Application of the residue number system to reduce hardware costs of the convolutional neural network implementation
Convolutional neural networks are a promising tool for solving the problem of pattern recognition. Most well-known convolutional neural networks implementations require a significant amount of memory to store weights in the process of learning and working. We propose a convolutional neural network a...
        Saved in:
      
    
          | Published in | Mathematics and computers in simulation Vol. 177; pp. 232 - 243 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.11.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0378-4754 1872-7166  | 
| DOI | 10.1016/j.matcom.2020.04.031 | 
Cover
| Abstract | Convolutional neural networks are a promising tool for solving the problem of pattern recognition. Most well-known convolutional neural networks implementations require a significant amount of memory to store weights in the process of learning and working. We propose a convolutional neural network architecture in which the neural network is divided into hardware and software parts to increase performance and reduce the cost of implementation resources. We also propose to use the residue number system (RNS) in the hardware part to implement the convolutional layer of the neural network. Software simulations using Matlab 2018b showed that convolutional neural network with a minimum number of layers can be quickly and successfully trained. The hardware implementation of the convolution layer shows that the use of RNS allows to reduce the hardware costs on 7.86%–37.78% compared to the two’s complement implementation. The use of the proposed heterogeneous implementation reduces the average time of image recognition by 41.17%. | 
    
|---|---|
| AbstractList | Convolutional neural networks are a promising tool for solving the problem of pattern recognition. Most well-known convolutional neural networks implementations require a significant amount of memory to store weights in the process of learning and working. We propose a convolutional neural network architecture in which the neural network is divided into hardware and software parts to increase performance and reduce the cost of implementation resources. We also propose to use the residue number system (RNS) in the hardware part to implement the convolutional layer of the neural network. Software simulations using Matlab 2018b showed that convolutional neural network with a minimum number of layers can be quickly and successfully trained. The hardware implementation of the convolution layer shows that the use of RNS allows to reduce the hardware costs on 7.86%–37.78% compared to the two’s complement implementation. The use of the proposed heterogeneous implementation reduces the average time of image recognition by 41.17%. | 
    
| Author | Valueva, M.V. Nagornov, N.N. Lyakhov, P.A. Valuev, G.V. Chervyakov, N.I.  | 
    
| Author_xml | – sequence: 1 givenname: M.V. surname: Valueva fullname: Valueva, M.V. organization: Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University, Stavropol, Russia – sequence: 2 givenname: N.N. surname: Nagornov fullname: Nagornov, N.N. email: sparta1392@mail.ru organization: Department of Automation and Control Processes, St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia – sequence: 3 givenname: P.A. surname: Lyakhov fullname: Lyakhov, P.A. organization: Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University, Stavropol, Russia – sequence: 4 givenname: G.V. surname: Valuev fullname: Valuev, G.V. organization: Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University, Stavropol, Russia – sequence: 5 givenname: N.I. surname: Chervyakov fullname: Chervyakov, N.I. organization: Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University, Stavropol, Russia  | 
    
| BookMark | eNqFkMtOwzAQRS1UJNrCH7DwDyTYedlhgVRVvKRKbGBtOc5EdUniyHZa9e9xG9iwgNUdyTp3PGeBZr3pAaFbSmJKaHG3izvplenihCQkJllMUnqB5pSzJGK0KGZoTlLGo4zl2RVaOLcjhIQ5nyO_GoZWK-m16bFpsN8CtuB0PQLux64Ci93ReeiwN-GhHhXgrbT1QVrAyjjvfihl-r1px1ORbHEPoz2HPxj7iXU3tNBB78-LrtFlI1sHN9-5RB9Pj-_rl2jz9vy6Xm0ilbLERzIhnCmWZBUvaAo8RFmQouA8rWRS04bSjJWScslSWdY1r0oekmUBz3PK0iW6n3qVNc5ZaITS0w-8lboVlIiTP7ETkz9x8idIJoK_AGe_4MHqTtrjf9jDhEE4bK_BCqc09ApqbUF5URv9d8EXzmGRAQ | 
    
| CitedBy_id | crossref_primary_10_1016_j_geoen_2024_213540 crossref_primary_10_1186_s13059_022_02816_6 crossref_primary_10_1103_PhysRevD_107_034032 crossref_primary_10_1364_OPTCON_530560 crossref_primary_10_1093_mnras_stac166 crossref_primary_10_1364_AO_475388 crossref_primary_10_1007_s41666_023_00130_9 crossref_primary_10_1049_itr2_12575 crossref_primary_10_3390_coatings11020231 crossref_primary_10_3390_s21186141 crossref_primary_10_1109_JAS_2021_1004284 crossref_primary_10_3390_electronics10091041 crossref_primary_10_1016_j_jisa_2022_103405 crossref_primary_10_4081_jphr_2021_1985 crossref_primary_10_1007_s12572_021_00312_x crossref_primary_10_1109_TCSII_2023_3256401 crossref_primary_10_1109_ACCESS_2023_3283982 crossref_primary_10_3390_ijms24097853 crossref_primary_10_1002_cpe_7575 crossref_primary_10_17085_apm_23056 crossref_primary_10_3390_app13053089 crossref_primary_10_1016_j_jclepro_2023_139040 crossref_primary_10_5594_JMI_2023_3249359 crossref_primary_10_1088_1742_6596_1952_3_032043 crossref_primary_10_3390_ijerph191710707 crossref_primary_10_1007_s11269_022_03120_5 crossref_primary_10_1016_j_scitotenv_2022_153559 crossref_primary_10_1109_ACCESS_2022_3221400 crossref_primary_10_16984_saufenbilder_828841 crossref_primary_10_1002_adhm_202100734 crossref_primary_10_1016_j_fraope_2025_100225 crossref_primary_10_3390_a15080287 crossref_primary_10_3390_app15031464 crossref_primary_10_3390_sym17030410 crossref_primary_10_1007_s00521_021_06809_7 crossref_primary_10_21833_ijaas_2023_01_010 crossref_primary_10_1109_ACCESS_2023_3258689 crossref_primary_10_1038_s41597_022_01699_3 crossref_primary_10_1109_MITP_2021_3073665 crossref_primary_10_1109_TCASAI_2024_3493035 crossref_primary_10_3390_drones6110368 crossref_primary_10_1007_s11227_024_06030_y crossref_primary_10_1021_acsphotonics_3c01704 crossref_primary_10_3390_diagnostics11020300 crossref_primary_10_3390_ijgi12100419 crossref_primary_10_4018_IJSWIS_295553 crossref_primary_10_2339_politeknik_775185 crossref_primary_10_1109_ACCESS_2020_3013540 crossref_primary_10_3390_ijms232112975 crossref_primary_10_1016_j_irbm_2024_100836 crossref_primary_10_1007_s10586_021_03397_y crossref_primary_10_3390_electronics12030735 crossref_primary_10_1016_j_procs_2024_10_292 crossref_primary_10_1155_2021_6660651 crossref_primary_10_3390_app14146388 crossref_primary_10_1002_ima_22623 crossref_primary_10_1016_j_heliyon_2024_e26025 crossref_primary_10_33737_jgpps_151661 crossref_primary_10_1109_ACCESS_2023_3296382 crossref_primary_10_3389_fneur_2021_703797 crossref_primary_10_5607_en23001 crossref_primary_10_34186_klujes_1546178 crossref_primary_10_3390_gels10110715 crossref_primary_10_3390_app112412099 crossref_primary_10_1155_2024_1337725 crossref_primary_10_1155_2022_7827587 crossref_primary_10_1145_3656479 crossref_primary_10_1109_ACCESS_2022_3151361 crossref_primary_10_3390_su132212493 crossref_primary_10_1117_1_JRS_16_048506 crossref_primary_10_1093_bib_bbaa356 crossref_primary_10_1109_ACCESS_2024_3386841 crossref_primary_10_1016_j_matpr_2020_10_579 crossref_primary_10_3103_S0027131421020127 crossref_primary_10_1016_j_ijrobp_2021_02_032 crossref_primary_10_1016_j_engappai_2020_104135 crossref_primary_10_1016_j_pmcj_2022_101594 crossref_primary_10_1109_ACCESS_2024_3482012 crossref_primary_10_5937_vojtehg71_40391 crossref_primary_10_1371_journal_pone_0274203 crossref_primary_10_3390_w13243545 crossref_primary_10_3889_oamjms_2021_6955 crossref_primary_10_1063_5_0142608 crossref_primary_10_3390_math12213399 crossref_primary_10_32628_CSEIT217545 crossref_primary_10_3390_sym14081511 crossref_primary_10_3390_electronics12040985 crossref_primary_10_1080_0954898X_2024_2434487 crossref_primary_10_36306_konjes_1173939 crossref_primary_10_1002_suco_202000029 crossref_primary_10_3390_rs12203318 crossref_primary_10_3390_info15060317 crossref_primary_10_1007_s00784_025_06283_8 crossref_primary_10_3390_math10132354 crossref_primary_10_1007_s10527_025_10444_0 crossref_primary_10_3390_app12199545 crossref_primary_10_1038_s41598_025_85602_1 crossref_primary_10_3390_app11156845 crossref_primary_10_3390_s24030877 crossref_primary_10_3390_rs16132403 crossref_primary_10_37391_ijeer_100322 crossref_primary_10_56294_dm2024_356 crossref_primary_10_1109_JIOT_2022_3189407 crossref_primary_10_3390_diagnostics12122903 crossref_primary_10_1093_jcde_qwab044 crossref_primary_10_1142_S0219720022500019 crossref_primary_10_1016_j_commatsci_2023_112322 crossref_primary_10_1155_2020_7240129 crossref_primary_10_1016_j_jmsy_2022_07_002 crossref_primary_10_3390_make4020015 crossref_primary_10_3389_fphys_2025_1522090 crossref_primary_10_3390_info15110731 crossref_primary_10_3390_diagnostics13020288 crossref_primary_10_1016_j_egyr_2023_05_034 crossref_primary_10_1109_ACCESS_2024_3430838 crossref_primary_10_1016_j_radphyschem_2023_111180 crossref_primary_10_1109_ACCESS_2023_3241837 crossref_primary_10_3390_app11010316 crossref_primary_10_1088_1742_6596_2673_1_012032 crossref_primary_10_1108_AEAT_05_2022_0132 crossref_primary_10_54097_hset_v7i_1022 crossref_primary_10_1039_D4TB00909F crossref_primary_10_1155_2022_3212014 crossref_primary_10_1109_ACCESS_2020_3040780 crossref_primary_10_1016_j_applthermaleng_2021_116849 crossref_primary_10_1007_s00521_023_08612_y crossref_primary_10_1016_j_heliyon_2024_e32972 crossref_primary_10_3389_fonc_2021_644703 crossref_primary_10_3390_heritage4010008 crossref_primary_10_3390_s22197655 crossref_primary_10_1016_j_compbiomed_2022_105547 crossref_primary_10_1016_j_jbi_2022_104078 crossref_primary_10_3390_jmse10010032 crossref_primary_10_1088_1742_6596_2701_1_012106 crossref_primary_10_3390_en16093688 crossref_primary_10_4018_JOEUC_300762 crossref_primary_10_1007_s10462_021_10058_4 crossref_primary_10_1088_1757_899X_1125_1_012021 crossref_primary_10_1007_s11277_023_10258_x crossref_primary_10_3390_computers11050078 crossref_primary_10_3233_JAD_230055 crossref_primary_10_14775_ksmpe_2022_21_12_001 crossref_primary_10_1002_cpe_7629 crossref_primary_10_3390_electronics12040956 crossref_primary_10_3233_THC_212827 crossref_primary_10_1016_j_anai_2022_02_025 crossref_primary_10_1007_s42979_022_01155_4 crossref_primary_10_1155_2021_1148954 crossref_primary_10_1142_S021987622250044X crossref_primary_10_1016_j_chemosphere_2021_131690 crossref_primary_10_1016_j_ijms_2023_117050 crossref_primary_10_1016_j_egyr_2021_02_065 crossref_primary_10_1016_j_photonics_2022_101071 crossref_primary_10_1002_ett_4622 crossref_primary_10_1080_24751839_2023_2272484 crossref_primary_10_1093_pcmedi_pbaa029 crossref_primary_10_2118_219465_PA crossref_primary_10_1017_dce_2023_26 crossref_primary_10_3390_ijerph20054605 crossref_primary_10_1016_j_resconrec_2023_106865 crossref_primary_10_1088_1742_6596_1658_1_012005 crossref_primary_10_1515_jisys_2023_0054 crossref_primary_10_1061_JUPDDM_UPENG_5010 crossref_primary_10_1016_j_aei_2024_102458 crossref_primary_10_3390_ijms22073605 crossref_primary_10_1007_s00392_022_02012_3 crossref_primary_10_1007_s00521_021_06126_z crossref_primary_10_1016_j_knosys_2022_108827 crossref_primary_10_4015_S1016237223500199 crossref_primary_10_1016_j_inffus_2020_10_004 crossref_primary_10_1016_j_oceaneng_2022_111518 crossref_primary_10_1016_j_icheatmasstransfer_2020_104882 crossref_primary_10_1360_SST_2022_0444 crossref_primary_10_1016_j_resconrec_2022_106272 crossref_primary_10_3390_app13053024 crossref_primary_10_1016_j_neunet_2021_10_005 crossref_primary_10_1007_s11042_023_16278_w crossref_primary_10_1080_14680629_2021_1886160 crossref_primary_10_1136_jnis_2022_019627 crossref_primary_10_3390_app11052070 crossref_primary_10_1007_s42461_023_00768_4 crossref_primary_10_1109_TIA_2022_3202159 crossref_primary_10_1063_5_0091068 crossref_primary_10_1177_19458924231162437 crossref_primary_10_1186_s12903_021_01777_9 crossref_primary_10_3389_fcomp_2023_1235622 crossref_primary_10_4103_ija_ija_1228_23 crossref_primary_10_3390_biomedicines11020356 crossref_primary_10_1016_j_csbj_2022_06_047 crossref_primary_10_1007_s11227_022_04465_9 crossref_primary_10_1097_PPO_0000000000000545 crossref_primary_10_7759_cureus_70363 crossref_primary_10_1016_j_csbj_2021_10_023 crossref_primary_10_1016_j_jtherbio_2022_103444 crossref_primary_10_1038_s41598_022_07848_3 crossref_primary_10_1371_journal_pcbi_1008821 crossref_primary_10_1016_j_cja_2025_103436 crossref_primary_10_1016_j_matcom_2021_11_007 crossref_primary_10_1016_j_procs_2021_11_084 crossref_primary_10_1016_j_seppur_2022_121959 crossref_primary_10_2139_ssrn_4133206 crossref_primary_10_1186_s13321_024_00829_w crossref_primary_10_1038_s42004_021_00594_z crossref_primary_10_3390_jmse10081025 crossref_primary_10_1039_D2DD00047D crossref_primary_10_1007_s11042_022_13963_0 crossref_primary_10_1007_s00466_021_02079_1 crossref_primary_10_1007_s12539_022_00538_8 crossref_primary_10_3390_w13192664 crossref_primary_10_1093_bib_bbab047 crossref_primary_10_1007_s10916_020_01689_1 crossref_primary_10_3390_app13052754 crossref_primary_10_1016_j_eswa_2022_118576 crossref_primary_10_3389_fimmu_2021_642383 crossref_primary_10_3390_rs14133130 crossref_primary_10_1016_j_matpr_2020_11_317 crossref_primary_10_31083_j_rcm2204121 crossref_primary_10_3390_fractalfract7100710 crossref_primary_10_3390_s23115313 crossref_primary_10_1007_s13202_022_01492_3 crossref_primary_10_3390_jimaging10080193 crossref_primary_10_3390_asi6020053 crossref_primary_10_3390_rs14215373 crossref_primary_10_1029_2021WR031454 crossref_primary_10_1016_j_csi_2024_103845 crossref_primary_10_1109_TGRS_2023_3267445 crossref_primary_10_1007_s00521_022_07084_w crossref_primary_10_1016_j_image_2022_116899 crossref_primary_10_1121_10_0005820 crossref_primary_10_2118_214681_PA crossref_primary_10_1016_j_petrol_2022_110338 crossref_primary_10_1007_s00226_021_01309_2 crossref_primary_10_17798_bitlisfen_1518498 crossref_primary_10_1680_jbren_21_00063 crossref_primary_10_1155_2022_8925205 crossref_primary_10_3390_iot2010007 crossref_primary_10_1002_adsr_202200072 crossref_primary_10_1007_s12596_023_01160_7 crossref_primary_10_1002_cpe_7038 crossref_primary_10_1002_bkcs_12445 crossref_primary_10_3390_s22228830 crossref_primary_10_1016_j_bspc_2024_106883 crossref_primary_10_1016_j_petrol_2022_110442 crossref_primary_10_1093_bib_bbad120 crossref_primary_10_3390_electronics10060749 crossref_primary_10_1016_j_agrformet_2023_109570 crossref_primary_10_1016_j_istruc_2024_107864 crossref_primary_10_1007_s11554_022_01227_x crossref_primary_10_1155_2022_9555598 crossref_primary_10_3390_rs14112663 crossref_primary_10_3389_fphy_2022_1007861 crossref_primary_10_1038_s41598_022_11693_9 crossref_primary_10_4015_S1016237223500047 crossref_primary_10_3390_diagnostics14070694  | 
    
| Cites_doi | 10.1016/0898-1221(94)90052-3 10.1016/j.patcog.2017.09.025 10.1109/ISSPIT.2004.1433796 10.1109/ACCESS.2018.2890150 10.1109/5.726791 10.1016/j.imavis.2018.09.001 10.1109/TCSI.2017.2767204 10.1016/j.jvcir.2018.07.011 10.1080/00207160.2016.1247439 10.1016/j.procs.2017.09.022 10.1109/TCSI.2017.2759803 10.1109/TC.2010.261 10.1109/MM.2018.032271057 10.1109/TCAD.2018.2857078 10.1016/j.neucom.2017.05.025  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 International Association for Mathematics and Computers in Simulation (IMACS) | 
    
| Copyright_xml | – notice: 2020 International Association for Mathematics and Computers in Simulation (IMACS) | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.matcom.2020.04.031 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-7166 | 
    
| EndPage | 243 | 
    
| ExternalDocumentID | 10_1016_j_matcom_2020_04_031 S0378475420301580  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 63O 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SME SPC SPCBC SSB SSD SST SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c372t-a2087c724b8613e8b8696066883ba2d1f11479a18a73a9dd8b98a9d74c3755173 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0378-4754 | 
    
| IngestDate | Thu Oct 16 04:27:28 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 Fri Feb 23 02:47:16 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Quantization noise Residue number system Image processing Field-programmable gate array (FPGA) Convolutional neural networks  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c372t-a2087c724b8613e8b8696066883ba2d1f11479a18a73a9dd8b98a9d74c3755173 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_matcom_2020_04_031 crossref_primary_10_1016_j_matcom_2020_04_031 elsevier_sciencedirect_doi_10_1016_j_matcom_2020_04_031  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | November 2020 2020-11-00  | 
    
| PublicationDateYYYYMMDD | 2020-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Mathematics and computers in simulation | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Živaljević, Stamenković, Stojanović (b32) 2012 Rao, Yip (b24) 2001 Bezborah (b3) 2012 Krizhevsky, Sutskever, Hinton (b14) 2012; 25 Sang, Liu, Zhang (b27) 2016 Zhang, Shao, Luo (b35) 2018; 55 Cardarilli, Nannarelli, Re (b4) 2007 Hung, Parhami (b12) 1994; 27 Cheng, Lu, Feng, Yuan, Zhou (b6) 2018; 74 Dlugosz, Dlugosz (b10) 2018 Nakahara, Sasao (b21) 2018 de Matos, Paludo, Chervyakov, Lyakhov, Pettenghi (b18) 2017 Zombo26 / conv – Bitbucket [Electronic resource] – Access mode Chen, Duffner, Stoian, Dufour, Baskurta (b5) 2018; 79 Gong, Wang, Li, Chen, Zhou (b11) 2018; 37 Mehta, Huang, Cheng, Bagga, Mathur, Li, Draper, Nazarian (b19) 2018 Qayyum, Anwar, Awais, Majid (b23) 2017; 266 Chervyakov, Lyakhov, Kalita, Shulzhenko (b7) 2016 Shawahna, Sait, El-Maleh (b29) 2019; 7 (b2) 2017 Manabe, Shibata, Oguri (b17) 2017 Sarikan, Ozbayoglu, Zilcia (b28) 2017; 114 Nakahara, Sasao (b20) 2015 Lin, Chang (b16) 2018; 65 Chervyakov, Lyakhov, Valueva (b8) 2017 A. Sameh, M.S.A.A.E. Kader, Generic floating point library for neuro-fuzzy controllers based on FPGA technology, in: Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology, 2004, pp. 369–372. Wang, Lin, Wang (b33) 2018; 65 . LeCun, Bottou, Bengio, Haffiner (b15) 1998; 86 Vergos, Dimitrakopoulos (b31) 2012; 61 Chervyakov, Molahosseini, Lyakhov, Babenko, Deryabin (b9) 2017; 94 Jouppi, Young, Patil, Patterson (b13) 2018; 38 Szegedy, Liu, Jia1, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b30) 2015 Omondi, Premkumar (b22) 2007 F. Rothganger, S. Lazebnik, C. Schmid, J. Ponce, Object Recognition Database [Electronic resource] – Access mode Yuan (b34) 2016 Manabe (10.1016/j.matcom.2020.04.031_b17) 2017 (10.1016/j.matcom.2020.04.031_b2) 2017 Cardarilli (10.1016/j.matcom.2020.04.031_b4) 2007 Živaljević (10.1016/j.matcom.2020.04.031_b32) 2012 Dlugosz (10.1016/j.matcom.2020.04.031_b10) 2018 Jouppi (10.1016/j.matcom.2020.04.031_b13) 2018; 38 Szegedy (10.1016/j.matcom.2020.04.031_b30) 2015 LeCun (10.1016/j.matcom.2020.04.031_b15) 1998; 86 Sang (10.1016/j.matcom.2020.04.031_b27) 2016 Lin (10.1016/j.matcom.2020.04.031_b16) 2018; 65 Nakahara (10.1016/j.matcom.2020.04.031_b21) 2018 Hung (10.1016/j.matcom.2020.04.031_b12) 1994; 27 Omondi (10.1016/j.matcom.2020.04.031_b22) 2007 Nakahara (10.1016/j.matcom.2020.04.031_b20) 2015 Gong (10.1016/j.matcom.2020.04.031_b11) 2018; 37 Yuan (10.1016/j.matcom.2020.04.031_b34) 2016 Chervyakov (10.1016/j.matcom.2020.04.031_b7) 2016 Qayyum (10.1016/j.matcom.2020.04.031_b23) 2017; 266 Vergos (10.1016/j.matcom.2020.04.031_b31) 2012; 61 Zhang (10.1016/j.matcom.2020.04.031_b35) 2018; 55 Chen (10.1016/j.matcom.2020.04.031_b5) 2018; 79 Shawahna (10.1016/j.matcom.2020.04.031_b29) 2019; 7 Cheng (10.1016/j.matcom.2020.04.031_b6) 2018; 74 10.1016/j.matcom.2020.04.031_b26 10.1016/j.matcom.2020.04.031_b1 de Matos (10.1016/j.matcom.2020.04.031_b18) 2017 Mehta (10.1016/j.matcom.2020.04.031_b19) 2018 Bezborah (10.1016/j.matcom.2020.04.031_b3) 2012 Chervyakov (10.1016/j.matcom.2020.04.031_b9) 2017; 94 Krizhevsky (10.1016/j.matcom.2020.04.031_b14) 2012; 25 Rao (10.1016/j.matcom.2020.04.031_b24) 2001 Chervyakov (10.1016/j.matcom.2020.04.031_b8) 2017 Sarikan (10.1016/j.matcom.2020.04.031_b28) 2017; 114 10.1016/j.matcom.2020.04.031_b25 Wang (10.1016/j.matcom.2020.04.031_b33) 2018; 65  | 
    
| References_xml | – start-page: 33 year: 2016 end-page: 37 ident: b7 article-title: Effect of RNS dynamic range on grayscale images filtering publication-title: XV International Symposium Problems of Redundancy in Information and Control Systems (REDUNDANCY) – start-page: 323 year: 2016 end-page: 326 ident: b34 article-title: Efficient hardware architecture of softmax layer in deep neural network publication-title: 29th IEEE International System-on-Chip Conference (SOCC) – volume: 38 start-page: 10 year: 2018 end-page: 19 ident: b13 article-title: Motivation for and evaluation of the first tensor processing unit publication-title: IEEE Micro – volume: 25 year: 2012 ident: b14 article-title: Imagenet classification with deep Convolutional Neural Networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b15 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 74 start-page: 474 year: 2018 end-page: 487 ident: b6 article-title: Scene recognition with objectness publication-title: Pattern Recognit. – start-page: 381 year: 2018 end-page: 384 ident: b10 article-title: Nonlinear activation functions for artificial neural networks realized in hardware publication-title: 25th International Conference Mixed Design of Integrated Circuits and System (MIXDES) – start-page: 67 year: 2012 end-page: 70 ident: b3 article-title: A hardware architecture for training of artificial neural networks using particle swarm optimization publication-title: Third International Conference on Intelligent Systems Modelling and Simulation – volume: 37 start-page: 2601 year: 2018 end-page: 2612 ident: b11 article-title: MALOC: A fully pipelined FPGA accelerator for convolutional neural networks with all layers mapped on chip publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. – start-page: 662 year: 2012 end-page: 666 ident: b32 article-title: Digital filter implementation based on the RNS with diminished-1 encoded channel publication-title: 35th International Conference on Telecommunications and Signal Processing (TSP) – volume: 65 start-page: 1642 year: 2018 end-page: 1651 ident: b16 article-title: Data and hardware efficient design for convolutional neural network publication-title: IEEE Trans. Circuits Syst. I. Regul. Pap. – reference: Zombo26 / conv – Bitbucket [Electronic resource] – Access mode: – start-page: 135 year: 2017 end-page: 140 ident: b8 article-title: Increasing of Convolutional Neural Network performance using residue number system publication-title: International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON) – volume: 65 start-page: 1941 year: 2018 end-page: 1953 ident: b33 article-title: Efficient hardware architectures for deep convolutional neural network publication-title: IEEE Trans. Circuits Syst. I. Regul. Pap. – start-page: 1412 year: 2007 end-page: 1416 ident: b4 article-title: Residue number system for low-power DSP applications publication-title: Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers – volume: 94 start-page: 1833 year: 2017 end-page: 1849 ident: b9 article-title: Residue-to binary conversion for general moduli sets based on approximate Chinese remainder theorem publication-title: Int. J. Comput. Math. – volume: 266 start-page: 8 year: 2017 end-page: 20 ident: b23 article-title: Medical image retrieval using deep convolutional neural network publication-title: Neurocomputing – volume: 61 start-page: 173 year: 2012 end-page: 186 ident: b31 article-title: On Modulo 2 publication-title: IEEE Trans. Comput. – volume: 55 start-page: 640 year: 2018 end-page: 647 ident: b35 article-title: Small sample image recognition using improved Convolutional Neural Network publication-title: J. Vis. Commun. Image Represent. – volume: 27 start-page: 23 year: 1994 end-page: 25 ident: b12 article-title: An approximate sign detection method for residue numbers and its application to RNS division publication-title: Comput. Math. Appl. – start-page: 296 year: 2007 ident: b22 article-title: Residue Number Systems: Theory and Implementation – start-page: 1 year: 2018 end-page: 5 ident: b21 article-title: A high-speed low-power deep neural network on an FPGA based on the nested RNS: Applied to an object detector publication-title: IEEE International Symposium on Circuits and Systems (ISCAS) – year: 2017 ident: b2 article-title: Vivado AXI reference [optional] vivado design suite AXI reference guide – start-page: 1 year: 2017 end-page: 4 ident: b18 article-title: Efficient implementation of modular multiplication by constants applied to RNS reverse converters publication-title: IEEE International Symposium on Circuits and Systems (ISCAS) – start-page: 1 year: 2016 end-page: 2 ident: b27 article-title: FPGA-based acceleration of neural network training publication-title: IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO) – reference: . – volume: 79 start-page: 25 year: 2018 end-page: 34 ident: b5 article-title: Deep and low-level feature based attribute learning for person re-identification publication-title: Image Vis. Comput. – start-page: 383 year: 2018 end-page: 388 ident: b19 article-title: High performance training of deep neural networks using pipelined hardware acceleration and distributed memory publication-title: 19th International Symposium on Quality Electronic Design (ISQED – start-page: 399 year: 2001 ident: b24 article-title: The Transform and Data Compression Handbook – reference: F. Rothganger, S. Lazebnik, C. Schmid, J. Ponce, Object Recognition Database [Electronic resource] – Access mode: – reference: A. Sameh, M.S.A.A.E. Kader, Generic floating point library for neuro-fuzzy controllers based on FPGA technology, in: Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology, 2004, pp. 369–372. – start-page: 1 year: 2015 end-page: 9 ident: b30 article-title: Going deeper with convolutions publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 1 year: 2015 end-page: 6 ident: b20 article-title: A deep convolutional neural network based on nested residue number system publication-title: 25th International Conference on Field Programmable Logic and Applications (FPL) – volume: 114 start-page: 515 year: 2017 end-page: 522 ident: b28 article-title: Automated vehicle classification with image processing and computational intelligence publication-title: Procedia Comput. Sci. – start-page: 299 year: 2017 end-page: 300 ident: b17 article-title: FPGA implementation of a real-time super-resolution system with a CNN based on a residue number system publication-title: International Conference on Field Programmable Technology (ICFPT) – volume: 7 start-page: 7823 year: 2019 end-page: 7859 ident: b29 article-title: FPGA-based accelerators of deep learning networks for learning and classification: A review publication-title: IEEE Access – volume: 27 start-page: 23 issue: 4 year: 1994 ident: 10.1016/j.matcom.2020.04.031_b12 article-title: An approximate sign detection method for residue numbers and its application to RNS division publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(94)90052-3 – start-page: 1 year: 2018 ident: 10.1016/j.matcom.2020.04.031_b21 article-title: A high-speed low-power deep neural network on an FPGA based on the nested RNS: Applied to an object detector – start-page: 1 year: 2016 ident: 10.1016/j.matcom.2020.04.031_b27 article-title: FPGA-based acceleration of neural network training – volume: 74 start-page: 474 year: 2018 ident: 10.1016/j.matcom.2020.04.031_b6 article-title: Scene recognition with objectness publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.09.025 – start-page: 383 year: 2018 ident: 10.1016/j.matcom.2020.04.031_b19 article-title: High performance training of deep neural networks using pipelined hardware acceleration and distributed memory – start-page: 323 year: 2016 ident: 10.1016/j.matcom.2020.04.031_b34 article-title: Efficient hardware architecture of softmax layer in deep neural network – start-page: 1 year: 2015 ident: 10.1016/j.matcom.2020.04.031_b20 article-title: A deep convolutional neural network based on nested residue number system – ident: 10.1016/j.matcom.2020.04.031_b26 doi: 10.1109/ISSPIT.2004.1433796 – ident: 10.1016/j.matcom.2020.04.031_b1 – volume: 7 start-page: 7823 year: 2019 ident: 10.1016/j.matcom.2020.04.031_b29 article-title: FPGA-based accelerators of deep learning networks for learning and classification: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890150 – start-page: 1412 year: 2007 ident: 10.1016/j.matcom.2020.04.031_b4 article-title: Residue number system for low-power DSP applications – start-page: 1 year: 2017 ident: 10.1016/j.matcom.2020.04.031_b18 article-title: Efficient implementation of modular multiplication by constants applied to RNS reverse converters – start-page: 662 year: 2012 ident: 10.1016/j.matcom.2020.04.031_b32 article-title: Digital filter implementation based on the RNS with diminished-1 encoded channel – start-page: 299 year: 2017 ident: 10.1016/j.matcom.2020.04.031_b17 article-title: FPGA implementation of a real-time super-resolution system with a CNN based on a residue number system – start-page: 1 year: 2015 ident: 10.1016/j.matcom.2020.04.031_b30 article-title: Going deeper with convolutions – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.matcom.2020.04.031_b15 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 79 start-page: 25 year: 2018 ident: 10.1016/j.matcom.2020.04.031_b5 article-title: Deep and low-level feature based attribute learning for person re-identification publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2018.09.001 – start-page: 296 year: 2007 ident: 10.1016/j.matcom.2020.04.031_b22 – volume: 65 start-page: 1941 issue: 6 year: 2018 ident: 10.1016/j.matcom.2020.04.031_b33 article-title: Efficient hardware architectures for deep convolutional neural network publication-title: IEEE Trans. Circuits Syst. I. Regul. Pap. doi: 10.1109/TCSI.2017.2767204 – volume: 55 start-page: 640 year: 2018 ident: 10.1016/j.matcom.2020.04.031_b35 article-title: Small sample image recognition using improved Convolutional Neural Network publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2018.07.011 – start-page: 33 year: 2016 ident: 10.1016/j.matcom.2020.04.031_b7 article-title: Effect of RNS dynamic range on grayscale images filtering – volume: 94 start-page: 1833 issue: 9 year: 2017 ident: 10.1016/j.matcom.2020.04.031_b9 article-title: Residue-to binary conversion for general moduli sets based on approximate Chinese remainder theorem publication-title: Int. J. Comput. Math. doi: 10.1080/00207160.2016.1247439 – start-page: 381 year: 2018 ident: 10.1016/j.matcom.2020.04.031_b10 article-title: Nonlinear activation functions for artificial neural networks realized in hardware – volume: 114 start-page: 515 year: 2017 ident: 10.1016/j.matcom.2020.04.031_b28 article-title: Automated vehicle classification with image processing and computational intelligence publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.09.022 – year: 2017 ident: 10.1016/j.matcom.2020.04.031_b2 – start-page: 67 year: 2012 ident: 10.1016/j.matcom.2020.04.031_b3 article-title: A hardware architecture for training of artificial neural networks using particle swarm optimization – start-page: 135 year: 2017 ident: 10.1016/j.matcom.2020.04.031_b8 article-title: Increasing of Convolutional Neural Network performance using residue number system – volume: 65 start-page: 1642 issue: 5 year: 2018 ident: 10.1016/j.matcom.2020.04.031_b16 article-title: Data and hardware efficient design for convolutional neural network publication-title: IEEE Trans. Circuits Syst. I. Regul. Pap. doi: 10.1109/TCSI.2017.2759803 – volume: 25 issue: 2 year: 2012 ident: 10.1016/j.matcom.2020.04.031_b14 article-title: Imagenet classification with deep Convolutional Neural Networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 61 start-page: 173 issue: 2 year: 2012 ident: 10.1016/j.matcom.2020.04.031_b31 article-title: On Modulo 2∧n+1 Adder design publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2010.261 – ident: 10.1016/j.matcom.2020.04.031_b25 – volume: 38 start-page: 10 issue: 3 year: 2018 ident: 10.1016/j.matcom.2020.04.031_b13 article-title: Motivation for and evaluation of the first tensor processing unit publication-title: IEEE Micro doi: 10.1109/MM.2018.032271057 – volume: 37 start-page: 2601 issue: 11 year: 2018 ident: 10.1016/j.matcom.2020.04.031_b11 article-title: MALOC: A fully pipelined FPGA accelerator for convolutional neural networks with all layers mapped on chip publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2018.2857078 – volume: 266 start-page: 8 year: 2017 ident: 10.1016/j.matcom.2020.04.031_b23 article-title: Medical image retrieval using deep convolutional neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.025 – start-page: 399 year: 2001 ident: 10.1016/j.matcom.2020.04.031_b24  | 
    
| SSID | ssj0007545 | 
    
| Score | 2.6531425 | 
    
| Snippet | Convolutional neural networks are a promising tool for solving the problem of pattern recognition. Most well-known convolutional neural networks... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 232 | 
    
| SubjectTerms | Convolutional neural networks Field-programmable gate array (FPGA) Image processing Quantization noise Residue number system  | 
    
| Title | Application of the residue number system to reduce hardware costs of the convolutional neural network implementation | 
    
| URI | https://dx.doi.org/10.1016/j.matcom.2020.04.031 | 
    
| Volume | 177 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: ACRLP dateStart: 19950501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: AIKHN dateStart: 19950501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYPXuDbJmuw4hjIVd9HBbqFpMpjoOrYOb_7tvqSJUxAFT6FNXlte0pffa3_vPYQuJRjeqUk4sTSzBPBtSgDHUVIAemYZzzJduA_6D6NsOOZ3k-6kgQYxFsbRKoPtr226t9bhTCdos7OYzTqPCRNgWrucOlTflc5v51y4KgZX7xuaBwzwNEYYTNzoGD7nOV4ACh1nhAJm8glPWfrz9vRly7nZQzsBK-J-_Tj7qGHnB2g31mHA4bU8RFV_8xcal1MMmA6DFz0za4vrih-4TtiMqxI6DMwmdsFWb_nS4qJcVaso5TjoYS3CjV2uS994pjievUauues_QuOb66fBkIRqCqRgglYkp4kUhaBcS9jCrYTGey9SMp1Tk07BMxK9PJW5YHnPGKl7ElrBQRxglWDHqDkv5_YEYZHxxMVqmZQWPJFaA8i0zFi4jJGZ0S3EohJVEVKNu4oXLypyyp5VrXrlVK8SrkD1LUQ-pRZ1qo0_xos4P-rbklGwG_wqefpvyTO07Y7qYMRz1KyWa3sBqKTSbb_s2mirf3s_HH0AUJ_jWg | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1GeHlhNE9uJ3bGqqAq0XWilblYSu1IQtFWbio3fzjmxKUgIJCZL8V0SXZzzd8l3dwjdSHC8Ux1wYmhsCODbkACOoyQD9MxiHsdpZj_oD4Zxb8wfJtGkhjo-F8bSKp3vr3x66a3dkaazZnOR582ngAlwrRGnFtVHEuL2LR5RYSOw2_cNzwMkSh4jSBMr7vPnSpIXoEJLGqEAmsqKpyz8eX_6sud099GuA4u4Xd3PAaqZ2SHa840YsHsvj1DR3vyGxvMpBlCHIYzO9drgquUHrio242IOExoeJ7bZVm_J0uBsvipWXsuS0N1ihAvbYpflUFLFcf7qyeZ2_hiNu3ejTo-4dgokY4IWJKGBFJmgPJWwhxsJQxm-SMnShOpwCqGRaCWhTARLWlrLtCVhFBzUAVcJdoLqs_nMnCIsYh7YZC0d0owHMk0BZRqmDZxGy1inDcS8EVXmao3blhcvypPKnlVlemVNrwKuwPQNRD61FlWtjT_khX8-6tuaUbAd_Kp59m_Na7TdGw36qn8_fDxHO3amyky8QPViuTaXAFGK9Kpcgh-oaeTv | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+the+residue+number+system+to+reduce+hardware+costs+of+the+convolutional+neural+network+implementation&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Valueva%2C+M.V.&rft.au=Nagornov%2C+N.N.&rft.au=Lyakhov%2C+P.A.&rft.au=Valuev%2C+G.V.&rft.date=2020-11-01&rft.issn=0378-4754&rft.volume=177&rft.spage=232&rft.epage=243&rft_id=info:doi/10.1016%2Fj.matcom.2020.04.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2020_04_031 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon |