A Novel Distributed Multitask Fuzzy Clustering Algorithm for Automatic MR Brain Image Segmentation

Artificial intelligence algorithms have been used in a wide range of applications in clinical aided diagnosis, such as automatic MR image segmentation and seizure EEG signal analyses. In recent years, many machine learning-based automatic MR brain image segmentation methods have been proposed as aux...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical systems Vol. 43; no. 5; pp. 118 - 9
Main Authors Jiang, Yizhang, Zhao, Kaifa, Xia, Kaijian, Xue, Jing, Zhou, Leyuan, Ding, Yang, Qian, Pengjiang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0148-5598
1573-689X
1573-689X
DOI10.1007/s10916-019-1245-1

Cover

Abstract Artificial intelligence algorithms have been used in a wide range of applications in clinical aided diagnosis, such as automatic MR image segmentation and seizure EEG signal analyses. In recent years, many machine learning-based automatic MR brain image segmentation methods have been proposed as auxiliary methods of medical image analysis in clinical treatment. Nevertheless, many problems regarding precise medical images, which cannot be effectively utilized to improve partition performance, remain to be solved. Due to the poor contrast in grayscale images, the ambiguity and complexity of MR images, and individual variability, the performance of classic algorithms in medical image segmentation still needs improvement. In this paper, we introduce a distributed multitask fuzzy c-means (MT-FCM) clustering algorithm for MR brain image segmentation that can extract knowledge common among different clustering tasks. The proposed distributed MT-FCM algorithm can effectively exploit information common among different but related MR brain image segmentation tasks and can avoid the negative effects caused by noisy data that exist in some MR images. Experimental results on clinical MR brain images demonstrate that the distributed MT-FCM method demonstrates more desirable performance than the classic signal task method.
AbstractList Artificial intelligence algorithms have been used in a wide range of applications in clinical aided diagnosis, such as automatic MR image segmentation and seizure EEG signal analyses. In recent years, many machine learning-based automatic MR brain image segmentation methods have been proposed as auxiliary methods of medical image analysis in clinical treatment. Nevertheless, many problems regarding precise medical images, which cannot be effectively utilized to improve partition performance, remain to be solved. Due to the poor contrast in grayscale images, the ambiguity and complexity of MR images, and individual variability, the performance of classic algorithms in medical image segmentation still needs improvement. In this paper, we introduce a distributed multitask fuzzy c-means (MT-FCM) clustering algorithm for MR brain image segmentation that can extract knowledge common among different clustering tasks. The proposed distributed MT-FCM algorithm can effectively exploit information common among different but related MR brain image segmentation tasks and can avoid the negative effects caused by noisy data that exist in some MR images. Experimental results on clinical MR brain images demonstrate that the distributed MT-FCM method demonstrates more desirable performance than the classic signal task method.Artificial intelligence algorithms have been used in a wide range of applications in clinical aided diagnosis, such as automatic MR image segmentation and seizure EEG signal analyses. In recent years, many machine learning-based automatic MR brain image segmentation methods have been proposed as auxiliary methods of medical image analysis in clinical treatment. Nevertheless, many problems regarding precise medical images, which cannot be effectively utilized to improve partition performance, remain to be solved. Due to the poor contrast in grayscale images, the ambiguity and complexity of MR images, and individual variability, the performance of classic algorithms in medical image segmentation still needs improvement. In this paper, we introduce a distributed multitask fuzzy c-means (MT-FCM) clustering algorithm for MR brain image segmentation that can extract knowledge common among different clustering tasks. The proposed distributed MT-FCM algorithm can effectively exploit information common among different but related MR brain image segmentation tasks and can avoid the negative effects caused by noisy data that exist in some MR images. Experimental results on clinical MR brain images demonstrate that the distributed MT-FCM method demonstrates more desirable performance than the classic signal task method.
Artificial intelligence algorithms have been used in a wide range of applications in clinical aided diagnosis, such as automatic MR image segmentation and seizure EEG signal analyses. In recent years, many machine learning-based automatic MR brain image segmentation methods have been proposed as auxiliary methods of medical image analysis in clinical treatment. Nevertheless, many problems regarding precise medical images, which cannot be effectively utilized to improve partition performance, remain to be solved. Due to the poor contrast in grayscale images, the ambiguity and complexity of MR images, and individual variability, the performance of classic algorithms in medical image segmentation still needs improvement. In this paper, we introduce a distributed multitask fuzzy c-means (MT-FCM) clustering algorithm for MR brain image segmentation that can extract knowledge common among different clustering tasks. The proposed distributed MT-FCM algorithm can effectively exploit information common among different but related MR brain image segmentation tasks and can avoid the negative effects caused by noisy data that exist in some MR images. Experimental results on clinical MR brain images demonstrate that the distributed MT-FCM method demonstrates more desirable performance than the classic signal task method.
ArticleNumber 118
Author Xue, Jing
Zhou, Leyuan
Xia, Kaijian
Zhao, Kaifa
Qian, Pengjiang
Ding, Yang
Jiang, Yizhang
Author_xml – sequence: 1
  givenname: Yizhang
  surname: Jiang
  fullname: Jiang, Yizhang
  organization: School of Digital Media, Jiangnan University
– sequence: 2
  givenname: Kaifa
  surname: Zhao
  fullname: Zhao, Kaifa
  organization: School of Digital Media, Jiangnan University
– sequence: 3
  givenname: Kaijian
  surname: Xia
  fullname: Xia, Kaijian
  organization: Changshu No.1 people’s hospital
– sequence: 4
  givenname: Jing
  surname: Xue
  fullname: Xue, Jing
  organization: Department of Nephrology, the Affiliated Wuxi People’s Hospital of Nanjing Medical University
– sequence: 5
  givenname: Leyuan
  surname: Zhou
  fullname: Zhou, Leyuan
  organization: Department of Radiotherapy, Affiliated Hospital, Jiangnan University
– sequence: 6
  givenname: Yang
  surname: Ding
  fullname: Ding, Yang
  organization: Department of Radiotherapy, Affiliated Hospital, Jiangnan University
– sequence: 7
  givenname: Pengjiang
  surname: Qian
  fullname: Qian, Pengjiang
  email: qianpjiang@jiangnan.edu.cn
  organization: School of Digital Media, Jiangnan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30911929$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFB2CDLLHpJtSOYzteDkMLlVqQ-JHYWY5zM7gk8eAfpPbp8TStkCrBygt_39G99xyhg9nPgNBLSt5QQuRppERRURGqKlo3vKJP0IpyySrRqu8HaEVo01acq_YQHcV4TQhRQshn6JAVj6parVC3xh_9bxjxOxdTcF1O0OOrPCaXTPyJz_Pt7Q3ejDkmCG7e4vW49cGlHxMefMDrnPxkkrP46jN-G4yb8cVktoC_wHaCOZUvPz9HTwczRnhx_x6jb-dnXzcfqstP7y8268vKMlmnquOdbXvbd5J0gtVDp1jPgRvDreCGN1wK03DoqOylqRknDREgbD1IAWUdwo7RyZK7C_5Xhpj05KKFcTQz-Bx1TZVs21YyWdDXj9Brn8NcprujKGuZ2ge-uqdyN0Gvd8FNJtzoh-sVQC6ADT7GAIO2btk5lVuMmhK970kvPenSk973pGkx6SPzIfx_Tr04cbevAsLfof8t_QGE4KPK
CitedBy_id crossref_primary_10_3389_fnins_2021_773208
crossref_primary_10_3389_fnins_2020_578126
crossref_primary_10_1109_ACCESS_2020_3008000
crossref_primary_10_1109_ACCESS_2020_2983478
crossref_primary_10_1155_2021_4319074
crossref_primary_10_1155_2020_6625695
crossref_primary_10_1155_2020_7613569
crossref_primary_10_1007_s10922_022_09650_y
crossref_primary_10_1155_2021_1521013
crossref_primary_10_1109_ACCESS_2025_3525996
crossref_primary_10_1007_s10916_019_1432_0
crossref_primary_10_1007_s42452_023_05365_0
crossref_primary_10_1155_2021_6115040
crossref_primary_10_1007_s10916_019_1508_x
crossref_primary_10_1016_j_knosys_2021_106945
crossref_primary_10_1007_s12065_020_00544_z
crossref_primary_10_1109_ACCESS_2020_3021092
crossref_primary_10_1007_s12652_020_02613_8
crossref_primary_10_3389_fnins_2021_796172
crossref_primary_10_1166_jmihi_2021_3705
crossref_primary_10_1155_2021_9963133
crossref_primary_10_1155_2021_4714898
crossref_primary_10_1016_j_ins_2022_11_010
crossref_primary_10_1007_s10278_021_00557_9
crossref_primary_10_3389_fnins_2020_622759
crossref_primary_10_32604_cmes_2023_025499
crossref_primary_10_3389_fnins_2021_662674
crossref_primary_10_1007_s00530_019_00626_8
crossref_primary_10_1007_s10462_024_10814_2
crossref_primary_10_1155_2020_5128729
crossref_primary_10_1109_ACCESS_2019_2937124
crossref_primary_10_1155_2021_7799793
crossref_primary_10_32604_cmes_2022_020857
crossref_primary_10_1007_s00521_021_06699_9
crossref_primary_10_3389_fnins_2021_780147
crossref_primary_10_3390_cancers16061102
crossref_primary_10_1007_s12652_021_02997_1
crossref_primary_10_1155_2021_5284457
crossref_primary_10_1186_s44147_023_00226_4
crossref_primary_10_1016_j_aej_2022_10_015
crossref_primary_10_1155_2020_6789306
crossref_primary_10_1109_ACCESS_2023_3332123
crossref_primary_10_1155_2021_8798003
crossref_primary_10_3390_ijgi11070397
crossref_primary_10_1109_ACCESS_2020_3016676
crossref_primary_10_3389_fnins_2021_638638
crossref_primary_10_1155_2020_3641745
crossref_primary_10_1007_s12652_020_02438_5
crossref_primary_10_3389_fpsyg_2021_760060
crossref_primary_10_1109_TCSS_2020_3021179
crossref_primary_10_1155_2021_6623554
crossref_primary_10_1155_2021_7300864
crossref_primary_10_1155_2020_8931486
crossref_primary_10_3390_s23063108
crossref_primary_10_1016_j_eswa_2022_119450
crossref_primary_10_3389_fnins_2020_577937
crossref_primary_10_1155_2021_8266436
crossref_primary_10_1155_2022_1442745
crossref_primary_10_1109_ACCESS_2020_2982286
crossref_primary_10_1109_ACCESS_2020_3026567
crossref_primary_10_1166_jmihi_2021_3684
crossref_primary_10_1007_s10916_019_1431_1
crossref_primary_10_1016_j_patcog_2020_107500
crossref_primary_10_1155_2021_3937222
crossref_primary_10_1016_j_asoc_2023_110656
crossref_primary_10_1109_TCBB_2020_3018137
crossref_primary_10_1007_s12652_020_02004_z
crossref_primary_10_1155_2022_9984873
crossref_primary_10_3389_fnins_2021_670745
crossref_primary_10_1007_s12652_020_02612_9
crossref_primary_10_1145_3341095
crossref_primary_10_1007_s12652_020_02049_0
crossref_primary_10_36548_jeea_2021_3_005
crossref_primary_10_1155_2022_3469979
crossref_primary_10_1007_s11042_020_09634_7
crossref_primary_10_1016_j_cmpb_2021_106285
crossref_primary_10_1155_2023_4387134
crossref_primary_10_1166_jmihi_2021_3535
crossref_primary_10_1007_s12652_021_02998_0
crossref_primary_10_3389_fnins_2021_714318
crossref_primary_10_1166_jmihi_2021_3696
crossref_primary_10_1080_08123985_2021_2024430
Cites_doi 10.1118/1.4711807
10.1109/ACCESS.2018.2825352
10.1109/TKDE.2009.191
10.1109/TCYB.2014.2330844
10.1016/j.neucom.2013.02.024
10.1016/j.ins.2016.03.050
10.1109/TCYB.2015.2399351
10.1007/s10334-012-0330-y
10.1118/1.4926756
10.1088/0031-9155/56/10/013
10.1016/j.neucom.2015.06.079
10.1002/jmri.24775
10.1016/0098-3004(84)90020-7
10.1109/TSMC.2016.2577558
10.1023/A:1007379606734
10.1016/j.ins.2014.12.007
10.1002/mrm.22578
10.1016/j.knosys.2017.05.018
10.1109/TFUZZ.2015.2505330
10.1093/bioinformatics/bth910
10.1145/1015330.1015425
10.1109/ICDM.2009.138
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s10916-019-1245-1
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Science Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
EndPage 9
ExternalDocumentID 30911929
10_1007_s10916_019_1245_1
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61702225 and 61772241
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: 2018 Six Talent Peaks Project of Jiangsu Province
  grantid: XYDXX-127
– fundername: Science and technology demonstration project of social development of Wuxi
  grantid: WX18IVJN002
– fundername: Youth Foundation of the Commission of Health and Family Planning of Wuxi
  grantid: Q201654
– fundername: the Jiangsu Committee of Health
  grantid: H2018071
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20160187
  funderid: http://dx.doi.org/10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 61702225 and 61772241
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20160187
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c372t-b5bc8dcdb70b632fb93d5e5aa5c65a54576a45eb17d7a2350406e6c2f76e09103
IEDL.DBID BENPR
ISSN 0148-5598
1573-689X
IngestDate Thu Sep 04 17:17:37 EDT 2025
Tue Oct 07 05:46:58 EDT 2025
Wed Feb 19 02:33:32 EST 2025
Wed Oct 01 04:08:36 EDT 2025
Thu Apr 24 22:59:02 EDT 2025
Fri Feb 21 02:37:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Medical image
Image segmentation
MR brain image
Distributed multitask fuzzy clustering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-b5bc8dcdb70b632fb93d5e5aa5c65a54576a45eb17d7a2350406e6c2f76e09103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30911929
PQID 2197138390
PQPubID 54050
PageCount 9
ParticipantIDs proquest_miscellaneous_2197888737
proquest_journals_2197138390
pubmed_primary_30911929
crossref_citationtrail_10_1007_s10916_019_1245_1
crossref_primary_10_1007_s10916_019_1245_1
springer_journals_10_1007_s10916_019_1245_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Qian, Zhao, Jiang, Su, Deng, Wang, Muzic (CR14) 2017; 130
Zaidi, Ojha, Morich (CR24) 2011; 56
Johansson, Karlsson, Yu (CR27) 2012; 39
CR18
Argyriou, Evgeniou, Pontil (CR3) 2006; 19
CR17
Caruana (CR11) 1997; 28
Hooijmans, Dzyubachyk, Nehrke (CR22) 2015; 42
Deng, Jiang, Chung (CR9) 2014; 24
Qian, Zhou, Jiang (CR8) 2018; 6
Jiang, Deng, Chung (CR5) 2017; 47
Bezdek, Ehrlich, Full (CR13) 1984; 10
Jiang, Deng, Chung (CR1) 2015; 298
CR2
Qian, Jiang, Deng (CR15) 2016; 46
Sato-Ilic (CR4) 2008; 1
Dinuzzo (CR19) 2013; 118
CR6
CR7
Pan, Yang (CR16) 2010; 22
Kalemis, Delattre, Heinzer (CR25) 2013; 26
Eggers, Brendel, Duijndam (CR23) 2011; 65
Su, Hu, Stehning (CR26) 2015; 42
Zheng, Geng, Tao (CR20) 2016; 171
Jiang, Deng, Choi (CR21) 2016; 357
Jiang, Chung, Ishibuchi (CR12) 2017; 45
Qian, Jiang, Deng (CR10) 2016; 46
R Caruana (1245_CR11) 1997; 28
A Argyriou (1245_CR3) 2006; 19
M Sato-Ilic (1245_CR4) 2008; 1
KH Su (1245_CR26) 2015; 42
P Qian (1245_CR8) 2018; 6
Y Jiang (1245_CR1) 2015; 298
Z Deng (1245_CR9) 2014; 24
SJ Pan (1245_CR16) 2010; 22
A Kalemis (1245_CR25) 2013; 26
MT Hooijmans (1245_CR22) 2015; 42
Y Jiang (1245_CR12) 2017; 45
H Zaidi (1245_CR24) 2011; 56
1245_CR2
P Qian (1245_CR15) 2016; 46
H Zheng (1245_CR20) 2016; 171
H Eggers (1245_CR23) 2011; 65
Y Jiang (1245_CR21) 2016; 357
1245_CR6
Pengjiang Qian (1245_CR14) 2017; 130
A Johansson (1245_CR27) 2012; 39
1245_CR7
JC Bezdek (1245_CR13) 1984; 10
1245_CR18
P Qian (1245_CR10) 2016; 46
1245_CR17
F Dinuzzo (1245_CR19) 2013; 118
Y Jiang (1245_CR5) 2017; 47
References_xml – ident: CR18
– volume: 39
  start-page: 3283
  year: 2012
  end-page: 3290
  ident: CR27
  article-title: Voxel-wise uncertainty in CT substitute derived from MRI
  publication-title: Medical Physics
  doi: 10.1118/1.4711807
– volume: 6
  start-page: 28594
  year: 2018
  end-page: 28610
  ident: CR8
  article-title: Multi-view maximum entropy clustering by jointly leveraging inter-view collaborations and intra-view-weighted attributes
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2825352
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: CR16
  article-title: A survey on transfer Learning
  publication-title: IEEE Transactions on Knowledge & Data Engineering
  doi: 10.1109/TKDE.2009.191
– volume: 19
  start-page: 41
  year: 2006
  end-page: 48
  ident: CR3
  article-title: Multi-task feature Learning
  publication-title: Advances in Neural Information Processing Systems
– ident: CR2
– volume: 45
  start-page: 534
  year: 2017
  end-page: 547
  ident: CR12
  article-title: Multitask TSK fuzzy system modeling by mining Intertask common hidden structure
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2330844
– volume: 118
  start-page: 119
  year: 2013
  end-page: 126
  ident: CR19
  article-title: Learning output kernels for multi-task problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.02.024
– volume: 357
  start-page: 39
  year: 2016
  end-page: 60
  ident: CR21
  article-title: A novel multi-task TSK fuzzy classifier and its enhanced version for labeling-risk-aware multi-task classification
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.03.050
– volume: 46
  start-page: 181
  year: 2016
  ident: CR10
  article-title: Cluster prototypes and fuzzy memberships jointly leveraged cross-domain maximum entropy clustering
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2399351
– ident: CR6
– volume: 26
  start-page: 5
  year: 2013
  end-page: 23
  ident: CR25
  article-title: Sequential whole-body PET/MR scanner: Concept, clinical use, and optimisation after two years in the clinic. The manufacturer's perspective
  publication-title: Magma
  doi: 10.1007/s10334-012-0330-y
– volume: 42
  start-page: 4974
  year: 2015
  end-page: 4986
  ident: CR26
  article-title: Generation of brain pseudo-CTs using an undersampled, single-acquisition UTE-mDixon pulse sequence and unsupervised clustering
  publication-title: Medical Physics
  doi: 10.1118/1.4926756
– volume: 1
  start-page: 1
  year: 2008
  end-page: 18
  ident: CR4
  article-title: Fuzzy variable selection with degree of classification based on dissimilarity between distributions of variables
  publication-title: International Journal of Intelligent Technology and Applied Statistics
– volume: 56
  start-page: 3091
  year: 2011
  end-page: 3106
  ident: CR24
  article-title: Design and performance evaluation of a whole-body ingenuity TF PET-MRI system
  publication-title: Physics in Medicine & Biology
  doi: 10.1088/0031-9155/56/10/013
– volume: 171
  start-page: 515
  year: 2016
  end-page: 523
  ident: CR20
  article-title: A multi-task model for simultaneous face identification and facial expression recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.079
– volume: 42
  start-page: 217
  year: 2015
  end-page: 223
  ident: CR22
  article-title: Fast multistation water/fat imaging at 3T using DREAM-based RF shimming
  publication-title: Journal of Magnetic Resonance Imaging
  doi: 10.1002/jmri.24775
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: CR13
  article-title: FCM: The fuzzy c-means clustering algorithm[J]
  publication-title: Computers & Geosciences
  doi: 10.1016/0098-3004(84)90020-7
– volume: 47
  start-page: 145
  year: 2017
  end-page: 160
  ident: CR5
  article-title: Realizing two-view TSK fuzzy classification system by using collaborative Learning
  publication-title: IEEE Transactions on Systems Man & Cybernetics Systems
  doi: 10.1109/TSMC.2016.2577558
– ident: CR17
– volume: 28
  start-page: 41
  year: 1997
  end-page: 75
  ident: CR11
  article-title: Multitask Learning
  publication-title: Machine Learning
  doi: 10.1023/A:1007379606734
– volume: 298
  start-page: 512
  year: 2015
  end-page: 533
  ident: CR1
  article-title: Multi-task TSK fuzzy system modeling using inter-task correlation information
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.12.007
– ident: CR7
– volume: 65
  start-page: 96
  year: 2011
  end-page: 107
  ident: CR23
  article-title: Dual-echo Dixon imaging with flexible choice of echo times
  publication-title: Magnetic Resonance in Medicine
  doi: 10.1002/mrm.22578
– volume: 130
  start-page: 33
  year: 2017
  end-page: 50
  ident: CR14
  article-title: Knowledge-leveraged transfer fuzzy C -Means for texture image segmentation with self-adaptive cluster prototype matching
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.05.018
– volume: 46
  start-page: 181
  year: 2016
  ident: CR15
  article-title: Cluster prototypes and fuzzy memberships jointly leveraged cross-domain maximum entropy clustering
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2399351
– volume: 24
  start-page: 1210
  year: 2014
  end-page: 1232
  ident: CR9
  article-title: Transfer prototype-based fuzzy clustering
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2015.2505330
– ident: 1245_CR6
  doi: 10.1093/bioinformatics/bth910
– volume: 6
  start-page: 28594
  year: 2018
  ident: 1245_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2825352
– volume: 118
  start-page: 119
  year: 2013
  ident: 1245_CR19
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.02.024
– volume: 56
  start-page: 3091
  year: 2011
  ident: 1245_CR24
  publication-title: Physics in Medicine & Biology
  doi: 10.1088/0031-9155/56/10/013
– volume: 42
  start-page: 217
  year: 2015
  ident: 1245_CR22
  publication-title: Journal of Magnetic Resonance Imaging
  doi: 10.1002/jmri.24775
– volume: 298
  start-page: 512
  year: 2015
  ident: 1245_CR1
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.12.007
– volume: 171
  start-page: 515
  year: 2016
  ident: 1245_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.079
– volume: 39
  start-page: 3283
  year: 2012
  ident: 1245_CR27
  publication-title: Medical Physics
  doi: 10.1118/1.4711807
– volume: 47
  start-page: 145
  year: 2017
  ident: 1245_CR5
  publication-title: IEEE Transactions on Systems Man & Cybernetics Systems
  doi: 10.1109/TSMC.2016.2577558
– volume: 19
  start-page: 41
  year: 2006
  ident: 1245_CR3
  publication-title: Advances in Neural Information Processing Systems
– ident: 1245_CR18
– volume: 1
  start-page: 1
  year: 2008
  ident: 1245_CR4
  publication-title: International Journal of Intelligent Technology and Applied Statistics
– volume: 24
  start-page: 1210
  year: 2014
  ident: 1245_CR9
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2015.2505330
– volume: 22
  start-page: 1345
  year: 2010
  ident: 1245_CR16
  publication-title: IEEE Transactions on Knowledge & Data Engineering
  doi: 10.1109/TKDE.2009.191
– volume: 45
  start-page: 534
  year: 2017
  ident: 1245_CR12
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2330844
– volume: 46
  start-page: 181
  year: 2016
  ident: 1245_CR15
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2399351
– volume: 357
  start-page: 39
  year: 2016
  ident: 1245_CR21
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.03.050
– volume: 10
  start-page: 191
  year: 1984
  ident: 1245_CR13
  publication-title: Computers & Geosciences
  doi: 10.1016/0098-3004(84)90020-7
– volume: 42
  start-page: 4974
  year: 2015
  ident: 1245_CR26
  publication-title: Medical Physics
  doi: 10.1118/1.4926756
– ident: 1245_CR2
– volume: 26
  start-page: 5
  year: 2013
  ident: 1245_CR25
  publication-title: Magma
  doi: 10.1007/s10334-012-0330-y
– volume: 65
  start-page: 96
  year: 2011
  ident: 1245_CR23
  publication-title: Magnetic Resonance in Medicine
  doi: 10.1002/mrm.22578
– ident: 1245_CR17
  doi: 10.1145/1015330.1015425
– volume: 46
  start-page: 181
  year: 2016
  ident: 1245_CR10
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2399351
– volume: 28
  start-page: 41
  year: 1997
  ident: 1245_CR11
  publication-title: Machine Learning
  doi: 10.1023/A:1007379606734
– volume: 130
  start-page: 33
  year: 2017
  ident: 1245_CR14
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.05.018
– ident: 1245_CR7
  doi: 10.1109/ICDM.2009.138
SSID ssj0009667
Score 2.4983904
Snippet Artificial intelligence algorithms have been used in a wide range of applications in clinical aided diagnosis, such as automatic MR image segmentation and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118
SubjectTerms Algorithms
Artificial intelligence
Brain
Clustering
Cybernetics
Distributed Analytics and Deep Learning in Health Care
EEG
Electroencephalography
Health Informatics
Health Sciences
Image & Signal Processing
Image analysis
Image contrast
Image processing
Image segmentation
Learning algorithms
Machine learning
Magnetic resonance imaging
Markov analysis
Medical imaging
Medicine
Medicine & Public Health
Neuroimaging
Statistics for Life Sciences
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_kBBFK0VPbtFVW8ElZyGWzu8ljrB5VuD6oB_cW9itn6V1Sekmh_es7m487pSr4GLLZDZnZmd9kdn4D8C61IrSSO6qlszTWQtE0LUJq4wSdB3rURPoC59m5OJvHXxd80ddxb4bT7kNKsrXUvxS7IZTB0NfT98ecYsjzmHs2L1TieZTtmHaF6Gqk44R69vEhlfmnKX53Rg8Q5oPsaOt0ps9gv0eLJOvE-xweuXIMT2Z9PnwMe91fN9IVE70AnZHz6satyCfPh-tbWTlLuhpbtbkk0-bu7pacrhrPjoALkmy1rK4v6p9rgtiVZE1dtQyuZPaNfPS9I8iXNdob8t0t132NUvkS5tPPP07PaN9FgRomo5pqrk1ijdUy1IJFhU6Z5Y4rxY3gCgGUFCrmaLKllSpiHHe1cMJEhRTOgwn2CkZlVbpDIBOrjIgSxZwnvcGrlBk1EaYo1MRIYQIIh8-Zm55i3He6WOU7cmQvgRwlkHsJ5JMA3m8fuer4Nf41-GSQUd5vtU2OJhcDbcR5YQBvt7dxk_jMhypd1XRjMNSXTAZw0Ml2uxrDRVCN0gA-DMLeTf7XVzn6r9HH8DTyWtcelDyBUX3duNcIZmr9plXee9Nu6SY
  priority: 102
  providerName: Springer Nature
Title A Novel Distributed Multitask Fuzzy Clustering Algorithm for Automatic MR Brain Image Segmentation
URI https://link.springer.com/article/10.1007/s10916-019-1245-1
https://www.ncbi.nlm.nih.gov/pubmed/30911929
https://www.proquest.com/docview/2197138390
https://www.proquest.com/docview/2197888737
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_udkEEET2_qucSwScluP1I0j6IdM_tncoWOV1Yn0qapCfcbnvntYL31zvpxy5yeC8tJW0TMsnML5nMbwBeR5pPtWCG5sJoGuRc0igqplQHIRoPtKihsAHOi5SfLIPPK7bag3SIhbHHKged2CpqXSm7R_4OZxaup9CcTz9cXFKbNcp6V4cUGrJPraDftxRj-zD2LDPWCMazefr1dEfDy3kXQB2E1FKTD37OLpgOoRIurW16gIBR919LdQN-3nCdthYpeQD3eyhJ4k72D2HPlAdwZ9E7yw_gXrclR7pIo0eQxyStfps1-WjJcm2eK6NJF4Arr85J0lxf_yFH68ZSJ2CFJF6fYQfUPzcEgS2Jm7pq6V3J4pTMbGIJ8mmDyoh8M2ebPoCpfAzLZP796IT2KRao8oVX05zlKtRK52Kac98r8sjXzDApmeJMIroSXAYM9bnQQno-wynPDVdeIbixSMN_AqOyKs0zIK6Winuh9I1lxMGnyFfS5aoopKsEVw5Mh-7MVM8_btNgrLMdc7KVQIYSyKwEMteBN9tPLjryjdtePhxklPXz8CrbjRoHXm2LcQZZt4gsTdV074Soa33hwNNOttvafKwEMXDkwNtB2Luf_7cpz29vygu469lh1h6bPIRR_asxLxHa1PkE9sVK4DVMjicwjpPZLLX34x9f5pN-LGPp0ov_Al1c-PY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4amwSTEIIBIzDASPACskji2E4eJtRdqpatFRqbtLfMsZ0h0SaDNqDtx_HbOM6lFZrY2x6jJLblc_fx-Q7A28QI30huaSatoVEmFE2S3KcmitF4oEWNpStwHo3F4CT6fMpPV-BPVwvjrlV2OrFW1KbU7oz8I0oWxlNozv1PFz-o6xrlsqtdCw3VtlYw2zXEWFvYcWAvf2MIN9se7iG934Vhf_94d0DbLgNUMxnOacYzHRttMulngoV5ljDDLVeKa8EVOhhSqIijSpNGqpBx5HphhQ5zKawztgzHvQNrEYsSDP7WdvbHX46WsL9CNAXbUUwdFHqXV22K99A1w1DetSOIOA3-tYzX3N1rqdraAvYfwoPWdSW9htcewYotNuDuqE3Ob8D95giQNJVNjyHrkXH5y07IngPndX21rCFNwa-afSf96urqkuxOKgfVgBOS3uQcN3z-bUrQkSa9al7WcLJkdER2XCMLMpyi8iNf7fm0LZgqnsDJrWz2U1gtysI-AxIYpUUYK2YdAg8-JUyrQOg8V4GWQnvgd9uZ6hbv3LXdmKRLpGZHgRQpkDoKpIEH7xe_XDRgHzd9vNXRKG3lfpYuudSDN4vXKLEuDaMKW1bNNzHqdiY92Gxou5iN4STocycefOiIvRz8v0t5fvNSXsO9wfHoMD0cjg9ewHroWK6-srkFq_OflX2JbtU8e9XyLoGz2xaXvy1sMEM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIU1ICMH4yhhgJHgBWUvixE4eECor1cpohYBJfcsc2xnS2mTQBLT9afx1nOOkFZrY2x6jJLbl-7Tv7ncAL1PNfS1iQ3NhNI1yLmmaFj7VUYLGAy1qImyB82TKD46ij7N4tgF_-loYm1bZ68RWUetK2TvyPZQsPE-hOff3ii4t4vNw9O7sB7UdpGyktW-n4Vjk0Jz_xuPb8u14iLR-FYajD9_2D2jXYYAqJsKa5nGuEq10Lvycs7DIU6ZjE0sZKx5LdC4El1GM6kxoIUMWI8dzw1VYCG6soWU47g24KRhLbTqhmIk14C_nrlQ7SqgFQe8jqq5sD50yPMTbRgRRTIN_beIlR_dSkLa1faO7cKdzWsnAcdk92DDlNmxNurD8Ntx2l3_E1TTdh3xAptUvMydDC8trO2oZTVypr1yeklFzcXFO9ueNBWnACclgfoLbW39fEHShyaCpqxZIlky-kPe2hQUZL1Dtka_mZNGVSpUP4OhatvohbJZVaR4DCbRUPEwkMxZ7B59SpmTAVVHIQAmuPPD77cxUh3RuG27MszVGs6VAhhTILAWywIPXq1_OHMzHVR_v9jTKOolfZmv-9ODF6jXKqg3AyNJUjfsmQa3OhAePHG1XszGcBL3t1IM3PbHXg_93KTtXL-U5bKGQZJ_G08MncCu0HNfmau7CZv2zMU_Rn6rzZy3jEji-bkn5C8bzLd0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Distributed+Multitask+Fuzzy+Clustering+Algorithm+for+Automatic+MR+Brain+Image+Segmentation&rft.jtitle=Journal+of+medical+systems&rft.au=Jiang%2C+Yizhang&rft.au=Zhao%2C+Kaifa&rft.au=Xia%2C+Kaijian&rft.au=Xue%2C+Jing&rft.date=2019-05-01&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=43&rft.issue=5&rft_id=info:doi/10.1007%2Fs10916-019-1245-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10916_019_1245_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon