Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments
Purpose Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of...
        Saved in:
      
    
          | Published in | International journal for computer assisted radiology and surgery Vol. 13; no. 2; pp. 241 - 251 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.02.2018
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1861-6410 1861-6429 1861-6429  | 
| DOI | 10.1007/s11548-017-1672-8 | 
Cover
| Abstract | Purpose
Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation.
Methods
We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved.
Results
Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is
2.07
±
0.71
 mm, while the maximum error is 3.2 mm.
Conclusion
The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method. | 
    
|---|---|
| AbstractList | Purpose
Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation.
Methods
We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved.
Results
Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is
2.07
±
0.71
 mm, while the maximum error is 3.2 mm.
Conclusion
The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method. Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation.PURPOSEFlexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation.We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved.METHODSWe use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved.Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm.RESULTSUsing the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm.The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.CONCLUSIONThe proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method. Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm. The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method. PurposeFlexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation.MethodsWe use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved.ResultsUsing the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is 2.07±0.71 mm, while the maximum error is 3.2 mm.ConclusionThe proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.  | 
    
| Author | Liu, Li Song, Shuang Zhang, Changchun Meng, Max Q.-H.  | 
    
| Author_xml | – sequence: 1 givenname: Shuang orcidid: 0000-0002-3490-9752 surname: Song fullname: Song, Shuang email: songshuang@hit.edu.cn organization: Harbin Institute of Technology (Shenzhen) – sequence: 2 givenname: Changchun surname: Zhang fullname: Zhang, Changchun organization: Harbin Institute of Technology (Shenzhen) – sequence: 3 givenname: Li surname: Liu fullname: Liu, Li email: li.liu@szu.edu.cn organization: Shenzhen University Health Science Center – sequence: 4 givenname: Max Q.-H. surname: Meng fullname: Meng, Max Q.-H. organization: The Chinese University of Hong Kong  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28983750$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kc1u1TAQhSNURH_gAdggS2zYpHjsxHHYoYo_qRIsYG05yeRel8QOtlP1Pg8vytzeFlWVYOWR5zujmXNOiyMfPBbFS-DnwHnzNgHUlS45NCWoRpT6SXECWkGpKtEe_a2BHxenKV1xXtWNrJ8Vx0K3WjY1Pyl-f4s4udl5G3cs5XXYseDZbDces-tZjrb_6fym7GzCgS2TJZClrV2QJfSJWsz6gXl77TY2O9KOIbJxwhvXTcSsceN6O7EYupATc34_0qcQ6W_fxLh7x2bM2zCk20nL1vocZoY3C0Y3o8_pefF0tFPCF3fvWfHj44fvF5_Ly6-fvly8vyx72Yhcdu0gR6Aale7HTtaj7LUYWg5aCKg6bRuFolKyrWurYZSiRoXQSSUkVFzJs-LNYe4Sw68VUzazSz1OdDSGNRloK92Qg21F6OtH6FVYo6ftiGqlAlWDJOrVHbV2Mw5moYPIZ3NvPwHNAehjSCniaHqXb20kl9xkgJt90OYQtKGgzT5oo0kJj5T3w_-nEQdNItaT9Q-W_qfoD8v0vNo | 
    
| CitedBy_id | crossref_primary_10_1088_1361_6501_abdfec crossref_primary_10_3390_s23167196 crossref_primary_10_1109_TIE_2024_3366214 crossref_primary_10_1109_TIM_2021_3124853 crossref_primary_10_1109_TIM_2024_3476592 crossref_primary_10_1109_JSEN_2023_3248781 crossref_primary_10_1109_TMECH_2020_3040314 crossref_primary_10_1007_s40436_023_00469_7 crossref_primary_10_1108_IR_09_2020_0205 crossref_primary_10_3389_frobt_2021_757895 crossref_primary_10_1016_j_sna_2018_11_030 crossref_primary_10_1109_TASE_2019_2914306 crossref_primary_10_1007_s12555_021_0824_3 crossref_primary_10_1016_j_optlaseng_2020_106057 crossref_primary_10_4240_wjgs_v13_i9_904 crossref_primary_10_1109_TASE_2021_3127172  | 
    
| Cites_doi | 10.1109/TRO.2013.2266754 10.1109/TMECH.2015.2488361 10.1109/TRO.2011.2160469 10.1002/rcs.184 10.1109/TMAG.2014.2315592 10.1109/TMECH.2013.2278251 10.1007/s11517-016-1514-9 10.1177/0278364910368147 10.1109/TRO.2008.924923 10.1109/ROBOT.2008.4543656 10.1016/j.mechatronics.2012.09.005 10.1177/0278364910367543 10.1109/ICRA.2014.6907649 10.1615/CritRevBiomedEng.2014010440 10.1109/JSEN.2015.2456181 10.1115/IMECE2011-63482 10.1016/j.mechatronics.2013.12.006 10.3109/13645706.2012.666251 10.1115/1.4000519 10.1109/TMI.2014.2321777 10.1109/TRO.2010.2090064 10.1109/TRO.2011.2175761  | 
    
| ContentType | Journal Article | 
    
| Copyright | CARS 2017 Copyright Springer Science & Business Media 2018  | 
    
| Copyright_xml | – notice: CARS 2017 – notice: Copyright Springer Science & Business Media 2018  | 
    
| DBID | AAYXX CITATION NPM K9. 7X8  | 
    
| DOI | 10.1007/s11548-017-1672-8 | 
    
| DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni)  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Computer Science  | 
    
| EISSN | 1861-6429 | 
    
| EndPage | 251 | 
    
| ExternalDocumentID | 28983750 10_1007_s11548_017_1672_8  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ARMRJ ASPBG AVWKF AVXWI AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P P9S PF0 PT4 QOR QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7R Z7V Z7X Z82 Z83 Z87 Z88 ZMTXR ZOVNA ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM K9. 7X8  | 
    
| ID | FETCH-LOGICAL-c372t-b9d3f1c37e68cfb35f3c82d90182214b8a76e2463955a81f325e6e1b362314063 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1861-6410 1861-6429  | 
    
| IngestDate | Thu Oct 02 05:24:29 EDT 2025 Tue Oct 07 06:45:42 EDT 2025 Wed Feb 19 02:42:33 EST 2025 Thu Apr 24 23:02:46 EDT 2025 Wed Oct 01 00:20:31 EDT 2025 Fri Feb 21 02:42:11 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Shape sensing Flexible surgical robot Magnetic positioning Surgery navigation  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c372t-b9d3f1c37e68cfb35f3c82d90182214b8a76e2463955a81f325e6e1b362314063 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-3490-9752 | 
    
| PMID | 28983750 | 
    
| PQID | 1993616513 | 
    
| PQPubID | 2043910 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_miscellaneous_1948757394 proquest_journals_1993616513 pubmed_primary_28983750 crossref_citationtrail_10_1007_s11548_017_1672_8 crossref_primary_10_1007_s11548_017_1672_8 springer_journals_10_1007_s11548_017_1672_8  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-02-01 | 
    
| PublicationDateYYYYMMDD | 2018-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Germany – name: Heidelberg  | 
    
| PublicationSubtitle | A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy | 
    
| PublicationTitle | International journal for computer assisted radiology and surgery | 
    
| PublicationTitleAbbrev | Int J CARS | 
    
| PublicationTitleAlternate | Int J Comput Assist Radiol Surg | 
    
| PublicationYear | 2018 | 
    
| Publisher | Springer International Publishing Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V  | 
    
| References | PalliGMelchiorriCFriction compensation techniques for tendon driven robotic handsMechatronics201424210811710.1016/j.mechatronics.2013.12.006 GouttefardeMDaneyDMerletJPInterval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robotsRobot IEEE Trans201127111310.1109/TRO.2010.2090064 PalliGPirozziSA miniaturized optical force sensor for tendondriven mechatronic systems: design and experimental evaluationMechatronics20122281097111110.1016/j.mechatronics.2012.09.005 RuckerDCWebsterRJChirikjianGSCowanNJEquilibrium conformations of concentric-tube continuum robotsInt J Robot Res201029101263128010.1177/0278364910367543 Li Z, Du R, Lei MC, Yuan SM (2011) Design and analysis of a biomimetic wire-driven robot arm. In: ASME 2011 international mechanical engineering congress and exposition, American society of mechanical engineers, pp 191–198 XuKSimaanNAnalytic formulation for kinematics, statics, and shape restoration of multibackbone continuum robots via elliptic integralsJ Mech Robot201021011,00610.1115/1.4000519 RenHLimCMWangJLiuWSongSLiZHerbertGYuHTseZTanZComputer assisted transoral surgery with flexible robotics and navigation technologies: a review of recent progress and research challengesCrit Rev Biomed Eng2013414–536539110.1615/CritRevBiomedEng.201401044024941414 Camarillo DB, Loewke KE, Carlson CR, Salisbury JK (2008) Vision based 3-d shape sensing of flexible manipulators. In: IEEE/ICRA 2008 international conference on robotics and automation 2008, pp 2940–2947 YimSSittiM3-d localization method for a magnetically actuated soft capsule endoscope and its applicationsIEEE Trans Robot20132951139115110.1109/TRO.2013.2266754253830644224301 FranzAMHaideggerTBirkfellnerWClearyKPetersTMMaier-HeinLElectromagnetic tracking in medicinea review of technology, validation, and applicationsIEEE Trans Med Imaging20143381702172510.1109/TMI.2014.232177724816547 ParkYLElayaperumalSDanielBRyuSCShinMSavallJBlackRJMoslehiBCutkoskyMRReal-time estimation of 3-d needle shape and detection for mri-guided interventionsMechatron IEEE/ASME Trans2010156906915 RuckerDCWebsterRJStatics and dynamics of continuum robots with general tendon routing and external loadingRobot IEEE Trans20112761033104410.1109/TRO.2011.2160469 BajoASimaanNKinematics-based detection and localization of contacts along multisegment continuum robotsRobot IEEE Trans201228229130210.1109/TRO.2011.2175761 Roesthuis RJ, Abayazid M, Misra S (2012) Mechanics-based model for predicting in-plane needle detection with multiple bends. In: 4th IEEE RAS & EMBS international conference on Biomedical robotics and biomechatronics (BioRob) 2012, pp 69–74 SonDYimSSittiMA 5-d localization method for a magnetically manipulated untethered robot using a 2-d array of hall-effect sensorsIEEE/ASME Trans Mechatron201621270871610.1109/TMECH.2015.2488361 WuLSongSWuKLimCMRenHDevelopment of a compact continuum tubular robotic system for nasopharyngeal biopsyMed Biol Eng Comput20175540341710.1007/s11517-016-1514-927230499 HenkenKVan GerwenDDankelmanJVan Den DobbelsteenJAccuracy of needle position measurements using fiber bragg gratingsMinim Invasive Ther Allied Technol201221640841410.3109/13645706.2012.66625122455615 WebsterRJJonesBADesign and kinematic modeling of constant curvature continuum robots: a reviewInt J Robot Res201029131661168310.1177/0278364910368147 Kim B, Ha J, Park FC, Dupont PE (2014) Optimizing curvature sensor placement for fast, accurate shape sensing of continuum robots. In: IEEE/ICRA 2014 international conference on robotics and automation, pp 5374–5379 SongSLiBQiaoWHuCRenHYuHZhangQMengMXuG6-d magnetic localization and orientation method for an annular magnet based on a closed-form analytical modelMagn IEEE Trans201450911110.1109/TMAG.2014.2315592 ShapiroYKosaGWolfAShape tracking of planar hyper flexible beams via embedded pvdf detection sensorsIEEE/ASME Trans Mechatron20141941260126710.1109/TMECH.2013.2278251 BoctorEMChotiMABurdetteECWebster IiiRJThree-dimensional ultrasound-guided robotic needle placement: an experimental evaluationInt J Med Robot Comput Assist Surg20084218019110.1002/rcs.184 TrivediDLotARahnCDGeometrically exact models for soft robotic manipulatorsRobot IEEE Trans200824477378010.1109/TRO.2008.924923 SongSLiZMengQHYuHRenHReal-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic bezier curvesSens J IEEE2015151163263410.1109/JSEN.2015.2456181 DC Rucker (1672_CR8) 2011; 27 L Wu (1672_CR24) 2017; 55 H Ren (1672_CR5) 2013; 41 YL Park (1672_CR13) 2010; 15 AM Franz (1672_CR20) 2014; 33 M Gouttefarde (1672_CR4) 2011; 27 K Xu (1672_CR9) 2010; 2 1672_CR14 K Henken (1672_CR15) 2012; 21 1672_CR16 A Bajo (1672_CR19) 2012; 28 EM Boctor (1672_CR12) 2008; 4 1672_CR1 1672_CR11 S Song (1672_CR18) 2015; 15 S Yim (1672_CR23) 2013; 29 RJ Webster (1672_CR7) 2010; 29 G Palli (1672_CR2) 2012; 22 D Trivedi (1672_CR10) 2008; 24 D Son (1672_CR22) 2016; 21 Y Shapiro (1672_CR17) 2014; 19 S Song (1672_CR21) 2014; 50 G Palli (1672_CR3) 2014; 24 DC Rucker (1672_CR6) 2010; 29 25383064 - IEEE Trans Robot. 2013 Jun 25;29(5):1139-1151 26405428 - IEEE ASME Trans Mechatron. 2010 Dec;15(6):906-915 24941414 - Crit Rev Biomed Eng. 2013;41(4-5):365-91 22455615 - Minim Invasive Ther Allied Technol. 2012 Nov;21(6):408-14 25125773 - Int J Rob Res. 2010 Sep 1;29(10):1263-1280 27458327 - IEEE ASME Trans Mechatron. 2016 Apr;21(2):708-716 27230499 - Med Biol Eng Comput. 2017 Mar;55(3):403-417 18433079 - Int J Med Robot. 2008 Jun;4(2):180-91 24816547 - IEEE Trans Med Imaging. 2014 Aug;33(8):1702-25  | 
    
| References_xml | – reference: PalliGPirozziSA miniaturized optical force sensor for tendondriven mechatronic systems: design and experimental evaluationMechatronics20122281097111110.1016/j.mechatronics.2012.09.005 – reference: RuckerDCWebsterRJStatics and dynamics of continuum robots with general tendon routing and external loadingRobot IEEE Trans20112761033104410.1109/TRO.2011.2160469 – reference: XuKSimaanNAnalytic formulation for kinematics, statics, and shape restoration of multibackbone continuum robots via elliptic integralsJ Mech Robot201021011,00610.1115/1.4000519 – reference: HenkenKVan GerwenDDankelmanJVan Den DobbelsteenJAccuracy of needle position measurements using fiber bragg gratingsMinim Invasive Ther Allied Technol201221640841410.3109/13645706.2012.66625122455615 – reference: FranzAMHaideggerTBirkfellnerWClearyKPetersTMMaier-HeinLElectromagnetic tracking in medicinea review of technology, validation, and applicationsIEEE Trans Med Imaging20143381702172510.1109/TMI.2014.232177724816547 – reference: Roesthuis RJ, Abayazid M, Misra S (2012) Mechanics-based model for predicting in-plane needle detection with multiple bends. In: 4th IEEE RAS & EMBS international conference on Biomedical robotics and biomechatronics (BioRob) 2012, pp 69–74 – reference: RuckerDCWebsterRJChirikjianGSCowanNJEquilibrium conformations of concentric-tube continuum robotsInt J Robot Res201029101263128010.1177/0278364910367543 – reference: RenHLimCMWangJLiuWSongSLiZHerbertGYuHTseZTanZComputer assisted transoral surgery with flexible robotics and navigation technologies: a review of recent progress and research challengesCrit Rev Biomed Eng2013414–536539110.1615/CritRevBiomedEng.201401044024941414 – reference: Kim B, Ha J, Park FC, Dupont PE (2014) Optimizing curvature sensor placement for fast, accurate shape sensing of continuum robots. In: IEEE/ICRA 2014 international conference on robotics and automation, pp 5374–5379 – reference: GouttefardeMDaneyDMerletJPInterval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robotsRobot IEEE Trans201127111310.1109/TRO.2010.2090064 – reference: BajoASimaanNKinematics-based detection and localization of contacts along multisegment continuum robotsRobot IEEE Trans201228229130210.1109/TRO.2011.2175761 – reference: WuLSongSWuKLimCMRenHDevelopment of a compact continuum tubular robotic system for nasopharyngeal biopsyMed Biol Eng Comput20175540341710.1007/s11517-016-1514-927230499 – reference: ParkYLElayaperumalSDanielBRyuSCShinMSavallJBlackRJMoslehiBCutkoskyMRReal-time estimation of 3-d needle shape and detection for mri-guided interventionsMechatron IEEE/ASME Trans2010156906915 – reference: Camarillo DB, Loewke KE, Carlson CR, Salisbury JK (2008) Vision based 3-d shape sensing of flexible manipulators. In: IEEE/ICRA 2008 international conference on robotics and automation 2008, pp 2940–2947 – reference: PalliGMelchiorriCFriction compensation techniques for tendon driven robotic handsMechatronics201424210811710.1016/j.mechatronics.2013.12.006 – reference: YimSSittiM3-d localization method for a magnetically actuated soft capsule endoscope and its applicationsIEEE Trans Robot20132951139115110.1109/TRO.2013.2266754253830644224301 – reference: BoctorEMChotiMABurdetteECWebster IiiRJThree-dimensional ultrasound-guided robotic needle placement: an experimental evaluationInt J Med Robot Comput Assist Surg20084218019110.1002/rcs.184 – reference: SongSLiZMengQHYuHRenHReal-time shape estimation for wire-driven flexible robots with multiple bending sections based on quadratic bezier curvesSens J IEEE2015151163263410.1109/JSEN.2015.2456181 – reference: WebsterRJJonesBADesign and kinematic modeling of constant curvature continuum robots: a reviewInt J Robot Res201029131661168310.1177/0278364910368147 – reference: SongSLiBQiaoWHuCRenHYuHZhangQMengMXuG6-d magnetic localization and orientation method for an annular magnet based on a closed-form analytical modelMagn IEEE Trans201450911110.1109/TMAG.2014.2315592 – reference: SonDYimSSittiMA 5-d localization method for a magnetically manipulated untethered robot using a 2-d array of hall-effect sensorsIEEE/ASME Trans Mechatron201621270871610.1109/TMECH.2015.2488361 – reference: ShapiroYKosaGWolfAShape tracking of planar hyper flexible beams via embedded pvdf detection sensorsIEEE/ASME Trans Mechatron20141941260126710.1109/TMECH.2013.2278251 – reference: Li Z, Du R, Lei MC, Yuan SM (2011) Design and analysis of a biomimetic wire-driven robot arm. In: ASME 2011 international mechanical engineering congress and exposition, American society of mechanical engineers, pp 191–198 – reference: TrivediDLotARahnCDGeometrically exact models for soft robotic manipulatorsRobot IEEE Trans200824477378010.1109/TRO.2008.924923 – volume: 29 start-page: 1139 issue: 5 year: 2013 ident: 1672_CR23 publication-title: IEEE Trans Robot doi: 10.1109/TRO.2013.2266754 – volume: 21 start-page: 708 issue: 2 year: 2016 ident: 1672_CR22 publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2015.2488361 – volume: 27 start-page: 1033 issue: 6 year: 2011 ident: 1672_CR8 publication-title: Robot IEEE Trans doi: 10.1109/TRO.2011.2160469 – volume: 4 start-page: 180 issue: 2 year: 2008 ident: 1672_CR12 publication-title: Int J Med Robot Comput Assist Surg doi: 10.1002/rcs.184 – volume: 50 start-page: 1 issue: 9 year: 2014 ident: 1672_CR21 publication-title: Magn IEEE Trans doi: 10.1109/TMAG.2014.2315592 – volume: 15 start-page: 906 issue: 6 year: 2010 ident: 1672_CR13 publication-title: Mechatron IEEE/ASME Trans – volume: 19 start-page: 1260 issue: 4 year: 2014 ident: 1672_CR17 publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2013.2278251 – volume: 55 start-page: 403 year: 2017 ident: 1672_CR24 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-016-1514-9 – volume: 29 start-page: 1661 issue: 13 year: 2010 ident: 1672_CR7 publication-title: Int J Robot Res doi: 10.1177/0278364910368147 – volume: 24 start-page: 773 issue: 4 year: 2008 ident: 1672_CR10 publication-title: Robot IEEE Trans doi: 10.1109/TRO.2008.924923 – ident: 1672_CR14 doi: 10.1109/ROBOT.2008.4543656 – volume: 22 start-page: 1097 issue: 8 year: 2012 ident: 1672_CR2 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2012.09.005 – volume: 29 start-page: 1263 issue: 10 year: 2010 ident: 1672_CR6 publication-title: Int J Robot Res doi: 10.1177/0278364910367543 – ident: 1672_CR16 doi: 10.1109/ICRA.2014.6907649 – volume: 41 start-page: 365 issue: 4–5 year: 2013 ident: 1672_CR5 publication-title: Crit Rev Biomed Eng doi: 10.1615/CritRevBiomedEng.2014010440 – volume: 15 start-page: 6326 issue: 11 year: 2015 ident: 1672_CR18 publication-title: Sens J IEEE doi: 10.1109/JSEN.2015.2456181 – ident: 1672_CR1 doi: 10.1115/IMECE2011-63482 – ident: 1672_CR11 – volume: 24 start-page: 108 issue: 2 year: 2014 ident: 1672_CR3 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2013.12.006 – volume: 21 start-page: 408 issue: 6 year: 2012 ident: 1672_CR15 publication-title: Minim Invasive Ther Allied Technol doi: 10.3109/13645706.2012.666251 – volume: 2 start-page: 011,006 issue: 1 year: 2010 ident: 1672_CR9 publication-title: J Mech Robot doi: 10.1115/1.4000519 – volume: 33 start-page: 1702 issue: 8 year: 2014 ident: 1672_CR20 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2321777 – volume: 27 start-page: 1 issue: 1 year: 2011 ident: 1672_CR4 publication-title: Robot IEEE Trans doi: 10.1109/TRO.2010.2090064 – volume: 28 start-page: 291 issue: 2 year: 2012 ident: 1672_CR19 publication-title: Robot IEEE Trans doi: 10.1109/TRO.2011.2175761 – reference: 18433079 - Int J Med Robot. 2008 Jun;4(2):180-91 – reference: 25125773 - Int J Rob Res. 2010 Sep 1;29(10):1263-1280 – reference: 26405428 - IEEE ASME Trans Mechatron. 2010 Dec;15(6):906-915 – reference: 27458327 - IEEE ASME Trans Mechatron. 2016 Apr;21(2):708-716 – reference: 27230499 - Med Biol Eng Comput. 2017 Mar;55(3):403-417 – reference: 22455615 - Minim Invasive Ther Allied Technol. 2012 Nov;21(6):408-14 – reference: 25383064 - IEEE Trans Robot. 2013 Jun 25;29(5):1139-1151 – reference: 24941414 - Crit Rev Biomed Eng. 2013;41(4-5):365-91 – reference: 24816547 - IEEE Trans Med Imaging. 2014 Aug;33(8):1702-25  | 
    
| SSID | ssj0045735 | 
    
| Score | 2.247451 | 
    
| Snippet | Purpose
Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize... Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize... PurposeFlexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize...  | 
    
| SourceID | proquest pubmed crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 241 | 
    
| SubjectTerms | Computer Imaging Computer Science Detection Experiments Flexible manipulators Health Informatics Imaging Medicine Medicine & Public Health Navigation systems Original Article Pattern Recognition and Graphics Position sensing Radiology Robot arms Robotic surgery Robots Sensor arrays Skull Surgery Telesurgery Three dimensional models Vision  | 
    
| Title | Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments | 
    
| URI | https://link.springer.com/article/10.1007/s11548-017-1672-8 https://www.ncbi.nlm.nih.gov/pubmed/28983750 https://www.proquest.com/docview/1993616513 https://www.proquest.com/docview/1948757394  | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1861-6429 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045735 issn: 1861-6410 databaseCode: AFBBN dateStart: 20060301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1861-6429 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045735 issn: 1861-6410 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1861-6429 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045735 issn: 1861-6410 databaseCode: U2A dateStart: 20060625 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-0BfHFj_p1WssKPikL3exHNr4d0lqUig8e1Kewu9m0hevmSHJC_x7_UWc2yZ1SFXwLZHayMDszv8nMzhDyuvA-z-tCsLoSgknuLTPeG-YLWWkvXaZTy_zTz_pkIT-eqbPxHnc3VbtPKclkqbeX3RBdM7SqXOegxrfJrsJuXnCIF9l8Mr9S5WmqJjeaMy35JpX5Jxa_O6MbCPNGdjQ5neMH5N6IFul8EO9DcivEPXJ_msRAR8XcI3dOxxT5I_LjSxuWaVRXe01T81jaRHplzyNeV6R9az3-HWfoviq6WlogpN2FXQXaYTF7PKc2VjTa76n5BqwFWEtr7JvplkCzbpOtpG3jmr6jlxFZxg4v-qeXob1-R4e51F3itLrAOcVXdDtLoHtMFsdHX9-fsHESA_Miz3rmikrUHJ6DNr52QtXCm6wCLAH4gktnbK5DJgHtKGUNr0Wmgg7cgXcUEMFp8YTsxCaGZ4RKgExVgJNQALLIfW25CoJrsLvA0mk5I4eTSEo_tinHaRnLcttgGaVYghRLlGJpZuTNZslq6NHxL-L9Sc7lqK5diVWMGjbBxYy82rwGRcPsiY2hWSMNxna5KGCLT4fzsfkaRK0Q6KvDGXk7HZhfmP9tK8__i_oFuQtgzQwV4_tkp2_X4SUAot4dkN35h2-fjg6SIvwEEL8EvQ | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3BVgIuFMrXQgEjcQKlwrHjONwq1LLQbsVhK5VTZDtOi9g6qySLVP4Of5Sxk-wCBaTeInk8ceTx-DkzfgPwMjMmTcuMRWXBWMSpUZE0RkYm44UwXMciUOZPj8TkmH88SU76e9zNkO0-hCSDp15fdvPoOvJelYoUl_F12OB4PolHsLH7_vPB3uCAeZKGuppUChoJTlfBzL8p-X07uoQxL8VHw7azvwmzYcBdtsnXnWWrd8z3P7gcr_hFd-B2D0PJbmc3d-GadVuwOZR4IP2K34Ib0z72fg9-fKrtPNQAqy9IYKUllSPn6tT5e5CkrZXxv90jvy8WZDFXKEiaM7WwpPFZ8u6UKFcQp74FVg_si3iZlJ6QU89RZlkHJ0zqSldtQ744r9I1nkEgNNr64i3pCl43QdPizBdAPifrIgXNfTje35u9m0R9iYfIsDRuI50VrKT4bIU0pWZJyYyMCwQpCFwo11KlwsYcYVSSKElLFidWWKpx22V4NBTsAYxc5ewjIByxWGHRxDKELKkpFU0sowIdOqrUgo_hzTDTuen5z30Zjnm-Zm7285HjfOR-PnI5hlerLouO_ON_wtuD-eS9H2hynx4pcBCUjeHFqhlXsA_LKGerpZfxh8aUZTjEh53Zrd6Gx2HJENSN4fVgQr8o_9dQHl9J-jncnMymh_nhh6ODJ3ALEaHs0tK3YdTWS_sUUVern_Wr7CeTMCLf | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSBUXPgqUhQJG4gSyWseO43CrgFX5aNUDK_UWOY7dIm2dKMki9ffwR5lxkl1QAYlbpIwnlsZjP2fs9wh5lVubZT4XzFdCMMmtYdpazWwuK2VlmahImX98oo4W8tNZejbqnHbTafepJDncaUCWptDvN5Xf31x8Q6TNcIblKoOUvkluSeRJgAG9SA6nqVimWVTY5FpxpiRflzX_5OL3heka2rxWKY0L0PweuTMiR3o4hPo-ueHCDrk7qTLQMUl3yPbxWC5_QH6ctm4ZZbvaKxqJZGkd6KU5D3h1kfatsfinnOFSVtFmacCQdhemcbTDg-3hnJpQ0WC-RyIOaAsQl3rk0CyXYLNq47xJ27qs-45-C-gydHjpP7507dVbOmhUd9FTc4GaxZd0oyvQPSSL-Yev747YqMrArMiSnpV5JTyHZ6e09aVIvbA6qQBXANbgstQmUy6RgHzS1GjuRZI65XgJK6WA3ZwSj8hWqIN7TKgE-FQ5GBU5oIzMesNTJ7iCORhclkrOyMEUksKOlOWonLEsNmTLGMUColhgFAs9I6_XTZqBr-NfxntTnIsxdbsCTzQq6AQXM_Jy_RqSDispJrh6hTa4z8tEDl3cHcbH-muwg4VNf3owI2-mAfOL87915cl_Wb8g26fv58WXjyefn5LbgOH0cJB8j2z17co9A5zUl89jLvwEFtQKUQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preliminary+study+on+magnetic+tracking-based+planar+shape+sensing+and+navigation+for+flexible+surgical+robots+in+transoral+surgery%3A+methods+and+phantom+experiments&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Song%2C+Shuang&rft.au=Zhang%2C+Changchun&rft.au=Liu%2C+Li&rft.au=Meng%2C+Max+Q.-H.&rft.date=2018-02-01&rft.pub=Springer+International+Publishing&rft.issn=1861-6410&rft.eissn=1861-6429&rft.volume=13&rft.issue=2&rft.spage=241&rft.epage=251&rft_id=info:doi/10.1007%2Fs11548-017-1672-8&rft.externalDocID=10_1007_s11548_017_1672_8 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon |