Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments

Purpose Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for computer assisted radiology and surgery Vol. 13; no. 2; pp. 241 - 251
Main Authors Song, Shuang, Zhang, Changchun, Liu, Li, Meng, Max Q.-H.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1861-6410
1861-6429
1861-6429
DOI10.1007/s11548-017-1672-8

Cover

Abstract Purpose Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. Methods We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. Results Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is 2.07 ± 0.71  mm, while the maximum error is 3.2 mm. Conclusion The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.
AbstractList Purpose Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. Methods We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. Results Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is 2.07 ± 0.71  mm, while the maximum error is 3.2 mm. Conclusion The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.
Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation.PURPOSEFlexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation.We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved.METHODSWe use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved.Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm.RESULTSUsing the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm.The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.CONCLUSIONThe proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.
Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm. The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.
PurposeFlexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation.MethodsWe use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved.ResultsUsing the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is 2.07±0.71 mm, while the maximum error is 3.2 mm.ConclusionThe proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.
Author Liu, Li
Song, Shuang
Zhang, Changchun
Meng, Max Q.-H.
Author_xml – sequence: 1
  givenname: Shuang
  orcidid: 0000-0002-3490-9752
  surname: Song
  fullname: Song, Shuang
  email: songshuang@hit.edu.cn
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 2
  givenname: Changchun
  surname: Zhang
  fullname: Zhang, Changchun
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 3
  givenname: Li
  surname: Liu
  fullname: Liu, Li
  email: li.liu@szu.edu.cn
  organization: Shenzhen University Health Science Center
– sequence: 4
  givenname: Max Q.-H.
  surname: Meng
  fullname: Meng, Max Q.-H.
  organization: The Chinese University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28983750$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1TAQhSNURH_gAdggS2zYpHjsxHHYoYo_qRIsYG05yeRel8QOtlP1Pg8vytzeFlWVYOWR5zujmXNOiyMfPBbFS-DnwHnzNgHUlS45NCWoRpT6SXECWkGpKtEe_a2BHxenKV1xXtWNrJ8Vx0K3WjY1Pyl-f4s4udl5G3cs5XXYseDZbDces-tZjrb_6fym7GzCgS2TJZClrV2QJfSJWsz6gXl77TY2O9KOIbJxwhvXTcSsceN6O7EYupATc34_0qcQ6W_fxLh7x2bM2zCk20nL1vocZoY3C0Y3o8_pefF0tFPCF3fvWfHj44fvF5_Ly6-fvly8vyx72Yhcdu0gR6Aale7HTtaj7LUYWg5aCKg6bRuFolKyrWurYZSiRoXQSSUkVFzJs-LNYe4Sw68VUzazSz1OdDSGNRloK92Qg21F6OtH6FVYo6ftiGqlAlWDJOrVHbV2Mw5moYPIZ3NvPwHNAehjSCniaHqXb20kl9xkgJt90OYQtKGgzT5oo0kJj5T3w_-nEQdNItaT9Q-W_qfoD8v0vNo
CitedBy_id crossref_primary_10_1088_1361_6501_abdfec
crossref_primary_10_3390_s23167196
crossref_primary_10_1109_TIE_2024_3366214
crossref_primary_10_1109_TIM_2021_3124853
crossref_primary_10_1109_TIM_2024_3476592
crossref_primary_10_1109_JSEN_2023_3248781
crossref_primary_10_1109_TMECH_2020_3040314
crossref_primary_10_1007_s40436_023_00469_7
crossref_primary_10_1108_IR_09_2020_0205
crossref_primary_10_3389_frobt_2021_757895
crossref_primary_10_1016_j_sna_2018_11_030
crossref_primary_10_1109_TASE_2019_2914306
crossref_primary_10_1007_s12555_021_0824_3
crossref_primary_10_1016_j_optlaseng_2020_106057
crossref_primary_10_4240_wjgs_v13_i9_904
crossref_primary_10_1109_TASE_2021_3127172
Cites_doi 10.1109/TRO.2013.2266754
10.1109/TMECH.2015.2488361
10.1109/TRO.2011.2160469
10.1002/rcs.184
10.1109/TMAG.2014.2315592
10.1109/TMECH.2013.2278251
10.1007/s11517-016-1514-9
10.1177/0278364910368147
10.1109/TRO.2008.924923
10.1109/ROBOT.2008.4543656
10.1016/j.mechatronics.2012.09.005
10.1177/0278364910367543
10.1109/ICRA.2014.6907649
10.1615/CritRevBiomedEng.2014010440
10.1109/JSEN.2015.2456181
10.1115/IMECE2011-63482
10.1016/j.mechatronics.2013.12.006
10.3109/13645706.2012.666251
10.1115/1.4000519
10.1109/TMI.2014.2321777
10.1109/TRO.2010.2090064
10.1109/TRO.2011.2175761
ContentType Journal Article
Copyright CARS 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: CARS 2017
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1007/s11548-017-1672-8
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 251
ExternalDocumentID 28983750
10_1007_s11548_017_1672_8
Genre Journal Article
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
K9.
7X8
ID FETCH-LOGICAL-c372t-b9d3f1c37e68cfb35f3c82d90182214b8a76e2463955a81f325e6e1b362314063
IEDL.DBID U2A
ISSN 1861-6410
1861-6429
IngestDate Thu Oct 02 05:24:29 EDT 2025
Tue Oct 07 06:45:42 EDT 2025
Wed Feb 19 02:42:33 EST 2025
Thu Apr 24 23:02:46 EDT 2025
Wed Oct 01 00:20:31 EDT 2025
Fri Feb 21 02:42:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Shape sensing
Flexible surgical robot
Magnetic positioning
Surgery navigation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-b9d3f1c37e68cfb35f3c82d90182214b8a76e2463955a81f325e6e1b362314063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3490-9752
PMID 28983750
PQID 1993616513
PQPubID 2043910
PageCount 11
ParticipantIDs proquest_miscellaneous_1948757394
proquest_journals_1993616513
pubmed_primary_28983750
crossref_citationtrail_10_1007_s11548_017_1672_8
crossref_primary_10_1007_s11548_017_1672_8
springer_journals_10_1007_s11548_017_1672_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References PalliGMelchiorriCFriction compensation techniques for tendon driven robotic handsMechatronics201424210811710.1016/j.mechatronics.2013.12.006
GouttefardeMDaneyDMerletJPInterval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robotsRobot IEEE Trans201127111310.1109/TRO.2010.2090064
PalliGPirozziSA miniaturized optical force sensor for tendondriven mechatronic systems: design and experimental evaluationMechatronics20122281097111110.1016/j.mechatronics.2012.09.005
RuckerDCWebsterRJChirikjianGSCowanNJEquilibrium conformations of concentric-tube continuum robotsInt J Robot Res201029101263128010.1177/0278364910367543
Li Z, Du R, Lei MC, Yuan SM (2011) Design and analysis of a biomimetic wire-driven robot arm. In: ASME 2011 international mechanical engineering congress and exposition, American society of mechanical engineers, pp 191–198
XuKSimaanNAnalytic formulation for kinematics, statics, and shape restoration of multibackbone continuum robots via elliptic integralsJ Mech Robot201021011,00610.1115/1.4000519
RenHLimCMWangJLiuWSongSLiZHerbertGYuHTseZTanZComputer assisted transoral surgery with flexible robotics and navigation technologies: a review of recent progress and research challengesCrit Rev Biomed Eng2013414–536539110.1615/CritRevBiomedEng.201401044024941414
Camarillo DB, Loewke KE, Carlson CR, Salisbury JK (2008) Vision based 3-d shape sensing of flexible manipulators. In: IEEE/ICRA 2008 international conference on robotics and automation 2008, pp 2940–2947
YimSSittiM3-d localization method for a magnetically actuated soft capsule endoscope and its applicationsIEEE Trans Robot20132951139115110.1109/TRO.2013.2266754253830644224301
FranzAMHaideggerTBirkfellnerWClearyKPetersTMMaier-HeinLElectromagnetic tracking in medicinea review of technology, validation, and applicationsIEEE Trans Med Imaging20143381702172510.1109/TMI.2014.232177724816547
ParkYLElayaperumalSDanielBRyuSCShinMSavallJBlackRJMoslehiBCutkoskyMRReal-time estimation of 3-d needle shape and detection for mri-guided interventionsMechatron IEEE/ASME Trans2010156906915
RuckerDCWebsterRJStatics and dynamics of continuum robots with general tendon routing and external loadingRobot IEEE Trans20112761033104410.1109/TRO.2011.2160469
BajoASimaanNKinematics-based detection and localization of contacts along multisegment continuum robotsRobot IEEE Trans201228229130210.1109/TRO.2011.2175761
Roesthuis RJ, Abayazid M, Misra S (2012) Mechanics-based model for predicting in-plane needle detection with multiple bends. In: 4th IEEE RAS & EMBS international conference on Biomedical robotics and biomechatronics (BioRob) 2012, pp 69–74
SonDYimSSittiMA 5-d localization method for a magnetically manipulated untethered robot using a 2-d array of hall-effect sensorsIEEE/ASME Trans Mechatron201621270871610.1109/TMECH.2015.2488361
WuLSongSWuKLimCMRenHDevelopment of a compact continuum tubular robotic system for nasopharyngeal biopsyMed Biol Eng Comput20175540341710.1007/s11517-016-1514-927230499
HenkenKVan GerwenDDankelmanJVan Den DobbelsteenJAccuracy of needle position measurements using fiber bragg gratingsMinim Invasive Ther Allied Technol201221640841410.3109/13645706.2012.66625122455615
WebsterRJJonesBADesign and kinematic modeling of constant curvature continuum robots: a reviewInt J Robot Res201029131661168310.1177/0278364910368147
Kim B, Ha J, Park FC, Dupont PE (2014) Optimizing curvature sensor placement for fast, accurate shape sensing of continuum robots. In: IEEE/ICRA 2014 international conference on robotics and automation, pp 5374–5379
SongSLiBQiaoWHuCRenHYuHZhangQMengMXuG6-d magnetic localization and orientation method for an annular magnet based on a closed-form analytical modelMagn IEEE Trans201450911110.1109/TMAG.2014.2315592
ShapiroYKosaGWolfAShape tracking of planar hyper flexible beams via embedded pvdf detection sensorsIEEE/ASME Trans Mechatron20141941260126710.1109/TMECH.2013.2278251
BoctorEMChotiMABurdetteECWebster IiiRJThree-dimensional ultrasound-guided robotic needle placement: an experimental evaluationInt J Med Robot Comput Assist Surg20084218019110.1002/rcs.184
TrivediDLotARahnCDGeometrically exact models for soft robotic manipulatorsRobot IEEE Trans200824477378010.1109/TRO.2008.924923
SongSLiZMengQHYuHRenHReal-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic bezier curvesSens J IEEE2015151163263410.1109/JSEN.2015.2456181
DC Rucker (1672_CR8) 2011; 27
L Wu (1672_CR24) 2017; 55
H Ren (1672_CR5) 2013; 41
YL Park (1672_CR13) 2010; 15
AM Franz (1672_CR20) 2014; 33
M Gouttefarde (1672_CR4) 2011; 27
K Xu (1672_CR9) 2010; 2
1672_CR14
K Henken (1672_CR15) 2012; 21
1672_CR16
A Bajo (1672_CR19) 2012; 28
EM Boctor (1672_CR12) 2008; 4
1672_CR1
1672_CR11
S Song (1672_CR18) 2015; 15
S Yim (1672_CR23) 2013; 29
RJ Webster (1672_CR7) 2010; 29
G Palli (1672_CR2) 2012; 22
D Trivedi (1672_CR10) 2008; 24
D Son (1672_CR22) 2016; 21
Y Shapiro (1672_CR17) 2014; 19
S Song (1672_CR21) 2014; 50
G Palli (1672_CR3) 2014; 24
DC Rucker (1672_CR6) 2010; 29
25383064 - IEEE Trans Robot. 2013 Jun 25;29(5):1139-1151
26405428 - IEEE ASME Trans Mechatron. 2010 Dec;15(6):906-915
24941414 - Crit Rev Biomed Eng. 2013;41(4-5):365-91
22455615 - Minim Invasive Ther Allied Technol. 2012 Nov;21(6):408-14
25125773 - Int J Rob Res. 2010 Sep 1;29(10):1263-1280
27458327 - IEEE ASME Trans Mechatron. 2016 Apr;21(2):708-716
27230499 - Med Biol Eng Comput. 2017 Mar;55(3):403-417
18433079 - Int J Med Robot. 2008 Jun;4(2):180-91
24816547 - IEEE Trans Med Imaging. 2014 Aug;33(8):1702-25
References_xml – reference: PalliGPirozziSA miniaturized optical force sensor for tendondriven mechatronic systems: design and experimental evaluationMechatronics20122281097111110.1016/j.mechatronics.2012.09.005
– reference: RuckerDCWebsterRJStatics and dynamics of continuum robots with general tendon routing and external loadingRobot IEEE Trans20112761033104410.1109/TRO.2011.2160469
– reference: XuKSimaanNAnalytic formulation for kinematics, statics, and shape restoration of multibackbone continuum robots via elliptic integralsJ Mech Robot201021011,00610.1115/1.4000519
– reference: HenkenKVan GerwenDDankelmanJVan Den DobbelsteenJAccuracy of needle position measurements using fiber bragg gratingsMinim Invasive Ther Allied Technol201221640841410.3109/13645706.2012.66625122455615
– reference: FranzAMHaideggerTBirkfellnerWClearyKPetersTMMaier-HeinLElectromagnetic tracking in medicinea review of technology, validation, and applicationsIEEE Trans Med Imaging20143381702172510.1109/TMI.2014.232177724816547
– reference: Roesthuis RJ, Abayazid M, Misra S (2012) Mechanics-based model for predicting in-plane needle detection with multiple bends. In: 4th IEEE RAS & EMBS international conference on Biomedical robotics and biomechatronics (BioRob) 2012, pp 69–74
– reference: RuckerDCWebsterRJChirikjianGSCowanNJEquilibrium conformations of concentric-tube continuum robotsInt J Robot Res201029101263128010.1177/0278364910367543
– reference: RenHLimCMWangJLiuWSongSLiZHerbertGYuHTseZTanZComputer assisted transoral surgery with flexible robotics and navigation technologies: a review of recent progress and research challengesCrit Rev Biomed Eng2013414–536539110.1615/CritRevBiomedEng.201401044024941414
– reference: Kim B, Ha J, Park FC, Dupont PE (2014) Optimizing curvature sensor placement for fast, accurate shape sensing of continuum robots. In: IEEE/ICRA 2014 international conference on robotics and automation, pp 5374–5379
– reference: GouttefardeMDaneyDMerletJPInterval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robotsRobot IEEE Trans201127111310.1109/TRO.2010.2090064
– reference: BajoASimaanNKinematics-based detection and localization of contacts along multisegment continuum robotsRobot IEEE Trans201228229130210.1109/TRO.2011.2175761
– reference: WuLSongSWuKLimCMRenHDevelopment of a compact continuum tubular robotic system for nasopharyngeal biopsyMed Biol Eng Comput20175540341710.1007/s11517-016-1514-927230499
– reference: ParkYLElayaperumalSDanielBRyuSCShinMSavallJBlackRJMoslehiBCutkoskyMRReal-time estimation of 3-d needle shape and detection for mri-guided interventionsMechatron IEEE/ASME Trans2010156906915
– reference: Camarillo DB, Loewke KE, Carlson CR, Salisbury JK (2008) Vision based 3-d shape sensing of flexible manipulators. In: IEEE/ICRA 2008 international conference on robotics and automation 2008, pp 2940–2947
– reference: PalliGMelchiorriCFriction compensation techniques for tendon driven robotic handsMechatronics201424210811710.1016/j.mechatronics.2013.12.006
– reference: YimSSittiM3-d localization method for a magnetically actuated soft capsule endoscope and its applicationsIEEE Trans Robot20132951139115110.1109/TRO.2013.2266754253830644224301
– reference: BoctorEMChotiMABurdetteECWebster IiiRJThree-dimensional ultrasound-guided robotic needle placement: an experimental evaluationInt J Med Robot Comput Assist Surg20084218019110.1002/rcs.184
– reference: SongSLiZMengQHYuHRenHReal-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic bezier curvesSens J IEEE2015151163263410.1109/JSEN.2015.2456181
– reference: WebsterRJJonesBADesign and kinematic modeling of constant curvature continuum robots: a reviewInt J Robot Res201029131661168310.1177/0278364910368147
– reference: SongSLiBQiaoWHuCRenHYuHZhangQMengMXuG6-d magnetic localization and orientation method for an annular magnet based on a closed-form analytical modelMagn IEEE Trans201450911110.1109/TMAG.2014.2315592
– reference: SonDYimSSittiMA 5-d localization method for a magnetically manipulated untethered robot using a 2-d array of hall-effect sensorsIEEE/ASME Trans Mechatron201621270871610.1109/TMECH.2015.2488361
– reference: ShapiroYKosaGWolfAShape tracking of planar hyper flexible beams via embedded pvdf detection sensorsIEEE/ASME Trans Mechatron20141941260126710.1109/TMECH.2013.2278251
– reference: Li Z, Du R, Lei MC, Yuan SM (2011) Design and analysis of a biomimetic wire-driven robot arm. In: ASME 2011 international mechanical engineering congress and exposition, American society of mechanical engineers, pp 191–198
– reference: TrivediDLotARahnCDGeometrically exact models for soft robotic manipulatorsRobot IEEE Trans200824477378010.1109/TRO.2008.924923
– volume: 29
  start-page: 1139
  issue: 5
  year: 2013
  ident: 1672_CR23
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2013.2266754
– volume: 21
  start-page: 708
  issue: 2
  year: 2016
  ident: 1672_CR22
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2015.2488361
– volume: 27
  start-page: 1033
  issue: 6
  year: 2011
  ident: 1672_CR8
  publication-title: Robot IEEE Trans
  doi: 10.1109/TRO.2011.2160469
– volume: 4
  start-page: 180
  issue: 2
  year: 2008
  ident: 1672_CR12
  publication-title: Int J Med Robot Comput Assist Surg
  doi: 10.1002/rcs.184
– volume: 50
  start-page: 1
  issue: 9
  year: 2014
  ident: 1672_CR21
  publication-title: Magn IEEE Trans
  doi: 10.1109/TMAG.2014.2315592
– volume: 15
  start-page: 906
  issue: 6
  year: 2010
  ident: 1672_CR13
  publication-title: Mechatron IEEE/ASME Trans
– volume: 19
  start-page: 1260
  issue: 4
  year: 2014
  ident: 1672_CR17
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2013.2278251
– volume: 55
  start-page: 403
  year: 2017
  ident: 1672_CR24
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-016-1514-9
– volume: 29
  start-page: 1661
  issue: 13
  year: 2010
  ident: 1672_CR7
  publication-title: Int J Robot Res
  doi: 10.1177/0278364910368147
– volume: 24
  start-page: 773
  issue: 4
  year: 2008
  ident: 1672_CR10
  publication-title: Robot IEEE Trans
  doi: 10.1109/TRO.2008.924923
– ident: 1672_CR14
  doi: 10.1109/ROBOT.2008.4543656
– volume: 22
  start-page: 1097
  issue: 8
  year: 2012
  ident: 1672_CR2
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2012.09.005
– volume: 29
  start-page: 1263
  issue: 10
  year: 2010
  ident: 1672_CR6
  publication-title: Int J Robot Res
  doi: 10.1177/0278364910367543
– ident: 1672_CR16
  doi: 10.1109/ICRA.2014.6907649
– volume: 41
  start-page: 365
  issue: 4–5
  year: 2013
  ident: 1672_CR5
  publication-title: Crit Rev Biomed Eng
  doi: 10.1615/CritRevBiomedEng.2014010440
– volume: 15
  start-page: 6326
  issue: 11
  year: 2015
  ident: 1672_CR18
  publication-title: Sens J IEEE
  doi: 10.1109/JSEN.2015.2456181
– ident: 1672_CR1
  doi: 10.1115/IMECE2011-63482
– ident: 1672_CR11
– volume: 24
  start-page: 108
  issue: 2
  year: 2014
  ident: 1672_CR3
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2013.12.006
– volume: 21
  start-page: 408
  issue: 6
  year: 2012
  ident: 1672_CR15
  publication-title: Minim Invasive Ther Allied Technol
  doi: 10.3109/13645706.2012.666251
– volume: 2
  start-page: 011,006
  issue: 1
  year: 2010
  ident: 1672_CR9
  publication-title: J Mech Robot
  doi: 10.1115/1.4000519
– volume: 33
  start-page: 1702
  issue: 8
  year: 2014
  ident: 1672_CR20
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2321777
– volume: 27
  start-page: 1
  issue: 1
  year: 2011
  ident: 1672_CR4
  publication-title: Robot IEEE Trans
  doi: 10.1109/TRO.2010.2090064
– volume: 28
  start-page: 291
  issue: 2
  year: 2012
  ident: 1672_CR19
  publication-title: Robot IEEE Trans
  doi: 10.1109/TRO.2011.2175761
– reference: 18433079 - Int J Med Robot. 2008 Jun;4(2):180-91
– reference: 25125773 - Int J Rob Res. 2010 Sep 1;29(10):1263-1280
– reference: 26405428 - IEEE ASME Trans Mechatron. 2010 Dec;15(6):906-915
– reference: 27458327 - IEEE ASME Trans Mechatron. 2016 Apr;21(2):708-716
– reference: 27230499 - Med Biol Eng Comput. 2017 Mar;55(3):403-417
– reference: 22455615 - Minim Invasive Ther Allied Technol. 2012 Nov;21(6):408-14
– reference: 25383064 - IEEE Trans Robot. 2013 Jun 25;29(5):1139-1151
– reference: 24941414 - Crit Rev Biomed Eng. 2013;41(4-5):365-91
– reference: 24816547 - IEEE Trans Med Imaging. 2014 Aug;33(8):1702-25
SSID ssj0045735
Score 2.247451
Snippet Purpose Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize...
Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize...
PurposeFlexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 241
SubjectTerms Computer Imaging
Computer Science
Detection
Experiments
Flexible manipulators
Health Informatics
Imaging
Medicine
Medicine & Public Health
Navigation systems
Original Article
Pattern Recognition and Graphics
Position sensing
Radiology
Robot arms
Robotic surgery
Robots
Sensor arrays
Skull
Surgery
Telesurgery
Three dimensional models
Vision
Title Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments
URI https://link.springer.com/article/10.1007/s11548-017-1672-8
https://www.ncbi.nlm.nih.gov/pubmed/28983750
https://www.proquest.com/docview/1993616513
https://www.proquest.com/docview/1948757394
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: AFBBN
  dateStart: 20060301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1861-6429
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045735
  issn: 1861-6410
  databaseCode: U2A
  dateStart: 20060625
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-0BfHFj_p1WssKPikL3exHNr4d0lqUig8e1Kewu9m0hevmSHJC_x7_UWc2yZ1SFXwLZHayMDszv8nMzhDyuvA-z-tCsLoSgknuLTPeG-YLWWkvXaZTy_zTz_pkIT-eqbPxHnc3VbtPKclkqbeX3RBdM7SqXOegxrfJrsJuXnCIF9l8Mr9S5WmqJjeaMy35JpX5Jxa_O6MbCPNGdjQ5neMH5N6IFul8EO9DcivEPXJ_msRAR8XcI3dOxxT5I_LjSxuWaVRXe01T81jaRHplzyNeV6R9az3-HWfoviq6WlogpN2FXQXaYTF7PKc2VjTa76n5BqwFWEtr7JvplkCzbpOtpG3jmr6jlxFZxg4v-qeXob1-R4e51F3itLrAOcVXdDtLoHtMFsdHX9-fsHESA_Miz3rmikrUHJ6DNr52QtXCm6wCLAH4gktnbK5DJgHtKGUNr0Wmgg7cgXcUEMFp8YTsxCaGZ4RKgExVgJNQALLIfW25CoJrsLvA0mk5I4eTSEo_tinHaRnLcttgGaVYghRLlGJpZuTNZslq6NHxL-L9Sc7lqK5diVWMGjbBxYy82rwGRcPsiY2hWSMNxna5KGCLT4fzsfkaRK0Q6KvDGXk7HZhfmP9tK8__i_oFuQtgzQwV4_tkp2_X4SUAot4dkN35h2-fjg6SIvwEEL8EvQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3BVgIuFMrXQgEjcQKlwrHjONwq1LLQbsVhK5VTZDtOi9g6qySLVP4Of5Sxk-wCBaTeInk8ceTx-DkzfgPwMjMmTcuMRWXBWMSpUZE0RkYm44UwXMciUOZPj8TkmH88SU76e9zNkO0-hCSDp15fdvPoOvJelYoUl_F12OB4PolHsLH7_vPB3uCAeZKGuppUChoJTlfBzL8p-X07uoQxL8VHw7azvwmzYcBdtsnXnWWrd8z3P7gcr_hFd-B2D0PJbmc3d-GadVuwOZR4IP2K34Ib0z72fg9-fKrtPNQAqy9IYKUllSPn6tT5e5CkrZXxv90jvy8WZDFXKEiaM7WwpPFZ8u6UKFcQp74FVg_si3iZlJ6QU89RZlkHJ0zqSldtQ744r9I1nkEgNNr64i3pCl43QdPizBdAPifrIgXNfTje35u9m0R9iYfIsDRuI50VrKT4bIU0pWZJyYyMCwQpCFwo11KlwsYcYVSSKElLFidWWKpx22V4NBTsAYxc5ewjIByxWGHRxDKELKkpFU0sowIdOqrUgo_hzTDTuen5z30Zjnm-Zm7285HjfOR-PnI5hlerLouO_ON_wtuD-eS9H2hynx4pcBCUjeHFqhlXsA_LKGerpZfxh8aUZTjEh53Zrd6Gx2HJENSN4fVgQr8o_9dQHl9J-jncnMymh_nhh6ODJ3ALEaHs0tK3YdTWS_sUUVern_Wr7CeTMCLf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSBUXPgqUhQJG4gSyWseO43CrgFX5aNUDK_UWOY7dIm2dKMki9ffwR5lxkl1QAYlbpIwnlsZjP2fs9wh5lVubZT4XzFdCMMmtYdpazWwuK2VlmahImX98oo4W8tNZejbqnHbTafepJDncaUCWptDvN5Xf31x8Q6TNcIblKoOUvkluSeRJgAG9SA6nqVimWVTY5FpxpiRflzX_5OL3heka2rxWKY0L0PweuTMiR3o4hPo-ueHCDrk7qTLQMUl3yPbxWC5_QH6ctm4ZZbvaKxqJZGkd6KU5D3h1kfatsfinnOFSVtFmacCQdhemcbTDg-3hnJpQ0WC-RyIOaAsQl3rk0CyXYLNq47xJ27qs-45-C-gydHjpP7507dVbOmhUd9FTc4GaxZd0oyvQPSSL-Yev747YqMrArMiSnpV5JTyHZ6e09aVIvbA6qQBXANbgstQmUy6RgHzS1GjuRZI65XgJK6WA3ZwSj8hWqIN7TKgE-FQ5GBU5oIzMesNTJ7iCORhclkrOyMEUksKOlOWonLEsNmTLGMUColhgFAs9I6_XTZqBr-NfxntTnIsxdbsCTzQq6AQXM_Jy_RqSDispJrh6hTa4z8tEDl3cHcbH-muwg4VNf3owI2-mAfOL87915cl_Wb8g26fv58WXjyefn5LbgOH0cJB8j2z17co9A5zUl89jLvwEFtQKUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preliminary+study+on+magnetic+tracking-based+planar+shape+sensing+and+navigation+for+flexible+surgical+robots+in+transoral+surgery%3A+methods+and+phantom+experiments&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Song%2C+Shuang&rft.au=Zhang%2C+Changchun&rft.au=Liu%2C+Li&rft.au=Meng%2C+Max+Q.-H.&rft.date=2018-02-01&rft.pub=Springer+International+Publishing&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=13&rft.issue=2&rft.spage=241&rft.epage=251&rft_id=info:doi/10.1007%2Fs11548-017-1672-8&rft.externalDocID=10_1007_s11548_017_1672_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon