Application of Machine Learning to Ultrasonography in Identifying Anatomical Landmarks for Cricothyroidotomy Among Female Adults: A Multi-center Prospective Observational Study

We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid cartilage (TC) in cricothyroidotomy. Adult female volunteers were prospectively recruited from two hospitals between September and December, 2020. U...

Full description

Saved in:
Bibliographic Details
Published inJournal of digital imaging Vol. 37; no. 1; pp. 363 - 373
Main Authors Wang, Chih-Hung, Li, Jia-Da, Wu, Cheng-Yi, Wu, Yu-Chen, Tay, Joyce, Wu, Meng-Che, Hsu, Ching-Hang, Liu, Yi-Kuan, Chen, Chu-Song, Huang, Chien-Hua
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2948-2933
0897-1889
2948-2925
2948-2933
1618-727X
DOI10.1007/s10278-023-00929-3

Cover

Abstract We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid cartilage (TC) in cricothyroidotomy. Adult female volunteers were prospectively recruited from two hospitals between September and December, 2020. Ultrasonographic images were collected via a modified longitudinal technique. You Only Look Once (YOLOv5s), Faster Regions with Convolutional Neural Network features (Faster R-CNN), and Single Shot Detector (SSD) were selected as the model architectures. A total of 488 women (mean age: 36.0 years) participated in the study, contributing to a total of 292,053 frames of ultrasonographic images. The derived ML-based algorithms demonstrated excellent discriminative performance for the presence of CC (area under the receiver operating characteristic curve [AUC]: YOLOv5s, 0.989, 95% confidence interval [CI]: 0.982–0.994; Faster R-CNN, 0.986, 95% CI: 0.980–0.991; SSD, 0.968, 95% CI: 0.956–0.977) and TC (AUC: YOLOv5s, 0.989, 95% CI: 0.977–0.997; Faster R-CNN, 0.981, 95% CI: 0.965–0.991; SSD, 0.982, 95% CI: 0.973–0.990). Furthermore, in the frames where the model could correctly indicate the presence of CC or TC, it also accurately localized CC (intersection-over-union: YOLOv5s, 0.753, 95% CI: 0.739–0.765; Faster R-CNN, 0.720, 95% CI: 0.709–0.732; SSD, 0.739, 95% CI: 0.726–0.751) or TC (intersection-over-union: YOLOv5s, 0.739, 95% CI: 0.722–0.755; Faster R-CNN, 0.709, 95% CI: 0.687–0.730; SSD, 0.713, 95% CI: 0.695–0.730). The ML-based algorithms could identify anatomical landmarks for cricothyroidotomy in adult females with favorable discriminative and localization performance. Further studies are warranted to transfer this algorithm to hand-held portable ultrasound devices for clinical use.
AbstractList We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid cartilage (TC) in cricothyroidotomy. Adult female volunteers were prospectively recruited from two hospitals between September and December, 2020. Ultrasonographic images were collected via a modified longitudinal technique. You Only Look Once (YOLOv5s), Faster Regions with Convolutional Neural Network features (Faster R-CNN), and Single Shot Detector (SSD) were selected as the model architectures. A total of 488 women (mean age: 36.0 years) participated in the study, contributing to a total of 292,053 frames of ultrasonographic images. The derived ML-based algorithms demonstrated excellent discriminative performance for the presence of CC (area under the receiver operating characteristic curve [AUC]: YOLOv5s, 0.989, 95% confidence interval [CI]: 0.982–0.994; Faster R-CNN, 0.986, 95% CI: 0.980–0.991; SSD, 0.968, 95% CI: 0.956–0.977) and TC (AUC: YOLOv5s, 0.989, 95% CI: 0.977–0.997; Faster R-CNN, 0.981, 95% CI: 0.965–0.991; SSD, 0.982, 95% CI: 0.973–0.990). Furthermore, in the frames where the model could correctly indicate the presence of CC or TC, it also accurately localized CC (intersection-over-union: YOLOv5s, 0.753, 95% CI: 0.739–0.765; Faster R-CNN, 0.720, 95% CI: 0.709–0.732; SSD, 0.739, 95% CI: 0.726–0.751) or TC (intersection-over-union: YOLOv5s, 0.739, 95% CI: 0.722–0.755; Faster R-CNN, 0.709, 95% CI: 0.687–0.730; SSD, 0.713, 95% CI: 0.695–0.730). The ML-based algorithms could identify anatomical landmarks for cricothyroidotomy in adult females with favorable discriminative and localization performance. Further studies are warranted to transfer this algorithm to hand-held portable ultrasound devices for clinical use.
We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid cartilage (TC) in cricothyroidotomy. Adult female volunteers were prospectively recruited from two hospitals between September and December, 2020. Ultrasonographic images were collected via a modified longitudinal technique. You Only Look Once (YOLOv5s), Faster Regions with Convolutional Neural Network features (Faster R-CNN), and Single Shot Detector (SSD) were selected as the model architectures. A total of 488 women (mean age: 36.0 years) participated in the study, contributing to a total of 292,053 frames of ultrasonographic images. The derived ML-based algorithms demonstrated excellent discriminative performance for the presence of CC (area under the receiver operating characteristic curve [AUC]: YOLOv5s, 0.989, 95% confidence interval [CI]: 0.982–0.994; Faster R-CNN, 0.986, 95% CI: 0.980–0.991; SSD, 0.968, 95% CI: 0.956–0.977) and TC (AUC: YOLOv5s, 0.989, 95% CI: 0.977–0.997; Faster R-CNN, 0.981, 95% CI: 0.965–0.991; SSD, 0.982, 95% CI: 0.973–0.990). Furthermore, in the frames where the model could correctly indicate the presence of CC or TC, it also accurately localized CC (intersection-over-union: YOLOv5s, 0.753, 95% CI: 0.739–0.765; Faster R-CNN, 0.720, 95% CI: 0.709–0.732; SSD, 0.739, 95% CI: 0.726–0.751) or TC (intersection-over-union: YOLOv5s, 0.739, 95% CI: 0.722–0.755; Faster R-CNN, 0.709, 95% CI: 0.687–0.730; SSD, 0.713, 95% CI: 0.695–0.730). The ML-based algorithms could identify anatomical landmarks for cricothyroidotomy in adult females with favorable discriminative and localization performance. Further studies are warranted to transfer this algorithm to hand-held portable ultrasound devices for clinical use.
We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid cartilage (TC) in cricothyroidotomy. Adult female volunteers were prospectively recruited from two hospitals between September and December, 2020. Ultrasonographic images were collected via a modified longitudinal technique. You Only Look Once (YOLOv5s), Faster Regions with Convolutional Neural Network features (Faster R-CNN), and Single Shot Detector (SSD) were selected as the model architectures. A total of 488 women (mean age: 36.0 years) participated in the study, contributing to a total of 292,053 frames of ultrasonographic images. The derived ML-based algorithms demonstrated excellent discriminative performance for the presence of CC (area under the receiver operating characteristic curve [AUC]: YOLOv5s, 0.989, 95% confidence interval [CI]: 0.982-0.994; Faster R-CNN, 0.986, 95% CI: 0.980-0.991; SSD, 0.968, 95% CI: 0.956-0.977) and TC (AUC: YOLOv5s, 0.989, 95% CI: 0.977-0.997; Faster R-CNN, 0.981, 95% CI: 0.965-0.991; SSD, 0.982, 95% CI: 0.973-0.990). Furthermore, in the frames where the model could correctly indicate the presence of CC or TC, it also accurately localized CC (intersection-over-union: YOLOv5s, 0.753, 95% CI: 0.739-0.765; Faster R-CNN, 0.720, 95% CI: 0.709-0.732; SSD, 0.739, 95% CI: 0.726-0.751) or TC (intersection-over-union: YOLOv5s, 0.739, 95% CI: 0.722-0.755; Faster R-CNN, 0.709, 95% CI: 0.687-0.730; SSD, 0.713, 95% CI: 0.695-0.730). The ML-based algorithms could identify anatomical landmarks for cricothyroidotomy in adult females with favorable discriminative and localization performance. Further studies are warranted to transfer this algorithm to hand-held portable ultrasound devices for clinical use.We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid cartilage (TC) in cricothyroidotomy. Adult female volunteers were prospectively recruited from two hospitals between September and December, 2020. Ultrasonographic images were collected via a modified longitudinal technique. You Only Look Once (YOLOv5s), Faster Regions with Convolutional Neural Network features (Faster R-CNN), and Single Shot Detector (SSD) were selected as the model architectures. A total of 488 women (mean age: 36.0 years) participated in the study, contributing to a total of 292,053 frames of ultrasonographic images. The derived ML-based algorithms demonstrated excellent discriminative performance for the presence of CC (area under the receiver operating characteristic curve [AUC]: YOLOv5s, 0.989, 95% confidence interval [CI]: 0.982-0.994; Faster R-CNN, 0.986, 95% CI: 0.980-0.991; SSD, 0.968, 95% CI: 0.956-0.977) and TC (AUC: YOLOv5s, 0.989, 95% CI: 0.977-0.997; Faster R-CNN, 0.981, 95% CI: 0.965-0.991; SSD, 0.982, 95% CI: 0.973-0.990). Furthermore, in the frames where the model could correctly indicate the presence of CC or TC, it also accurately localized CC (intersection-over-union: YOLOv5s, 0.753, 95% CI: 0.739-0.765; Faster R-CNN, 0.720, 95% CI: 0.709-0.732; SSD, 0.739, 95% CI: 0.726-0.751) or TC (intersection-over-union: YOLOv5s, 0.739, 95% CI: 0.722-0.755; Faster R-CNN, 0.709, 95% CI: 0.687-0.730; SSD, 0.713, 95% CI: 0.695-0.730). The ML-based algorithms could identify anatomical landmarks for cricothyroidotomy in adult females with favorable discriminative and localization performance. Further studies are warranted to transfer this algorithm to hand-held portable ultrasound devices for clinical use.
Author Wu, Yu-Chen
Liu, Yi-Kuan
Wu, Cheng-Yi
Hsu, Ching-Hang
Chen, Chu-Song
Huang, Chien-Hua
Wang, Chih-Hung
Li, Jia-Da
Wu, Meng-Che
Tay, Joyce
Author_xml – sequence: 1
  givenname: Chih-Hung
  surname: Wang
  fullname: Wang, Chih-Hung
  organization: Department of Emergency Medicine, National Taiwan University Hospital, Department of Emergency Medicine, College of Medicine, National Taiwan University
– sequence: 2
  givenname: Jia-Da
  surname: Li
  fullname: Li, Jia-Da
  organization: NTU Joint Research Center for AI Technology and All Vista Healthcare, National Taiwan University
– sequence: 3
  givenname: Cheng-Yi
  surname: Wu
  fullname: Wu, Cheng-Yi
  organization: Department of Emergency Medicine, National Taiwan University Hospital
– sequence: 4
  givenname: Yu-Chen
  surname: Wu
  fullname: Wu, Yu-Chen
  organization: Department of Computer Science and Information Engineering, National Taiwan University
– sequence: 5
  givenname: Joyce
  surname: Tay
  fullname: Tay, Joyce
  organization: Department of Emergency Medicine, National Taiwan University Hospital
– sequence: 6
  givenname: Meng-Che
  surname: Wu
  fullname: Wu, Meng-Che
  organization: Department of Emergency Medicine, National Taiwan University Hospital
– sequence: 7
  givenname: Ching-Hang
  surname: Hsu
  fullname: Hsu, Ching-Hang
  organization: Institute of Information Science, Academia Sinica
– sequence: 8
  givenname: Yi-Kuan
  surname: Liu
  fullname: Liu, Yi-Kuan
  organization: NTU Joint Research Center for AI Technology and All Vista Healthcare, National Taiwan University
– sequence: 9
  givenname: Chu-Song
  surname: Chen
  fullname: Chen, Chu-Song
  email: chusong@csie.ntu.edu.tw
  organization: Department of Computer Science and Information Engineering, National Taiwan University, Institute of Information Science, Academia Sinica
– sequence: 10
  givenname: Chien-Hua
  orcidid: 0000-0003-2981-4537
  surname: Huang
  fullname: Huang, Chien-Hua
  email: chhuang5940@ntu.edu.tw
  organization: Department of Emergency Medicine, National Taiwan University Hospital, Department of Emergency Medicine, College of Medicine, National Taiwan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38343208$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1UREvpC7BAltiwCdi-M5mEXTSiUGmqIlHWkWPfzLg4drCdorwVj4inM_yIBWLlu_jO8T33PCUnzjsk5DlnrzljqzeRM7GqCiagYKwWdQGPyJmoF1UhaoCTP-ZTchHjHWMMgAOU7Ak5hQoWIFh1Rr4342iNksl4R31Pr6XaGYd0gzI447Y0efrZpiCjd34b5LibqXH0SqNLpp_3RONk8kP2sHQjnR5k-BJp7wNdB6N82s3BG-0zMtNm8FlwiYO0SBs92RTf0oZe58EUKltioB-DjyOqZO6R3nQRw_3Dctn9U5r0_Iw87qWNeHF8z8nt5bvb9Ydic_P-at1sCgUrkQoJyCoQuuyWXCklSg4IHWhcdYJJrXEpO1XqvivrWvZlz2tYoOZY8kozzuGcwMF2cqOcv0lr2zGYnG1uOWv3DbSHBtrcQPvQQAtZ9eqgGoP_OmFM7WCiQmulQz_FVtSiZKuKLeqMvvwLvfNTyDH3VK6pZtWyzNSLIzV1A-pfO_wsMAPiAKh8thiw_781j-Fiht0Ww--__6H6AWhHwYo
Cites_doi 10.1186/1471-2253-14-108
10.1097/ALN.0000000000000848
10.1186/s12871-017-0366-7
10.1016/j.ajem.2015.10.054
10.1148/ryai.2020200029
10.1093/bja/aev371
10.1016/j.resuscitation.2006.01.010
10.1111/j.1399-6576.2011.02518.x
10.1001/jama.1983.03340160061033
10.1016/j.bja.2020.08.012
10.1016/j.annemergmed.2005.01.009
10.1213/ANE.0b013e31824970ba
10.1007/BF03018780
10.1093/bja/aew176
10.2307/2531595
10.1007/s11263-015-0816-y
10.1016/S0196-0644(98)70175-1
10.1016/j.jcrc.2020.07.030
10.1007/978-3-319-10602-1_48
10.1093/bja/aer059
10.1109/CVPR.2016.91
10.1007/978-3-319-46448-0_2
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QO
7RV
7SC
7TK
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K9.
KB0
L7M
LK8
L~C
L~D
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
ADTOC
UNPAY
DOI 10.1007/s10278-023-00929-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
CrossRef

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2948-2933
1618-727X
EndPage 373
ExternalDocumentID 10.1007/s10278-023-00929-3
38343208
10_1007_s10278_023_00929_3
Genre Journal Article
GrantInformation_xml – fundername: National Taiwan University Hospital
  grantid: 110-S4808; 111-UN0032; 111-UN0032
  funderid: http://dx.doi.org/10.13039/501100005762
– fundername: National Science and Technology Council
  grantid: 110-2634-F-006-022
  funderid: http://dx.doi.org/10.13039/100020595
– fundername: National Taiwan University Hospital
  grantid: 111-UN0032
– fundername: National Science and Technology Council
  grantid: 110-2634-F-006-022
– fundername: National Taiwan University Hospital
  grantid: 110-S4808
GroupedDBID 53G
AAJBT
AAYZH
ABJNI
ACPIV
ALMA_UNASSIGNED_HOLDINGS
BGNMA
C6C
DPUIP
EBLON
FIGPU
JZLTJ
M4Y
NU0
PT4
ROL
RPM
RSV
SJYHP
SNE
SOJ
0R~
2JN
AASML
AATNV
AAYXX
ABAKF
ABDBE
ABFSG
ABRTQ
ACAOD
ACSTC
ACZOJ
ADKFA
AEFQL
AEZWR
AFDZB
AFHIU
AHWEU
AIGIU
AIXLP
ATHPR
CITATION
NPM
---
.4S
.86
.DC
.VR
04C
06C
06D
0VY
1N0
203
29K
29~
2J2
2JY
2KG
2KM
2LR
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
5GY
5RE
5VS
67Z
6NX
6PF
78A
7QO
7RV
7SC
7TK
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FW
8TC
8UJ
95-
95.
95~
96X
AABHQ
AAHNG
AAJKR
AAKDD
AAKPC
AANZL
AAPKM
AARTL
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ADBBV
ADHHG
ADHIR
ADJJI
ADKNI
ADKPE
ADMLS
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BAWUL
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CCPQU
CS3
CSCUP
D-I
DDRTE
DIK
DL5
DNIVK
DU5
DWQXO
EBD
EBS
ECT
EDO
EIHBH
EIOEI
EMB
EMOBN
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FNLPD
FR3
FRRFC
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GX1
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HYE
I-F
I09
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JQ2
K9.
KDC
KOV
KPH
L7M
LAS
LK8
LLZTM
L~C
L~D
M1P
M7P
MA-
NAPCQ
NB0
NPVJJ
NQJWS
O93
O9I
O9J
OAM
OK1
P2P
P62
P64
P9S
PF0
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PROAC
PSQYO
Q2X
QOK
QOR
QOS
R89
R9I
RNS
RPX
RRX
S16
S27
S37
S3B
SAP
SDH
SHX
SISQX
SMD
SNPRN
SNX
SOHCF
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
VC2
W23
W48
WJK
WK8
WOW
YLTOR
Z45
ZMTXR
ZOVNA
~A9
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c372t-a3e0832d6b51ccc2613e3b3de7b20adde5abc6dfb699af6f1934ed1e618d0113
IEDL.DBID UNPAY
ISSN 2948-2933
0897-1889
2948-2925
IngestDate Sun Oct 26 03:56:23 EDT 2025
Mon Sep 29 06:02:59 EDT 2025
Mon Oct 06 17:30:42 EDT 2025
Sat Sep 13 02:30:34 EDT 2025
Wed Oct 01 01:45:00 EDT 2025
Fri Feb 21 02:41:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Female
Cricothyroidotomy
Ultrasound
Machine learning
Object detection
Language English
License 2024. The Author(s).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-a3e0832d6b51ccc2613e3b3de7b20adde5abc6dfb699af6f1934ed1e618d0113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2981-4537
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10278-023-00929-3.pdf
PMID 38343208
PQID 2933690856
PQPubID 34218
PageCount 11
ParticipantIDs unpaywall_primary_10_1007_s10278_023_00929_3
proquest_miscellaneous_2926078049
proquest_journals_2933690856
pubmed_primary_38343208
crossref_primary_10_1007_s10278_023_00929_3
springer_journals_10_1007_s10278_023_00929_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: New York
PublicationTitle Journal of digital imaging
PublicationTitleAbbrev J Digit Imaging. Inform. med
PublicationTitleAlternate J Imaging Inform Med
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Mongan, Moy, Kahn (CR11) 2020; 2
Jacobs, Berrizbeitia, Bennett, Madigan (CR3) 1983; 250
Kovacs (CR6) 2004; 51
Timmermann (CR2) 2006; 70
Oliveira, Arzola, Ye, Clivatti, Siddiqui, You-Ten (CR28) 2017; 17
CR19
CR18
CR17
CR16
Oliveira, Arzola, Ye, Clivatti, Siddiqui, You-Ten (CR26) 2017; 17
CR15
CR14
Russakovsky (CR20) 2015; 115
Kristensen, Teoh, Rudolph (CR24) 2016; 117
Kristensen, Teoh, Rudolph (CR12) 2016; 117
Frerk (CR7) 2015; 115
Hung, Chen, Lin, Sun (CR10) 2021; 126
Sagarin, Barton, Chng, Walls, Investigators (CR1) 2005; 46
Campbell, Shanahan, Ash, Royds, Husarova, McCaul (CR9) 2014; 14
DeLong, DeLong, Clarke-Pearson (CR21) 1988; 44
CR5
Kristensen (CR13) 2011; 55
CR8
Adnet (CR4) 1998; 32
Rai, You-Ten, Zasso, De Castro, Ye, Siddiqui (CR22) 2020; 60
Yıldız, Göksu, Şenfer, Kaplan (CR27) 2016; 34
Siddiqui, Arzola, Friedman, Guerina, You-Ten (CR25) 2015; 123
Aslani, Ng, Hurley, McCarthy, McNicholas, McCaul (CR23) 2012; 114
Y Rai (929_CR22) 2020; 60
929_CR5
C Frerk (929_CR7) 2015; 115
929_CR14
929_CR16
929_CR15
KC Hung (929_CR10) 2021; 126
929_CR18
929_CR17
929_CR8
MS Kristensen (929_CR24) 2016; 117
929_CR19
MS Kristensen (929_CR13) 2011; 55
ER DeLong (929_CR21) 1988; 44
A Timmermann (929_CR2) 2006; 70
O Russakovsky (929_CR20) 2015; 115
MS Kristensen (929_CR12) 2016; 117
G Yıldız (929_CR27) 2016; 34
KF Oliveira (929_CR26) 2017; 17
LM Jacobs (929_CR3) 1983; 250
G Kovacs (929_CR6) 2004; 51
KF Oliveira (929_CR28) 2017; 17
M Campbell (929_CR9) 2014; 14
MJ Sagarin (929_CR1) 2005; 46
J Mongan (929_CR11) 2020; 2
A Aslani (929_CR23) 2012; 114
F Adnet (929_CR4) 1998; 32
N Siddiqui (929_CR25) 2015; 123
References_xml – ident: CR18
– ident: CR14
– ident: CR16
– volume: 14
  start-page: 108
  year: 2014
  ident: CR9
  article-title: The accuracy of locating the cricothyroid membrane by palpation - an intergender study
  publication-title: BMC anesthesiology
  doi: 10.1186/1471-2253-14-108
– volume: 123
  start-page: 1033
  year: 2015
  end-page: 1041
  ident: CR25
  article-title: Ultrasound improves cricothyrotomy success in cadavers with poorly defined neck anatomy: a randomized control trial
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000000848
– volume: 17
  start-page: 1
  year: 2017
  end-page: 7
  ident: CR26
  article-title: Determining the amount of training needed for competency of anesthesia trainees in ultrasonographic identification of the cricothyroid membrane
  publication-title: BMC anesthesiology
  doi: 10.1186/s12871-017-0366-7
– volume: 17
  start-page: 74
  year: 2017
  ident: CR28
  article-title: Determining the amount of training needed for competency of anesthesia trainees in ultrasonographic identification of the cricothyroid membrane
  publication-title: BMC anesthesiology
  doi: 10.1186/s12871-017-0366-7
– volume: 34
  start-page: 254
  year: 2016
  end-page: 256
  ident: CR27
  article-title: Comparison of ultrasonography and surface landmarks in detecting the localization for cricothyroidotomy
  publication-title: The American journal of emergency medicine
  doi: 10.1016/j.ajem.2015.10.054
– volume: 2
  year: 2020
  ident: CR11
  article-title: Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.2020200029
– ident: CR8
– volume: 115
  start-page: 827
  year: 2015
  end-page: 848
  ident: CR7
  article-title: Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults
  publication-title: British journal of anaesthesia
  doi: 10.1093/bja/aev371
– volume: 70
  start-page: 179
  year: 2006
  end-page: 185
  ident: CR2
  article-title: Prehospital airway management: a prospective evaluation of anaesthesia trained emergency physicians
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2006.01.010
– volume: 55
  start-page: 1155
  year: 2011
  end-page: 1173
  ident: CR13
  article-title: Ultrasonography in the management of the airway
  publication-title: Acta anaesthesiologica Scandinavica
  doi: 10.1111/j.1399-6576.2011.02518.x
– volume: 250
  start-page: 2175
  year: 1983
  end-page: 2177
  ident: CR3
  article-title: Endotracheal intubation in the prehospital phase of emergency medical care
  publication-title: Jama
  doi: 10.1001/jama.1983.03340160061033
– volume: 126
  start-page: e9
  year: 2021
  end-page: e11
  ident: CR10
  article-title: Comparison between ultrasound-guided and digital palpation techniques for identification of the cricothyroid membrane: a meta-analysis
  publication-title: British journal of anaesthesia
  doi: 10.1016/j.bja.2020.08.012
– volume: 46
  start-page: 328
  year: 2005
  end-page: 336
  ident: CR1
  article-title: Airway management by US and Canadian emergency medicine residents: a multicenter analysis of more than 6,000 endotracheal intubation attempts
  publication-title: Annals of emergency medicine
  doi: 10.1016/j.annemergmed.2005.01.009
– volume: 114
  start-page: 987
  year: 2012
  end-page: 992
  ident: CR23
  article-title: Accuracy of identification of the cricothyroid membrane in female subjects using palpation: an observational study
  publication-title: Anesthesia and analgesia
  doi: 10.1213/ANE.0b013e31824970ba
– volume: 51
  start-page: 174
  year: 2004
  ident: CR6
  article-title: Acute airway management in the emergency department by non-anesthesiologists
  publication-title: Canadian Journal of Anesthesia
  doi: 10.1007/BF03018780
– ident: CR19
– volume: 117
  start-page: i39
  issue: Suppl 1
  year: 2016
  end-page: i48
  ident: CR24
  article-title: Ultrasonographic identification of the cricothyroid membrane: best evidence, techniques, and clinical impact
  publication-title: British journal of anaesthesia
  doi: 10.1093/bja/aew176
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: CR21
  article-title: Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– ident: CR15
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: CR20
  article-title: ImageNet Large Scale Visual Recognition Challenge
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-015-0816-y
– ident: CR17
– volume: 32
  start-page: 454
  year: 1998
  end-page: 460
  ident: CR4
  article-title: Survey of out-of-hospital emergency intubations in the French prehospital medical system: a multicenter study
  publication-title: Annals of emergency medicine
  doi: 10.1016/S0196-0644(98)70175-1
– volume: 60
  start-page: 161
  year: 2020
  end-page: 168
  ident: CR22
  article-title: The role of ultrasound in front-of-neck access for cricothyroid membrane identification: A systematic review
  publication-title: Journal of critical care
  doi: 10.1016/j.jcrc.2020.07.030
– ident: CR5
– volume: 117
  start-page: i39
  year: 2016
  end-page: i48
  ident: CR12
  article-title: Ultrasonographic identification of the cricothyroid membrane: best evidence, techniques, and clinical impact
  publication-title: British journal of anaesthesia
  doi: 10.1093/bja/aew176
– volume: 14
  start-page: 108
  year: 2014
  ident: 929_CR9
  publication-title: BMC anesthesiology
  doi: 10.1186/1471-2253-14-108
– volume: 44
  start-page: 837
  year: 1988
  ident: 929_CR21
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 55
  start-page: 1155
  year: 2011
  ident: 929_CR13
  publication-title: Acta anaesthesiologica Scandinavica
  doi: 10.1111/j.1399-6576.2011.02518.x
– ident: 929_CR18
– ident: 929_CR5
– volume: 123
  start-page: 1033
  year: 2015
  ident: 929_CR25
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000000848
– volume: 46
  start-page: 328
  year: 2005
  ident: 929_CR1
  publication-title: Annals of emergency medicine
  doi: 10.1016/j.annemergmed.2005.01.009
– volume: 117
  start-page: i39
  year: 2016
  ident: 929_CR12
  publication-title: British journal of anaesthesia
  doi: 10.1093/bja/aew176
– ident: 929_CR19
  doi: 10.1007/978-3-319-10602-1_48
– volume: 17
  start-page: 1
  year: 2017
  ident: 929_CR26
  publication-title: BMC anesthesiology
  doi: 10.1186/s12871-017-0366-7
– volume: 117
  start-page: i39
  issue: Suppl 1
  year: 2016
  ident: 929_CR24
  publication-title: British journal of anaesthesia
  doi: 10.1093/bja/aew176
– volume: 2
  year: 2020
  ident: 929_CR11
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.2020200029
– ident: 929_CR8
  doi: 10.1093/bja/aer059
– ident: 929_CR14
  doi: 10.1109/CVPR.2016.91
– volume: 126
  start-page: e9
  year: 2021
  ident: 929_CR10
  publication-title: British journal of anaesthesia
  doi: 10.1016/j.bja.2020.08.012
– volume: 17
  start-page: 74
  year: 2017
  ident: 929_CR28
  publication-title: BMC anesthesiology
  doi: 10.1186/s12871-017-0366-7
– volume: 51
  start-page: 174
  year: 2004
  ident: 929_CR6
  publication-title: Canadian Journal of Anesthesia
  doi: 10.1007/BF03018780
– volume: 115
  start-page: 827
  year: 2015
  ident: 929_CR7
  publication-title: British journal of anaesthesia
  doi: 10.1093/bja/aev371
– volume: 32
  start-page: 454
  year: 1998
  ident: 929_CR4
  publication-title: Annals of emergency medicine
  doi: 10.1016/S0196-0644(98)70175-1
– volume: 115
  start-page: 211
  year: 2015
  ident: 929_CR20
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-015-0816-y
– volume: 60
  start-page: 161
  year: 2020
  ident: 929_CR22
  publication-title: Journal of critical care
  doi: 10.1016/j.jcrc.2020.07.030
– ident: 929_CR17
– volume: 114
  start-page: 987
  year: 2012
  ident: 929_CR23
  publication-title: Anesthesia and analgesia
  doi: 10.1213/ANE.0b013e31824970ba
– volume: 34
  start-page: 254
  year: 2016
  ident: 929_CR27
  publication-title: The American journal of emergency medicine
  doi: 10.1016/j.ajem.2015.10.054
– ident: 929_CR15
– volume: 70
  start-page: 179
  year: 2006
  ident: 929_CR2
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2006.01.010
– volume: 250
  start-page: 2175
  year: 1983
  ident: 929_CR3
  publication-title: Jama
  doi: 10.1001/jama.1983.03340160061033
– ident: 929_CR16
  doi: 10.1007/978-3-319-46448-0_2
SSID ssj0003313360
ssj0017574
Score 2.335264
Snippet We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid...
SourceID unpaywall
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 363
SubjectTerms Algorithms
Artificial neural networks
Cartilage
Females
Imaging
Learning algorithms
Localization
Machine learning
Medicine
Medicine & Public Health
Neural networks
Object recognition
Observational studies
Portable equipment
Radiology
Thyroid
Ultrasonic imaging
Ultrasound
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ta9RAEB7qFXz5IL7VRqus4De72GSTvawgEkuPIt5ZpIV-C7vZXSneJddcDrl_5U90NtnkKkLxc0Ky8MzOPrMz8wzA2wRxLTiziECY0FjImComFE0sl0VqFE-su--YzvjpRfzlMrncgVnfC-PKKnuf2DpqXRXujvw9HksMI7k04Z-W19RNjXLZ1X6EhvSjFfTHVmLsDuxGThlrBLufT2Zn34e8wjjpdJlTMaZhmgrfRuOb6SKnNhsx6oSIBGV_H1X_8M8budMHcG9dLuXml5zPbxxPk0fw0PNKknWG8Bh2TPkE7k595vwp_M62mWpSWTJtiygN8fqqP0hTkYt5U0vk317FmlyVpOvjbXuhSFZigN6qC5CvstQLWf9cEeS85Bh9qQO8rq4wxq0WG5K5EUZkYhZ4_JDMSXysPpCMtN2-1NWDmpqc1VXf5km-qeFyGL_uahs3z-B8cnJ-fEr9tAZasHHUUMkM0rlIc5WERVFgZMYMU0ybsYqOnBdNpCq4tooLIS23yBxjo0PDw1Sjk2F7MCqr0uwD0WKsbcgSFcUmZpYJa4VRsS00T3msbADvelzyZafJkW_Vlx2KOaKYtyjmLICDHrrc789VvrWmAN4Mj3FnuXSJLE21du9grOf0mUQAzzvIh99hXB-z6CgN4LC3ge3Hb1vL4WAn_7H0F7cv_SXcj5BidTXkBzBq6rV5hRSpUa-93f8B9h8Pww
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkXgcEO8NLGiQuLGWmozjxtyiimqFKHDYlfYW2bGNVrTJKk216r_iJzJO0nR5CME5iWPpG3u-8cx8ZuxNSriWEj0hEKdcKC24QWV46qUuM2dk6sN5x-KTPDkTH87T80EmJ_TC_JK_Dy1uSdCATZAHeSDF8Sa7RU5KdolZORvPUxAp2pKToS_mz5_-7Ht-I5TXkqH32J1Ndam3V3q5vOZv5g_Y_YEoQt4j-5DdcNUjdnsxpMIfs-_5PvUMtYdFVxXpYBBM_QptDWfLttFEqAdZariooG_M7ZqbIK8o4u7kAuCjruxKN9_WQCQWZrQ5BgSb-oKC1nq1hTzcSQRztyJ_AnnQ7Fi_gxy69l0eCjxdA1-aete3CZ_NeNpLo4dixe0Tdjp_fzo74cP1C7zEadJyjY74WWKlSeOyLCnUQocGrZuaZBK2xVSbUlpvpFLaS09UUDgbOxlnlnYNfMoOqrpyhwysmlofY2oS4QR6VN4rZ4QvrcykMD5ib3e4FJe9yEaxl1MOKBaEYtGhWGDEjnbQFcOCWxfEWpAC_SyVEXs9PqalEvIfunL1JrxDwVsQXFIRe9ZDPv6OAnWBySSL2PHOBvaD_20ux6Od_MPUn__f6C_Y3YQ4VF8kfsQO2mbjXhIHas2rzvh_AJgdAJM
  priority: 102
  providerName: Springer Nature
Title Application of Machine Learning to Ultrasonography in Identifying Anatomical Landmarks for Cricothyroidotomy Among Female Adults: A Multi-center Prospective Observational Study
URI https://link.springer.com/article/10.1007/s10278-023-00929-3
https://www.ncbi.nlm.nih.gov/pubmed/38343208
https://www.proquest.com/docview/2933690856
https://www.proquest.com/docview/2926078049
https://link.springer.com/content/pdf/10.1007/s10278-023-00929-3.pdf
UnpaywallVersion publishedVersion
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: ADMLS
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: DIK
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: GX1
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003313360
  issn: 2948-2933
  databaseCode: RPM
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: 7X7
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2948-2933
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2948-2933
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017574
  issn: 2948-2933
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7aWonLA9cBhVEZiTeWbYkTN-YtlHUToqVCq1SeIju20bQ2qdJUqPwqfiLHubTlIgTiJUqUyEl0ju3v-JzvM8DLAO2aMGrQAm7g-Fz4jqRcOoFhIgm1ZIGx6x3DEbuY-O-mwXQP3jZcmLLavUlJVpwGq9KUFicLZU52iG-eVYb1qGNFg7iDAaEy-9BmASLyFrQno3H0ye4rx31LMij3Xq3PKa25M79v6Mf56RfQuZMwvQ03V-lCrL-I2WxnThrcBd38TVWKcn28KuRx8vUnocf__d17cKcGrSSqvOw-7On0AdwY1mn5h_At2qbBSWbIsKzQ1KQWb_1MioxMZkUuENzXEtnkKiUVSbgkWpEoxei_lC4g70Wq5iK_XhIE1KSPA7X1pjy7wgA6m69JZPdHIgM9x7mNRFY_ZPmaRKSkEju22FTnZJxnDYeUfJCblWds3RZOrg_gcnB22b9w6q0gnIT2vMIRVCNW9BSTgZskCYZ9VFNJle5J79QO0YGQCVNGMs6FYQZhqa-Vq5kbKhzB6CNopVmqnwBRvKeMSwPp-dqnhnJjuJa-SRQLmS9NB1419o8XleBHvJV2tnaI0Q5xaYeYduCwcZG47vzL2PoY44hlWQdebG5jt7W5GJHqbGWfwUDSij_xDjyuXGvzOhpatu9p2IGjxjW2jf_pW442_vgXn_703x5_Brc8xHNVwfohtIp8pZ8jHitkF_Z70x4ew8F5F9pvzkbjj3jVZ308nk_dbrmE1q075XfcRTTG
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJjF4QPwmMMBI8MSsLXHixEgTCmNVx9oyoU7aW2THNppok5Kmmvpf8Q_wv3FOnHYIaeJlz60cS9-dfee77zuE3kaAa86oAQT8iIRchERSLklkmMgTLVlk7HvHcMT6Z-GX8-h8A_3uuDC2rbI7E5uDWpW5fSPfg2uJQiaXROzj7CexU6NsdbUboSHcaAV10EiMOWLHiV5eQgo3Pzj-DHi_C4Le0fiwT9yUAZLTOKiJoBrCkEAxGfl5nkNGQTWVVOlYBvvW-yMhc6aMZJwLwwxEPKFWvmZ-osA5KCx7C22FNOSQ-219OhqdfluVMeKolYFOeEz8JOGOteO4e4EVtw0osbpHnNC_b8Z_wt0rpdq7aHtRzMTyUkwmV27D3n10z4WxOG3t7gHa0MVDdHvoCvWP0K90XRjHpcHDpmdTYyfn-h3XJT6b1JWAcN-JZuOLAre04YZ6hdNC1GUjZoAHolBTUf2YYwix8SEc3da-qvICUupyusSpnZiEe3oKtx1OraLI_ANOcUMuJrb9VFf4tCo7Vin-Kldv0bC6baVcPkbjm4DtCdosykI_Q1jxWBmfRjIIdUgN5cZwLUOTK5awUBoPve9wyWatBEi2Fnu2KGaAYtagmFEP7XTQZe44mGdr4_XQm9XP4Mi2OiMKXS7sfyC1tHJQ3ENPW8hXn6OJ5f_uJx7a7Wxgvfh1e9ld2cl_bP359Vt_jbb74-EgGxyPTl6gOwFEd237-g7arKuFfgnRWS1fOR_AKLthr_sD_U5Nxw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhU4IN4ECgwSnOiqtddee5EQslqiljalh1bqzdq1d1FFYgfHUZV_xZV_x6wfSRFSxaXnROuVvnnuzHwD8C4kXDPBLSHghSyQKmCaS81CK1QWGy1C6947Rsdi_yz4eh6er8HvfhbGtVX2NrEx1HmZuTfybXJLnDK5OBTbtmuLONkbfp7-ZG6DlKu09us0WhE5NItLSt9mnw72COv3vj_8crq7z7oNAyzjkV8zxQ2FIH4udOhlWUbZBDdc89xE2t9xmh8qnYncaiGlssJStBOY3DPCi3NSDE7H3oLbEefSdRNG58tcj5xySwAdy4h5cSy7eZ1uas93tLY-Z47xSDL-t0_8J9C9UqS9B3fmxVQtLtV4fMUPDh_A_S6AxaSVuIewZopHsDHqSvSP4VeyKoljaXHUdGsa7Ihcv2Nd4tm4rhQF-h1dNl4U2A4MN0NXmBSqLhsaAzxSRT5R1Y8ZUnCNu2S0nWRV5QUl0-VkgYnblYRDMyE_h4njEpl9xASbsWLmGk9NhSdV2c-T4je9fIWm010T5eIJnN4EaE9hvSgL8xwwl1FuPR5qPzABt1xaK40ObJaLWATaDuBDj0s6bck_0hXNs0MxJRTTBsWUD2Czhy7tDMEsXYntAN4ufyYVdnUZVZhy7v5DSaUjgpIDeNZCvvwcj93k7048gK1eBlaHX3eXraWc_MfVX1x_9TewQbqWHh0cH76Euz6FdW3f-ias19XcvKKwrNavGwVASG9Y4f4A4YhLYQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrcTjwPsRKGiQuNG0TZx4Y25RYVUhtvTQlcopsmMbVd1NVtms0PKr-ImM89hdHkIgbpESObZmbH_jme8zwKuY7JpzZskCQexHQka-YkL5seUyT4zisXXnHeNTfjKJ3l_EFzvwtufCNNXufUqy5TQ4laaiPpxre7hFfAudMmzIfCcaJHwKCLW9Brs8JkQ-gN3J6Vn6yd0rJyJHMmjuXu2eGeu4M79v6Mf96RfQuZUwvQU3lsVcrr7I6XRrTxrdAdOPpi1FuTpY1uog__qT0OP_Dvcu3O5AK6atl92DHVPch-vjLi3_AL6lmzQ4lhbHTYWmwU689TPWJU6mdSUJ3HcS2XhZYEsSbohWmBYU_TfSBfhBFnomq6sFEqDGY1qonTdV5SUF0OVsham7HwlHZkZ7G6ZOP2TxBlNsqMS-KzY1FZ5VZc8hxY9qffJMrbvCydVDOB-9Oz8-8burIPycDcPal8wQVgw1V3GQ5zmFfcwwxbQZqvDILdGxVDnXVnEhpOWWYGlkdGB4kGhawdgjGBRlYZ4AajHUNmCxCiMTMcuEtcKoyOaaJzxS1oPXvf2zeSv4kW2knZ0dMrJD1tghYx7s9S6SdZN_kTkf44KwLPfg5fo1TVuXi5GFKZfuGwoknfiT8OBx61rr37HEsX2PEg_2e9fYNP6nvuyv_fEvuv703z5_BjdDwnNtwfoeDOpqaZ4THqvVi266fQeQfC6B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Machine+Learning+to+Ultrasonography+in+Identifying+Anatomical+Landmarks+for+Cricothyroidotomy+Among+Female+Adults%3A+A+Multi-center+Prospective+Observational+Study&rft.jtitle=Journal+of+imaging+informatics+in+medicine&rft.au=Wang%2C+Chih-Hung&rft.au=Li%2C+Jia-Da&rft.au=Wu%2C+Cheng-Yi&rft.au=Wu%2C+Yu-Chen&rft.date=2024-02-01&rft.issn=2948-2933&rft.eissn=2948-2933&rft.volume=37&rft.issue=1&rft.spage=363&rft_id=info:doi/10.1007%2Fs10278-023-00929-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2948-2933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2948-2933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2948-2933&client=summon