An efficient instance selection algorithm for k nearest neighbor regression

The k-Nearest Neighbor algorithm(kNN) is an algorithm that is very simple to understand for classification or regression. It is also a lazy algorithm that does not use the training data points to do any generalization, in other words, it keeps all the training data during the testing phase. Thus, th...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 251; pp. 26 - 34
Main Authors Song, Yunsheng, Liang, Jiye, Lu, Jing, Zhao, Xingwang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 16.08.2017
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2017.04.018

Cover

Abstract The k-Nearest Neighbor algorithm(kNN) is an algorithm that is very simple to understand for classification or regression. It is also a lazy algorithm that does not use the training data points to do any generalization, in other words, it keeps all the training data during the testing phase. Thus, the population size becomes a major concern for kNN, since large population size may result in slow execution speed and large memory requirements. To solve this problem, many efforts have been devoted, but mainly focused on kNN classification. And now we propose an algorithm to decrease the size of the training set for kNN regression(DISKR). In this algorithm, we firstly remove the outlier instances that impact the performance of regressor, and then sorts the left instances by the difference on output among instances and their nearest neighbors. Finally, the left instances with little contribution measured by the training error are successively deleted following the rule. The proposed algorithm is compared with five state-of-the-art algorithms on 19 datasets, and experiment results show it could get the similar prediction ability but have the lowest instance storage ratio.
AbstractList The k-Nearest Neighbor algorithm(kNN) is an algorithm that is very simple to understand for classification or regression. It is also a lazy algorithm that does not use the training data points to do any generalization, in other words, it keeps all the training data during the testing phase. Thus, the population size becomes a major concern for kNN, since large population size may result in slow execution speed and large memory requirements. To solve this problem, many efforts have been devoted, but mainly focused on kNN classification. And now we propose an algorithm to decrease the size of the training set for kNN regression(DISKR). In this algorithm, we firstly remove the outlier instances that impact the performance of regressor, and then sorts the left instances by the difference on output among instances and their nearest neighbors. Finally, the left instances with little contribution measured by the training error are successively deleted following the rule. The proposed algorithm is compared with five state-of-the-art algorithms on 19 datasets, and experiment results show it could get the similar prediction ability but have the lowest instance storage ratio.
Author Lu, Jing
Song, Yunsheng
Zhao, Xingwang
Liang, Jiye
Author_xml – sequence: 1
  givenname: Yunsheng
  orcidid: 0000-0002-3697-7134
  surname: Song
  fullname: Song, Yunsheng
  email: sys_sd@126.com
  organization: Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China
– sequence: 2
  givenname: Jiye
  surname: Liang
  fullname: Liang, Jiye
  email: ljy@sxu.edu.cn
  organization: Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China
– sequence: 3
  givenname: Jing
  surname: Lu
  fullname: Lu, Jing
  email: sxsqxjlws@163.com
  organization: Shanxi Meteorological Administration, Taiyuan 030006, Shanxi, China
– sequence: 4
  givenname: Xingwang
  surname: Zhao
  fullname: Zhao, Xingwang
  email: zhaoxw84@163.com
  organization: Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China
BookMark eNqFkM9KAzEYxINUsK2-gYd9gV3zJdnurgehFP9hwYueQzb90qZuE0mi4NubpZ486GlgmBmY34xMnHdIyCXQCigsrvaVww_tDxWj0FRUVBTaEzKFtmFly9rFhExpx-qScWBnZBbjnuYgsG5KnpauQGOstuhSYV1MymksIg6ok_WuUMPWB5t2h8L4ULwVDlXAmLLa7a7PVsBtNmLOnpNTo4aIFz86J693ty-rh3L9fP-4Wq5LzRuWSkVbynlvFqLeQNcxDZz2tWK9AIBGC6pFo3pFTQddL1irlTDCgK6ZEjXXLZ8TcdzVwccY0Mj3YA8qfEmgcgQi9_IIRI5AJBUyA8m16181bZMaT6ag7PBf-eZYxnzs02KQcUSmcWNDJiU33v498A3gUoGm
CitedBy_id crossref_primary_10_1007_s00521_020_05218_6
crossref_primary_10_1063_5_0189564
crossref_primary_10_1088_1742_6596_978_1_012047
crossref_primary_10_1016_j_molliq_2023_121691
crossref_primary_10_1109_ACCESS_2017_2740420
crossref_primary_10_1002_jbio_202300357
crossref_primary_10_1016_j_eswa_2022_116881
crossref_primary_10_1109_JSEN_2023_3284196
crossref_primary_10_1016_j_ces_2023_118578
crossref_primary_10_3390_fi16110422
crossref_primary_10_1016_j_buildenv_2023_110595
crossref_primary_10_1007_s00521_022_08030_6
crossref_primary_10_1021_acsestwater_3c00215
crossref_primary_10_1109_ACCESS_2021_3091313
crossref_primary_10_1016_j_ins_2021_06_052
crossref_primary_10_3390_inventions8010032
crossref_primary_10_1016_j_csite_2023_103101
crossref_primary_10_1016_j_precisioneng_2024_08_007
crossref_primary_10_3390_f16010042
crossref_primary_10_3390_fi16120450
crossref_primary_10_1007_s12652_022_03708_0
crossref_primary_10_1109_ACCESS_2024_3394532
crossref_primary_10_1007_s13198_022_01795_y
crossref_primary_10_1016_j_ces_2024_120387
crossref_primary_10_1016_j_jfca_2025_107355
crossref_primary_10_1016_j_mtcomm_2021_102462
crossref_primary_10_1016_j_foodchem_2021_130999
crossref_primary_10_3390_aerospace10070586
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123217
crossref_primary_10_38016_jista_1566965
crossref_primary_10_3390_molecules27144357
crossref_primary_10_3233_JIFS_220274
crossref_primary_10_3390_en16114294
crossref_primary_10_3390_su16052218
crossref_primary_10_3390_ijms25052949
crossref_primary_10_1016_j_dibe_2023_100285
crossref_primary_10_3390_fluids7100321
crossref_primary_10_1016_j_jocs_2022_101587
crossref_primary_10_2139_ssrn_4136053
crossref_primary_10_1007_s10846_023_01831_4
crossref_primary_10_1016_j_mtcomm_2023_107385
crossref_primary_10_1007_s10825_023_02005_z
crossref_primary_10_1016_j_measurement_2024_115540
crossref_primary_10_1021_acsestengg_4c00042
crossref_primary_10_3390_rs12132110
crossref_primary_10_1007_s11356_024_31826_z
crossref_primary_10_1142_S0218213019500015
crossref_primary_10_1177_03611981211036874
crossref_primary_10_3390_su15010617
crossref_primary_10_1016_j_eti_2022_102794
crossref_primary_10_3390_app9163267
crossref_primary_10_1680_jbren_23_00007
crossref_primary_10_1103_PhysRevResearch_5_043117
crossref_primary_10_1039_D3QM00661A
crossref_primary_10_14710_jtsiskom_2020_13648
crossref_primary_10_1002_aisy_202300711
crossref_primary_10_1039_D3EM00322A
crossref_primary_10_1186_s40537_024_00973_y
crossref_primary_10_3390_ijerph20115943
crossref_primary_10_1145_3576903
crossref_primary_10_3390_su152115355
crossref_primary_10_1109_ACCESS_2018_2889122
crossref_primary_10_1145_3442696
crossref_primary_10_1177_03093247241293499
crossref_primary_10_1109_ACCESS_2021_3088612
crossref_primary_10_1109_TII_2019_2916566
crossref_primary_10_3390_agriculture13101868
crossref_primary_10_3390_app13010567
crossref_primary_10_1016_j_knosys_2019_105088
crossref_primary_10_1016_j_joi_2022_101333
crossref_primary_10_1109_ACCESS_2020_2980964
crossref_primary_10_1016_j_cjph_2024_07_016
crossref_primary_10_1016_j_measurement_2020_108135
crossref_primary_10_1007_s10586_023_04001_1
crossref_primary_10_1038_s41598_024_77054_w
crossref_primary_10_1016_j_eswa_2023_120422
crossref_primary_10_1016_j_molliq_2022_118513
crossref_primary_10_1088_1742_6596_1007_1_012007
crossref_primary_10_1016_j_ecoenv_2023_115183
crossref_primary_10_1016_j_chemolab_2020_104087
crossref_primary_10_1016_j_eswa_2023_121199
crossref_primary_10_1016_j_desal_2024_118154
crossref_primary_10_1080_10916466_2023_2299711
crossref_primary_10_1016_j_joitmc_2023_100189
crossref_primary_10_3390_electronics12102239
crossref_primary_10_1016_j_totert_2023_100083
crossref_primary_10_3390_vaccines8040709
crossref_primary_10_1007_s41066_021_00288_w
crossref_primary_10_3390_fermentation10080410
crossref_primary_10_3390_ma14071661
crossref_primary_10_1109_TGRS_2024_3358374
crossref_primary_10_1016_j_jece_2025_116064
crossref_primary_10_1109_ACCESS_2018_2880563
crossref_primary_10_1016_j_wasman_2022_01_004
crossref_primary_10_1007_s40948_023_00690_5
crossref_primary_10_1016_j_fpsl_2021_100790
crossref_primary_10_1007_s41060_024_00589_8
crossref_primary_10_1016_j_cej_2022_137186
crossref_primary_10_1142_S0217984923500653
crossref_primary_10_2147_IJN_S452316
crossref_primary_10_1108_IJLSS_02_2022_0046
crossref_primary_10_1142_S0218488523400093
crossref_primary_10_1016_j_cemconcomp_2024_105796
crossref_primary_10_1016_j_asej_2024_102925
crossref_primary_10_1016_j_gexplo_2024_107388
crossref_primary_10_1016_j_jece_2024_115260
crossref_primary_10_1002_cepa_2184
crossref_primary_10_1016_j_swevo_2021_100840
crossref_primary_10_3390_rs15205021
crossref_primary_10_1007_s10044_018_0706_3
crossref_primary_10_1016_j_enbuild_2023_112797
crossref_primary_10_3389_fphys_2025_1542240
crossref_primary_10_3390_rs13245159
crossref_primary_10_1016_j_rineng_2024_102717
crossref_primary_10_1007_s12161_023_02445_0
crossref_primary_10_1016_j_knosys_2019_105196
crossref_primary_10_1155_2017_1023498
crossref_primary_10_1016_j_agee_2021_107516
crossref_primary_10_3390_ma15093321
crossref_primary_10_1021_acsomega_4c08313
crossref_primary_10_1016_j_jii_2023_100461
crossref_primary_10_3390_s23020629
crossref_primary_10_3390_electronics13071308
crossref_primary_10_1016_j_sigpro_2020_107771
crossref_primary_10_1016_j_molliq_2023_123353
crossref_primary_10_1177_0954409718795089
crossref_primary_10_1007_s11831_023_09943_8
crossref_primary_10_2139_ssrn_3869826
crossref_primary_10_1007_s00107_021_01685_3
crossref_primary_10_1142_S0217751X23500884
crossref_primary_10_3390_ma12081256
crossref_primary_10_1016_j_csite_2023_102771
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122236
crossref_primary_10_1016_j_psep_2024_01_007
crossref_primary_10_1016_j_buildenv_2023_110191
crossref_primary_10_3390_min12070900
crossref_primary_10_1002_ep_14358
crossref_primary_10_1016_j_mlwa_2021_100190
crossref_primary_10_3389_fpls_2022_982562
crossref_primary_10_1109_ACCESS_2025_3544765
crossref_primary_10_1007_s11053_019_09461_0
crossref_primary_10_1007_s11468_024_02570_4
crossref_primary_10_1016_j_cscm_2023_e02818
crossref_primary_10_1088_1757_899X_725_1_012122
crossref_primary_10_1016_j_arabjc_2022_104306
crossref_primary_10_1016_j_eswa_2024_125063
crossref_primary_10_3390_molecules27185762
crossref_primary_10_1016_j_jobe_2024_108675
crossref_primary_10_1016_j_procs_2023_01_135
crossref_primary_10_1007_s11004_021_09967_5
crossref_primary_10_1016_j_jenvman_2023_118782
crossref_primary_10_1007_s13369_019_04003_5
crossref_primary_10_1088_1742_6596_2338_1_012066
crossref_primary_10_1177_14604582221140975
crossref_primary_10_1016_j_ymssp_2021_108791
crossref_primary_10_1016_j_neucom_2023_126544
crossref_primary_10_1016_j_arabjc_2022_104337
crossref_primary_10_3390_molecules27165140
crossref_primary_10_1109_ACCESS_2024_3412789
crossref_primary_10_1007_s12145_024_01509_x
crossref_primary_10_1029_2023EF004257
crossref_primary_10_1080_15325008_2021_1937401
crossref_primary_10_1177_09544062241253712
crossref_primary_10_3390_min12060689
crossref_primary_10_3390_rs15174296
crossref_primary_10_1016_j_ress_2022_108645
crossref_primary_10_1145_3371153
crossref_primary_10_1080_21642583_2024_2385332
crossref_primary_10_1016_j_envsoft_2022_105577
crossref_primary_10_1016_j_eswa_2021_115072
crossref_primary_10_1145_3309545
crossref_primary_10_1016_j_egyr_2023_02_046
crossref_primary_10_31466_kfbd_1482179
crossref_primary_10_3390_s22197692
crossref_primary_10_1007_s12273_023_1024_2
crossref_primary_10_1007_s11356_022_20953_0
crossref_primary_10_3390_en15062254
crossref_primary_10_1016_j_triboint_2024_110067
crossref_primary_10_1186_s41118_022_00174_6
crossref_primary_10_1039_D3TA06385B
crossref_primary_10_1109_JLT_2022_3225827
crossref_primary_10_1016_j_eswa_2018_05_017
crossref_primary_10_1016_j_atmosenv_2023_120233
crossref_primary_10_29220_CSAM_2021_28_3_217
crossref_primary_10_1016_j_autcon_2021_103719
crossref_primary_10_1016_j_apenergy_2022_119286
crossref_primary_10_1371_journal_pone_0183570
crossref_primary_10_1016_j_csite_2023_103150
crossref_primary_10_1007_s00170_024_13589_6
crossref_primary_10_1016_j_trgeo_2020_100499
crossref_primary_10_1016_j_datak_2017_10_003
crossref_primary_10_1016_j_engappai_2024_109701
crossref_primary_10_3390_electronics13050810
crossref_primary_10_1016_j_apenergy_2024_125201
crossref_primary_10_1007_s10614_024_10796_x
crossref_primary_10_1016_j_chemolab_2023_104829
crossref_primary_10_2166_hydro_2024_016
crossref_primary_10_3233_IDA_173720
crossref_primary_10_1039_D3NR02273K
crossref_primary_10_1007_s12273_024_1114_9
crossref_primary_10_1016_j_catena_2024_107848
crossref_primary_10_1016_j_rineng_2024_102780
crossref_primary_10_1155_2022_4356974
crossref_primary_10_1007_s00500_020_04667_4
crossref_primary_10_3390_bdcc7020117
crossref_primary_10_1002_wer_10893
crossref_primary_10_1109_ACCESS_2023_3243625
crossref_primary_10_2200_S01135ED1V01Y202109SPR022
crossref_primary_10_1016_j_molliq_2022_121195
crossref_primary_10_1038_s41598_022_13832_8
crossref_primary_10_1186_s43020_023_00101_w
crossref_primary_10_1016_j_apt_2024_104462
crossref_primary_10_1016_j_optlastec_2023_110208
crossref_primary_10_1016_j_apor_2021_102735
crossref_primary_10_3390_min15040330
crossref_primary_10_3390_app14020725
crossref_primary_10_1007_s10470_021_01885_0
crossref_primary_10_3390_buildings15020288
crossref_primary_10_1016_j_matpr_2020_10_631
crossref_primary_10_1063_5_0013253
crossref_primary_10_3390_app10093089
crossref_primary_10_1111_mice_13074
crossref_primary_10_1109_ACCESS_2020_2991669
crossref_primary_10_1093_bioinformatics_btad577
crossref_primary_10_1007_s10472_023_09882_x
crossref_primary_10_1016_j_bspc_2024_106763
crossref_primary_10_1016_j_oceaneng_2020_107812
crossref_primary_10_1016_j_landusepol_2020_104537
crossref_primary_10_1145_3592857
crossref_primary_10_2478_amcs_2019_0012
crossref_primary_10_1080_10549811_2019_1607391
Cites_doi 10.1109/TSMC.1972.4309137
10.1016/S0031-3203(02)00119-X
10.1142/S0218001405004332
10.1016/j.neucom.2009.11.031
10.1007/s00500-003-0310-2
10.1109/TIT.1968.1054155
10.1109/TKDE.2007.190645
10.1007/s10462-010-9165-y
10.1109/TIT.1968.1054098
10.1007/BF00993475
10.1109/TFUZZ.2011.2173582
10.1109/21.278999
10.1162/neco.2007.19.3.816
10.1016/S0167-8655(97)00035-4
10.1016/j.artint.2010.01.001
10.1007/s10618-008-0121-2
10.1016/j.inffus.2015.12.002
10.1109/TPAMI.2011.142
10.1007/BF00153759
10.1109/TKDE.2007.190665
10.1016/0167-8655(86)90066-8
10.1023/A:1007626913721
10.1109/TIT.1967.1053964
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2017.04.018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 34
ExternalDocumentID 10_1016_j_neucom_2017_04_018
S0925231217306884
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c372t-a08033bf645d1992c130b5a2b41117c40c47aba0f919b428ca4f4f1c52a453c83
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Apr 24 23:44:17 EDT 2025
Wed Oct 01 02:27:33 EDT 2025
Fri Feb 23 02:30:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nearest neighbor
Regression
Instance selection
Data reduction
Significant difference
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-a08033bf645d1992c130b5a2b41117c40c47aba0f919b428ca4f4f1c52a453c83
ORCID 0000-0002-3697-7134
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_neucom_2017_04_018
crossref_citationtrail_10_1016_j_neucom_2017_04_018
elsevier_sciencedirect_doi_10_1016_j_neucom_2017_04_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-16
PublicationDateYYYYMMDD 2017-08-16
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-16
  day: 16
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Angiulli (bib0021) 2007; 19
Guillen, Herrera, Rubio, Pomares, Lendasse, Rojas (bib0026) 2010; 73
Wilson (bib0012) 1972; SMC-2
Dasarathy (bib0009) 1994; 24
Kordos, Blachnik, Strzempa (bib0031) 2010
Garcia, Derrac, Cano, Herrera (bib0003) 2012; 34
Olvera-López, Carrasco-Ochoa, Martínez-Trinidad, Kittler (bib0002) 2010; 34
Devijver (bib0013) 1986; 4
Shin, Cho (bib0022) 2007; 19
García-Osorio, de Haro-García, García-Pedrajas (bib0025) 2010; 174
Brodley (bib0015) 1995; 20
Brighton, Mellish (bib0019) 1999
Riquelme, Aguilar-Ruiz, Toro (bib0010) 2003; 36
Barandela, Ferri, Sánchez (bib0011) 2005; 19
Zhou (bib0028) 2012
Cover (bib0029) 1968; 14
Bishop (bib0001) 2006
Alcalá, Fernández, Luengo, Derrac, García, Sánchez, Herrera (bib0030) 2010; 17
Jankowski, Grochowski (bib0016) 2004
Wilson, Martinez (bib0018) 2000; 38
Hart (bib0008) 1968; 14
Angiulli, Folino (bib0023) 2007; 19
Rodriguez-Fdez, Mucientes, Bugarin (bib0027) 2013
Marchiori (bib0020) 2008; 9
Sánchez, Pla, Ferri (bib0014) 1997; 18
Tolvi (bib0005) 2004; 8
Aha, Kibler, Albert (bib0017) 1991; 6
Arnaiz-González, Blachnik, Kordos, García-Osorio (bib0004) 2016; 30
Cover, Hart (bib0007) 1967; 13
Antonelli, Ducange, Marcelloni (bib0006) 2012; 20
de Haro-García, García-Pedrajas (bib0024) 2009; 18
Marchiori (10.1016/j.neucom.2017.04.018_bib0020) 2008; 9
Angiulli (10.1016/j.neucom.2017.04.018_bib0021) 2007; 19
García-Osorio (10.1016/j.neucom.2017.04.018_bib0025) 2010; 174
Brighton (10.1016/j.neucom.2017.04.018_bib0019) 1999
Arnaiz-González (10.1016/j.neucom.2017.04.018_bib0004) 2016; 30
Sánchez (10.1016/j.neucom.2017.04.018_bib0014) 1997; 18
Brodley (10.1016/j.neucom.2017.04.018_bib0015) 1995; 20
Jankowski (10.1016/j.neucom.2017.04.018_bib0016) 2004
Kordos (10.1016/j.neucom.2017.04.018_bib0031) 2010
Cover (10.1016/j.neucom.2017.04.018_bib0029) 1968; 14
Garcia (10.1016/j.neucom.2017.04.018_bib0003) 2012; 34
Olvera-López (10.1016/j.neucom.2017.04.018_bib0002) 2010; 34
Wilson (10.1016/j.neucom.2017.04.018_bib0012) 1972; SMC-2
Barandela (10.1016/j.neucom.2017.04.018_bib0011) 2005; 19
Cover (10.1016/j.neucom.2017.04.018_bib0007) 1967; 13
Guillen (10.1016/j.neucom.2017.04.018_bib0026) 2010; 73
Rodriguez-Fdez (10.1016/j.neucom.2017.04.018_bib0027) 2013
Shin (10.1016/j.neucom.2017.04.018_bib0022) 2007; 19
Bishop (10.1016/j.neucom.2017.04.018_bib0001) 2006
Riquelme (10.1016/j.neucom.2017.04.018_bib0010) 2003; 36
Antonelli (10.1016/j.neucom.2017.04.018_bib0006) 2012; 20
Zhou (10.1016/j.neucom.2017.04.018_bib0028) 2012
Wilson (10.1016/j.neucom.2017.04.018_bib0018) 2000; 38
Tolvi (10.1016/j.neucom.2017.04.018_bib0005) 2004; 8
de Haro-García (10.1016/j.neucom.2017.04.018_bib0024) 2009; 18
Devijver (10.1016/j.neucom.2017.04.018_bib0013) 1986; 4
Alcalá (10.1016/j.neucom.2017.04.018_bib0030) 2010; 17
Dasarathy (10.1016/j.neucom.2017.04.018_bib0009) 1994; 24
Aha (10.1016/j.neucom.2017.04.018_bib0017) 1991; 6
Angiulli (10.1016/j.neucom.2017.04.018_bib0023) 2007; 19
Hart (10.1016/j.neucom.2017.04.018_bib0008) 1968; 14
References_xml – volume: 36
  start-page: 1009
  year: 2003
  end-page: 1018
  ident: bib0010
  article-title: Finding representative patterns with ordered projections
  publication-title: Pattern Recogn.
– start-page: 1
  year: 2013
  end-page: 8
  ident: bib0027
  article-title: An instance selection algorithm for regression and its application in variance reduction
  publication-title: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ), 2013
– start-page: 598
  year: 2004
  end-page: 603
  ident: bib0016
  article-title: Comparison of instances seletion algorithms i. algorithms survey
  publication-title: Proceedings of the Artificial Intelligence and Soft Computing-ICAISC 2004
– start-page: 414
  year: 2010
  end-page: 421
  ident: bib0031
  article-title: Do we need whatever more than K-NN?
  publication-title: Artificial Intelligence and Soft Computing
– volume: 9
  start-page: 997
  year: 2008
  end-page: 1017
  ident: bib0020
  article-title: Hit miss networks with applications to instance selection
  publication-title: J. Mach. Learn. Res.
– volume: 30
  start-page: 69
  year: 2016
  end-page: 79
  ident: bib0004
  article-title: Fusion of instance selection methods in regression tasks
  publication-title: Inf. Fusion
– volume: SMC-2
  start-page: 408
  year: 1972
  end-page: 421
  ident: bib0012
  article-title: Asymptotic properties of nearest neighbor rules using edited data
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 14
  start-page: 50
  year: 1968
  end-page: 55
  ident: bib0029
  article-title: Estimation by the nearest neighbor rule
  publication-title: IEEE Trans. Inf. Theory
– volume: 34
  start-page: 417
  year: 2012
  end-page: 435
  ident: bib0003
  article-title: Prototype selection for nearest neighbor classification: taxonomy and empirical study
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 6
  start-page: 37
  year: 1991
  end-page: 66
  ident: bib0017
  article-title: Instance-based learning algorithms
  publication-title: Mach. Learn.
– volume: 20
  start-page: 63
  year: 1995
  end-page: 94
  ident: bib0015
  article-title: Recursive automatic bias selection for classifier construction
  publication-title: Mach. Learn.
– volume: 73
  start-page: 2030
  year: 2010
  end-page: 2038
  ident: bib0026
  article-title: New method for instance or prototype selection using mutual information in time series prediction
  publication-title: Neurocomputing
– volume: 17
  start-page: 255
  year: 2010
  end-page: 287
  ident: bib0030
  article-title: Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
  publication-title: J.Mult.-Valued Log. Soft Comput.
– year: 2012
  ident: bib0028
  publication-title: Ensemble Methods: Foundations and Algorithms
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: bib0007
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
– volume: 18
  start-page: 507
  year: 1997
  end-page: 513
  ident: bib0014
  article-title: Prototype selection for the nearest neighbour rule through proximity graphs
  publication-title: Pattern Recogn. Lett.
– start-page: 283
  year: 1999
  end-page: 288
  ident: bib0019
  article-title: On the consistency of information filters for lazy learning algorithms
  publication-title: Principles of Data Mining and Knowledge Discovery
– volume: 24
  start-page: 511
  year: 1994
  end-page: 517
  ident: bib0009
  article-title: Minimal consistent set (MCS) identification for optimal nearest neighbor decision systems design
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 19
  start-page: 787
  year: 2005
  end-page: 806
  ident: bib0011
  article-title: Decision boundary preserving prototype selection for nearest neighbor classification
  publication-title: Int. J. Pattern Recogn. Artif. Intell.
– volume: 19
  start-page: 1450
  year: 2007
  end-page: 1464
  ident: bib0021
  article-title: Fast nearest neighbor condensation for large data sets classification
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 4
  start-page: 9
  year: 1986
  end-page: 12
  ident: bib0013
  article-title: On the editing rate of the multiedit algorithm
  publication-title: Pattern Recogn. Lett.
– volume: 174
  start-page: 410
  year: 2010
  end-page: 441
  ident: bib0025
  article-title: Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts
  publication-title: Artif. Intell.
– volume: 18
  start-page: 392
  year: 2009
  end-page: 418
  ident: bib0024
  article-title: A divide-and-conquer recursive approach for scaling up instance selection algorithms
  publication-title: Data Min. Knowl. Discov.
– volume: 20
  start-page: 276
  year: 2012
  end-page: 290
  ident: bib0006
  article-title: Genetic training instance selection in multiobjective evolutionary fuzzy systems: a coevolutionary approach
  publication-title: IEEE Trans. Fuzzy Syst.
– year: 2006
  ident: bib0001
  publication-title: Pattern Recognition and Machine Learning
– volume: 14
  start-page: 515
  year: 1968
  end-page: 516
  ident: bib0008
  article-title: The condensed nearest neighbor rule
  publication-title: IEEE Trans. Inf. Theory
– volume: 8
  start-page: 527
  year: 2004
  end-page: 533
  ident: bib0005
  article-title: Genetic algorithms for outlier detection and variable selection in linear regression models
  publication-title: Soft Comput.
– volume: 19
  start-page: 816
  year: 2007
  end-page: 855
  ident: bib0022
  article-title: Neighborhood property–based pattern selection for support vector machines
  publication-title: Neural Comput.
– volume: 38
  start-page: 257
  year: 2000
  end-page: 286
  ident: bib0018
  article-title: Reduction techniques for instance-based learning algorithms
  publication-title: Mach. Learn.
– volume: 34
  start-page: 133
  year: 2010
  end-page: 143
  ident: bib0002
  article-title: A review of instance selection methods
  publication-title: Artif. Intell. Rev.
– volume: 19
  start-page: 1593
  year: 2007
  end-page: 1606
  ident: bib0023
  article-title: Distributed nearest neighbor-based condensation of very large data sets
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: SMC-2
  start-page: 408
  issue: 3
  year: 1972
  ident: 10.1016/j.neucom.2017.04.018_bib0012
  article-title: Asymptotic properties of nearest neighbor rules using edited data
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1972.4309137
– start-page: 414
  year: 2010
  ident: 10.1016/j.neucom.2017.04.018_bib0031
  article-title: Do we need whatever more than K-NN?
– volume: 9
  start-page: 997
  year: 2008
  ident: 10.1016/j.neucom.2017.04.018_bib0020
  article-title: Hit miss networks with applications to instance selection
  publication-title: J. Mach. Learn. Res.
– start-page: 283
  year: 1999
  ident: 10.1016/j.neucom.2017.04.018_bib0019
  article-title: On the consistency of information filters for lazy learning algorithms
– volume: 36
  start-page: 1009
  issue: 4
  year: 2003
  ident: 10.1016/j.neucom.2017.04.018_bib0010
  article-title: Finding representative patterns with ordered projections
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(02)00119-X
– volume: 19
  start-page: 787
  issue: 06
  year: 2005
  ident: 10.1016/j.neucom.2017.04.018_bib0011
  article-title: Decision boundary preserving prototype selection for nearest neighbor classification
  publication-title: Int. J. Pattern Recogn. Artif. Intell.
  doi: 10.1142/S0218001405004332
– volume: 73
  start-page: 2030
  issue: 10
  year: 2010
  ident: 10.1016/j.neucom.2017.04.018_bib0026
  article-title: New method for instance or prototype selection using mutual information in time series prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.11.031
– volume: 8
  start-page: 527
  issue: 8
  year: 2004
  ident: 10.1016/j.neucom.2017.04.018_bib0005
  article-title: Genetic algorithms for outlier detection and variable selection in linear regression models
  publication-title: Soft Comput.
  doi: 10.1007/s00500-003-0310-2
– year: 2006
  ident: 10.1016/j.neucom.2017.04.018_bib0001
– volume: 14
  start-page: 515
  issue: 3
  year: 1968
  ident: 10.1016/j.neucom.2017.04.018_bib0008
  article-title: The condensed nearest neighbor rule
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1968.1054155
– volume: 19
  start-page: 1450
  issue: 11
  year: 2007
  ident: 10.1016/j.neucom.2017.04.018_bib0021
  article-title: Fast nearest neighbor condensation for large data sets classification
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2007.190645
– year: 2012
  ident: 10.1016/j.neucom.2017.04.018_bib0028
– volume: 17
  start-page: 255
  issue: 2–3
  year: 2010
  ident: 10.1016/j.neucom.2017.04.018_bib0030
  article-title: Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework
  publication-title: J.Mult.-Valued Log. Soft Comput.
– volume: 34
  start-page: 133
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2017.04.018_bib0002
  article-title: A review of instance selection methods
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-010-9165-y
– start-page: 598
  year: 2004
  ident: 10.1016/j.neucom.2017.04.018_bib0016
  article-title: Comparison of instances seletion algorithms i. algorithms survey
– volume: 14
  start-page: 50
  issue: 1
  year: 1968
  ident: 10.1016/j.neucom.2017.04.018_bib0029
  article-title: Estimation by the nearest neighbor rule
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1968.1054098
– volume: 20
  start-page: 63
  issue: 1–2
  year: 1995
  ident: 10.1016/j.neucom.2017.04.018_bib0015
  article-title: Recursive automatic bias selection for classifier construction
  publication-title: Mach. Learn.
  doi: 10.1007/BF00993475
– volume: 20
  start-page: 276
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2017.04.018_bib0006
  article-title: Genetic training instance selection in multiobjective evolutionary fuzzy systems: a coevolutionary approach
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2011.2173582
– volume: 24
  start-page: 511
  issue: 3
  year: 1994
  ident: 10.1016/j.neucom.2017.04.018_bib0009
  article-title: Minimal consistent set (MCS) identification for optimal nearest neighbor decision systems design
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.278999
– volume: 19
  start-page: 816
  issue: 3
  year: 2007
  ident: 10.1016/j.neucom.2017.04.018_bib0022
  article-title: Neighborhood property–based pattern selection for support vector machines
  publication-title: Neural Comput.
  doi: 10.1162/neco.2007.19.3.816
– volume: 18
  start-page: 507
  issue: 6
  year: 1997
  ident: 10.1016/j.neucom.2017.04.018_bib0014
  article-title: Prototype selection for the nearest neighbour rule through proximity graphs
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/S0167-8655(97)00035-4
– volume: 174
  start-page: 410
  issue: 5
  year: 2010
  ident: 10.1016/j.neucom.2017.04.018_bib0025
  article-title: Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2010.01.001
– volume: 18
  start-page: 392
  issue: 3
  year: 2009
  ident: 10.1016/j.neucom.2017.04.018_bib0024
  article-title: A divide-and-conquer recursive approach for scaling up instance selection algorithms
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-008-0121-2
– volume: 30
  start-page: 69
  year: 2016
  ident: 10.1016/j.neucom.2017.04.018_bib0004
  article-title: Fusion of instance selection methods in regression tasks
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2015.12.002
– volume: 34
  start-page: 417
  issue: 3
  year: 2012
  ident: 10.1016/j.neucom.2017.04.018_bib0003
  article-title: Prototype selection for nearest neighbor classification: taxonomy and empirical study
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.142
– volume: 6
  start-page: 37
  issue: 1
  year: 1991
  ident: 10.1016/j.neucom.2017.04.018_bib0017
  article-title: Instance-based learning algorithms
  publication-title: Mach. Learn.
  doi: 10.1007/BF00153759
– volume: 19
  start-page: 1593
  issue: 12
  year: 2007
  ident: 10.1016/j.neucom.2017.04.018_bib0023
  article-title: Distributed nearest neighbor-based condensation of very large data sets
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2007.190665
– volume: 4
  start-page: 9
  issue: 1
  year: 1986
  ident: 10.1016/j.neucom.2017.04.018_bib0013
  article-title: On the editing rate of the multiedit algorithm
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/0167-8655(86)90066-8
– volume: 38
  start-page: 257
  issue: 3
  year: 2000
  ident: 10.1016/j.neucom.2017.04.018_bib0018
  article-title: Reduction techniques for instance-based learning algorithms
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007626913721
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.neucom.2017.04.018_bib0007
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– start-page: 1
  year: 2013
  ident: 10.1016/j.neucom.2017.04.018_bib0027
  article-title: An instance selection algorithm for regression and its application in variance reduction
SSID ssj0017129
Score 2.6152363
Snippet The k-Nearest Neighbor algorithm(kNN) is an algorithm that is very simple to understand for classification or regression. It is also a lazy algorithm that does...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 26
SubjectTerms Data reduction
Instance selection
Nearest neighbor
Regression
Significant difference
Title An efficient instance selection algorithm for k nearest neighbor regression
URI https://dx.doi.org/10.1016/j.neucom.2017.04.018
Volume 251
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvXjxW6wfZQ9eY5PsbNIcS7FUC71oobdld7Op1ZqWNr36253dJEVBFDyFhF0Ij8nMm_D2DSG3YDIfZIrMTXVTDzLDvSRCIhcprYzKIqS0TuU7joYTeJzyaYP067MwVlZZ5f4yp7tsXT3pVGh2VvN558lPQuyiAuTUzE5OsZ6gALGdYnD3sZN5BHEQln57Iffs6vr4nNN45WZrNSNYBGNneGpHf_xUnr6UnMEROai4Iu2Vr3NMGiY_IYf1HAZafZanZNTLqXFWEFhB6NwRPm3oxo24QdypXMyW63nx8k6RotI3mlvj2k2BV2zNMQjo2sxKPWx-RiaD--f-0KuGJHiaxWHhSaR8jCGqwFMrJdVYlBSXoQLMYrEGX0MslfSzJEgU9hpaQgZZoHkogTPdZeekmS9zc0FoyAzHDkwnBhQYnao0kmmG_ZnyeVfypEVYjY3QlYO4HWSxELVU7FWUiAqLqPBBIKIt4u12rUoHjT_WxzXs4lskCEzyv-68_PfOK7Jv7-y_4iC6Js1ivTU3SDYK1XbR1CZ7vYfRcPwJUI_VTg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHvTi24jPPXittPto6ZEQCQpyERJum93tFqtYCJSrv93ZPogmRhNPTdrdpPkynfm-5tsZhG6ZiV0mI2BuqhU5LDbcCX0gcr7SyqjYB0qbu3yHfm_MHid8UkOd6iyMtVWWub_I6Xm2Lu80SzSbiyRpPrshARXlAaemdnIK20LbjJPAKrC7j43Pwws8UjTcI9yxy6vzc7nJKzVraxqBKhjkHU_t7I-f6tOXmtM9QHslWcTt4n0OUc2kR2i_GsSAy-_yGPXbKTZ5LwgoITjJGZ82eJXPuAHgsZxN58ske3nHwFHxG05t59pVBlfQ5hAFeGmmhSE2PUHj7v2o03PKKQmOpgHJHAmcj1KAlfHIekk1VCXFJVEM0ligmatZIJV049ALFYgNLVnMYk9zIhmnukVPUT2dp-YMYUINBwmmQ8MUMzpSkS-jGASacnlL8rCBaIWN0GULcTvJYiYqr9irKBAVFlHhMgGINpCz2bUoWmj8sT6oYBffQkFAlv915_m_d96gnd7oaSAGD8P-Bdq1T-yPY8-_RPVsuTZXwDwydZ1H1idm9dbj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+instance+selection+algorithm+for+k+nearest+neighbor+regression&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Song%2C+Yunsheng&rft.au=Liang%2C+Jiye&rft.au=Lu%2C+Jing&rft.au=Zhao%2C+Xingwang&rft.date=2017-08-16&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=251&rft.spage=26&rft.epage=34&rft_id=info:doi/10.1016%2Fj.neucom.2017.04.018&rft.externalDocID=S0925231217306884
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon