A Novel Distributed Multitask Fuzzy Clustering Algorithm for Automatic MR Brain Image Segmentation
Artificial intelligence algorithms have been used in a wide range of applications in clinical aided diagnosis, such as automatic MR image segmentation and seizure EEG signal analyses. In recent years, many machine learning-based automatic MR brain image segmentation methods have been proposed as aux...
Saved in:
| Published in | Journal of medical systems Vol. 43; no. 5; pp. 118 - 9 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.05.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0148-5598 1573-689X 1573-689X |
| DOI | 10.1007/s10916-019-1245-1 |
Cover
| Abstract | Artificial intelligence algorithms have been used in a wide range of applications in clinical aided diagnosis, such as automatic MR image segmentation and seizure EEG signal analyses. In recent years, many machine learning-based automatic MR brain image segmentation methods have been proposed as auxiliary methods of medical image analysis in clinical treatment. Nevertheless, many problems regarding precise medical images, which cannot be effectively utilized to improve partition performance, remain to be solved. Due to the poor contrast in grayscale images, the ambiguity and complexity of MR images, and individual variability, the performance of classic algorithms in medical image segmentation still needs improvement. In this paper, we introduce a distributed multitask fuzzy c-means (MT-FCM) clustering algorithm for MR brain image segmentation that can extract knowledge common among different clustering tasks. The proposed distributed MT-FCM algorithm can effectively exploit information common among different but related MR brain image segmentation tasks and can avoid the negative effects caused by noisy data that exist in some MR images. Experimental results on clinical MR brain images demonstrate that the distributed MT-FCM method demonstrates more desirable performance than the classic signal task method. |
|---|---|
| AbstractList | Artificial intelligence algorithms have been used in a wide range of applications in clinical aided diagnosis, such as automatic MR image segmentation and seizure EEG signal analyses. In recent years, many machine learning-based automatic MR brain image segmentation methods have been proposed as auxiliary methods of medical image analysis in clinical treatment. Nevertheless, many problems regarding precise medical images, which cannot be effectively utilized to improve partition performance, remain to be solved. Due to the poor contrast in grayscale images, the ambiguity and complexity of MR images, and individual variability, the performance of classic algorithms in medical image segmentation still needs improvement. In this paper, we introduce a distributed multitask fuzzy c-means (MT-FCM) clustering algorithm for MR brain image segmentation that can extract knowledge common among different clustering tasks. The proposed distributed MT-FCM algorithm can effectively exploit information common among different but related MR brain image segmentation tasks and can avoid the negative effects caused by noisy data that exist in some MR images. Experimental results on clinical MR brain images demonstrate that the distributed MT-FCM method demonstrates more desirable performance than the classic signal task method.Artificial intelligence algorithms have been used in a wide range of applications in clinical aided diagnosis, such as automatic MR image segmentation and seizure EEG signal analyses. In recent years, many machine learning-based automatic MR brain image segmentation methods have been proposed as auxiliary methods of medical image analysis in clinical treatment. Nevertheless, many problems regarding precise medical images, which cannot be effectively utilized to improve partition performance, remain to be solved. Due to the poor contrast in grayscale images, the ambiguity and complexity of MR images, and individual variability, the performance of classic algorithms in medical image segmentation still needs improvement. In this paper, we introduce a distributed multitask fuzzy c-means (MT-FCM) clustering algorithm for MR brain image segmentation that can extract knowledge common among different clustering tasks. The proposed distributed MT-FCM algorithm can effectively exploit information common among different but related MR brain image segmentation tasks and can avoid the negative effects caused by noisy data that exist in some MR images. Experimental results on clinical MR brain images demonstrate that the distributed MT-FCM method demonstrates more desirable performance than the classic signal task method. Artificial intelligence algorithms have been used in a wide range of applications in clinical aided diagnosis, such as automatic MR image segmentation and seizure EEG signal analyses. In recent years, many machine learning-based automatic MR brain image segmentation methods have been proposed as auxiliary methods of medical image analysis in clinical treatment. Nevertheless, many problems regarding precise medical images, which cannot be effectively utilized to improve partition performance, remain to be solved. Due to the poor contrast in grayscale images, the ambiguity and complexity of MR images, and individual variability, the performance of classic algorithms in medical image segmentation still needs improvement. In this paper, we introduce a distributed multitask fuzzy c-means (MT-FCM) clustering algorithm for MR brain image segmentation that can extract knowledge common among different clustering tasks. The proposed distributed MT-FCM algorithm can effectively exploit information common among different but related MR brain image segmentation tasks and can avoid the negative effects caused by noisy data that exist in some MR images. Experimental results on clinical MR brain images demonstrate that the distributed MT-FCM method demonstrates more desirable performance than the classic signal task method. |
| ArticleNumber | 118 |
| Author | Xue, Jing Zhou, Leyuan Xia, Kaijian Zhao, Kaifa Qian, Pengjiang Ding, Yang Jiang, Yizhang |
| Author_xml | – sequence: 1 givenname: Yizhang surname: Jiang fullname: Jiang, Yizhang organization: School of Digital Media, Jiangnan University – sequence: 2 givenname: Kaifa surname: Zhao fullname: Zhao, Kaifa organization: School of Digital Media, Jiangnan University – sequence: 3 givenname: Kaijian surname: Xia fullname: Xia, Kaijian organization: Changshu No.1 people’s hospital – sequence: 4 givenname: Jing surname: Xue fullname: Xue, Jing organization: Department of Nephrology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University – sequence: 5 givenname: Leyuan surname: Zhou fullname: Zhou, Leyuan organization: Department of Radiotherapy, Affiliated Hospital, Jiangnan University – sequence: 6 givenname: Yang surname: Ding fullname: Ding, Yang organization: Department of Radiotherapy, Affiliated Hospital, Jiangnan University – sequence: 7 givenname: Pengjiang surname: Qian fullname: Qian, Pengjiang email: qianpjiang@jiangnan.edu.cn organization: School of Digital Media, Jiangnan University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30911929$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS1URKeFB2CDLLHpJtSOYzteDkMLlVqQ-JHYWY5zM7gk8eAfpPbp8TStkCrBygt_39G99xyhg9nPgNBLSt5QQuRppERRURGqKlo3vKJP0IpyySrRqu8HaEVo01acq_YQHcV4TQhRQshn6JAVj6parVC3xh_9bxjxOxdTcF1O0OOrPCaXTPyJz_Pt7Q3ejDkmCG7e4vW49cGlHxMefMDrnPxkkrP46jN-G4yb8cVktoC_wHaCOZUvPz9HTwczRnhx_x6jb-dnXzcfqstP7y8268vKMlmnquOdbXvbd5J0gtVDp1jPgRvDreCGN1wK03DoqOylqRknDREgbD1IAWUdwo7RyZK7C_5Xhpj05KKFcTQz-Bx1TZVs21YyWdDXj9Brn8NcprujKGuZ2ge-uqdyN0Gvd8FNJtzoh-sVQC6ADT7GAIO2btk5lVuMmhK970kvPenSk973pGkx6SPzIfx_Tr04cbevAsLfof8t_QGE4KPK |
| CitedBy_id | crossref_primary_10_3389_fnins_2021_773208 crossref_primary_10_3389_fnins_2020_578126 crossref_primary_10_1109_ACCESS_2020_3008000 crossref_primary_10_1109_ACCESS_2020_2983478 crossref_primary_10_1155_2021_4319074 crossref_primary_10_1155_2020_6625695 crossref_primary_10_1155_2020_7613569 crossref_primary_10_1007_s10922_022_09650_y crossref_primary_10_1155_2021_1521013 crossref_primary_10_1109_ACCESS_2025_3525996 crossref_primary_10_1007_s10916_019_1432_0 crossref_primary_10_1007_s42452_023_05365_0 crossref_primary_10_1155_2021_6115040 crossref_primary_10_1007_s10916_019_1508_x crossref_primary_10_1016_j_knosys_2021_106945 crossref_primary_10_1007_s12065_020_00544_z crossref_primary_10_1109_ACCESS_2020_3021092 crossref_primary_10_1007_s12652_020_02613_8 crossref_primary_10_3389_fnins_2021_796172 crossref_primary_10_1166_jmihi_2021_3705 crossref_primary_10_1155_2021_9963133 crossref_primary_10_1155_2021_4714898 crossref_primary_10_1016_j_ins_2022_11_010 crossref_primary_10_1007_s10278_021_00557_9 crossref_primary_10_3389_fnins_2020_622759 crossref_primary_10_32604_cmes_2023_025499 crossref_primary_10_3389_fnins_2021_662674 crossref_primary_10_1007_s00530_019_00626_8 crossref_primary_10_1007_s10462_024_10814_2 crossref_primary_10_1155_2020_5128729 crossref_primary_10_1109_ACCESS_2019_2937124 crossref_primary_10_1155_2021_7799793 crossref_primary_10_32604_cmes_2022_020857 crossref_primary_10_1007_s00521_021_06699_9 crossref_primary_10_3389_fnins_2021_780147 crossref_primary_10_3390_cancers16061102 crossref_primary_10_1007_s12652_021_02997_1 crossref_primary_10_1155_2021_5284457 crossref_primary_10_1186_s44147_023_00226_4 crossref_primary_10_1016_j_aej_2022_10_015 crossref_primary_10_1155_2020_6789306 crossref_primary_10_1109_ACCESS_2023_3332123 crossref_primary_10_1155_2021_8798003 crossref_primary_10_3390_ijgi11070397 crossref_primary_10_1109_ACCESS_2020_3016676 crossref_primary_10_3389_fnins_2021_638638 crossref_primary_10_1155_2020_3641745 crossref_primary_10_1007_s12652_020_02438_5 crossref_primary_10_3389_fpsyg_2021_760060 crossref_primary_10_1109_TCSS_2020_3021179 crossref_primary_10_1155_2021_6623554 crossref_primary_10_1155_2021_7300864 crossref_primary_10_1155_2020_8931486 crossref_primary_10_3390_s23063108 crossref_primary_10_1016_j_eswa_2022_119450 crossref_primary_10_3389_fnins_2020_577937 crossref_primary_10_1155_2021_8266436 crossref_primary_10_1155_2022_1442745 crossref_primary_10_1109_ACCESS_2020_2982286 crossref_primary_10_1109_ACCESS_2020_3026567 crossref_primary_10_1166_jmihi_2021_3684 crossref_primary_10_1007_s10916_019_1431_1 crossref_primary_10_1016_j_patcog_2020_107500 crossref_primary_10_1155_2021_3937222 crossref_primary_10_1016_j_asoc_2023_110656 crossref_primary_10_1109_TCBB_2020_3018137 crossref_primary_10_1007_s12652_020_02004_z crossref_primary_10_1155_2022_9984873 crossref_primary_10_3389_fnins_2021_670745 crossref_primary_10_1007_s12652_020_02612_9 crossref_primary_10_1145_3341095 crossref_primary_10_1007_s12652_020_02049_0 crossref_primary_10_36548_jeea_2021_3_005 crossref_primary_10_1155_2022_3469979 crossref_primary_10_1007_s11042_020_09634_7 crossref_primary_10_1016_j_cmpb_2021_106285 crossref_primary_10_1155_2023_4387134 crossref_primary_10_1166_jmihi_2021_3535 crossref_primary_10_1007_s12652_021_02998_0 crossref_primary_10_3389_fnins_2021_714318 crossref_primary_10_1166_jmihi_2021_3696 crossref_primary_10_1080_08123985_2021_2024430 |
| Cites_doi | 10.1118/1.4711807 10.1109/ACCESS.2018.2825352 10.1109/TKDE.2009.191 10.1109/TCYB.2014.2330844 10.1016/j.neucom.2013.02.024 10.1016/j.ins.2016.03.050 10.1109/TCYB.2015.2399351 10.1007/s10334-012-0330-y 10.1118/1.4926756 10.1088/0031-9155/56/10/013 10.1016/j.neucom.2015.06.079 10.1002/jmri.24775 10.1016/0098-3004(84)90020-7 10.1109/TSMC.2016.2577558 10.1023/A:1007379606734 10.1016/j.ins.2014.12.007 10.1002/mrm.22578 10.1016/j.knosys.2017.05.018 10.1109/TFUZZ.2015.2505330 10.1093/bioinformatics/bth910 10.1145/1015330.1015425 10.1109/ICDM.2009.138 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION NPM 3V. 7QF 7QO 7QQ 7RV 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 88C 88E 88I 8AL 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KB0 KR7 L7M LK8 L~C L~D M0N M0S M0T M1P M2P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1007/s10916-019-1245-1 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Nursing & Allied Health Database Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Science Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1573-689X |
| EndPage | 9 |
| ExternalDocumentID | 30911929 10_1007_s10916_019_1245_1 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61702225 and 61772241 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: 2018 Six Talent Peaks Project of Jiangsu Province grantid: XYDXX-127 – fundername: Science and technology demonstration project of social development of Wuxi grantid: WX18IVJN002 – fundername: Youth Foundation of the Commission of Health and Family Planning of Wuxi grantid: Q201654 – fundername: the Jiangsu Committee of Health grantid: H2018071 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20160187 funderid: http://dx.doi.org/10.13039/501100004608 – fundername: National Natural Science Foundation of China grantid: 61702225 and 61772241 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20160187 |
| GroupedDBID | --- -53 -5D -5G -BR -EM -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 77K 78A 7RV 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AQUVI ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAK LK8 LLZTM M0N M0T M1P M2P M4Y M7P MA- MK0 N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZ9 SZN T13 T16 TEORI TN5 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c372t-b5bc8dcdb70b632fb93d5e5aa5c65a54576a45eb17d7a2350406e6c2f76e09103 |
| IEDL.DBID | BENPR |
| ISSN | 0148-5598 1573-689X |
| IngestDate | Thu Sep 04 17:17:37 EDT 2025 Tue Oct 07 05:46:58 EDT 2025 Wed Feb 19 02:33:32 EST 2025 Wed Oct 01 04:08:36 EDT 2025 Thu Apr 24 22:59:02 EDT 2025 Fri Feb 21 02:37:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Medical image Image segmentation MR brain image Distributed multitask fuzzy clustering |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-b5bc8dcdb70b632fb93d5e5aa5c65a54576a45eb17d7a2350406e6c2f76e09103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 30911929 |
| PQID | 2197138390 |
| PQPubID | 54050 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2197888737 proquest_journals_2197138390 pubmed_primary_30911929 crossref_citationtrail_10_1007_s10916_019_1245_1 crossref_primary_10_1007_s10916_019_1245_1 springer_journals_10_1007_s10916_019_1245_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Journal of medical systems |
| PublicationTitleAbbrev | J Med Syst |
| PublicationTitleAlternate | J Med Syst |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Qian, Zhao, Jiang, Su, Deng, Wang, Muzic (CR14) 2017; 130 Zaidi, Ojha, Morich (CR24) 2011; 56 Johansson, Karlsson, Yu (CR27) 2012; 39 CR18 Argyriou, Evgeniou, Pontil (CR3) 2006; 19 CR17 Caruana (CR11) 1997; 28 Hooijmans, Dzyubachyk, Nehrke (CR22) 2015; 42 Deng, Jiang, Chung (CR9) 2014; 24 Qian, Zhou, Jiang (CR8) 2018; 6 Jiang, Deng, Chung (CR5) 2017; 47 Bezdek, Ehrlich, Full (CR13) 1984; 10 Jiang, Deng, Chung (CR1) 2015; 298 CR2 Qian, Jiang, Deng (CR15) 2016; 46 Sato-Ilic (CR4) 2008; 1 Dinuzzo (CR19) 2013; 118 CR6 CR7 Pan, Yang (CR16) 2010; 22 Kalemis, Delattre, Heinzer (CR25) 2013; 26 Eggers, Brendel, Duijndam (CR23) 2011; 65 Su, Hu, Stehning (CR26) 2015; 42 Zheng, Geng, Tao (CR20) 2016; 171 Jiang, Deng, Choi (CR21) 2016; 357 Jiang, Chung, Ishibuchi (CR12) 2017; 45 Qian, Jiang, Deng (CR10) 2016; 46 R Caruana (1245_CR11) 1997; 28 A Argyriou (1245_CR3) 2006; 19 M Sato-Ilic (1245_CR4) 2008; 1 KH Su (1245_CR26) 2015; 42 P Qian (1245_CR8) 2018; 6 Y Jiang (1245_CR1) 2015; 298 Z Deng (1245_CR9) 2014; 24 SJ Pan (1245_CR16) 2010; 22 A Kalemis (1245_CR25) 2013; 26 MT Hooijmans (1245_CR22) 2015; 42 Y Jiang (1245_CR12) 2017; 45 H Zaidi (1245_CR24) 2011; 56 1245_CR2 P Qian (1245_CR15) 2016; 46 H Zheng (1245_CR20) 2016; 171 H Eggers (1245_CR23) 2011; 65 Y Jiang (1245_CR21) 2016; 357 1245_CR6 Pengjiang Qian (1245_CR14) 2017; 130 A Johansson (1245_CR27) 2012; 39 1245_CR7 JC Bezdek (1245_CR13) 1984; 10 1245_CR18 P Qian (1245_CR10) 2016; 46 1245_CR17 F Dinuzzo (1245_CR19) 2013; 118 Y Jiang (1245_CR5) 2017; 47 |
| References_xml | – ident: CR18 – volume: 39 start-page: 3283 year: 2012 end-page: 3290 ident: CR27 article-title: Voxel-wise uncertainty in CT substitute derived from MRI publication-title: Medical Physics doi: 10.1118/1.4711807 – volume: 6 start-page: 28594 year: 2018 end-page: 28610 ident: CR8 article-title: Multi-view maximum entropy clustering by jointly leveraging inter-view collaborations and intra-view-weighted attributes publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2825352 – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: CR16 article-title: A survey on transfer Learning publication-title: IEEE Transactions on Knowledge & Data Engineering doi: 10.1109/TKDE.2009.191 – volume: 19 start-page: 41 year: 2006 end-page: 48 ident: CR3 article-title: Multi-task feature Learning publication-title: Advances in Neural Information Processing Systems – ident: CR2 – volume: 45 start-page: 534 year: 2017 end-page: 547 ident: CR12 article-title: Multitask TSK fuzzy system modeling by mining Intertask common hidden structure publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2330844 – volume: 118 start-page: 119 year: 2013 end-page: 126 ident: CR19 article-title: Learning output kernels for multi-task problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.02.024 – volume: 357 start-page: 39 year: 2016 end-page: 60 ident: CR21 article-title: A novel multi-task TSK fuzzy classifier and its enhanced version for labeling-risk-aware multi-task classification publication-title: Information Sciences doi: 10.1016/j.ins.2016.03.050 – volume: 46 start-page: 181 year: 2016 ident: CR10 article-title: Cluster prototypes and fuzzy memberships jointly leveraged cross-domain maximum entropy clustering publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2399351 – ident: CR6 – volume: 26 start-page: 5 year: 2013 end-page: 23 ident: CR25 article-title: Sequential whole-body PET/MR scanner: Concept, clinical use, and optimisation after two years in the clinic. The manufacturer's perspective publication-title: Magma doi: 10.1007/s10334-012-0330-y – volume: 42 start-page: 4974 year: 2015 end-page: 4986 ident: CR26 article-title: Generation of brain pseudo-CTs using an undersampled, single-acquisition UTE-mDixon pulse sequence and unsupervised clustering publication-title: Medical Physics doi: 10.1118/1.4926756 – volume: 1 start-page: 1 year: 2008 end-page: 18 ident: CR4 article-title: Fuzzy variable selection with degree of classification based on dissimilarity between distributions of variables publication-title: International Journal of Intelligent Technology and Applied Statistics – volume: 56 start-page: 3091 year: 2011 end-page: 3106 ident: CR24 article-title: Design and performance evaluation of a whole-body ingenuity TF PET-MRI system publication-title: Physics in Medicine & Biology doi: 10.1088/0031-9155/56/10/013 – volume: 171 start-page: 515 year: 2016 end-page: 523 ident: CR20 article-title: A multi-task model for simultaneous face identification and facial expression recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.079 – volume: 42 start-page: 217 year: 2015 end-page: 223 ident: CR22 article-title: Fast multistation water/fat imaging at 3T using DREAM-based RF shimming publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.24775 – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: CR13 article-title: FCM: The fuzzy c-means clustering algorithm[J] publication-title: Computers & Geosciences doi: 10.1016/0098-3004(84)90020-7 – volume: 47 start-page: 145 year: 2017 end-page: 160 ident: CR5 article-title: Realizing two-view TSK fuzzy classification system by using collaborative Learning publication-title: IEEE Transactions on Systems Man & Cybernetics Systems doi: 10.1109/TSMC.2016.2577558 – ident: CR17 – volume: 28 start-page: 41 year: 1997 end-page: 75 ident: CR11 article-title: Multitask Learning publication-title: Machine Learning doi: 10.1023/A:1007379606734 – volume: 298 start-page: 512 year: 2015 end-page: 533 ident: CR1 article-title: Multi-task TSK fuzzy system modeling using inter-task correlation information publication-title: Information Sciences doi: 10.1016/j.ins.2014.12.007 – ident: CR7 – volume: 65 start-page: 96 year: 2011 end-page: 107 ident: CR23 article-title: Dual-echo Dixon imaging with flexible choice of echo times publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.22578 – volume: 130 start-page: 33 year: 2017 end-page: 50 ident: CR14 article-title: Knowledge-leveraged transfer fuzzy C -Means for texture image segmentation with self-adaptive cluster prototype matching publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.05.018 – volume: 46 start-page: 181 year: 2016 ident: CR15 article-title: Cluster prototypes and fuzzy memberships jointly leveraged cross-domain maximum entropy clustering publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2399351 – volume: 24 start-page: 1210 year: 2014 end-page: 1232 ident: CR9 article-title: Transfer prototype-based fuzzy clustering publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2015.2505330 – ident: 1245_CR6 doi: 10.1093/bioinformatics/bth910 – volume: 6 start-page: 28594 year: 2018 ident: 1245_CR8 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2825352 – volume: 118 start-page: 119 year: 2013 ident: 1245_CR19 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.02.024 – volume: 56 start-page: 3091 year: 2011 ident: 1245_CR24 publication-title: Physics in Medicine & Biology doi: 10.1088/0031-9155/56/10/013 – volume: 42 start-page: 217 year: 2015 ident: 1245_CR22 publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.24775 – volume: 298 start-page: 512 year: 2015 ident: 1245_CR1 publication-title: Information Sciences doi: 10.1016/j.ins.2014.12.007 – volume: 171 start-page: 515 year: 2016 ident: 1245_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.079 – volume: 39 start-page: 3283 year: 2012 ident: 1245_CR27 publication-title: Medical Physics doi: 10.1118/1.4711807 – volume: 47 start-page: 145 year: 2017 ident: 1245_CR5 publication-title: IEEE Transactions on Systems Man & Cybernetics Systems doi: 10.1109/TSMC.2016.2577558 – volume: 19 start-page: 41 year: 2006 ident: 1245_CR3 publication-title: Advances in Neural Information Processing Systems – ident: 1245_CR18 – volume: 1 start-page: 1 year: 2008 ident: 1245_CR4 publication-title: International Journal of Intelligent Technology and Applied Statistics – volume: 24 start-page: 1210 year: 2014 ident: 1245_CR9 publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2015.2505330 – volume: 22 start-page: 1345 year: 2010 ident: 1245_CR16 publication-title: IEEE Transactions on Knowledge & Data Engineering doi: 10.1109/TKDE.2009.191 – volume: 45 start-page: 534 year: 2017 ident: 1245_CR12 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2330844 – volume: 46 start-page: 181 year: 2016 ident: 1245_CR15 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2399351 – volume: 357 start-page: 39 year: 2016 ident: 1245_CR21 publication-title: Information Sciences doi: 10.1016/j.ins.2016.03.050 – volume: 10 start-page: 191 year: 1984 ident: 1245_CR13 publication-title: Computers & Geosciences doi: 10.1016/0098-3004(84)90020-7 – volume: 42 start-page: 4974 year: 2015 ident: 1245_CR26 publication-title: Medical Physics doi: 10.1118/1.4926756 – ident: 1245_CR2 – volume: 26 start-page: 5 year: 2013 ident: 1245_CR25 publication-title: Magma doi: 10.1007/s10334-012-0330-y – volume: 65 start-page: 96 year: 2011 ident: 1245_CR23 publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.22578 – ident: 1245_CR17 doi: 10.1145/1015330.1015425 – volume: 46 start-page: 181 year: 2016 ident: 1245_CR10 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2399351 – volume: 28 start-page: 41 year: 1997 ident: 1245_CR11 publication-title: Machine Learning doi: 10.1023/A:1007379606734 – volume: 130 start-page: 33 year: 2017 ident: 1245_CR14 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.05.018 – ident: 1245_CR7 doi: 10.1109/ICDM.2009.138 |
| SSID | ssj0009667 |
| Score | 2.4983904 |
| Snippet | Artificial intelligence algorithms have been used in a wide range of applications in clinical aided diagnosis, such as automatic MR image segmentation and... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 118 |
| SubjectTerms | Algorithms Artificial intelligence Brain Clustering Cybernetics Distributed Analytics and Deep Learning in Health Care EEG Electroencephalography Health Informatics Health Sciences Image & Signal Processing Image analysis Image contrast Image processing Image segmentation Learning algorithms Machine learning Magnetic resonance imaging Markov analysis Medical imaging Medicine Medicine & Public Health Neuroimaging Statistics for Life Sciences |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_kBBFK0VPbtFVW8ElZyGWzu8ljrB5VuD6oB_cW9itn6V1Sekmh_es7m487pSr4GLLZDZnZmd9kdn4D8C61IrSSO6qlszTWQtE0LUJq4wSdB3rURPoC59m5OJvHXxd80ddxb4bT7kNKsrXUvxS7IZTB0NfT98ecYsjzmHs2L1TieZTtmHaF6Gqk44R69vEhlfmnKX53Rg8Q5oPsaOt0ps9gv0eLJOvE-xweuXIMT2Z9PnwMe91fN9IVE70AnZHz6satyCfPh-tbWTlLuhpbtbkk0-bu7pacrhrPjoALkmy1rK4v6p9rgtiVZE1dtQyuZPaNfPS9I8iXNdob8t0t132NUvkS5tPPP07PaN9FgRomo5pqrk1ijdUy1IJFhU6Z5Y4rxY3gCgGUFCrmaLKllSpiHHe1cMJEhRTOgwn2CkZlVbpDIBOrjIgSxZwnvcGrlBk1EaYo1MRIYQIIh8-Zm55i3He6WOU7cmQvgRwlkHsJ5JMA3m8fuer4Nf41-GSQUd5vtU2OJhcDbcR5YQBvt7dxk_jMhypd1XRjMNSXTAZw0Ml2uxrDRVCN0gA-DMLeTf7XVzn6r9HH8DTyWtcelDyBUX3duNcIZmr9plXee9Nu6SY priority: 102 providerName: Springer Nature |
| Title | A Novel Distributed Multitask Fuzzy Clustering Algorithm for Automatic MR Brain Image Segmentation |
| URI | https://link.springer.com/article/10.1007/s10916-019-1245-1 https://www.ncbi.nlm.nih.gov/pubmed/30911929 https://www.proquest.com/docview/2197138390 https://www.proquest.com/docview/2197888737 |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-689X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009667 issn: 0148-5598 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-689X dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0009667 issn: 0148-5598 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-689X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009667 issn: 0148-5598 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-689X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009667 issn: 0148-5598 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_udkEEET2_qucSwScluP1I0j6IdM_tncoWOV1Yn0qapCfcbnvntYL31zvpxy5yeC8tJW0TMsnML5nMbwBeR5pPtWCG5sJoGuRc0igqplQHIRoPtKihsAHOi5SfLIPPK7bag3SIhbHHKged2CpqXSm7R_4OZxaup9CcTz9cXFKbNcp6V4cUGrJPraDftxRj-zD2LDPWCMazefr1dEfDy3kXQB2E1FKTD37OLpgOoRIurW16gIBR919LdQN-3nCdthYpeQD3eyhJ4k72D2HPlAdwZ9E7yw_gXrclR7pIo0eQxyStfps1-WjJcm2eK6NJF4Arr85J0lxf_yFH68ZSJ2CFJF6fYQfUPzcEgS2Jm7pq6V3J4pTMbGIJ8mmDyoh8M2ebPoCpfAzLZP796IT2KRao8oVX05zlKtRK52Kac98r8sjXzDApmeJMIroSXAYM9bnQQno-wynPDVdeIbixSMN_AqOyKs0zIK6Winuh9I1lxMGnyFfS5aoopKsEVw5Mh-7MVM8_btNgrLMdc7KVQIYSyKwEMteBN9tPLjryjdtePhxklPXz8CrbjRoHXm2LcQZZt4gsTdV074Soa33hwNNOttvafKwEMXDkwNtB2Luf_7cpz29vygu469lh1h6bPIRR_asxLxHa1PkE9sVK4DVMjicwjpPZLLX34x9f5pN-LGPp0ov_Al1c-PY |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4amwSTEIIBIzDASPACskji2E4eJtRdqpatFRqbtLfMsZ0h0SaDNqDtx_HbOM6lFZrY2x6jJLblc_fx-Q7A28QI30huaSatoVEmFE2S3KcmitF4oEWNpStwHo3F4CT6fMpPV-BPVwvjrlV2OrFW1KbU7oz8I0oWxlNozv1PFz-o6xrlsqtdCw3VtlYw2zXEWFvYcWAvf2MIN9se7iG934Vhf_94d0DbLgNUMxnOacYzHRttMulngoV5ljDDLVeKa8EVOhhSqIijSpNGqpBx5HphhQ5zKawztgzHvQNrEYsSDP7WdvbHX46WsL9CNAXbUUwdFHqXV22K99A1w1DetSOIOA3-tYzX3N1rqdraAvYfwoPWdSW9htcewYotNuDuqE3Ob8D95giQNJVNjyHrkXH5y07IngPndX21rCFNwa-afSf96urqkuxOKgfVgBOS3uQcN3z-bUrQkSa9al7WcLJkdER2XCMLMpyi8iNf7fm0LZgqnsDJrWz2U1gtysI-AxIYpUUYK2YdAg8-JUyrQOg8V4GWQnvgd9uZ6hbv3LXdmKRLpGZHgRQpkDoKpIEH7xe_XDRgHzd9vNXRKG3lfpYuudSDN4vXKLEuDaMKW1bNNzHqdiY92Gxou5iN4STocycefOiIvRz8v0t5fvNSXsO9wfHoMD0cjg9ewHroWK6-srkFq_OflX2JbtU8e9XyLoGz2xaXvy1sMEM |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIU1ICMH4yhhgJHgBWUvixE4eECor1cpohYBJfcsc2xnS2mTQBLT9afx1nOOkFZrY2x6jJLbl-7Tv7ncAL1PNfS1iQ3NhNI1yLmmaFj7VUYLGAy1qImyB82TKD46ij7N4tgF_-loYm1bZ68RWUetK2TvyPZQsPE-hOff3ii4t4vNw9O7sB7UdpGyktW-n4Vjk0Jz_xuPb8u14iLR-FYajD9_2D2jXYYAqJsKa5nGuEq10Lvycs7DIU6ZjE0sZKx5LdC4El1GM6kxoIUMWI8dzw1VYCG6soWU47g24KRhLbTqhmIk14C_nrlQ7SqgFQe8jqq5sD50yPMTbRgRRTIN_beIlR_dSkLa1faO7cKdzWsnAcdk92DDlNmxNurD8Ntx2l3_E1TTdh3xAptUvMydDC8trO2oZTVypr1yeklFzcXFO9ueNBWnACclgfoLbW39fEHShyaCpqxZIlky-kPe2hQUZL1Dtka_mZNGVSpUP4OhatvohbJZVaR4DCbRUPEwkMxZ7B59SpmTAVVHIQAmuPPD77cxUh3RuG27MszVGs6VAhhTILAWywIPXq1_OHMzHVR_v9jTKOolfZmv-9ODF6jXKqg3AyNJUjfsmQa3OhAePHG1XszGcBL3t1IM3PbHXg_93KTtXL-U5bKGQZJ_G08MncCu0HNfmau7CZv2zMU_Rn6rzZy3jEji-bkn5C8bzLd0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Distributed+Multitask+Fuzzy+Clustering+Algorithm+for+Automatic+MR+Brain+Image+Segmentation&rft.jtitle=Journal+of+medical+systems&rft.au=Jiang%2C+Yizhang&rft.au=Zhao%2C+Kaifa&rft.au=Xia%2C+Kaijian&rft.au=Xue%2C+Jing&rft.date=2019-05-01&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=43&rft.issue=5&rft_id=info:doi/10.1007%2Fs10916-019-1245-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10916_019_1245_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon |