Application of Machine Learning to Ultrasonography in Identifying Anatomical Landmarks for Cricothyroidotomy Among Female Adults: A Multi-center Prospective Observational Study
We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid cartilage (TC) in cricothyroidotomy. Adult female volunteers were prospectively recruited from two hospitals between September and December, 2020. U...
Saved in:
| Published in | Journal of digital imaging Vol. 37; no. 1; pp. 363 - 373 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.02.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2948-2933 0897-1889 2948-2925 2948-2933 1618-727X |
| DOI | 10.1007/s10278-023-00929-3 |
Cover
| Abstract | We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid cartilage (TC) in cricothyroidotomy. Adult female volunteers were prospectively recruited from two hospitals between September and December, 2020. Ultrasonographic images were collected via a modified longitudinal technique. You Only Look Once (YOLOv5s), Faster Regions with Convolutional Neural Network features (Faster R-CNN), and Single Shot Detector (SSD) were selected as the model architectures. A total of 488 women (mean age: 36.0 years) participated in the study, contributing to a total of 292,053 frames of ultrasonographic images. The derived ML-based algorithms demonstrated excellent discriminative performance for the presence of CC (area under the receiver operating characteristic curve [AUC]: YOLOv5s, 0.989, 95% confidence interval [CI]: 0.982–0.994; Faster R-CNN, 0.986, 95% CI: 0.980–0.991; SSD, 0.968, 95% CI: 0.956–0.977) and TC (AUC: YOLOv5s, 0.989, 95% CI: 0.977–0.997; Faster R-CNN, 0.981, 95% CI: 0.965–0.991; SSD, 0.982, 95% CI: 0.973–0.990). Furthermore, in the frames where the model could correctly indicate the presence of CC or TC, it also accurately localized CC (intersection-over-union: YOLOv5s, 0.753, 95% CI: 0.739–0.765; Faster R-CNN, 0.720, 95% CI: 0.709–0.732; SSD, 0.739, 95% CI: 0.726–0.751) or TC (intersection-over-union: YOLOv5s, 0.739, 95% CI: 0.722–0.755; Faster R-CNN, 0.709, 95% CI: 0.687–0.730; SSD, 0.713, 95% CI: 0.695–0.730). The ML-based algorithms could identify anatomical landmarks for cricothyroidotomy in adult females with favorable discriminative and localization performance. Further studies are warranted to transfer this algorithm to hand-held portable ultrasound devices for clinical use. |
|---|---|
| AbstractList | We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid cartilage (TC) in cricothyroidotomy. Adult female volunteers were prospectively recruited from two hospitals between September and December, 2020. Ultrasonographic images were collected via a modified longitudinal technique. You Only Look Once (YOLOv5s), Faster Regions with Convolutional Neural Network features (Faster R-CNN), and Single Shot Detector (SSD) were selected as the model architectures. A total of 488 women (mean age: 36.0 years) participated in the study, contributing to a total of 292,053 frames of ultrasonographic images. The derived ML-based algorithms demonstrated excellent discriminative performance for the presence of CC (area under the receiver operating characteristic curve [AUC]: YOLOv5s, 0.989, 95% confidence interval [CI]: 0.982–0.994; Faster R-CNN, 0.986, 95% CI: 0.980–0.991; SSD, 0.968, 95% CI: 0.956–0.977) and TC (AUC: YOLOv5s, 0.989, 95% CI: 0.977–0.997; Faster R-CNN, 0.981, 95% CI: 0.965–0.991; SSD, 0.982, 95% CI: 0.973–0.990). Furthermore, in the frames where the model could correctly indicate the presence of CC or TC, it also accurately localized CC (intersection-over-union: YOLOv5s, 0.753, 95% CI: 0.739–0.765; Faster R-CNN, 0.720, 95% CI: 0.709–0.732; SSD, 0.739, 95% CI: 0.726–0.751) or TC (intersection-over-union: YOLOv5s, 0.739, 95% CI: 0.722–0.755; Faster R-CNN, 0.709, 95% CI: 0.687–0.730; SSD, 0.713, 95% CI: 0.695–0.730). The ML-based algorithms could identify anatomical landmarks for cricothyroidotomy in adult females with favorable discriminative and localization performance. Further studies are warranted to transfer this algorithm to hand-held portable ultrasound devices for clinical use. We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid cartilage (TC) in cricothyroidotomy. Adult female volunteers were prospectively recruited from two hospitals between September and December, 2020. Ultrasonographic images were collected via a modified longitudinal technique. You Only Look Once (YOLOv5s), Faster Regions with Convolutional Neural Network features (Faster R-CNN), and Single Shot Detector (SSD) were selected as the model architectures. A total of 488 women (mean age: 36.0 years) participated in the study, contributing to a total of 292,053 frames of ultrasonographic images. The derived ML-based algorithms demonstrated excellent discriminative performance for the presence of CC (area under the receiver operating characteristic curve [AUC]: YOLOv5s, 0.989, 95% confidence interval [CI]: 0.982–0.994; Faster R-CNN, 0.986, 95% CI: 0.980–0.991; SSD, 0.968, 95% CI: 0.956–0.977) and TC (AUC: YOLOv5s, 0.989, 95% CI: 0.977–0.997; Faster R-CNN, 0.981, 95% CI: 0.965–0.991; SSD, 0.982, 95% CI: 0.973–0.990). Furthermore, in the frames where the model could correctly indicate the presence of CC or TC, it also accurately localized CC (intersection-over-union: YOLOv5s, 0.753, 95% CI: 0.739–0.765; Faster R-CNN, 0.720, 95% CI: 0.709–0.732; SSD, 0.739, 95% CI: 0.726–0.751) or TC (intersection-over-union: YOLOv5s, 0.739, 95% CI: 0.722–0.755; Faster R-CNN, 0.709, 95% CI: 0.687–0.730; SSD, 0.713, 95% CI: 0.695–0.730). The ML-based algorithms could identify anatomical landmarks for cricothyroidotomy in adult females with favorable discriminative and localization performance. Further studies are warranted to transfer this algorithm to hand-held portable ultrasound devices for clinical use. We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid cartilage (TC) in cricothyroidotomy. Adult female volunteers were prospectively recruited from two hospitals between September and December, 2020. Ultrasonographic images were collected via a modified longitudinal technique. You Only Look Once (YOLOv5s), Faster Regions with Convolutional Neural Network features (Faster R-CNN), and Single Shot Detector (SSD) were selected as the model architectures. A total of 488 women (mean age: 36.0 years) participated in the study, contributing to a total of 292,053 frames of ultrasonographic images. The derived ML-based algorithms demonstrated excellent discriminative performance for the presence of CC (area under the receiver operating characteristic curve [AUC]: YOLOv5s, 0.989, 95% confidence interval [CI]: 0.982-0.994; Faster R-CNN, 0.986, 95% CI: 0.980-0.991; SSD, 0.968, 95% CI: 0.956-0.977) and TC (AUC: YOLOv5s, 0.989, 95% CI: 0.977-0.997; Faster R-CNN, 0.981, 95% CI: 0.965-0.991; SSD, 0.982, 95% CI: 0.973-0.990). Furthermore, in the frames where the model could correctly indicate the presence of CC or TC, it also accurately localized CC (intersection-over-union: YOLOv5s, 0.753, 95% CI: 0.739-0.765; Faster R-CNN, 0.720, 95% CI: 0.709-0.732; SSD, 0.739, 95% CI: 0.726-0.751) or TC (intersection-over-union: YOLOv5s, 0.739, 95% CI: 0.722-0.755; Faster R-CNN, 0.709, 95% CI: 0.687-0.730; SSD, 0.713, 95% CI: 0.695-0.730). The ML-based algorithms could identify anatomical landmarks for cricothyroidotomy in adult females with favorable discriminative and localization performance. Further studies are warranted to transfer this algorithm to hand-held portable ultrasound devices for clinical use.We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid cartilage (TC) in cricothyroidotomy. Adult female volunteers were prospectively recruited from two hospitals between September and December, 2020. Ultrasonographic images were collected via a modified longitudinal technique. You Only Look Once (YOLOv5s), Faster Regions with Convolutional Neural Network features (Faster R-CNN), and Single Shot Detector (SSD) were selected as the model architectures. A total of 488 women (mean age: 36.0 years) participated in the study, contributing to a total of 292,053 frames of ultrasonographic images. The derived ML-based algorithms demonstrated excellent discriminative performance for the presence of CC (area under the receiver operating characteristic curve [AUC]: YOLOv5s, 0.989, 95% confidence interval [CI]: 0.982-0.994; Faster R-CNN, 0.986, 95% CI: 0.980-0.991; SSD, 0.968, 95% CI: 0.956-0.977) and TC (AUC: YOLOv5s, 0.989, 95% CI: 0.977-0.997; Faster R-CNN, 0.981, 95% CI: 0.965-0.991; SSD, 0.982, 95% CI: 0.973-0.990). Furthermore, in the frames where the model could correctly indicate the presence of CC or TC, it also accurately localized CC (intersection-over-union: YOLOv5s, 0.753, 95% CI: 0.739-0.765; Faster R-CNN, 0.720, 95% CI: 0.709-0.732; SSD, 0.739, 95% CI: 0.726-0.751) or TC (intersection-over-union: YOLOv5s, 0.739, 95% CI: 0.722-0.755; Faster R-CNN, 0.709, 95% CI: 0.687-0.730; SSD, 0.713, 95% CI: 0.695-0.730). The ML-based algorithms could identify anatomical landmarks for cricothyroidotomy in adult females with favorable discriminative and localization performance. Further studies are warranted to transfer this algorithm to hand-held portable ultrasound devices for clinical use. |
| Author | Wu, Yu-Chen Liu, Yi-Kuan Wu, Cheng-Yi Hsu, Ching-Hang Chen, Chu-Song Huang, Chien-Hua Wang, Chih-Hung Li, Jia-Da Wu, Meng-Che Tay, Joyce |
| Author_xml | – sequence: 1 givenname: Chih-Hung surname: Wang fullname: Wang, Chih-Hung organization: Department of Emergency Medicine, National Taiwan University Hospital, Department of Emergency Medicine, College of Medicine, National Taiwan University – sequence: 2 givenname: Jia-Da surname: Li fullname: Li, Jia-Da organization: NTU Joint Research Center for AI Technology and All Vista Healthcare, National Taiwan University – sequence: 3 givenname: Cheng-Yi surname: Wu fullname: Wu, Cheng-Yi organization: Department of Emergency Medicine, National Taiwan University Hospital – sequence: 4 givenname: Yu-Chen surname: Wu fullname: Wu, Yu-Chen organization: Department of Computer Science and Information Engineering, National Taiwan University – sequence: 5 givenname: Joyce surname: Tay fullname: Tay, Joyce organization: Department of Emergency Medicine, National Taiwan University Hospital – sequence: 6 givenname: Meng-Che surname: Wu fullname: Wu, Meng-Che organization: Department of Emergency Medicine, National Taiwan University Hospital – sequence: 7 givenname: Ching-Hang surname: Hsu fullname: Hsu, Ching-Hang organization: Institute of Information Science, Academia Sinica – sequence: 8 givenname: Yi-Kuan surname: Liu fullname: Liu, Yi-Kuan organization: NTU Joint Research Center for AI Technology and All Vista Healthcare, National Taiwan University – sequence: 9 givenname: Chu-Song surname: Chen fullname: Chen, Chu-Song email: chusong@csie.ntu.edu.tw organization: Department of Computer Science and Information Engineering, National Taiwan University, Institute of Information Science, Academia Sinica – sequence: 10 givenname: Chien-Hua orcidid: 0000-0003-2981-4537 surname: Huang fullname: Huang, Chien-Hua email: chhuang5940@ntu.edu.tw organization: Department of Emergency Medicine, National Taiwan University Hospital, Department of Emergency Medicine, College of Medicine, National Taiwan University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38343208$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u1DAUhS1UREvpC7BAltiwCdi-M5mEXTSiUGmqIlHWkWPfzLg4drCdorwVj4inM_yIBWLlu_jO8T33PCUnzjsk5DlnrzljqzeRM7GqCiagYKwWdQGPyJmoF1UhaoCTP-ZTchHjHWMMgAOU7Ak5hQoWIFh1Rr4342iNksl4R31Pr6XaGYd0gzI447Y0efrZpiCjd34b5LibqXH0SqNLpp_3RONk8kP2sHQjnR5k-BJp7wNdB6N82s3BG-0zMtNm8FlwiYO0SBs92RTf0oZe58EUKltioB-DjyOqZO6R3nQRw_3Dctn9U5r0_Iw87qWNeHF8z8nt5bvb9Ydic_P-at1sCgUrkQoJyCoQuuyWXCklSg4IHWhcdYJJrXEpO1XqvivrWvZlz2tYoOZY8kozzuGcwMF2cqOcv0lr2zGYnG1uOWv3DbSHBtrcQPvQQAtZ9eqgGoP_OmFM7WCiQmulQz_FVtSiZKuKLeqMvvwLvfNTyDH3VK6pZtWyzNSLIzV1A-pfO_wsMAPiAKh8thiw_781j-Fiht0Ww--__6H6AWhHwYo |
| Cites_doi | 10.1186/1471-2253-14-108 10.1097/ALN.0000000000000848 10.1186/s12871-017-0366-7 10.1016/j.ajem.2015.10.054 10.1148/ryai.2020200029 10.1093/bja/aev371 10.1016/j.resuscitation.2006.01.010 10.1111/j.1399-6576.2011.02518.x 10.1001/jama.1983.03340160061033 10.1016/j.bja.2020.08.012 10.1016/j.annemergmed.2005.01.009 10.1213/ANE.0b013e31824970ba 10.1007/BF03018780 10.1093/bja/aew176 10.2307/2531595 10.1007/s11263-015-0816-y 10.1016/S0196-0644(98)70175-1 10.1016/j.jcrc.2020.07.030 10.1007/978-3-319-10602-1_48 10.1093/bja/aer059 10.1109/CVPR.2016.91 10.1007/978-3-319-46448-0_2 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7QO 7RV 7SC 7TK 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K9. KB0 L7M LK8 L~C L~D M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 ADTOC UNPAY |
| DOI | 10.1007/s10278-023-00929-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Computer and Information Systems Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2948-2933 1618-727X |
| EndPage | 373 |
| ExternalDocumentID | 10.1007/s10278-023-00929-3 38343208 10_1007_s10278_023_00929_3 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Taiwan University Hospital grantid: 110-S4808; 111-UN0032; 111-UN0032 funderid: http://dx.doi.org/10.13039/501100005762 – fundername: National Science and Technology Council grantid: 110-2634-F-006-022 funderid: http://dx.doi.org/10.13039/100020595 – fundername: National Taiwan University Hospital grantid: 111-UN0032 – fundername: National Science and Technology Council grantid: 110-2634-F-006-022 – fundername: National Taiwan University Hospital grantid: 110-S4808 |
| GroupedDBID | 53G AAJBT AAYZH ABJNI ACPIV ALMA_UNASSIGNED_HOLDINGS BGNMA C6C DPUIP EBLON FIGPU JZLTJ M4Y NU0 PT4 ROL RPM RSV SJYHP SNE SOJ 0R~ 2JN AASML AATNV AAYXX ABAKF ABDBE ABFSG ABRTQ ACAOD ACSTC ACZOJ ADKFA AEFQL AEZWR AFDZB AFHIU AHWEU AIGIU AIXLP ATHPR CITATION NPM --- .4S .86 .DC .VR 04C 06C 06D 0VY 1N0 203 29K 29~ 2J2 2JY 2KG 2KM 2LR 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 5GY 5RE 5VS 67Z 6NX 6PF 78A 7QO 7RV 7SC 7TK 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FW 8TC 8UJ 95- 95. 95~ 96X AABHQ AAHNG AAJKR AAKDD AAKPC AANZL AAPKM AARTL AATVU AAUYE AAWCG AAWTL AAYIU AAYQN ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABUWG ABWNU ABXPI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ADBBV ADHHG ADHIR ADJJI ADKNI ADKPE ADMLS ADOJX ADRFC ADTPH ADURQ ADYFF ADZKW AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHPBZ AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOIJS ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AZFZN AZQEC B-. BA0 BAWUL BBNVY BENPR BGLVJ BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CCPQU CS3 CSCUP D-I DDRTE DIK DL5 DNIVK DU5 DWQXO EBD EBS ECT EDO EIHBH EIOEI EMB EMOBN ESBYG EX3 F5P FEDTE FERAY FFXSO FNLPD FR3 FRRFC FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GX1 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HYE I-F I09 IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JQ2 K9. KDC KOV KPH L7M LAS LK8 LLZTM L~C L~D M1P M7P MA- NAPCQ NB0 NPVJJ NQJWS O93 O9I O9J OAM OK1 P2P P62 P64 P9S PF0 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PROAC PSQYO Q2X QOK QOR QOS R89 R9I RNS RPX RRX S16 S27 S37 S3B SAP SDH SHX SISQX SMD SNPRN SNX SOHCF SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX VC2 W23 W48 WJK WK8 WOW YLTOR Z45 ZMTXR ZOVNA ~A9 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c372t-a3e0832d6b51ccc2613e3b3de7b20adde5abc6dfb699af6f1934ed1e618d0113 |
| IEDL.DBID | UNPAY |
| ISSN | 2948-2933 0897-1889 2948-2925 |
| IngestDate | Sun Oct 26 03:56:23 EDT 2025 Mon Sep 29 06:02:59 EDT 2025 Mon Oct 06 17:30:42 EDT 2025 Sat Sep 13 02:30:34 EDT 2025 Wed Oct 01 01:45:00 EDT 2025 Fri Feb 21 02:41:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Female Cricothyroidotomy Ultrasound Machine learning Object detection |
| Language | English |
| License | 2024. The Author(s). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-a3e0832d6b51ccc2613e3b3de7b20adde5abc6dfb699af6f1934ed1e618d0113 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2981-4537 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10278-023-00929-3.pdf |
| PMID | 38343208 |
| PQID | 2933690856 |
| PQPubID | 34218 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1007_s10278_023_00929_3 proquest_miscellaneous_2926078049 proquest_journals_2933690856 pubmed_primary_38343208 crossref_primary_10_1007_s10278_023_00929_3 springer_journals_10_1007_s10278_023_00929_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Switzerland – name: New York |
| PublicationTitle | Journal of digital imaging |
| PublicationTitleAbbrev | J Digit Imaging. Inform. med |
| PublicationTitleAlternate | J Imaging Inform Med |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Mongan, Moy, Kahn (CR11) 2020; 2 Jacobs, Berrizbeitia, Bennett, Madigan (CR3) 1983; 250 Kovacs (CR6) 2004; 51 Timmermann (CR2) 2006; 70 Oliveira, Arzola, Ye, Clivatti, Siddiqui, You-Ten (CR28) 2017; 17 CR19 CR18 CR17 CR16 Oliveira, Arzola, Ye, Clivatti, Siddiqui, You-Ten (CR26) 2017; 17 CR15 CR14 Russakovsky (CR20) 2015; 115 Kristensen, Teoh, Rudolph (CR24) 2016; 117 Kristensen, Teoh, Rudolph (CR12) 2016; 117 Frerk (CR7) 2015; 115 Hung, Chen, Lin, Sun (CR10) 2021; 126 Sagarin, Barton, Chng, Walls, Investigators (CR1) 2005; 46 Campbell, Shanahan, Ash, Royds, Husarova, McCaul (CR9) 2014; 14 DeLong, DeLong, Clarke-Pearson (CR21) 1988; 44 CR5 Kristensen (CR13) 2011; 55 CR8 Adnet (CR4) 1998; 32 Rai, You-Ten, Zasso, De Castro, Ye, Siddiqui (CR22) 2020; 60 Yıldız, Göksu, Şenfer, Kaplan (CR27) 2016; 34 Siddiqui, Arzola, Friedman, Guerina, You-Ten (CR25) 2015; 123 Aslani, Ng, Hurley, McCarthy, McNicholas, McCaul (CR23) 2012; 114 Y Rai (929_CR22) 2020; 60 929_CR5 C Frerk (929_CR7) 2015; 115 929_CR14 929_CR16 929_CR15 KC Hung (929_CR10) 2021; 126 929_CR18 929_CR17 929_CR8 MS Kristensen (929_CR24) 2016; 117 929_CR19 MS Kristensen (929_CR13) 2011; 55 ER DeLong (929_CR21) 1988; 44 A Timmermann (929_CR2) 2006; 70 O Russakovsky (929_CR20) 2015; 115 MS Kristensen (929_CR12) 2016; 117 G Yıldız (929_CR27) 2016; 34 KF Oliveira (929_CR26) 2017; 17 LM Jacobs (929_CR3) 1983; 250 G Kovacs (929_CR6) 2004; 51 KF Oliveira (929_CR28) 2017; 17 M Campbell (929_CR9) 2014; 14 MJ Sagarin (929_CR1) 2005; 46 J Mongan (929_CR11) 2020; 2 A Aslani (929_CR23) 2012; 114 F Adnet (929_CR4) 1998; 32 N Siddiqui (929_CR25) 2015; 123 |
| References_xml | – ident: CR18 – ident: CR14 – ident: CR16 – volume: 14 start-page: 108 year: 2014 ident: CR9 article-title: The accuracy of locating the cricothyroid membrane by palpation - an intergender study publication-title: BMC anesthesiology doi: 10.1186/1471-2253-14-108 – volume: 123 start-page: 1033 year: 2015 end-page: 1041 ident: CR25 article-title: Ultrasound improves cricothyrotomy success in cadavers with poorly defined neck anatomy: a randomized control trial publication-title: Anesthesiology doi: 10.1097/ALN.0000000000000848 – volume: 17 start-page: 1 year: 2017 end-page: 7 ident: CR26 article-title: Determining the amount of training needed for competency of anesthesia trainees in ultrasonographic identification of the cricothyroid membrane publication-title: BMC anesthesiology doi: 10.1186/s12871-017-0366-7 – volume: 17 start-page: 74 year: 2017 ident: CR28 article-title: Determining the amount of training needed for competency of anesthesia trainees in ultrasonographic identification of the cricothyroid membrane publication-title: BMC anesthesiology doi: 10.1186/s12871-017-0366-7 – volume: 34 start-page: 254 year: 2016 end-page: 256 ident: CR27 article-title: Comparison of ultrasonography and surface landmarks in detecting the localization for cricothyroidotomy publication-title: The American journal of emergency medicine doi: 10.1016/j.ajem.2015.10.054 – volume: 2 year: 2020 ident: CR11 article-title: Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers publication-title: Radiol Artif Intell doi: 10.1148/ryai.2020200029 – ident: CR8 – volume: 115 start-page: 827 year: 2015 end-page: 848 ident: CR7 article-title: Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults publication-title: British journal of anaesthesia doi: 10.1093/bja/aev371 – volume: 70 start-page: 179 year: 2006 end-page: 185 ident: CR2 article-title: Prehospital airway management: a prospective evaluation of anaesthesia trained emergency physicians publication-title: Resuscitation doi: 10.1016/j.resuscitation.2006.01.010 – volume: 55 start-page: 1155 year: 2011 end-page: 1173 ident: CR13 article-title: Ultrasonography in the management of the airway publication-title: Acta anaesthesiologica Scandinavica doi: 10.1111/j.1399-6576.2011.02518.x – volume: 250 start-page: 2175 year: 1983 end-page: 2177 ident: CR3 article-title: Endotracheal intubation in the prehospital phase of emergency medical care publication-title: Jama doi: 10.1001/jama.1983.03340160061033 – volume: 126 start-page: e9 year: 2021 end-page: e11 ident: CR10 article-title: Comparison between ultrasound-guided and digital palpation techniques for identification of the cricothyroid membrane: a meta-analysis publication-title: British journal of anaesthesia doi: 10.1016/j.bja.2020.08.012 – volume: 46 start-page: 328 year: 2005 end-page: 336 ident: CR1 article-title: Airway management by US and Canadian emergency medicine residents: a multicenter analysis of more than 6,000 endotracheal intubation attempts publication-title: Annals of emergency medicine doi: 10.1016/j.annemergmed.2005.01.009 – volume: 114 start-page: 987 year: 2012 end-page: 992 ident: CR23 article-title: Accuracy of identification of the cricothyroid membrane in female subjects using palpation: an observational study publication-title: Anesthesia and analgesia doi: 10.1213/ANE.0b013e31824970ba – volume: 51 start-page: 174 year: 2004 ident: CR6 article-title: Acute airway management in the emergency department by non-anesthesiologists publication-title: Canadian Journal of Anesthesia doi: 10.1007/BF03018780 – ident: CR19 – volume: 117 start-page: i39 issue: Suppl 1 year: 2016 end-page: i48 ident: CR24 article-title: Ultrasonographic identification of the cricothyroid membrane: best evidence, techniques, and clinical impact publication-title: British journal of anaesthesia doi: 10.1093/bja/aew176 – volume: 44 start-page: 837 year: 1988 end-page: 845 ident: CR21 article-title: Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach publication-title: Biometrics doi: 10.2307/2531595 – ident: CR15 – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: CR20 article-title: ImageNet Large Scale Visual Recognition Challenge publication-title: International Journal of Computer Vision doi: 10.1007/s11263-015-0816-y – ident: CR17 – volume: 32 start-page: 454 year: 1998 end-page: 460 ident: CR4 article-title: Survey of out-of-hospital emergency intubations in the French prehospital medical system: a multicenter study publication-title: Annals of emergency medicine doi: 10.1016/S0196-0644(98)70175-1 – volume: 60 start-page: 161 year: 2020 end-page: 168 ident: CR22 article-title: The role of ultrasound in front-of-neck access for cricothyroid membrane identification: A systematic review publication-title: Journal of critical care doi: 10.1016/j.jcrc.2020.07.030 – ident: CR5 – volume: 117 start-page: i39 year: 2016 end-page: i48 ident: CR12 article-title: Ultrasonographic identification of the cricothyroid membrane: best evidence, techniques, and clinical impact publication-title: British journal of anaesthesia doi: 10.1093/bja/aew176 – volume: 14 start-page: 108 year: 2014 ident: 929_CR9 publication-title: BMC anesthesiology doi: 10.1186/1471-2253-14-108 – volume: 44 start-page: 837 year: 1988 ident: 929_CR21 publication-title: Biometrics doi: 10.2307/2531595 – volume: 55 start-page: 1155 year: 2011 ident: 929_CR13 publication-title: Acta anaesthesiologica Scandinavica doi: 10.1111/j.1399-6576.2011.02518.x – ident: 929_CR18 – ident: 929_CR5 – volume: 123 start-page: 1033 year: 2015 ident: 929_CR25 publication-title: Anesthesiology doi: 10.1097/ALN.0000000000000848 – volume: 46 start-page: 328 year: 2005 ident: 929_CR1 publication-title: Annals of emergency medicine doi: 10.1016/j.annemergmed.2005.01.009 – volume: 117 start-page: i39 year: 2016 ident: 929_CR12 publication-title: British journal of anaesthesia doi: 10.1093/bja/aew176 – ident: 929_CR19 doi: 10.1007/978-3-319-10602-1_48 – volume: 17 start-page: 1 year: 2017 ident: 929_CR26 publication-title: BMC anesthesiology doi: 10.1186/s12871-017-0366-7 – volume: 117 start-page: i39 issue: Suppl 1 year: 2016 ident: 929_CR24 publication-title: British journal of anaesthesia doi: 10.1093/bja/aew176 – volume: 2 year: 2020 ident: 929_CR11 publication-title: Radiol Artif Intell doi: 10.1148/ryai.2020200029 – ident: 929_CR8 doi: 10.1093/bja/aer059 – ident: 929_CR14 doi: 10.1109/CVPR.2016.91 – volume: 126 start-page: e9 year: 2021 ident: 929_CR10 publication-title: British journal of anaesthesia doi: 10.1016/j.bja.2020.08.012 – volume: 17 start-page: 74 year: 2017 ident: 929_CR28 publication-title: BMC anesthesiology doi: 10.1186/s12871-017-0366-7 – volume: 51 start-page: 174 year: 2004 ident: 929_CR6 publication-title: Canadian Journal of Anesthesia doi: 10.1007/BF03018780 – volume: 115 start-page: 827 year: 2015 ident: 929_CR7 publication-title: British journal of anaesthesia doi: 10.1093/bja/aev371 – volume: 32 start-page: 454 year: 1998 ident: 929_CR4 publication-title: Annals of emergency medicine doi: 10.1016/S0196-0644(98)70175-1 – volume: 115 start-page: 211 year: 2015 ident: 929_CR20 publication-title: International Journal of Computer Vision doi: 10.1007/s11263-015-0816-y – volume: 60 start-page: 161 year: 2020 ident: 929_CR22 publication-title: Journal of critical care doi: 10.1016/j.jcrc.2020.07.030 – ident: 929_CR17 – volume: 114 start-page: 987 year: 2012 ident: 929_CR23 publication-title: Anesthesia and analgesia doi: 10.1213/ANE.0b013e31824970ba – volume: 34 start-page: 254 year: 2016 ident: 929_CR27 publication-title: The American journal of emergency medicine doi: 10.1016/j.ajem.2015.10.054 – ident: 929_CR15 – volume: 70 start-page: 179 year: 2006 ident: 929_CR2 publication-title: Resuscitation doi: 10.1016/j.resuscitation.2006.01.010 – volume: 250 start-page: 2175 year: 1983 ident: 929_CR3 publication-title: Jama doi: 10.1001/jama.1983.03340160061033 – ident: 929_CR16 doi: 10.1007/978-3-319-46448-0_2 |
| SSID | ssj0003313360 ssj0017574 |
| Score | 2.335264 |
| Snippet | We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid... |
| SourceID | unpaywall proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 363 |
| SubjectTerms | Algorithms Artificial neural networks Cartilage Females Imaging Learning algorithms Localization Machine learning Medicine Medicine & Public Health Neural networks Object recognition Observational studies Portable equipment Radiology Thyroid Ultrasonic imaging Ultrasound |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ta9RAEB7qFXz5IL7VRqus4De72GSTvawgEkuPIt5ZpIV-C7vZXSneJddcDrl_5U90NtnkKkLxc0Ky8MzOPrMz8wzA2wRxLTiziECY0FjImComFE0sl0VqFE-su--YzvjpRfzlMrncgVnfC-PKKnuf2DpqXRXujvw9HksMI7k04Z-W19RNjXLZ1X6EhvSjFfTHVmLsDuxGThlrBLufT2Zn34e8wjjpdJlTMaZhmgrfRuOb6SKnNhsx6oSIBGV_H1X_8M8budMHcG9dLuXml5zPbxxPk0fw0PNKknWG8Bh2TPkE7k595vwp_M62mWpSWTJtiygN8fqqP0hTkYt5U0vk317FmlyVpOvjbXuhSFZigN6qC5CvstQLWf9cEeS85Bh9qQO8rq4wxq0WG5K5EUZkYhZ4_JDMSXysPpCMtN2-1NWDmpqc1VXf5km-qeFyGL_uahs3z-B8cnJ-fEr9tAZasHHUUMkM0rlIc5WERVFgZMYMU0ybsYqOnBdNpCq4tooLIS23yBxjo0PDw1Sjk2F7MCqr0uwD0WKsbcgSFcUmZpYJa4VRsS00T3msbADvelzyZafJkW_Vlx2KOaKYtyjmLICDHrrc789VvrWmAN4Mj3FnuXSJLE21du9grOf0mUQAzzvIh99hXB-z6CgN4LC3ge3Hb1vL4WAn_7H0F7cv_SXcj5BidTXkBzBq6rV5hRSpUa-93f8B9h8Pww priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkXgcEO8NLGiQuLGWmozjxtyiimqFKHDYlfYW2bGNVrTJKk216r_iJzJO0nR5CME5iWPpG3u-8cx8ZuxNSriWEj0hEKdcKC24QWV46qUuM2dk6sN5x-KTPDkTH87T80EmJ_TC_JK_Dy1uSdCATZAHeSDF8Sa7RU5KdolZORvPUxAp2pKToS_mz5_-7Ht-I5TXkqH32J1Ndam3V3q5vOZv5g_Y_YEoQt4j-5DdcNUjdnsxpMIfs-_5PvUMtYdFVxXpYBBM_QptDWfLttFEqAdZariooG_M7ZqbIK8o4u7kAuCjruxKN9_WQCQWZrQ5BgSb-oKC1nq1hTzcSQRztyJ_AnnQ7Fi_gxy69l0eCjxdA1-aete3CZ_NeNpLo4dixe0Tdjp_fzo74cP1C7zEadJyjY74WWKlSeOyLCnUQocGrZuaZBK2xVSbUlpvpFLaS09UUDgbOxlnlnYNfMoOqrpyhwysmlofY2oS4QR6VN4rZ4QvrcykMD5ib3e4FJe9yEaxl1MOKBaEYtGhWGDEjnbQFcOCWxfEWpAC_SyVEXs9PqalEvIfunL1JrxDwVsQXFIRe9ZDPv6OAnWBySSL2PHOBvaD_20ux6Od_MPUn__f6C_Y3YQ4VF8kfsQO2mbjXhIHas2rzvh_AJgdAJM priority: 102 providerName: Springer Nature |
| Title | Application of Machine Learning to Ultrasonography in Identifying Anatomical Landmarks for Cricothyroidotomy Among Female Adults: A Multi-center Prospective Observational Study |
| URI | https://link.springer.com/article/10.1007/s10278-023-00929-3 https://www.ncbi.nlm.nih.gov/pubmed/38343208 https://www.proquest.com/docview/2933690856 https://www.proquest.com/docview/2926078049 https://link.springer.com/content/pdf/10.1007/s10278-023-00929-3.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2948-2933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: ADMLS dateStart: 20030301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2948-2933 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: DIK dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2948-2933 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: GX1 dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2948-2933 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003313360 issn: 2948-2933 databaseCode: RPM dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2948-2933 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: 7X7 dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2948-2933 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2948-2933 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2948-2933 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2948-2933 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017574 issn: 2948-2933 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7aWonLA9cBhVEZiTeWbYkTN-YtlHUToqVCq1SeIju20bQ2qdJUqPwqfiLHubTlIgTiJUqUyEl0ju3v-JzvM8DLAO2aMGrQAm7g-Fz4jqRcOoFhIgm1ZIGx6x3DEbuY-O-mwXQP3jZcmLLavUlJVpwGq9KUFicLZU52iG-eVYb1qGNFg7iDAaEy-9BmASLyFrQno3H0ye4rx31LMij3Xq3PKa25M79v6Mf56RfQuZMwvQ03V-lCrL-I2WxnThrcBd38TVWKcn28KuRx8vUnocf__d17cKcGrSSqvOw-7On0AdwY1mn5h_At2qbBSWbIsKzQ1KQWb_1MioxMZkUuENzXEtnkKiUVSbgkWpEoxei_lC4g70Wq5iK_XhIE1KSPA7X1pjy7wgA6m69JZPdHIgM9x7mNRFY_ZPmaRKSkEju22FTnZJxnDYeUfJCblWds3RZOrg_gcnB22b9w6q0gnIT2vMIRVCNW9BSTgZskCYZ9VFNJle5J79QO0YGQCVNGMs6FYQZhqa-Vq5kbKhzB6CNopVmqnwBRvKeMSwPp-dqnhnJjuJa-SRQLmS9NB1419o8XleBHvJV2tnaI0Q5xaYeYduCwcZG47vzL2PoY44hlWQdebG5jt7W5GJHqbGWfwUDSij_xDjyuXGvzOhpatu9p2IGjxjW2jf_pW442_vgXn_703x5_Brc8xHNVwfohtIp8pZ8jHitkF_Z70x4ew8F5F9pvzkbjj3jVZ308nk_dbrmE1q075XfcRTTG |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJjF4QPwmMMBI8MSsLXHixEgTCmNVx9oyoU7aW2THNppok5Kmmvpf8Q_wv3FOnHYIaeJlz60cS9-dfee77zuE3kaAa86oAQT8iIRchERSLklkmMgTLVlk7HvHcMT6Z-GX8-h8A_3uuDC2rbI7E5uDWpW5fSPfg2uJQiaXROzj7CexU6NsdbUboSHcaAV10EiMOWLHiV5eQgo3Pzj-DHi_C4Le0fiwT9yUAZLTOKiJoBrCkEAxGfl5nkNGQTWVVOlYBvvW-yMhc6aMZJwLwwxEPKFWvmZ-osA5KCx7C22FNOSQ-219OhqdfluVMeKolYFOeEz8JOGOteO4e4EVtw0osbpHnNC_b8Z_wt0rpdq7aHtRzMTyUkwmV27D3n10z4WxOG3t7gHa0MVDdHvoCvWP0K90XRjHpcHDpmdTYyfn-h3XJT6b1JWAcN-JZuOLAre04YZ6hdNC1GUjZoAHolBTUf2YYwix8SEc3da-qvICUupyusSpnZiEe3oKtx1OraLI_ANOcUMuJrb9VFf4tCo7Vin-Kldv0bC6baVcPkbjm4DtCdosykI_Q1jxWBmfRjIIdUgN5cZwLUOTK5awUBoPve9wyWatBEi2Fnu2KGaAYtagmFEP7XTQZe44mGdr4_XQm9XP4Mi2OiMKXS7sfyC1tHJQ3ENPW8hXn6OJ5f_uJx7a7Wxgvfh1e9ld2cl_bP359Vt_jbb74-EgGxyPTl6gOwFEd237-g7arKuFfgnRWS1fOR_AKLthr_sD_U5Nxw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhU4IN4ECgwSnOiqtddee5EQslqiljalh1bqzdq1d1FFYgfHUZV_xZV_x6wfSRFSxaXnROuVvnnuzHwD8C4kXDPBLSHghSyQKmCaS81CK1QWGy1C6947Rsdi_yz4eh6er8HvfhbGtVX2NrEx1HmZuTfybXJLnDK5OBTbtmuLONkbfp7-ZG6DlKu09us0WhE5NItLSt9mnw72COv3vj_8crq7z7oNAyzjkV8zxQ2FIH4udOhlWUbZBDdc89xE2t9xmh8qnYncaiGlssJStBOY3DPCi3NSDE7H3oLbEefSdRNG58tcj5xySwAdy4h5cSy7eZ1uas93tLY-Z47xSDL-t0_8J9C9UqS9B3fmxVQtLtV4fMUPDh_A_S6AxaSVuIewZopHsDHqSvSP4VeyKoljaXHUdGsa7Ihcv2Nd4tm4rhQF-h1dNl4U2A4MN0NXmBSqLhsaAzxSRT5R1Y8ZUnCNu2S0nWRV5QUl0-VkgYnblYRDMyE_h4njEpl9xASbsWLmGk9NhSdV2c-T4je9fIWm010T5eIJnN4EaE9hvSgL8xwwl1FuPR5qPzABt1xaK40ObJaLWATaDuBDj0s6bck_0hXNs0MxJRTTBsWUD2Czhy7tDMEsXYntAN4ufyYVdnUZVZhy7v5DSaUjgpIDeNZCvvwcj93k7048gK1eBlaHX3eXraWc_MfVX1x_9TewQbqWHh0cH76Euz6FdW3f-ias19XcvKKwrNavGwVASG9Y4f4A4YhLYQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VrcTjwPsRKGiQuNG0TZx4Y25RYVUhtvTQlcopsmMbVd1NVtms0PKr-ImM89hdHkIgbpESObZmbH_jme8zwKuY7JpzZskCQexHQka-YkL5seUyT4zisXXnHeNTfjKJ3l_EFzvwtufCNNXufUqy5TQ4laaiPpxre7hFfAudMmzIfCcaJHwKCLW9Brs8JkQ-gN3J6Vn6yd0rJyJHMmjuXu2eGeu4M79v6Mf96RfQuZUwvQU3lsVcrr7I6XRrTxrdAdOPpi1FuTpY1uog__qT0OP_Dvcu3O5AK6atl92DHVPch-vjLi3_AL6lmzQ4lhbHTYWmwU689TPWJU6mdSUJ3HcS2XhZYEsSbohWmBYU_TfSBfhBFnomq6sFEqDGY1qonTdV5SUF0OVsham7HwlHZkZ7G6ZOP2TxBlNsqMS-KzY1FZ5VZc8hxY9qffJMrbvCydVDOB-9Oz8-8burIPycDcPal8wQVgw1V3GQ5zmFfcwwxbQZqvDILdGxVDnXVnEhpOWWYGlkdGB4kGhawdgjGBRlYZ4AajHUNmCxCiMTMcuEtcKoyOaaJzxS1oPXvf2zeSv4kW2knZ0dMrJD1tghYx7s9S6SdZN_kTkf44KwLPfg5fo1TVuXi5GFKZfuGwoknfiT8OBx61rr37HEsX2PEg_2e9fYNP6nvuyv_fEvuv703z5_BjdDwnNtwfoeDOpqaZ4THqvVi266fQeQfC6B |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Machine+Learning+to+Ultrasonography+in+Identifying+Anatomical+Landmarks+for+Cricothyroidotomy+Among+Female+Adults%3A+A+Multi-center+Prospective+Observational+Study&rft.jtitle=Journal+of+imaging+informatics+in+medicine&rft.au=Wang%2C+Chih-Hung&rft.au=Li%2C+Jia-Da&rft.au=Wu%2C+Cheng-Yi&rft.au=Wu%2C+Yu-Chen&rft.date=2024-02-01&rft.issn=2948-2933&rft.eissn=2948-2933&rft.volume=37&rft.issue=1&rft.spage=363&rft_id=info:doi/10.1007%2Fs10278-023-00929-3&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2948-2933&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2948-2933&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2948-2933&client=summon |