Multi-template matching algorithm for cucumber recognition in natural environment

•A multi-template matching library was established by proportional scaling and rotating the standard cucumber image.•Multi-template matching algorithm for cucumber recognition for harvesting robot was developed.•High recognition accuracy of 98% was obtained from the verification test. The automatic...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 127; pp. 754 - 762
Main Authors Bao, Guanjun, Cai, Shibo, Qi, Liyong, Xun, Yi, Zhang, Libin, Yang, Qinghua
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2016
Subjects
Online AccessGet full text
ISSN0168-1699
1872-7107
DOI10.1016/j.compag.2016.08.001

Cover

Abstract •A multi-template matching library was established by proportional scaling and rotating the standard cucumber image.•Multi-template matching algorithm for cucumber recognition for harvesting robot was developed.•High recognition accuracy of 98% was obtained from the verification test. The automatic recognition of cucumber target within its cultivating environment is one of the key techniques for the cucumber harvesting robot. Since cucumber grows in the complex environment and its color is similar to that of branches and leaves, it is quite challenging to achieve high identification accuracy when employing algorithms based on color features, image segmentation and shape features. Adopting spectroscopy can simplify the algorithm. However it increases the complexity and cost of the robot system. The multi-template matching method was proposed to solve this problem in this paper. A multi-template matching library, which contained 65 cucumber images, was established based on the statistical parameters of the matured Radit cucumber, by proportional scaling the standard cucumber image with step of 0.1 in the range of [0.8, 1.2] and rotating with step of pi/36 in the range of [−pi/6, pi/6]. To identify the cucumber in the visual field of the robot, cucumber templates in the library are used to calculate the matrix of normalized correlation coefficients (NCC) with the target image, one after another. If the maximum NCC is above the threshold, there is the target cucumber in the image frame. Otherwise, there is no target in the visual field. To verify the algorithm, 100 photos of the Radit cucumber with different size and angle were sampled in the test. The results indicated that cucumbers were correctly recognized and positioned in 87 images. Cucumbers which were correctly recognized but with picking position deviation appeared in 11 images. Cucumbers were not found in two images. In general, the correct recognition accuracy is 98%, with 11% fault position.
AbstractList The automatic recognition of cucumber target within its cultivating environment is one of the key techniques for the cucumber harvesting robot. Since cucumber grows in the complex environment and its color is similar to that of branches and leaves, it is quite challenging to achieve high identification accuracy when employing algorithms based on color features, image segmentation and shape features. Adopting spectroscopy can simplify the algorithm. However it increases the complexity and cost of the robot system. The multi-template matching method was proposed to solve this problem in this paper. A multi-template matching library, which contained 65 cucumber images, was established based on the statistical parameters of the matured Radit cucumber, by proportional scaling the standard cucumber image with step of 0.1 in the range of [0.8, 1.2] and rotating with step of pi/36 in the range of [-pi/6, pi/6]. To identify the cucumber in the visual field of the robot, cucumber templates in the library are used to calculate the matrix of normalized correlation coefficients (NCC) with the target image, one after another. If the maximum NCC is above the threshold, there is the target cucumber in the image frame. Otherwise, there is no target in the visual field. To verify the algorithm, 100 photos of the Radit cucumber with different size and angle were sampled in the test. The results indicated that cucumbers were correctly recognized and positioned in 87 images. Cucumbers which were correctly recognized but with picking position deviation appeared in 11 images. Cucumbers were not found in two images. In general, the correct recognition accuracy is 98%, with 11% fault position.
The automatic recognition of cucumber target within its cultivating environment is one of the key techniques for the cucumber harvesting robot. Since cucumber grows in the complex environment and its color is similar to that of branches and leaves, it is quite challenging to achieve high identification accuracy when employing algorithms based on color features, image segmentation and shape features. Adopting spectroscopy can simplify the algorithm. However it increases the complexity and cost of the robot system. The multi-template matching method was proposed to solve this problem in this paper. A multi-template matching library, which contained 65 cucumber images, was established based on the statistical parameters of the matured Radit cucumber, by proportional scaling the standard cucumber image with step of 0.1 in the range of [0.8, 1.2] and rotating with step of pi/36 in the range of [−pi/6, pi/6]. To identify the cucumber in the visual field of the robot, cucumber templates in the library are used to calculate the matrix of normalized correlation coefficients (NCC) with the target image, one after another. If the maximum NCC is above the threshold, there is the target cucumber in the image frame. Otherwise, there is no target in the visual field. To verify the algorithm, 100 photos of the Radit cucumber with different size and angle were sampled in the test. The results indicated that cucumbers were correctly recognized and positioned in 87 images. Cucumbers which were correctly recognized but with picking position deviation appeared in 11 images. Cucumbers were not found in two images. In general, the correct recognition accuracy is 98%, with 11% fault position.
•A multi-template matching library was established by proportional scaling and rotating the standard cucumber image.•Multi-template matching algorithm for cucumber recognition for harvesting robot was developed.•High recognition accuracy of 98% was obtained from the verification test. The automatic recognition of cucumber target within its cultivating environment is one of the key techniques for the cucumber harvesting robot. Since cucumber grows in the complex environment and its color is similar to that of branches and leaves, it is quite challenging to achieve high identification accuracy when employing algorithms based on color features, image segmentation and shape features. Adopting spectroscopy can simplify the algorithm. However it increases the complexity and cost of the robot system. The multi-template matching method was proposed to solve this problem in this paper. A multi-template matching library, which contained 65 cucumber images, was established based on the statistical parameters of the matured Radit cucumber, by proportional scaling the standard cucumber image with step of 0.1 in the range of [0.8, 1.2] and rotating with step of pi/36 in the range of [−pi/6, pi/6]. To identify the cucumber in the visual field of the robot, cucumber templates in the library are used to calculate the matrix of normalized correlation coefficients (NCC) with the target image, one after another. If the maximum NCC is above the threshold, there is the target cucumber in the image frame. Otherwise, there is no target in the visual field. To verify the algorithm, 100 photos of the Radit cucumber with different size and angle were sampled in the test. The results indicated that cucumbers were correctly recognized and positioned in 87 images. Cucumbers which were correctly recognized but with picking position deviation appeared in 11 images. Cucumbers were not found in two images. In general, the correct recognition accuracy is 98%, with 11% fault position.
Author Xun, Yi
Qi, Liyong
Cai, Shibo
Zhang, Libin
Bao, Guanjun
Yang, Qinghua
Author_xml – sequence: 1
  givenname: Guanjun
  surname: Bao
  fullname: Bao, Guanjun
– sequence: 2
  givenname: Shibo
  surname: Cai
  fullname: Cai, Shibo
– sequence: 3
  givenname: Liyong
  surname: Qi
  fullname: Qi, Liyong
– sequence: 4
  givenname: Yi
  surname: Xun
  fullname: Xun, Yi
– sequence: 5
  givenname: Libin
  surname: Zhang
  fullname: Zhang, Libin
– sequence: 6
  givenname: Qinghua
  surname: Yang
  fullname: Yang, Qinghua
BookMark eNqFkE9r3DAQxUXZQDd_vkEPPvZiR7JlSe6hEEKSFraUQnIWs9J4V4stbSU50G8fLdtTD81pGOa9N7zfJVn54JGQT4w2jDJxe2hMmI-wa9qyNVQ1lLIPZM2UbGvJqFyRdTmomolh-EguUzoUgRiUXJNfP5YpuzrjfJwgYzVDNnvndxVMuxBd3s_VGGJlFrPMW4xVRBN23mUXfOV85SEvEaYK_auLwc_o8zW5GGFKePN3XpGXx4fn-2_15ufT9_u7TW062eYaVEepNNgyA0J1vbK45cLK3o7UcrBoe7rFHgbeg6Qdt0q0XHJmO8sFjLS7Ip_PuccYfi-Ysp5dMjhN4DEsSbe0lOxZK_p3paz8F1wOgyrSL2epiSGliKM2LsOpbo7gJs2oPiHXB31Grk_INVW6PCtm_o_5GN0M8c97tq9nGxZcrw6jTsahN2hdwZ21De7_AW8lbqBh
CitedBy_id crossref_primary_10_1007_s00530_022_00990_y
crossref_primary_10_1016_j_compag_2019_01_015
crossref_primary_10_1117_1_JRS_13_016503
crossref_primary_10_1007_s11119_022_09913_3
crossref_primary_10_1109_ACCESS_2019_2942144
crossref_primary_10_1186_s12870_024_05908_6
crossref_primary_10_3390_app8091542
crossref_primary_10_1016_j_compag_2020_105254
crossref_primary_10_1016_j_postharvbio_2018_01_013
crossref_primary_10_3390_app14051884
crossref_primary_10_1016_j_foodchem_2020_127988
crossref_primary_10_1109_ACCESS_2018_2851376
crossref_primary_10_1177_17298806221104906
crossref_primary_10_35633_inmateh_62_20
crossref_primary_10_3390_agriculture13091814
crossref_primary_10_1002_rob_22074
crossref_primary_10_1016_j_compag_2022_106789
crossref_primary_10_3390_s24186050
crossref_primary_10_1016_j_compag_2020_105460
crossref_primary_10_1016_j_ijleo_2020_164954
crossref_primary_10_1016_j_jksuci_2017_10_001
crossref_primary_10_1016_j_biosystemseng_2019_02_018
crossref_primary_10_1002_rob_22465
crossref_primary_10_1007_s12161_017_1044_6
crossref_primary_10_1088_1742_6596_1879_3_032130
crossref_primary_10_1007_s00170_018_2845_5
crossref_primary_10_1007_s00170_021_07649_4
crossref_primary_10_1016_j_jclepro_2019_117648
Cites_doi 10.1016/j.compag.2014.07.004
10.1016/j.biosystemseng.2003.08.002
10.1016/j.compag.2014.05.006
10.1016/j.compag.2015.05.020
10.1080/00288230709510415
10.1006/jaer.1998.0285
10.1080/00288230709510377
10.1016/j.compag.2016.02.001
10.1016/j.compag.2008.11.004
10.1016/j.compag.2013.01.006
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2016.08.001
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
EndPage 762
ExternalDocumentID 10_1016_j_compag_2016_08_001
S0168169916305816
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c372t-a83007ce21ca68358deb46d75df0d4aded50be5a945a7034d8624741d3d46af03
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Thu Oct 02 12:03:08 EDT 2025
Sun Sep 28 07:29:28 EDT 2025
Wed Oct 01 02:41:08 EDT 2025
Thu Apr 24 23:05:23 EDT 2025
Fri Feb 23 02:29:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiple-template matching
Harvesting robot
Cucumber recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-a83007ce21ca68358deb46d75df0d4aded50be5a945a7034d8624741d3d46af03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1835647998
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_2000151265
proquest_miscellaneous_1835647998
crossref_citationtrail_10_1016_j_compag_2016_08_001
crossref_primary_10_1016_j_compag_2016_08_001
elsevier_sciencedirect_doi_10_1016_j_compag_2016_08_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationTitle Computers and electronics in agriculture
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yuan, Ji, Chen, Li, Zhang (b0125) 2011; S1
Yang, Qi, Bao, Gao, Zhang (b0110) 2007; 50
Van Eck, Van Der Heijden, Polder (b0070) 1998; 70
Briechle, Hanebeck (b0010) 2001
Sule, Mohd (b0065) 2016; 122
Wang, Ji, Gu, Tian (b0090) 2010
Wang, Ji, Gu, An (b0100) 2012; 43
Van Henten, Van’t Slot, Hol, Van Willigenburg (b0080) 2009; 65
Clement, Novas, Gazquez, Manzano-Agugliaro (b0015) 2013; 92
Vassiliadis, Hakkennes, Wong, Pechanek (b0085) 1998; vol. 2
Zhou, Kaneko, Tanaka, Kayamori, Shimizu (b0140) 2015; 116
Li, Li, Liu (b0035) 2009; 35
Qiao, Zhang, Wei, Wang, Wu (b0055) 2009; 17
Yuan, Zhang (b0120) 2006; 7
Qi, Gao, Tan, Yang (b0050) 2011; 42
Li, Wang, Tan, Yang, Gao, Yuan, Ren, Hou, Feng (b0045) 2008
Xiang, Jiang, Ying (b0105) 2014; 106
Zhang, Yang, Xun, Chen, Ren, Yuan, Tan, Li (b0130) 2007; 50
Yang, Liu, Wang (b0115) 2013; 34
Kollenburg, Werkhoven, Wenne-Kes (b0025) 1997
Kondo, Nakamura, Monta, Shibano, Mohri, Arima (b0030) 1994
Zhou, Kaneko, Tanaka, Kayamori, Shimizu (b0135) 2014; 108
Van Henten, Van Tuij Hemming, Kornet, Bontsema, Van Os (b0075) 2003; 86
Jin, Tu, Liu (b0020) 2013; 47
Wang, Ji, Chen (b0095) 2011; 31
Clement (10.1016/j.compag.2016.08.001_b0015) 2013; 92
Li (10.1016/j.compag.2016.08.001_b0035) 2009; 35
Van Eck (10.1016/j.compag.2016.08.001_b0070) 1998; 70
Zhang (10.1016/j.compag.2016.08.001_b0130) 2007; 50
Yang (10.1016/j.compag.2016.08.001_b0115) 2013; 34
Van Henten (10.1016/j.compag.2016.08.001_b0080) 2009; 65
Jin (10.1016/j.compag.2016.08.001_b0020) 2013; 47
Li (10.1016/j.compag.2016.08.001_b0045) 2008
Zhou (10.1016/j.compag.2016.08.001_b0135) 2014; 108
Qiao (10.1016/j.compag.2016.08.001_b0055) 2009; 17
Van Henten (10.1016/j.compag.2016.08.001_b0075) 2003; 86
Wang (10.1016/j.compag.2016.08.001_b0090) 2010
Xiang (10.1016/j.compag.2016.08.001_b0105) 2014; 106
Yuan (10.1016/j.compag.2016.08.001_b0120) 2006; 7
Wang (10.1016/j.compag.2016.08.001_b0095) 2011; 31
Kollenburg (10.1016/j.compag.2016.08.001_b0025) 1997
Qi (10.1016/j.compag.2016.08.001_b0050) 2011; 42
Yuan (10.1016/j.compag.2016.08.001_b0125) 2011; S1
Yang (10.1016/j.compag.2016.08.001_b0110) 2007; 50
Kondo (10.1016/j.compag.2016.08.001_b0030) 1994
Briechle (10.1016/j.compag.2016.08.001_b0010) 2001
Zhou (10.1016/j.compag.2016.08.001_b0140) 2015; 116
Vassiliadis (10.1016/j.compag.2016.08.001_b0085) 1998; vol. 2
Sule (10.1016/j.compag.2016.08.001_b0065) 2016; 122
Wang (10.1016/j.compag.2016.08.001_b0100) 2012; 43
References_xml – start-page: 21
  year: 1997
  end-page: 24
  ident: b0025
  article-title: Development of a Mechatronic System for Automatic Harvesting of Cucumbers. Robotics and Automated Machinery for Bio-Productions
– volume: 43
  year: 2012
  ident: b0100
  article-title: In-greenhouse cucumber recognition based on machine vision and least squares support vector machine
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 7
  start-page: 150
  year: 2006
  end-page: 153
  ident: b0120
  article-title: Pattern recognition of cucumber image by Bayes sort discrimination model
  publication-title: J. Agric. Mechanization Res.
– start-page: 461
  year: 1994
  end-page: 470
  ident: b0030
  article-title: Visual sensor for cucumber harvesting robot
  publication-title: Proceedings of Processing Automation Conference III
– volume: 106
  start-page: 75
  year: 2014
  end-page: 90
  ident: b0105
  article-title: Recognition of clustered tomatoes based on binocular stereo vision
  publication-title: Comput. Electron. Agric.
– volume: 108
  start-page: 58
  year: 2014
  end-page: 70
  ident: b0135
  article-title: Disease detection of cercospora leaf spot in sugar beet by robust template matching
  publication-title: Comput. Electron. Agric.
– volume: 92
  start-page: 75
  year: 2013
  end-page: 81
  ident: b0015
  article-title: An active contour computer algorithm for the classification of cucumbers
  publication-title: Comput. Electron. Agric.
– volume: vol. 2
  start-page: 559
  year: 1998
  end-page: 566
  ident: b0085
  article-title: The sum absolute difference motion estimation accelerator
  publication-title: Euro micro Conference, Proceedings. 24th IEEE
– volume: 47
  year: 2013
  ident: b0020
  article-title: A method for cucumber identification based on iterative-RELIEF and relevance vector machine
  publication-title: J. Shanghai Jiaotong Univ.
– volume: 31
  start-page: 2834
  year: 2011
  end-page: 2838
  ident: b0095
  article-title: Research on identification of cucumber stem and leaf based on spectrum analysis technology
  publication-title: Spectrosc. Spectral Anal.
– volume: 116
  start-page: 65
  year: 2015
  end-page: 79
  ident: b0140
  article-title: Image-based field monitoring of Cercospora leaf spot in sugar beet by robust template matching and pattern recognition
  publication-title: Comput. Electron. Agric.
– volume: 86
  start-page: 305
  year: 2003
  end-page: 313
  ident: b0075
  article-title: Field test of an autonomous cucumber picking robot
  publication-title: Biosyst. Eng.
– volume: 122
  start-page: 176
  year: 2016
  end-page: 184
  ident: b0065
  article-title: Enhancement of template-based method for overlapping rubber tree leaf identification
  publication-title: Comput. Electron. Agric.
– volume: 70
  start-page: 335
  year: 1998
  end-page: 343
  ident: b0070
  article-title: Accurate measurement of size and shape of cucumber fruits with image analysis
  publication-title: J. Agric. Eng. Res.
– volume: 42
  year: 2011
  ident: b0050
  article-title: Cucumber shape description based on elliptic Fourier descriptor
  publication-title: Trans. Chin. Soc. Agric. Mach.
– start-page: 95
  year: 2001
  end-page: 102
  ident: b0010
  article-title: Template matching using fast normalized cross correlation
  publication-title: Aerospace/Defense Sensing, Simulation, and Controls
– volume: 50
  start-page: 989
  year: 2007
  end-page: 996
  ident: b0110
  article-title: Cucumber image segmentation algorithm based on rough set theory
  publication-title: New Zealand J. Agric. Res.
– volume: S1
  start-page: 172
  year: 2011
  end-page: 176
  ident: b0125
  article-title: Greenhouse cucumber recognition based on spectral imaging technology
  publication-title: Trans. Chin. Soc. Agric. Mach.
– start-page: 79
  year: 2008
  end-page: 88
  ident: b0045
  article-title: Study on the technology of cucumber harvesting robot in greenhouse
  publication-title: The Fourth Session of the National Advanced Manufacturing Equipment and Robotics, Harbin, China
– volume: 50
  start-page: 1293
  year: 2007
  end-page: 1298
  ident: b0130
  article-title: Recognition of cucumber fruit in greenhouse using computer vision
  publication-title: New Zealand J. Agric. Res.
– volume: 65
  start-page: 247
  year: 2009
  end-page: 257
  ident: b0080
  article-title: Optimal manipulator design for a cucumber harvesting robot
  publication-title: Comput. Electron. Agric.
– volume: 34
  start-page: 225
  year: 2013
  end-page: 229
  ident: b0115
  article-title: Study of automatic navigation cucumber harvesting robot in greenhouse
  publication-title: J. Chin. Agric. Mechanization
– volume: 35
  start-page: 529
  year: 2009
  end-page: 531
  ident: b0035
  article-title: Image segmentation of cucumbers based on color and textural features
  publication-title: Opt. Tech.
– volume: 17
  start-page: 32
  year: 2009
  end-page: 34
  ident: b0055
  article-title: Segmentation of cucumber color images
  publication-title: Comput. Inf. Technol.
– start-page: 1053
  year: 2010
  end-page: 1057
  ident: b0090
  article-title: A simplified pulse-coupled neural network for cucumber image segmentation
  publication-title: 2010 International Conference on Computational and Information Sciences, Chengdu, China
– volume: 34
  start-page: 225
  issue: 6
  year: 2013
  ident: 10.1016/j.compag.2016.08.001_b0115
  article-title: Study of automatic navigation cucumber harvesting robot in greenhouse
  publication-title: J. Chin. Agric. Mechanization
– start-page: 461
  year: 1994
  ident: 10.1016/j.compag.2016.08.001_b0030
  article-title: Visual sensor for cucumber harvesting robot
– volume: 7
  start-page: 150
  year: 2006
  ident: 10.1016/j.compag.2016.08.001_b0120
  article-title: Pattern recognition of cucumber image by Bayes sort discrimination model
  publication-title: J. Agric. Mechanization Res.
– start-page: 21
  year: 1997
  ident: 10.1016/j.compag.2016.08.001_b0025
– volume: 108
  start-page: 58
  year: 2014
  ident: 10.1016/j.compag.2016.08.001_b0135
  article-title: Disease detection of cercospora leaf spot in sugar beet by robust template matching
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.07.004
– volume: 86
  start-page: 305
  issue: 3
  year: 2003
  ident: 10.1016/j.compag.2016.08.001_b0075
  article-title: Field test of an autonomous cucumber picking robot
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2003.08.002
– volume: 106
  start-page: 75
  year: 2014
  ident: 10.1016/j.compag.2016.08.001_b0105
  article-title: Recognition of clustered tomatoes based on binocular stereo vision
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.05.006
– volume: 17
  start-page: 32
  issue: 6
  year: 2009
  ident: 10.1016/j.compag.2016.08.001_b0055
  article-title: Segmentation of cucumber color images
  publication-title: Comput. Inf. Technol.
– volume: vol. 2
  start-page: 559
  year: 1998
  ident: 10.1016/j.compag.2016.08.001_b0085
  article-title: The sum absolute difference motion estimation accelerator
– volume: 31
  start-page: 2834
  issue: 10
  year: 2011
  ident: 10.1016/j.compag.2016.08.001_b0095
  article-title: Research on identification of cucumber stem and leaf based on spectrum analysis technology
  publication-title: Spectrosc. Spectral Anal.
– volume: 116
  start-page: 65
  year: 2015
  ident: 10.1016/j.compag.2016.08.001_b0140
  article-title: Image-based field monitoring of Cercospora leaf spot in sugar beet by robust template matching and pattern recognition
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.05.020
– volume: 50
  start-page: 1293
  issue: 5
  year: 2007
  ident: 10.1016/j.compag.2016.08.001_b0130
  article-title: Recognition of cucumber fruit in greenhouse using computer vision
  publication-title: New Zealand J. Agric. Res.
  doi: 10.1080/00288230709510415
– volume: 70
  start-page: 335
  issue: 4
  year: 1998
  ident: 10.1016/j.compag.2016.08.001_b0070
  article-title: Accurate measurement of size and shape of cucumber fruits with image analysis
  publication-title: J. Agric. Eng. Res.
  doi: 10.1006/jaer.1998.0285
– start-page: 95
  year: 2001
  ident: 10.1016/j.compag.2016.08.001_b0010
  article-title: Template matching using fast normalized cross correlation
– volume: 47
  issue: 4
  year: 2013
  ident: 10.1016/j.compag.2016.08.001_b0020
  article-title: A method for cucumber identification based on iterative-RELIEF and relevance vector machine
  publication-title: J. Shanghai Jiaotong Univ.
– volume: 42
  issue: 8
  year: 2011
  ident: 10.1016/j.compag.2016.08.001_b0050
  article-title: Cucumber shape description based on elliptic Fourier descriptor
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 50
  start-page: 989
  issue: 5
  year: 2007
  ident: 10.1016/j.compag.2016.08.001_b0110
  article-title: Cucumber image segmentation algorithm based on rough set theory
  publication-title: New Zealand J. Agric. Res.
  doi: 10.1080/00288230709510377
– volume: S1
  start-page: 172
  year: 2011
  ident: 10.1016/j.compag.2016.08.001_b0125
  article-title: Greenhouse cucumber recognition based on spectral imaging technology
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 122
  start-page: 176
  year: 2016
  ident: 10.1016/j.compag.2016.08.001_b0065
  article-title: Enhancement of template-based method for overlapping rubber tree leaf identification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.02.001
– volume: 65
  start-page: 247
  issue: 2
  year: 2009
  ident: 10.1016/j.compag.2016.08.001_b0080
  article-title: Optimal manipulator design for a cucumber harvesting robot
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2008.11.004
– volume: 43
  issue: 3
  year: 2012
  ident: 10.1016/j.compag.2016.08.001_b0100
  article-title: In-greenhouse cucumber recognition based on machine vision and least squares support vector machine
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 35
  start-page: 529
  issue: 4
  year: 2009
  ident: 10.1016/j.compag.2016.08.001_b0035
  article-title: Image segmentation of cucumbers based on color and textural features
  publication-title: Opt. Tech.
– start-page: 79
  year: 2008
  ident: 10.1016/j.compag.2016.08.001_b0045
  article-title: Study on the technology of cucumber harvesting robot in greenhouse
– start-page: 1053
  year: 2010
  ident: 10.1016/j.compag.2016.08.001_b0090
  article-title: A simplified pulse-coupled neural network for cucumber image segmentation
– volume: 92
  start-page: 75
  year: 2013
  ident: 10.1016/j.compag.2016.08.001_b0015
  article-title: An active contour computer algorithm for the classification of cucumbers
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2013.01.006
SSID ssj0016987
Score 2.3208966
Snippet •A multi-template matching library was established by proportional scaling and rotating the standard cucumber image.•Multi-template matching algorithm for...
The automatic recognition of cucumber target within its cultivating environment is one of the key techniques for the cucumber harvesting robot. Since cucumber...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 754
SubjectTerms Algorithms
automatic detection
branches
color
correlation
Cucumber recognition
Cucumbers
harvesting
Harvesting robot
leaves
Matching
Multiple-template matching
Object recognition
Recognition
Robots
spectroscopy
Visual fields
Title Multi-template matching algorithm for cucumber recognition in natural environment
URI https://dx.doi.org/10.1016/j.compag.2016.08.001
https://www.proquest.com/docview/1835647998
https://www.proquest.com/docview/2000151265
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Complete Freedom Collection
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AKRWK
  dateStart: 19851001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sT5Y0TwWtemadIex3BMxYHoYLfQJtmczHbM7urf7kuaDhVl4K0tLzS8JC9fyPe9h9AVkZrwQCtPEcI9wP8ZxEEaeiTOJIA5FvrEqJEfhmwwonfjaNxAvVoLY2iVLvZXMd1Ga_el47zZWcxmnScAK3HADL6BOQtPRsFOualicP2xpnmAQVxJphmclsC6ls9ZjpfleU8NwYvZRJ6uNMwv29OPQG13n_4e2nWwEXernu2jhs4P0E53unSpM_QherRaWs_kmpoDgMQARS1PEqfzabGclS9vGAAqlitpi4DgNXWoyPEsxzbDJ_zii_LtCI36N8-9gecKJngy5KT00jiELR-8H8iUAbSKlc4oUzxSE1_RVGkV-ZmO0oRGKax0qow6BCCFChVl6cQPj1EzL3J9grApNsi1MhU8Y5pkOmFJZi5JYzi9SpXoFgprPwnpsombohZzUdPGXkXlXWG8K0ytSz9oIW_dalFl09hgz-shEN9mhYCAv6HlZT1iAhaMuQVJc12s3gXEsIhRDsfMv22IlZgHhEWn_-7BGdo2bxUf7Rw1y-VKXwCAKbO2naFttNW9vR8MPwFPRfBe
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zHtSD-BPnzwhe69o0TdrjGI6p20DcYLfQNtmszHbM7urf7kvaDhVl4K20LzS8JC9fyPe9h9ANiRXhjpKWJIRbgP8jiIPUtYgfxQDmmGsTrUbuD1h3RB_G3riG2pUWRtMqy9hfxHQTrcs3zdKbzXmSNJ8BrPgO0_gG5iw8baBN6hGuT2C3HyueB1j4hWaawXEJzCv9nCF5GaL3VDO8mMnkWdaG-WV_-hGpzfbT2UO7JW7EraJr-6im0gO005ouytwZ6hA9GTGtpZNNzQBBYsCihiiJw9k0WyT5yxsGhIrjZWyqgOAVdyhLcZJik-ITfvFF-naERp27YbtrlRUTrNjlJLdC34U9H9zvxCEDbOVLFVEmuScntqShVNKzI-WFAfVCWOpUankIYArpSsrCie0eo3qapeoEYV1tkCupS3j6NIhUwIJI35L6cHyNZaAayK38JOIynbiuajETFW_sVRTeFdq7Qhe7tJ0Gslat5kU6jTX2vBoC8W1aCIj4a1peVyMmYMXoa5AwVdnyXUAQ8xjlcM7824YYjblDmHf67x5coa3usN8TvfvB4xna1l8Kcto5queLpboANJNHl2a2fgLj7fHz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-template+matching+algorithm+for+cucumber+recognition+in+natural+environment&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Bao%2C+Guanjun&rft.au=Cai%2C+Shibo&rft.au=Qi%2C+Liyong&rft.au=Xun%2C+Yi&rft.date=2016-09-01&rft.issn=0168-1699&rft.volume=127+p.754-762&rft.spage=754&rft.epage=762&rft_id=info:doi/10.1016%2Fj.compag.2016.08.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon