Application of the residue number system to reduce hardware costs of the convolutional neural network implementation

Convolutional neural networks are a promising tool for solving the problem of pattern recognition. Most well-known convolutional neural networks implementations require a significant amount of memory to store weights in the process of learning and working. We propose a convolutional neural network a...

Full description

Saved in:
Bibliographic Details
Published inMathematics and computers in simulation Vol. 177; pp. 232 - 243
Main Authors Valueva, M.V., Nagornov, N.N., Lyakhov, P.A., Valuev, G.V., Chervyakov, N.I.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2020
Subjects
Online AccessGet full text
ISSN0378-4754
1872-7166
DOI10.1016/j.matcom.2020.04.031

Cover

Abstract Convolutional neural networks are a promising tool for solving the problem of pattern recognition. Most well-known convolutional neural networks implementations require a significant amount of memory to store weights in the process of learning and working. We propose a convolutional neural network architecture in which the neural network is divided into hardware and software parts to increase performance and reduce the cost of implementation resources. We also propose to use the residue number system (RNS) in the hardware part to implement the convolutional layer of the neural network. Software simulations using Matlab 2018b showed that convolutional neural network with a minimum number of layers can be quickly and successfully trained. The hardware implementation of the convolution layer shows that the use of RNS allows to reduce the hardware costs on 7.86%–37.78% compared to the two’s complement implementation. The use of the proposed heterogeneous implementation reduces the average time of image recognition by 41.17%.
AbstractList Convolutional neural networks are a promising tool for solving the problem of pattern recognition. Most well-known convolutional neural networks implementations require a significant amount of memory to store weights in the process of learning and working. We propose a convolutional neural network architecture in which the neural network is divided into hardware and software parts to increase performance and reduce the cost of implementation resources. We also propose to use the residue number system (RNS) in the hardware part to implement the convolutional layer of the neural network. Software simulations using Matlab 2018b showed that convolutional neural network with a minimum number of layers can be quickly and successfully trained. The hardware implementation of the convolution layer shows that the use of RNS allows to reduce the hardware costs on 7.86%–37.78% compared to the two’s complement implementation. The use of the proposed heterogeneous implementation reduces the average time of image recognition by 41.17%.
Author Valueva, M.V.
Nagornov, N.N.
Lyakhov, P.A.
Valuev, G.V.
Chervyakov, N.I.
Author_xml – sequence: 1
  givenname: M.V.
  surname: Valueva
  fullname: Valueva, M.V.
  organization: Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University, Stavropol, Russia
– sequence: 2
  givenname: N.N.
  surname: Nagornov
  fullname: Nagornov, N.N.
  email: sparta1392@mail.ru
  organization: Department of Automation and Control Processes, St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia
– sequence: 3
  givenname: P.A.
  surname: Lyakhov
  fullname: Lyakhov, P.A.
  organization: Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University, Stavropol, Russia
– sequence: 4
  givenname: G.V.
  surname: Valuev
  fullname: Valuev, G.V.
  organization: Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University, Stavropol, Russia
– sequence: 5
  givenname: N.I.
  surname: Chervyakov
  fullname: Chervyakov, N.I.
  organization: Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University, Stavropol, Russia
BookMark eNqFkMtOwzAQRS1UJNrCH7DwDyTYedlhgVRVvKRKbGBtOc5EdUniyHZa9e9xG9iwgNUdyTp3PGeBZr3pAaFbSmJKaHG3izvplenihCQkJllMUnqB5pSzJGK0KGZoTlLGo4zl2RVaOLcjhIQ5nyO_GoZWK-m16bFpsN8CtuB0PQLux64Ci93ReeiwN-GhHhXgrbT1QVrAyjjvfihl-r1px1ORbHEPoz2HPxj7iXU3tNBB78-LrtFlI1sHN9-5RB9Pj-_rl2jz9vy6Xm0ilbLERzIhnCmWZBUvaAo8RFmQouA8rWRS04bSjJWScslSWdY1r0oekmUBz3PK0iW6n3qVNc5ZaITS0w-8lboVlIiTP7ETkz9x8idIJoK_AGe_4MHqTtrjf9jDhEE4bK_BCqc09ApqbUF5URv9d8EXzmGRAQ
CitedBy_id crossref_primary_10_1016_j_geoen_2024_213540
crossref_primary_10_1186_s13059_022_02816_6
crossref_primary_10_1103_PhysRevD_107_034032
crossref_primary_10_1364_OPTCON_530560
crossref_primary_10_1093_mnras_stac166
crossref_primary_10_1364_AO_475388
crossref_primary_10_1007_s41666_023_00130_9
crossref_primary_10_1049_itr2_12575
crossref_primary_10_3390_coatings11020231
crossref_primary_10_3390_s21186141
crossref_primary_10_1109_JAS_2021_1004284
crossref_primary_10_3390_electronics10091041
crossref_primary_10_1016_j_jisa_2022_103405
crossref_primary_10_4081_jphr_2021_1985
crossref_primary_10_1007_s12572_021_00312_x
crossref_primary_10_1109_TCSII_2023_3256401
crossref_primary_10_1109_ACCESS_2023_3283982
crossref_primary_10_3390_ijms24097853
crossref_primary_10_1002_cpe_7575
crossref_primary_10_17085_apm_23056
crossref_primary_10_3390_app13053089
crossref_primary_10_1016_j_jclepro_2023_139040
crossref_primary_10_5594_JMI_2023_3249359
crossref_primary_10_1088_1742_6596_1952_3_032043
crossref_primary_10_3390_ijerph191710707
crossref_primary_10_1007_s11269_022_03120_5
crossref_primary_10_1016_j_scitotenv_2022_153559
crossref_primary_10_1109_ACCESS_2022_3221400
crossref_primary_10_16984_saufenbilder_828841
crossref_primary_10_1002_adhm_202100734
crossref_primary_10_1016_j_fraope_2025_100225
crossref_primary_10_3390_a15080287
crossref_primary_10_3390_app15031464
crossref_primary_10_3390_sym17030410
crossref_primary_10_1007_s00521_021_06809_7
crossref_primary_10_21833_ijaas_2023_01_010
crossref_primary_10_1109_ACCESS_2023_3258689
crossref_primary_10_1038_s41597_022_01699_3
crossref_primary_10_1109_MITP_2021_3073665
crossref_primary_10_1109_TCASAI_2024_3493035
crossref_primary_10_3390_drones6110368
crossref_primary_10_1007_s11227_024_06030_y
crossref_primary_10_1021_acsphotonics_3c01704
crossref_primary_10_3390_diagnostics11020300
crossref_primary_10_3390_ijgi12100419
crossref_primary_10_4018_IJSWIS_295553
crossref_primary_10_2339_politeknik_775185
crossref_primary_10_1109_ACCESS_2020_3013540
crossref_primary_10_3390_ijms232112975
crossref_primary_10_1016_j_irbm_2024_100836
crossref_primary_10_1007_s10586_021_03397_y
crossref_primary_10_3390_electronics12030735
crossref_primary_10_1016_j_procs_2024_10_292
crossref_primary_10_1155_2021_6660651
crossref_primary_10_3390_app14146388
crossref_primary_10_1002_ima_22623
crossref_primary_10_1016_j_heliyon_2024_e26025
crossref_primary_10_33737_jgpps_151661
crossref_primary_10_1109_ACCESS_2023_3296382
crossref_primary_10_3389_fneur_2021_703797
crossref_primary_10_5607_en23001
crossref_primary_10_34186_klujes_1546178
crossref_primary_10_3390_gels10110715
crossref_primary_10_3390_app112412099
crossref_primary_10_1155_2024_1337725
crossref_primary_10_1155_2022_7827587
crossref_primary_10_1145_3656479
crossref_primary_10_1109_ACCESS_2022_3151361
crossref_primary_10_3390_su132212493
crossref_primary_10_1117_1_JRS_16_048506
crossref_primary_10_1093_bib_bbaa356
crossref_primary_10_1109_ACCESS_2024_3386841
crossref_primary_10_1016_j_matpr_2020_10_579
crossref_primary_10_3103_S0027131421020127
crossref_primary_10_1016_j_ijrobp_2021_02_032
crossref_primary_10_1016_j_engappai_2020_104135
crossref_primary_10_1016_j_pmcj_2022_101594
crossref_primary_10_1109_ACCESS_2024_3482012
crossref_primary_10_5937_vojtehg71_40391
crossref_primary_10_1371_journal_pone_0274203
crossref_primary_10_3390_w13243545
crossref_primary_10_3889_oamjms_2021_6955
crossref_primary_10_1063_5_0142608
crossref_primary_10_3390_math12213399
crossref_primary_10_32628_CSEIT217545
crossref_primary_10_3390_sym14081511
crossref_primary_10_3390_electronics12040985
crossref_primary_10_1080_0954898X_2024_2434487
crossref_primary_10_36306_konjes_1173939
crossref_primary_10_1002_suco_202000029
crossref_primary_10_3390_rs12203318
crossref_primary_10_3390_info15060317
crossref_primary_10_1007_s00784_025_06283_8
crossref_primary_10_3390_math10132354
crossref_primary_10_1007_s10527_025_10444_0
crossref_primary_10_3390_app12199545
crossref_primary_10_1038_s41598_025_85602_1
crossref_primary_10_3390_app11156845
crossref_primary_10_3390_s24030877
crossref_primary_10_3390_rs16132403
crossref_primary_10_37391_ijeer_100322
crossref_primary_10_56294_dm2024_356
crossref_primary_10_1109_JIOT_2022_3189407
crossref_primary_10_3390_diagnostics12122903
crossref_primary_10_1093_jcde_qwab044
crossref_primary_10_1142_S0219720022500019
crossref_primary_10_1016_j_commatsci_2023_112322
crossref_primary_10_1155_2020_7240129
crossref_primary_10_1016_j_jmsy_2022_07_002
crossref_primary_10_3390_make4020015
crossref_primary_10_3389_fphys_2025_1522090
crossref_primary_10_3390_info15110731
crossref_primary_10_3390_diagnostics13020288
crossref_primary_10_1016_j_egyr_2023_05_034
crossref_primary_10_1109_ACCESS_2024_3430838
crossref_primary_10_1016_j_radphyschem_2023_111180
crossref_primary_10_1109_ACCESS_2023_3241837
crossref_primary_10_3390_app11010316
crossref_primary_10_1088_1742_6596_2673_1_012032
crossref_primary_10_1108_AEAT_05_2022_0132
crossref_primary_10_54097_hset_v7i_1022
crossref_primary_10_1039_D4TB00909F
crossref_primary_10_1155_2022_3212014
crossref_primary_10_1109_ACCESS_2020_3040780
crossref_primary_10_1016_j_applthermaleng_2021_116849
crossref_primary_10_1007_s00521_023_08612_y
crossref_primary_10_1016_j_heliyon_2024_e32972
crossref_primary_10_3389_fonc_2021_644703
crossref_primary_10_3390_heritage4010008
crossref_primary_10_3390_s22197655
crossref_primary_10_1016_j_compbiomed_2022_105547
crossref_primary_10_1016_j_jbi_2022_104078
crossref_primary_10_3390_jmse10010032
crossref_primary_10_1088_1742_6596_2701_1_012106
crossref_primary_10_3390_en16093688
crossref_primary_10_4018_JOEUC_300762
crossref_primary_10_1007_s10462_021_10058_4
crossref_primary_10_1088_1757_899X_1125_1_012021
crossref_primary_10_1007_s11277_023_10258_x
crossref_primary_10_3390_computers11050078
crossref_primary_10_3233_JAD_230055
crossref_primary_10_14775_ksmpe_2022_21_12_001
crossref_primary_10_1002_cpe_7629
crossref_primary_10_3390_electronics12040956
crossref_primary_10_3233_THC_212827
crossref_primary_10_1016_j_anai_2022_02_025
crossref_primary_10_1007_s42979_022_01155_4
crossref_primary_10_1155_2021_1148954
crossref_primary_10_1142_S021987622250044X
crossref_primary_10_1016_j_chemosphere_2021_131690
crossref_primary_10_1016_j_ijms_2023_117050
crossref_primary_10_1016_j_egyr_2021_02_065
crossref_primary_10_1016_j_photonics_2022_101071
crossref_primary_10_1002_ett_4622
crossref_primary_10_1080_24751839_2023_2272484
crossref_primary_10_1093_pcmedi_pbaa029
crossref_primary_10_2118_219465_PA
crossref_primary_10_1017_dce_2023_26
crossref_primary_10_3390_ijerph20054605
crossref_primary_10_1016_j_resconrec_2023_106865
crossref_primary_10_1088_1742_6596_1658_1_012005
crossref_primary_10_1515_jisys_2023_0054
crossref_primary_10_1061_JUPDDM_UPENG_5010
crossref_primary_10_1016_j_aei_2024_102458
crossref_primary_10_3390_ijms22073605
crossref_primary_10_1007_s00392_022_02012_3
crossref_primary_10_1007_s00521_021_06126_z
crossref_primary_10_1016_j_knosys_2022_108827
crossref_primary_10_4015_S1016237223500199
crossref_primary_10_1016_j_inffus_2020_10_004
crossref_primary_10_1016_j_oceaneng_2022_111518
crossref_primary_10_1016_j_icheatmasstransfer_2020_104882
crossref_primary_10_1360_SST_2022_0444
crossref_primary_10_1016_j_resconrec_2022_106272
crossref_primary_10_3390_app13053024
crossref_primary_10_1016_j_neunet_2021_10_005
crossref_primary_10_1007_s11042_023_16278_w
crossref_primary_10_1080_14680629_2021_1886160
crossref_primary_10_1136_jnis_2022_019627
crossref_primary_10_3390_app11052070
crossref_primary_10_1007_s42461_023_00768_4
crossref_primary_10_1109_TIA_2022_3202159
crossref_primary_10_1063_5_0091068
crossref_primary_10_1177_19458924231162437
crossref_primary_10_1186_s12903_021_01777_9
crossref_primary_10_3389_fcomp_2023_1235622
crossref_primary_10_4103_ija_ija_1228_23
crossref_primary_10_3390_biomedicines11020356
crossref_primary_10_1016_j_csbj_2022_06_047
crossref_primary_10_1007_s11227_022_04465_9
crossref_primary_10_1097_PPO_0000000000000545
crossref_primary_10_7759_cureus_70363
crossref_primary_10_1016_j_csbj_2021_10_023
crossref_primary_10_1016_j_jtherbio_2022_103444
crossref_primary_10_1038_s41598_022_07848_3
crossref_primary_10_1371_journal_pcbi_1008821
crossref_primary_10_1016_j_cja_2025_103436
crossref_primary_10_1016_j_matcom_2021_11_007
crossref_primary_10_1016_j_procs_2021_11_084
crossref_primary_10_1016_j_seppur_2022_121959
crossref_primary_10_2139_ssrn_4133206
crossref_primary_10_1186_s13321_024_00829_w
crossref_primary_10_1038_s42004_021_00594_z
crossref_primary_10_3390_jmse10081025
crossref_primary_10_1039_D2DD00047D
crossref_primary_10_1007_s11042_022_13963_0
crossref_primary_10_1007_s00466_021_02079_1
crossref_primary_10_1007_s12539_022_00538_8
crossref_primary_10_3390_w13192664
crossref_primary_10_1093_bib_bbab047
crossref_primary_10_1007_s10916_020_01689_1
crossref_primary_10_3390_app13052754
crossref_primary_10_1016_j_eswa_2022_118576
crossref_primary_10_3389_fimmu_2021_642383
crossref_primary_10_3390_rs14133130
crossref_primary_10_1016_j_matpr_2020_11_317
crossref_primary_10_31083_j_rcm2204121
crossref_primary_10_3390_fractalfract7100710
crossref_primary_10_3390_s23115313
crossref_primary_10_1007_s13202_022_01492_3
crossref_primary_10_3390_jimaging10080193
crossref_primary_10_3390_asi6020053
crossref_primary_10_3390_rs14215373
crossref_primary_10_1029_2021WR031454
crossref_primary_10_1016_j_csi_2024_103845
crossref_primary_10_1109_TGRS_2023_3267445
crossref_primary_10_1007_s00521_022_07084_w
crossref_primary_10_1016_j_image_2022_116899
crossref_primary_10_1121_10_0005820
crossref_primary_10_2118_214681_PA
crossref_primary_10_1016_j_petrol_2022_110338
crossref_primary_10_1007_s00226_021_01309_2
crossref_primary_10_17798_bitlisfen_1518498
crossref_primary_10_1680_jbren_21_00063
crossref_primary_10_1155_2022_8925205
crossref_primary_10_3390_iot2010007
crossref_primary_10_1002_adsr_202200072
crossref_primary_10_1007_s12596_023_01160_7
crossref_primary_10_1002_cpe_7038
crossref_primary_10_1002_bkcs_12445
crossref_primary_10_3390_s22228830
crossref_primary_10_1016_j_bspc_2024_106883
crossref_primary_10_1016_j_petrol_2022_110442
crossref_primary_10_1093_bib_bbad120
crossref_primary_10_3390_electronics10060749
crossref_primary_10_1016_j_agrformet_2023_109570
crossref_primary_10_1016_j_istruc_2024_107864
crossref_primary_10_1007_s11554_022_01227_x
crossref_primary_10_1155_2022_9555598
crossref_primary_10_3390_rs14112663
crossref_primary_10_3389_fphy_2022_1007861
crossref_primary_10_1038_s41598_022_11693_9
crossref_primary_10_4015_S1016237223500047
crossref_primary_10_3390_diagnostics14070694
Cites_doi 10.1016/0898-1221(94)90052-3
10.1016/j.patcog.2017.09.025
10.1109/ISSPIT.2004.1433796
10.1109/ACCESS.2018.2890150
10.1109/5.726791
10.1016/j.imavis.2018.09.001
10.1109/TCSI.2017.2767204
10.1016/j.jvcir.2018.07.011
10.1080/00207160.2016.1247439
10.1016/j.procs.2017.09.022
10.1109/TCSI.2017.2759803
10.1109/TC.2010.261
10.1109/MM.2018.032271057
10.1109/TCAD.2018.2857078
10.1016/j.neucom.2017.05.025
ContentType Journal Article
Copyright 2020 International Association for Mathematics and Computers in Simulation (IMACS)
Copyright_xml – notice: 2020 International Association for Mathematics and Computers in Simulation (IMACS)
DBID AAYXX
CITATION
DOI 10.1016/j.matcom.2020.04.031
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7166
EndPage 243
ExternalDocumentID 10_1016_j_matcom_2020_04_031
S0378475420301580
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
63O
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c372t-a2087c724b8613e8b8696066883ba2d1f11479a18a73a9dd8b98a9d74c3755173
IEDL.DBID .~1
ISSN 0378-4754
IngestDate Thu Oct 16 04:27:28 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
Fri Feb 23 02:47:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Quantization noise
Residue number system
Image processing
Field-programmable gate array (FPGA)
Convolutional neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-a2087c724b8613e8b8696066883ba2d1f11479a18a73a9dd8b98a9d74c3755173
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_matcom_2020_04_031
crossref_primary_10_1016_j_matcom_2020_04_031
elsevier_sciencedirect_doi_10_1016_j_matcom_2020_04_031
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Mathematics and computers in simulation
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Živaljević, Stamenković, Stojanović (b32) 2012
Rao, Yip (b24) 2001
Bezborah (b3) 2012
Krizhevsky, Sutskever, Hinton (b14) 2012; 25
Sang, Liu, Zhang (b27) 2016
Zhang, Shao, Luo (b35) 2018; 55
Cardarilli, Nannarelli, Re (b4) 2007
Hung, Parhami (b12) 1994; 27
Cheng, Lu, Feng, Yuan, Zhou (b6) 2018; 74
Dlugosz, Dlugosz (b10) 2018
Nakahara, Sasao (b21) 2018
de Matos, Paludo, Chervyakov, Lyakhov, Pettenghi (b18) 2017
Zombo26 / conv – Bitbucket [Electronic resource] – Access mode
Chen, Duffner, Stoian, Dufour, Baskurta (b5) 2018; 79
Gong, Wang, Li, Chen, Zhou (b11) 2018; 37
Mehta, Huang, Cheng, Bagga, Mathur, Li, Draper, Nazarian (b19) 2018
Qayyum, Anwar, Awais, Majid (b23) 2017; 266
Chervyakov, Lyakhov, Kalita, Shulzhenko (b7) 2016
Shawahna, Sait, El-Maleh (b29) 2019; 7
(b2) 2017
Manabe, Shibata, Oguri (b17) 2017
Sarikan, Ozbayoglu, Zilcia (b28) 2017; 114
Nakahara, Sasao (b20) 2015
Lin, Chang (b16) 2018; 65
Chervyakov, Lyakhov, Valueva (b8) 2017
A. Sameh, M.S.A.A.E. Kader, Generic floating point library for neuro-fuzzy controllers based on FPGA technology, in: Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology, 2004, pp. 369–372.
Wang, Lin, Wang (b33) 2018; 65
.
LeCun, Bottou, Bengio, Haffiner (b15) 1998; 86
Vergos, Dimitrakopoulos (b31) 2012; 61
Chervyakov, Molahosseini, Lyakhov, Babenko, Deryabin (b9) 2017; 94
Jouppi, Young, Patil, Patterson (b13) 2018; 38
Szegedy, Liu, Jia1, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (b30) 2015
Omondi, Premkumar (b22) 2007
F. Rothganger, S. Lazebnik, C. Schmid, J. Ponce, Object Recognition Database [Electronic resource] – Access mode
Yuan (b34) 2016
Manabe (10.1016/j.matcom.2020.04.031_b17) 2017
(10.1016/j.matcom.2020.04.031_b2) 2017
Cardarilli (10.1016/j.matcom.2020.04.031_b4) 2007
Živaljević (10.1016/j.matcom.2020.04.031_b32) 2012
Dlugosz (10.1016/j.matcom.2020.04.031_b10) 2018
Jouppi (10.1016/j.matcom.2020.04.031_b13) 2018; 38
Szegedy (10.1016/j.matcom.2020.04.031_b30) 2015
LeCun (10.1016/j.matcom.2020.04.031_b15) 1998; 86
Sang (10.1016/j.matcom.2020.04.031_b27) 2016
Lin (10.1016/j.matcom.2020.04.031_b16) 2018; 65
Nakahara (10.1016/j.matcom.2020.04.031_b21) 2018
Hung (10.1016/j.matcom.2020.04.031_b12) 1994; 27
Omondi (10.1016/j.matcom.2020.04.031_b22) 2007
Nakahara (10.1016/j.matcom.2020.04.031_b20) 2015
Gong (10.1016/j.matcom.2020.04.031_b11) 2018; 37
Yuan (10.1016/j.matcom.2020.04.031_b34) 2016
Chervyakov (10.1016/j.matcom.2020.04.031_b7) 2016
Qayyum (10.1016/j.matcom.2020.04.031_b23) 2017; 266
Vergos (10.1016/j.matcom.2020.04.031_b31) 2012; 61
Zhang (10.1016/j.matcom.2020.04.031_b35) 2018; 55
Chen (10.1016/j.matcom.2020.04.031_b5) 2018; 79
Shawahna (10.1016/j.matcom.2020.04.031_b29) 2019; 7
Cheng (10.1016/j.matcom.2020.04.031_b6) 2018; 74
10.1016/j.matcom.2020.04.031_b26
10.1016/j.matcom.2020.04.031_b1
de Matos (10.1016/j.matcom.2020.04.031_b18) 2017
Mehta (10.1016/j.matcom.2020.04.031_b19) 2018
Bezborah (10.1016/j.matcom.2020.04.031_b3) 2012
Chervyakov (10.1016/j.matcom.2020.04.031_b9) 2017; 94
Krizhevsky (10.1016/j.matcom.2020.04.031_b14) 2012; 25
Rao (10.1016/j.matcom.2020.04.031_b24) 2001
Chervyakov (10.1016/j.matcom.2020.04.031_b8) 2017
Sarikan (10.1016/j.matcom.2020.04.031_b28) 2017; 114
10.1016/j.matcom.2020.04.031_b25
Wang (10.1016/j.matcom.2020.04.031_b33) 2018; 65
References_xml – start-page: 33
  year: 2016
  end-page: 37
  ident: b7
  article-title: Effect of RNS dynamic range on grayscale images filtering
  publication-title: XV International Symposium Problems of Redundancy in Information and Control Systems (REDUNDANCY)
– start-page: 323
  year: 2016
  end-page: 326
  ident: b34
  article-title: Efficient hardware architecture of softmax layer in deep neural network
  publication-title: 29th IEEE International System-on-Chip Conference (SOCC)
– volume: 38
  start-page: 10
  year: 2018
  end-page: 19
  ident: b13
  article-title: Motivation for and evaluation of the first tensor processing unit
  publication-title: IEEE Micro
– volume: 25
  year: 2012
  ident: b14
  article-title: Imagenet classification with deep Convolutional Neural Networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b15
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 74
  start-page: 474
  year: 2018
  end-page: 487
  ident: b6
  article-title: Scene recognition with objectness
  publication-title: Pattern Recognit.
– start-page: 381
  year: 2018
  end-page: 384
  ident: b10
  article-title: Nonlinear activation functions for artificial neural networks realized in hardware
  publication-title: 25th International Conference Mixed Design of Integrated Circuits and System (MIXDES)
– start-page: 67
  year: 2012
  end-page: 70
  ident: b3
  article-title: A hardware architecture for training of artificial neural networks using particle swarm optimization
  publication-title: Third International Conference on Intelligent Systems Modelling and Simulation
– volume: 37
  start-page: 2601
  year: 2018
  end-page: 2612
  ident: b11
  article-title: MALOC: A fully pipelined FPGA accelerator for convolutional neural networks with all layers mapped on chip
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
– start-page: 662
  year: 2012
  end-page: 666
  ident: b32
  article-title: Digital filter implementation based on the RNS with diminished-1 encoded channel
  publication-title: 35th International Conference on Telecommunications and Signal Processing (TSP)
– volume: 65
  start-page: 1642
  year: 2018
  end-page: 1651
  ident: b16
  article-title: Data and hardware efficient design for convolutional neural network
  publication-title: IEEE Trans. Circuits Syst. I. Regul. Pap.
– reference: Zombo26 / conv – Bitbucket [Electronic resource] – Access mode:
– start-page: 135
  year: 2017
  end-page: 140
  ident: b8
  article-title: Increasing of Convolutional Neural Network performance using residue number system
  publication-title: International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON)
– volume: 65
  start-page: 1941
  year: 2018
  end-page: 1953
  ident: b33
  article-title: Efficient hardware architectures for deep convolutional neural network
  publication-title: IEEE Trans. Circuits Syst. I. Regul. Pap.
– start-page: 1412
  year: 2007
  end-page: 1416
  ident: b4
  article-title: Residue number system for low-power DSP applications
  publication-title: Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers
– volume: 94
  start-page: 1833
  year: 2017
  end-page: 1849
  ident: b9
  article-title: Residue-to binary conversion for general moduli sets based on approximate Chinese remainder theorem
  publication-title: Int. J. Comput. Math.
– volume: 266
  start-page: 8
  year: 2017
  end-page: 20
  ident: b23
  article-title: Medical image retrieval using deep convolutional neural network
  publication-title: Neurocomputing
– volume: 61
  start-page: 173
  year: 2012
  end-page: 186
  ident: b31
  article-title: On Modulo 2
  publication-title: IEEE Trans. Comput.
– volume: 55
  start-page: 640
  year: 2018
  end-page: 647
  ident: b35
  article-title: Small sample image recognition using improved Convolutional Neural Network
  publication-title: J. Vis. Commun. Image Represent.
– volume: 27
  start-page: 23
  year: 1994
  end-page: 25
  ident: b12
  article-title: An approximate sign detection method for residue numbers and its application to RNS division
  publication-title: Comput. Math. Appl.
– start-page: 296
  year: 2007
  ident: b22
  article-title: Residue Number Systems: Theory and Implementation
– start-page: 1
  year: 2018
  end-page: 5
  ident: b21
  article-title: A high-speed low-power deep neural network on an FPGA based on the nested RNS: Applied to an object detector
  publication-title: IEEE International Symposium on Circuits and Systems (ISCAS)
– year: 2017
  ident: b2
  article-title: Vivado AXI reference [optional] vivado design suite AXI reference guide
– start-page: 1
  year: 2017
  end-page: 4
  ident: b18
  article-title: Efficient implementation of modular multiplication by constants applied to RNS reverse converters
  publication-title: IEEE International Symposium on Circuits and Systems (ISCAS)
– start-page: 1
  year: 2016
  end-page: 2
  ident: b27
  article-title: FPGA-based acceleration of neural network training
  publication-title: IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)
– reference: .
– volume: 79
  start-page: 25
  year: 2018
  end-page: 34
  ident: b5
  article-title: Deep and low-level feature based attribute learning for person re-identification
  publication-title: Image Vis. Comput.
– start-page: 383
  year: 2018
  end-page: 388
  ident: b19
  article-title: High performance training of deep neural networks using pipelined hardware acceleration and distributed memory
  publication-title: 19th International Symposium on Quality Electronic Design (ISQED
– start-page: 399
  year: 2001
  ident: b24
  article-title: The Transform and Data Compression Handbook
– reference: F. Rothganger, S. Lazebnik, C. Schmid, J. Ponce, Object Recognition Database [Electronic resource] – Access mode:
– reference: A. Sameh, M.S.A.A.E. Kader, Generic floating point library for neuro-fuzzy controllers based on FPGA technology, in: Proceedings of the Fourth IEEE International Symposium on Signal Processing and Information Technology, 2004, pp. 369–372.
– start-page: 1
  year: 2015
  end-page: 9
  ident: b30
  article-title: Going deeper with convolutions
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1
  year: 2015
  end-page: 6
  ident: b20
  article-title: A deep convolutional neural network based on nested residue number system
  publication-title: 25th International Conference on Field Programmable Logic and Applications (FPL)
– volume: 114
  start-page: 515
  year: 2017
  end-page: 522
  ident: b28
  article-title: Automated vehicle classification with image processing and computational intelligence
  publication-title: Procedia Comput. Sci.
– start-page: 299
  year: 2017
  end-page: 300
  ident: b17
  article-title: FPGA implementation of a real-time super-resolution system with a CNN based on a residue number system
  publication-title: International Conference on Field Programmable Technology (ICFPT)
– volume: 7
  start-page: 7823
  year: 2019
  end-page: 7859
  ident: b29
  article-title: FPGA-based accelerators of deep learning networks for learning and classification: A review
  publication-title: IEEE Access
– volume: 27
  start-page: 23
  issue: 4
  year: 1994
  ident: 10.1016/j.matcom.2020.04.031_b12
  article-title: An approximate sign detection method for residue numbers and its application to RNS division
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(94)90052-3
– start-page: 1
  year: 2018
  ident: 10.1016/j.matcom.2020.04.031_b21
  article-title: A high-speed low-power deep neural network on an FPGA based on the nested RNS: Applied to an object detector
– start-page: 1
  year: 2016
  ident: 10.1016/j.matcom.2020.04.031_b27
  article-title: FPGA-based acceleration of neural network training
– volume: 74
  start-page: 474
  year: 2018
  ident: 10.1016/j.matcom.2020.04.031_b6
  article-title: Scene recognition with objectness
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.09.025
– start-page: 383
  year: 2018
  ident: 10.1016/j.matcom.2020.04.031_b19
  article-title: High performance training of deep neural networks using pipelined hardware acceleration and distributed memory
– start-page: 323
  year: 2016
  ident: 10.1016/j.matcom.2020.04.031_b34
  article-title: Efficient hardware architecture of softmax layer in deep neural network
– start-page: 1
  year: 2015
  ident: 10.1016/j.matcom.2020.04.031_b20
  article-title: A deep convolutional neural network based on nested residue number system
– ident: 10.1016/j.matcom.2020.04.031_b26
  doi: 10.1109/ISSPIT.2004.1433796
– ident: 10.1016/j.matcom.2020.04.031_b1
– volume: 7
  start-page: 7823
  year: 2019
  ident: 10.1016/j.matcom.2020.04.031_b29
  article-title: FPGA-based accelerators of deep learning networks for learning and classification: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890150
– start-page: 1412
  year: 2007
  ident: 10.1016/j.matcom.2020.04.031_b4
  article-title: Residue number system for low-power DSP applications
– start-page: 1
  year: 2017
  ident: 10.1016/j.matcom.2020.04.031_b18
  article-title: Efficient implementation of modular multiplication by constants applied to RNS reverse converters
– start-page: 662
  year: 2012
  ident: 10.1016/j.matcom.2020.04.031_b32
  article-title: Digital filter implementation based on the RNS with diminished-1 encoded channel
– start-page: 299
  year: 2017
  ident: 10.1016/j.matcom.2020.04.031_b17
  article-title: FPGA implementation of a real-time super-resolution system with a CNN based on a residue number system
– start-page: 1
  year: 2015
  ident: 10.1016/j.matcom.2020.04.031_b30
  article-title: Going deeper with convolutions
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.matcom.2020.04.031_b15
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 79
  start-page: 25
  year: 2018
  ident: 10.1016/j.matcom.2020.04.031_b5
  article-title: Deep and low-level feature based attribute learning for person re-identification
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2018.09.001
– start-page: 296
  year: 2007
  ident: 10.1016/j.matcom.2020.04.031_b22
– volume: 65
  start-page: 1941
  issue: 6
  year: 2018
  ident: 10.1016/j.matcom.2020.04.031_b33
  article-title: Efficient hardware architectures for deep convolutional neural network
  publication-title: IEEE Trans. Circuits Syst. I. Regul. Pap.
  doi: 10.1109/TCSI.2017.2767204
– volume: 55
  start-page: 640
  year: 2018
  ident: 10.1016/j.matcom.2020.04.031_b35
  article-title: Small sample image recognition using improved Convolutional Neural Network
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2018.07.011
– start-page: 33
  year: 2016
  ident: 10.1016/j.matcom.2020.04.031_b7
  article-title: Effect of RNS dynamic range on grayscale images filtering
– volume: 94
  start-page: 1833
  issue: 9
  year: 2017
  ident: 10.1016/j.matcom.2020.04.031_b9
  article-title: Residue-to binary conversion for general moduli sets based on approximate Chinese remainder theorem
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2016.1247439
– start-page: 381
  year: 2018
  ident: 10.1016/j.matcom.2020.04.031_b10
  article-title: Nonlinear activation functions for artificial neural networks realized in hardware
– volume: 114
  start-page: 515
  year: 2017
  ident: 10.1016/j.matcom.2020.04.031_b28
  article-title: Automated vehicle classification with image processing and computational intelligence
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.09.022
– year: 2017
  ident: 10.1016/j.matcom.2020.04.031_b2
– start-page: 67
  year: 2012
  ident: 10.1016/j.matcom.2020.04.031_b3
  article-title: A hardware architecture for training of artificial neural networks using particle swarm optimization
– start-page: 135
  year: 2017
  ident: 10.1016/j.matcom.2020.04.031_b8
  article-title: Increasing of Convolutional Neural Network performance using residue number system
– volume: 65
  start-page: 1642
  issue: 5
  year: 2018
  ident: 10.1016/j.matcom.2020.04.031_b16
  article-title: Data and hardware efficient design for convolutional neural network
  publication-title: IEEE Trans. Circuits Syst. I. Regul. Pap.
  doi: 10.1109/TCSI.2017.2759803
– volume: 25
  issue: 2
  year: 2012
  ident: 10.1016/j.matcom.2020.04.031_b14
  article-title: Imagenet classification with deep Convolutional Neural Networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 61
  start-page: 173
  issue: 2
  year: 2012
  ident: 10.1016/j.matcom.2020.04.031_b31
  article-title: On Modulo 2∧n+1 Adder design
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2010.261
– ident: 10.1016/j.matcom.2020.04.031_b25
– volume: 38
  start-page: 10
  issue: 3
  year: 2018
  ident: 10.1016/j.matcom.2020.04.031_b13
  article-title: Motivation for and evaluation of the first tensor processing unit
  publication-title: IEEE Micro
  doi: 10.1109/MM.2018.032271057
– volume: 37
  start-page: 2601
  issue: 11
  year: 2018
  ident: 10.1016/j.matcom.2020.04.031_b11
  article-title: MALOC: A fully pipelined FPGA accelerator for convolutional neural networks with all layers mapped on chip
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2018.2857078
– volume: 266
  start-page: 8
  year: 2017
  ident: 10.1016/j.matcom.2020.04.031_b23
  article-title: Medical image retrieval using deep convolutional neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.025
– start-page: 399
  year: 2001
  ident: 10.1016/j.matcom.2020.04.031_b24
SSID ssj0007545
Score 2.6531425
Snippet Convolutional neural networks are a promising tool for solving the problem of pattern recognition. Most well-known convolutional neural networks...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 232
SubjectTerms Convolutional neural networks
Field-programmable gate array (FPGA)
Image processing
Quantization noise
Residue number system
Title Application of the residue number system to reduce hardware costs of the convolutional neural network implementation
URI https://dx.doi.org/10.1016/j.matcom.2020.04.031
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: ACRLP
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: AIKHN
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYPXuDbJmuw4hjIVd9HBbqFpMpjoOrYOb_7tvqSJUxAFT6FNXlte0pffa3_vPYQuJRjeqUk4sTSzBPBtSgDHUVIAemYZzzJduA_6D6NsOOZ3k-6kgQYxFsbRKoPtr226t9bhTCdos7OYzTqPCRNgWrucOlTflc5v51y4KgZX7xuaBwzwNEYYTNzoGD7nOV4ACh1nhAJm8glPWfrz9vRly7nZQzsBK-J-_Tj7qGHnB2g31mHA4bU8RFV_8xcal1MMmA6DFz0za4vrih-4TtiMqxI6DMwmdsFWb_nS4qJcVaso5TjoYS3CjV2uS994pjievUauues_QuOb66fBkIRqCqRgglYkp4kUhaBcS9jCrYTGey9SMp1Tk07BMxK9PJW5YHnPGKl7ElrBQRxglWDHqDkv5_YEYZHxxMVqmZQWPJFaA8i0zFi4jJGZ0S3EohJVEVKNu4oXLypyyp5VrXrlVK8SrkD1LUQ-pRZ1qo0_xos4P-rbklGwG_wqefpvyTO07Y7qYMRz1KyWa3sBqKTSbb_s2mirf3s_HH0AUJ_jWg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1GeHlhNE9uJ3bGqqAq0XWilblYSu1IQtFWbio3fzjmxKUgIJCZL8V0SXZzzd8l3dwjdSHC8Ux1wYmhsCODbkACOoyQD9MxiHsdpZj_oD4Zxb8wfJtGkhjo-F8bSKp3vr3x66a3dkaazZnOR582ngAlwrRGnFtVHEuL2LR5RYSOw2_cNzwMkSh4jSBMr7vPnSpIXoEJLGqEAmsqKpyz8eX_6sud099GuA4u4Xd3PAaqZ2SHa840YsHsvj1DR3vyGxvMpBlCHIYzO9drgquUHrio242IOExoeJ7bZVm_J0uBsvipWXsuS0N1ihAvbYpflUFLFcf7qyeZ2_hiNu3ejTo-4dgokY4IWJKGBFJmgPJWwhxsJQxm-SMnShOpwCqGRaCWhTARLWlrLtCVhFBzUAVcJdoLqs_nMnCIsYh7YZC0d0owHMk0BZRqmDZxGy1inDcS8EVXmao3blhcvypPKnlVlemVNrwKuwPQNRD61FlWtjT_khX8-6tuaUbAd_Kp59m_Na7TdGw36qn8_fDxHO3amyky8QPViuTaXAFGK9Kpcgh-oaeTv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+the+residue+number+system+to+reduce+hardware+costs+of+the+convolutional+neural+network+implementation&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Valueva%2C+M.V.&rft.au=Nagornov%2C+N.N.&rft.au=Lyakhov%2C+P.A.&rft.au=Valuev%2C+G.V.&rft.date=2020-11-01&rft.issn=0378-4754&rft.volume=177&rft.spage=232&rft.epage=243&rft_id=info:doi/10.1016%2Fj.matcom.2020.04.031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2020_04_031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon