnel
Medicine
Medicine & Public Health
Middle Aged
Orthopedics
Range of Motion, Articular
Recovery of function
Surgery
Surgical implants
Tibia - physiopathology
Tibia - surgery
Tibial components
Translation
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7WDkZfxn7PbTdusKdtprEdW9LTGGOlbGxPC-TNyLI0Soycze5D85_1v-udLSeEspIHY2wlIne6-6S7-w7gvaE_3ua1ia3TOp5rPmiqVEG7FCeEM4J9Dmdb_CouFvPvy3wZDty6kFY52cTBUNet4TPyM67hnJFzkcXn9d-Yu0ZxdDW00DiAhwkhEW7dIJZil-JRjPBXcQkK3U1RzdlAIsqM32yjyVTM4s2-X7oDNu8ESgf_c_4EHgfgiF9GST-FB9Y_g0c_Q2j8Odz8oMvAv6qb5hoJXv8hC4p9S-gaV95aJCXhnggEl_trbLiwqUNmK8axbAQJvpLR-IRTzxS6wUu__xRDXheOuetDijoN0b5GXXnGv800gJPgtelxNc2rw7EmEtcE2MnIomMyzta_gMX5t99fL-LQlyE2mUj7uFJOCq1qVdTk_9nFO_JwSmdZQtYhc7UzzOFT60S6nD4EWpK51bmwaSUqk2cv4dC33r4GlEIqyRw4vDOa51Yrl-uKUJyrtLIuiWA2SaU0gbSce2c05ZZueRBkSYIsWZDlJoIP2yHrkbHjvpdPJ1GXYfF25U7VIni3fUzLjmMp2tv2qitJ20SeCtoNRvBqVJHtr6VSSsJlaQQfJ53Zffl_p3J8_1RO4IjWjRyz1E7hsP93Zd8QHuqrt4PS3wKNGQnq
  priority: 102
  providerName: ProQuest
Title Kinematically aligned total knee arthroplasty limits high tibial forces, differences in tibial forces between compartments, and abnormal tibial contact kinematics during passive flexion
URI https://link.springer.com/article/10.1007/s00167-017-4670-z
https://www.ncbi.nlm.nih.gov/pubmed/28884312
https://www.proquest.com/docview/2043018586
https://www.proquest.com/docview/1937527260
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7WFsZexn7XWxdusKdthsSOLOkxLenKysoYC2RPRralMWqUUrsP7X_W_653tuVSug1GHoyx5Zic7u5T7rtPAO9L-uGtqMrYOmPiueE_mgqd0SrFSelKyTmH2RYn2dFq_mUt1kMfdxPY7qEk2UXqsdmtY8zHHFXJuafx1RbsCJaTokm8Sha3vI6sx7ya-07oLJQy__SIu8noHsK8Vx3tks7hE3g8oEVc9OZ9Cg-sfwYPvw718OdwfUyHTnTV1PUlEqb-RWET2w1Bajz11iLNDN4IgTBye4k1dzM1yBLF2PeKIGFWihSfMGyUQif429-9igOZC3vCesdLpyHGV2gKz6C3DgOY-W7KFk_DezXYN0LiGaF0iqzoWIFz41_A6nD54-AoHjZjiMtUJm1caKek0ZXOKkr6nNcdpTVt0nRGISF1lStZuKcyM-UEfQipzObWCGmTQhalSF_Ctt94uwuopNKKhW94OTQX1mgnTEHQzRVGWzeLYBqskpeDUjlvmFHno8ZyZ8icDJmzIfOrCD6MQ856mY5_3bwXTJ0PHtvk3CM8JfCisgjejZfJ17iAYrzdXDQ5gV0pEklLwAhe9VNk_LZEKUVgLIngY5gztw__66u8_q-738Aj8h3VM9X2YLs9v7BvCRO1xQS25FpOYGfx-efxko77y5Nv3yedZ9wAvsULKQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEB7KFdQX8bextY6gL2rwLpdkNw9FqrZcvfYQaaFvcZPsijQkZ5Mi1__MF_82Z5LdO0qxb-UeQkj2brmZnflmd-YbgFc5_fE6KnJfG6X8UPFGU5bEFKUYIUwu2OdwtsUsnhyHX06ikzX462phOK3S2cTOUBd1znvk77mGc0jORcYf5r987hrFp6uuhYayrRWK7Y5izBZ2TPXiN4Vwzfb-Z5L36yDY2z36NPFtlwE_H4ug9bPESKGSIokL8mbssAzZ60SNxyPS9bEpTM6MNIUaSRPRh1zwKNQqEjrIRJZz1whyAeshb6AMYP3j7uzrt1WSSdwD8ISLYOjOnasOOxpT5hxnL0HGauhfXPaMV-DulaPazgPu3YO7FrriTq9r92FNVw_g1qE9nH8If6Z06RhgVVkukAD-D7Lh2NaE7_G00hpJTbkrAwH2doEll1Y1yHzJ2BeuIAFoMlvv0HVtoRv8WV1-ijazDPvs-S5JnoaoqkCVVYzASzeA0_BV3uKpm1eDfVUmzilkIDOPhulA6-oRHN-IzB7DoKor_RRQCplIZuHh2CyMtEpMpDJSIpOpRJuRB0MnlTS3tOncvaNMl4TPnSBTEmTKgkwvPHizHDLvOUOue3nTiTq15qNJV8ruwcvlY1r4fJqjKl2fNykhbxEFguJRD570KrL8tUBKScgw8OCt05nVl_93Ks-un8oLuD05OjxID_Zn0w24Q6tY9jlzmzBoz871c0JnbbZllwDC95tedf8AAQJMhA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9NADLemTZp4QYy_gQFGghcgWps2ucvDhICt2ihUE2LS3o5LcofQoqQsmVD3zfgKfCrs5K7VNLG3qQ9VlF57qn32z7H9M8DLnP54Exd5aKzW4Vjzg6YsTShKsULYXLDP4WqLWXJwPP50Ep-swV_fC8Nlld4mdoa6qHN-Rr7DPZwDci4y2bGuLOJob_Ju_ivkCVKcafXjNLQbs1DsdnRjrsljaha_KZxrdg_3SPavomiy_-3jQegmDoT5SERtmKVWCp0WaVKQZ2PnZcl2p3o0GpLej2xhc2anKfRQ2phe5I6HY6NjYaJMZDlPkCB3sCHI61MguPFhf3b0dVVwkvRgPOWGGLryOdZBR2nK_OPsMchwDcKLy17yCvS9krbtvOHkDtx2MBbf93q3BWumugubX1yi_h78mdJbxwary3KBBPZ_kD3Htiasj6eVMUgqyxMaCLy3Cyy5zapB5k7GvokFCUyTCXuLfoILXeDP6vJddFVm2FfSdwXztERXBeqsYjRe-gVckq_zFk_9vhrsOzRxTuEDmXy0TA1aV_fh-EZk9gDWq7oyjwClkKlkRh6O08ax0amNdUZKZDOdGjsMYOClonJHoc6TPEq1JH_uBKlIkIoFqS4CeL1cMu_5Q6778LYXtXKmpFErxQ_gxfI2GQHO7OjK1OeNIhQu4khQbBrAw15Flr8WSSkJJUYBvPE6s_ry_27l8fVbeQ6bdPrU58PZ9AncogMt-_K5bVhvz87NUwJqbfbMnQCE7zd96P4BsFFQyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinematically+aligned+total+knee+arthroplasty+limits+high+tibial+forces%2C+differences+in+tibial+forces+between+compartments%2C+and+abnormal+tibial+contact+kinematics+during+passive+flexion&rft.jtitle=Knee+surgery%2C+sports+traumatology%2C+arthroscopy+%3A+official+journal+of+the+ESSKA&rft.au=Roth%2C+Joshua+D.&rft.au=Howell%2C+Stephen+M.&rft.au=Hull%2C+Maury+L.&rft.date=2018-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0942-2056&rft.eissn=1433-7347&rft.volume=26&rft.issue=6&rft.spage=1589&rft.epage=1601&rft_id=info:doi/10.1007%2Fs00167-017-4670-z&rft.externalDocID=10_1007_s00167_017_4670_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0942-2056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0942-2056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0942-2056&client=summon