An efficient instance selection algorithm for k nearest neighbor regression
The k-Nearest Neighbor algorithm(kNN) is an algorithm that is very simple to understand for classification or regression. It is also a lazy algorithm that does not use the training data points to do any generalization, in other words, it keeps all the training data during the testing phase. Thus, th...
Saved in:
| Published in | Neurocomputing (Amsterdam) Vol. 251; pp. 26 - 34 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
16.08.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-2312 1872-8286 |
| DOI | 10.1016/j.neucom.2017.04.018 |
Cover
| Abstract | The k-Nearest Neighbor algorithm(kNN) is an algorithm that is very simple to understand for classification or regression. It is also a lazy algorithm that does not use the training data points to do any generalization, in other words, it keeps all the training data during the testing phase. Thus, the population size becomes a major concern for kNN, since large population size may result in slow execution speed and large memory requirements. To solve this problem, many efforts have been devoted, but mainly focused on kNN classification. And now we propose an algorithm to decrease the size of the training set for kNN regression(DISKR). In this algorithm, we firstly remove the outlier instances that impact the performance of regressor, and then sorts the left instances by the difference on output among instances and their nearest neighbors. Finally, the left instances with little contribution measured by the training error are successively deleted following the rule. The proposed algorithm is compared with five state-of-the-art algorithms on 19 datasets, and experiment results show it could get the similar prediction ability but have the lowest instance storage ratio. |
|---|---|
| AbstractList | The k-Nearest Neighbor algorithm(kNN) is an algorithm that is very simple to understand for classification or regression. It is also a lazy algorithm that does not use the training data points to do any generalization, in other words, it keeps all the training data during the testing phase. Thus, the population size becomes a major concern for kNN, since large population size may result in slow execution speed and large memory requirements. To solve this problem, many efforts have been devoted, but mainly focused on kNN classification. And now we propose an algorithm to decrease the size of the training set for kNN regression(DISKR). In this algorithm, we firstly remove the outlier instances that impact the performance of regressor, and then sorts the left instances by the difference on output among instances and their nearest neighbors. Finally, the left instances with little contribution measured by the training error are successively deleted following the rule. The proposed algorithm is compared with five state-of-the-art algorithms on 19 datasets, and experiment results show it could get the similar prediction ability but have the lowest instance storage ratio. |
| Author | Lu, Jing Song, Yunsheng Zhao, Xingwang Liang, Jiye |
| Author_xml | – sequence: 1 givenname: Yunsheng orcidid: 0000-0002-3697-7134 surname: Song fullname: Song, Yunsheng email: sys_sd@126.com organization: Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China – sequence: 2 givenname: Jiye surname: Liang fullname: Liang, Jiye email: ljy@sxu.edu.cn organization: Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China – sequence: 3 givenname: Jing surname: Lu fullname: Lu, Jing email: sxsqxjlws@163.com organization: Shanxi Meteorological Administration, Taiyuan 030006, Shanxi, China – sequence: 4 givenname: Xingwang surname: Zhao fullname: Zhao, Xingwang email: zhaoxw84@163.com organization: Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China |
| BookMark | eNqFkM9KAzEYxINUsK2-gYd9gV3zJdnurgehFP9hwYueQzb90qZuE0mi4NubpZ486GlgmBmY34xMnHdIyCXQCigsrvaVww_tDxWj0FRUVBTaEzKFtmFly9rFhExpx-qScWBnZBbjnuYgsG5KnpauQGOstuhSYV1MymksIg6ok_WuUMPWB5t2h8L4ULwVDlXAmLLa7a7PVsBtNmLOnpNTo4aIFz86J693ty-rh3L9fP-4Wq5LzRuWSkVbynlvFqLeQNcxDZz2tWK9AIBGC6pFo3pFTQddL1irlTDCgK6ZEjXXLZ8TcdzVwccY0Mj3YA8qfEmgcgQi9_IIRI5AJBUyA8m16181bZMaT6ag7PBf-eZYxnzs02KQcUSmcWNDJiU33v498A3gUoGm |
| CitedBy_id | crossref_primary_10_1007_s00521_020_05218_6 crossref_primary_10_1063_5_0189564 crossref_primary_10_1088_1742_6596_978_1_012047 crossref_primary_10_1016_j_molliq_2023_121691 crossref_primary_10_1109_ACCESS_2017_2740420 crossref_primary_10_1002_jbio_202300357 crossref_primary_10_1016_j_eswa_2022_116881 crossref_primary_10_1109_JSEN_2023_3284196 crossref_primary_10_1016_j_ces_2023_118578 crossref_primary_10_3390_fi16110422 crossref_primary_10_1016_j_buildenv_2023_110595 crossref_primary_10_1007_s00521_022_08030_6 crossref_primary_10_1021_acsestwater_3c00215 crossref_primary_10_1109_ACCESS_2021_3091313 crossref_primary_10_1016_j_ins_2021_06_052 crossref_primary_10_3390_inventions8010032 crossref_primary_10_1016_j_csite_2023_103101 crossref_primary_10_1016_j_precisioneng_2024_08_007 crossref_primary_10_3390_f16010042 crossref_primary_10_3390_fi16120450 crossref_primary_10_1007_s12652_022_03708_0 crossref_primary_10_1109_ACCESS_2024_3394532 crossref_primary_10_1007_s13198_022_01795_y crossref_primary_10_1016_j_ces_2024_120387 crossref_primary_10_1016_j_jfca_2025_107355 crossref_primary_10_1016_j_mtcomm_2021_102462 crossref_primary_10_1016_j_foodchem_2021_130999 crossref_primary_10_3390_aerospace10070586 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123217 crossref_primary_10_38016_jista_1566965 crossref_primary_10_3390_molecules27144357 crossref_primary_10_3233_JIFS_220274 crossref_primary_10_3390_en16114294 crossref_primary_10_3390_su16052218 crossref_primary_10_3390_ijms25052949 crossref_primary_10_1016_j_dibe_2023_100285 crossref_primary_10_3390_fluids7100321 crossref_primary_10_1016_j_jocs_2022_101587 crossref_primary_10_2139_ssrn_4136053 crossref_primary_10_1007_s10846_023_01831_4 crossref_primary_10_1016_j_mtcomm_2023_107385 crossref_primary_10_1007_s10825_023_02005_z crossref_primary_10_1016_j_measurement_2024_115540 crossref_primary_10_1021_acsestengg_4c00042 crossref_primary_10_3390_rs12132110 crossref_primary_10_1007_s11356_024_31826_z crossref_primary_10_1142_S0218213019500015 crossref_primary_10_1177_03611981211036874 crossref_primary_10_3390_su15010617 crossref_primary_10_1016_j_eti_2022_102794 crossref_primary_10_3390_app9163267 crossref_primary_10_1680_jbren_23_00007 crossref_primary_10_1103_PhysRevResearch_5_043117 crossref_primary_10_1039_D3QM00661A crossref_primary_10_14710_jtsiskom_2020_13648 crossref_primary_10_1002_aisy_202300711 crossref_primary_10_1039_D3EM00322A crossref_primary_10_1186_s40537_024_00973_y crossref_primary_10_3390_ijerph20115943 crossref_primary_10_1145_3576903 crossref_primary_10_3390_su152115355 crossref_primary_10_1109_ACCESS_2018_2889122 crossref_primary_10_1145_3442696 crossref_primary_10_1177_03093247241293499 crossref_primary_10_1109_ACCESS_2021_3088612 crossref_primary_10_1109_TII_2019_2916566 crossref_primary_10_3390_agriculture13101868 crossref_primary_10_3390_app13010567 crossref_primary_10_1016_j_knosys_2019_105088 crossref_primary_10_1016_j_joi_2022_101333 crossref_primary_10_1109_ACCESS_2020_2980964 crossref_primary_10_1016_j_cjph_2024_07_016 crossref_primary_10_1016_j_measurement_2020_108135 crossref_primary_10_1007_s10586_023_04001_1 crossref_primary_10_1038_s41598_024_77054_w crossref_primary_10_1016_j_eswa_2023_120422 crossref_primary_10_1016_j_molliq_2022_118513 crossref_primary_10_1088_1742_6596_1007_1_012007 crossref_primary_10_1016_j_ecoenv_2023_115183 crossref_primary_10_1016_j_chemolab_2020_104087 crossref_primary_10_1016_j_eswa_2023_121199 crossref_primary_10_1016_j_desal_2024_118154 crossref_primary_10_1080_10916466_2023_2299711 crossref_primary_10_1016_j_joitmc_2023_100189 crossref_primary_10_3390_electronics12102239 crossref_primary_10_1016_j_totert_2023_100083 crossref_primary_10_3390_vaccines8040709 crossref_primary_10_1007_s41066_021_00288_w crossref_primary_10_3390_fermentation10080410 crossref_primary_10_3390_ma14071661 crossref_primary_10_1109_TGRS_2024_3358374 crossref_primary_10_1016_j_jece_2025_116064 crossref_primary_10_1109_ACCESS_2018_2880563 crossref_primary_10_1016_j_wasman_2022_01_004 crossref_primary_10_1007_s40948_023_00690_5 crossref_primary_10_1016_j_fpsl_2021_100790 crossref_primary_10_1007_s41060_024_00589_8 crossref_primary_10_1016_j_cej_2022_137186 crossref_primary_10_1142_S0217984923500653 crossref_primary_10_2147_IJN_S452316 crossref_primary_10_1108_IJLSS_02_2022_0046 crossref_primary_10_1142_S0218488523400093 crossref_primary_10_1016_j_cemconcomp_2024_105796 crossref_primary_10_1016_j_asej_2024_102925 crossref_primary_10_1016_j_gexplo_2024_107388 crossref_primary_10_1016_j_jece_2024_115260 crossref_primary_10_1002_cepa_2184 crossref_primary_10_1016_j_swevo_2021_100840 crossref_primary_10_3390_rs15205021 crossref_primary_10_1007_s10044_018_0706_3 crossref_primary_10_1016_j_enbuild_2023_112797 crossref_primary_10_3389_fphys_2025_1542240 crossref_primary_10_3390_rs13245159 crossref_primary_10_1016_j_rineng_2024_102717 crossref_primary_10_1007_s12161_023_02445_0 crossref_primary_10_1016_j_knosys_2019_105196 crossref_primary_10_1155_2017_1023498 crossref_primary_10_1016_j_agee_2021_107516 crossref_primary_10_3390_ma15093321 crossref_primary_10_1021_acsomega_4c08313 crossref_primary_10_1016_j_jii_2023_100461 crossref_primary_10_3390_s23020629 crossref_primary_10_3390_electronics13071308 crossref_primary_10_1016_j_sigpro_2020_107771 crossref_primary_10_1016_j_molliq_2023_123353 crossref_primary_10_1177_0954409718795089 crossref_primary_10_1007_s11831_023_09943_8 crossref_primary_10_2139_ssrn_3869826 crossref_primary_10_1007_s00107_021_01685_3 crossref_primary_10_1142_S0217751X23500884 crossref_primary_10_3390_ma12081256 crossref_primary_10_1016_j_csite_2023_102771 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122236 crossref_primary_10_1016_j_psep_2024_01_007 crossref_primary_10_1016_j_buildenv_2023_110191 crossref_primary_10_3390_min12070900 crossref_primary_10_1002_ep_14358 crossref_primary_10_1016_j_mlwa_2021_100190 crossref_primary_10_3389_fpls_2022_982562 crossref_primary_10_1109_ACCESS_2025_3544765 crossref_primary_10_1007_s11053_019_09461_0 crossref_primary_10_1007_s11468_024_02570_4 crossref_primary_10_1016_j_cscm_2023_e02818 crossref_primary_10_1088_1757_899X_725_1_012122 crossref_primary_10_1016_j_arabjc_2022_104306 crossref_primary_10_1016_j_eswa_2024_125063 crossref_primary_10_3390_molecules27185762 crossref_primary_10_1016_j_jobe_2024_108675 crossref_primary_10_1016_j_procs_2023_01_135 crossref_primary_10_1007_s11004_021_09967_5 crossref_primary_10_1016_j_jenvman_2023_118782 crossref_primary_10_1007_s13369_019_04003_5 crossref_primary_10_1088_1742_6596_2338_1_012066 crossref_primary_10_1177_14604582221140975 crossref_primary_10_1016_j_ymssp_2021_108791 crossref_primary_10_1016_j_neucom_2023_126544 crossref_primary_10_1016_j_arabjc_2022_104337 crossref_primary_10_3390_molecules27165140 crossref_primary_10_1109_ACCESS_2024_3412789 crossref_primary_10_1007_s12145_024_01509_x crossref_primary_10_1029_2023EF004257 crossref_primary_10_1080_15325008_2021_1937401 crossref_primary_10_1177_09544062241253712 crossref_primary_10_3390_min12060689 crossref_primary_10_3390_rs15174296 crossref_primary_10_1016_j_ress_2022_108645 crossref_primary_10_1145_3371153 crossref_primary_10_1080_21642583_2024_2385332 crossref_primary_10_1016_j_envsoft_2022_105577 crossref_primary_10_1016_j_eswa_2021_115072 crossref_primary_10_1145_3309545 crossref_primary_10_1016_j_egyr_2023_02_046 crossref_primary_10_31466_kfbd_1482179 crossref_primary_10_3390_s22197692 crossref_primary_10_1007_s12273_023_1024_2 crossref_primary_10_1007_s11356_022_20953_0 crossref_primary_10_3390_en15062254 crossref_primary_10_1016_j_triboint_2024_110067 crossref_primary_10_1186_s41118_022_00174_6 crossref_primary_10_1039_D3TA06385B crossref_primary_10_1109_JLT_2022_3225827 crossref_primary_10_1016_j_eswa_2018_05_017 crossref_primary_10_1016_j_atmosenv_2023_120233 crossref_primary_10_29220_CSAM_2021_28_3_217 crossref_primary_10_1016_j_autcon_2021_103719 crossref_primary_10_1016_j_apenergy_2022_119286 crossref_primary_10_1371_journal_pone_0183570 crossref_primary_10_1016_j_csite_2023_103150 crossref_primary_10_1007_s00170_024_13589_6 crossref_primary_10_1016_j_trgeo_2020_100499 crossref_primary_10_1016_j_datak_2017_10_003 crossref_primary_10_1016_j_engappai_2024_109701 crossref_primary_10_3390_electronics13050810 crossref_primary_10_1016_j_apenergy_2024_125201 crossref_primary_10_1007_s10614_024_10796_x crossref_primary_10_1016_j_chemolab_2023_104829 crossref_primary_10_2166_hydro_2024_016 crossref_primary_10_3233_IDA_173720 crossref_primary_10_1039_D3NR02273K crossref_primary_10_1007_s12273_024_1114_9 crossref_primary_10_1016_j_catena_2024_107848 crossref_primary_10_1016_j_rineng_2024_102780 crossref_primary_10_1155_2022_4356974 crossref_primary_10_1007_s00500_020_04667_4 crossref_primary_10_3390_bdcc7020117 crossref_primary_10_1002_wer_10893 crossref_primary_10_1109_ACCESS_2023_3243625 crossref_primary_10_2200_S01135ED1V01Y202109SPR022 crossref_primary_10_1016_j_molliq_2022_121195 crossref_primary_10_1038_s41598_022_13832_8 crossref_primary_10_1186_s43020_023_00101_w crossref_primary_10_1016_j_apt_2024_104462 crossref_primary_10_1016_j_optlastec_2023_110208 crossref_primary_10_1016_j_apor_2021_102735 crossref_primary_10_3390_min15040330 crossref_primary_10_3390_app14020725 crossref_primary_10_1007_s10470_021_01885_0 crossref_primary_10_3390_buildings15020288 crossref_primary_10_1016_j_matpr_2020_10_631 crossref_primary_10_1063_5_0013253 crossref_primary_10_3390_app10093089 crossref_primary_10_1111_mice_13074 crossref_primary_10_1109_ACCESS_2020_2991669 crossref_primary_10_1093_bioinformatics_btad577 crossref_primary_10_1007_s10472_023_09882_x crossref_primary_10_1016_j_bspc_2024_106763 crossref_primary_10_1016_j_oceaneng_2020_107812 crossref_primary_10_1016_j_landusepol_2020_104537 crossref_primary_10_1145_3592857 crossref_primary_10_2478_amcs_2019_0012 crossref_primary_10_1080_10549811_2019_1607391 |
| Cites_doi | 10.1109/TSMC.1972.4309137 10.1016/S0031-3203(02)00119-X 10.1142/S0218001405004332 10.1016/j.neucom.2009.11.031 10.1007/s00500-003-0310-2 10.1109/TIT.1968.1054155 10.1109/TKDE.2007.190645 10.1007/s10462-010-9165-y 10.1109/TIT.1968.1054098 10.1007/BF00993475 10.1109/TFUZZ.2011.2173582 10.1109/21.278999 10.1162/neco.2007.19.3.816 10.1016/S0167-8655(97)00035-4 10.1016/j.artint.2010.01.001 10.1007/s10618-008-0121-2 10.1016/j.inffus.2015.12.002 10.1109/TPAMI.2011.142 10.1007/BF00153759 10.1109/TKDE.2007.190665 10.1016/0167-8655(86)90066-8 10.1023/A:1007626913721 10.1109/TIT.1967.1053964 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2017.04.018 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 34 |
| ExternalDocumentID | 10_1016_j_neucom_2017_04_018 S0925231217306884 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c372t-a08033bf645d1992c130b5a2b41117c40c47aba0f919b428ca4f4f1c52a453c83 |
| IEDL.DBID | .~1 |
| ISSN | 0925-2312 |
| IngestDate | Thu Apr 24 23:44:17 EDT 2025 Wed Oct 01 02:27:33 EDT 2025 Fri Feb 23 02:30:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Nearest neighbor Regression Instance selection Data reduction Significant difference |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-a08033bf645d1992c130b5a2b41117c40c47aba0f919b428ca4f4f1c52a453c83 |
| ORCID | 0000-0002-3697-7134 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2017_04_018 crossref_citationtrail_10_1016_j_neucom_2017_04_018 elsevier_sciencedirect_doi_10_1016_j_neucom_2017_04_018 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-16 |
| PublicationDateYYYYMMDD | 2017-08-16 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Angiulli (bib0021) 2007; 19 Guillen, Herrera, Rubio, Pomares, Lendasse, Rojas (bib0026) 2010; 73 Wilson (bib0012) 1972; SMC-2 Dasarathy (bib0009) 1994; 24 Kordos, Blachnik, Strzempa (bib0031) 2010 Garcia, Derrac, Cano, Herrera (bib0003) 2012; 34 Olvera-López, Carrasco-Ochoa, Martínez-Trinidad, Kittler (bib0002) 2010; 34 Devijver (bib0013) 1986; 4 Shin, Cho (bib0022) 2007; 19 García-Osorio, de Haro-García, García-Pedrajas (bib0025) 2010; 174 Brodley (bib0015) 1995; 20 Brighton, Mellish (bib0019) 1999 Riquelme, Aguilar-Ruiz, Toro (bib0010) 2003; 36 Barandela, Ferri, Sánchez (bib0011) 2005; 19 Zhou (bib0028) 2012 Cover (bib0029) 1968; 14 Bishop (bib0001) 2006 Alcalá, Fernández, Luengo, Derrac, García, Sánchez, Herrera (bib0030) 2010; 17 Jankowski, Grochowski (bib0016) 2004 Wilson, Martinez (bib0018) 2000; 38 Hart (bib0008) 1968; 14 Angiulli, Folino (bib0023) 2007; 19 Rodriguez-Fdez, Mucientes, Bugarin (bib0027) 2013 Marchiori (bib0020) 2008; 9 Sánchez, Pla, Ferri (bib0014) 1997; 18 Tolvi (bib0005) 2004; 8 Aha, Kibler, Albert (bib0017) 1991; 6 Arnaiz-González, Blachnik, Kordos, García-Osorio (bib0004) 2016; 30 Cover, Hart (bib0007) 1967; 13 Antonelli, Ducange, Marcelloni (bib0006) 2012; 20 de Haro-García, García-Pedrajas (bib0024) 2009; 18 Marchiori (10.1016/j.neucom.2017.04.018_bib0020) 2008; 9 Angiulli (10.1016/j.neucom.2017.04.018_bib0021) 2007; 19 García-Osorio (10.1016/j.neucom.2017.04.018_bib0025) 2010; 174 Brighton (10.1016/j.neucom.2017.04.018_bib0019) 1999 Arnaiz-González (10.1016/j.neucom.2017.04.018_bib0004) 2016; 30 Sánchez (10.1016/j.neucom.2017.04.018_bib0014) 1997; 18 Brodley (10.1016/j.neucom.2017.04.018_bib0015) 1995; 20 Jankowski (10.1016/j.neucom.2017.04.018_bib0016) 2004 Kordos (10.1016/j.neucom.2017.04.018_bib0031) 2010 Cover (10.1016/j.neucom.2017.04.018_bib0029) 1968; 14 Garcia (10.1016/j.neucom.2017.04.018_bib0003) 2012; 34 Olvera-López (10.1016/j.neucom.2017.04.018_bib0002) 2010; 34 Wilson (10.1016/j.neucom.2017.04.018_bib0012) 1972; SMC-2 Barandela (10.1016/j.neucom.2017.04.018_bib0011) 2005; 19 Cover (10.1016/j.neucom.2017.04.018_bib0007) 1967; 13 Guillen (10.1016/j.neucom.2017.04.018_bib0026) 2010; 73 Rodriguez-Fdez (10.1016/j.neucom.2017.04.018_bib0027) 2013 Shin (10.1016/j.neucom.2017.04.018_bib0022) 2007; 19 Bishop (10.1016/j.neucom.2017.04.018_bib0001) 2006 Riquelme (10.1016/j.neucom.2017.04.018_bib0010) 2003; 36 Antonelli (10.1016/j.neucom.2017.04.018_bib0006) 2012; 20 Zhou (10.1016/j.neucom.2017.04.018_bib0028) 2012 Wilson (10.1016/j.neucom.2017.04.018_bib0018) 2000; 38 Tolvi (10.1016/j.neucom.2017.04.018_bib0005) 2004; 8 de Haro-García (10.1016/j.neucom.2017.04.018_bib0024) 2009; 18 Devijver (10.1016/j.neucom.2017.04.018_bib0013) 1986; 4 Alcalá (10.1016/j.neucom.2017.04.018_bib0030) 2010; 17 Dasarathy (10.1016/j.neucom.2017.04.018_bib0009) 1994; 24 Aha (10.1016/j.neucom.2017.04.018_bib0017) 1991; 6 Angiulli (10.1016/j.neucom.2017.04.018_bib0023) 2007; 19 Hart (10.1016/j.neucom.2017.04.018_bib0008) 1968; 14 |
| References_xml | – volume: 36 start-page: 1009 year: 2003 end-page: 1018 ident: bib0010 article-title: Finding representative patterns with ordered projections publication-title: Pattern Recogn. – start-page: 1 year: 2013 end-page: 8 ident: bib0027 article-title: An instance selection algorithm for regression and its application in variance reduction publication-title: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ), 2013 – start-page: 598 year: 2004 end-page: 603 ident: bib0016 article-title: Comparison of instances seletion algorithms i. algorithms survey publication-title: Proceedings of the Artificial Intelligence and Soft Computing-ICAISC 2004 – start-page: 414 year: 2010 end-page: 421 ident: bib0031 article-title: Do we need whatever more than K-NN? publication-title: Artificial Intelligence and Soft Computing – volume: 9 start-page: 997 year: 2008 end-page: 1017 ident: bib0020 article-title: Hit miss networks with applications to instance selection publication-title: J. Mach. Learn. Res. – volume: 30 start-page: 69 year: 2016 end-page: 79 ident: bib0004 article-title: Fusion of instance selection methods in regression tasks publication-title: Inf. Fusion – volume: SMC-2 start-page: 408 year: 1972 end-page: 421 ident: bib0012 article-title: Asymptotic properties of nearest neighbor rules using edited data publication-title: IEEE Trans. Syst. Man Cybern. – volume: 14 start-page: 50 year: 1968 end-page: 55 ident: bib0029 article-title: Estimation by the nearest neighbor rule publication-title: IEEE Trans. Inf. Theory – volume: 34 start-page: 417 year: 2012 end-page: 435 ident: bib0003 article-title: Prototype selection for nearest neighbor classification: taxonomy and empirical study publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 6 start-page: 37 year: 1991 end-page: 66 ident: bib0017 article-title: Instance-based learning algorithms publication-title: Mach. Learn. – volume: 20 start-page: 63 year: 1995 end-page: 94 ident: bib0015 article-title: Recursive automatic bias selection for classifier construction publication-title: Mach. Learn. – volume: 73 start-page: 2030 year: 2010 end-page: 2038 ident: bib0026 article-title: New method for instance or prototype selection using mutual information in time series prediction publication-title: Neurocomputing – volume: 17 start-page: 255 year: 2010 end-page: 287 ident: bib0030 article-title: Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework publication-title: J.Mult.-Valued Log. Soft Comput. – year: 2012 ident: bib0028 publication-title: Ensemble Methods: Foundations and Algorithms – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: bib0007 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory – volume: 18 start-page: 507 year: 1997 end-page: 513 ident: bib0014 article-title: Prototype selection for the nearest neighbour rule through proximity graphs publication-title: Pattern Recogn. Lett. – start-page: 283 year: 1999 end-page: 288 ident: bib0019 article-title: On the consistency of information filters for lazy learning algorithms publication-title: Principles of Data Mining and Knowledge Discovery – volume: 24 start-page: 511 year: 1994 end-page: 517 ident: bib0009 article-title: Minimal consistent set (MCS) identification for optimal nearest neighbor decision systems design publication-title: IEEE Trans. Syst. Man Cybern. – volume: 19 start-page: 787 year: 2005 end-page: 806 ident: bib0011 article-title: Decision boundary preserving prototype selection for nearest neighbor classification publication-title: Int. J. Pattern Recogn. Artif. Intell. – volume: 19 start-page: 1450 year: 2007 end-page: 1464 ident: bib0021 article-title: Fast nearest neighbor condensation for large data sets classification publication-title: IEEE Trans. Knowl. Data Eng. – volume: 4 start-page: 9 year: 1986 end-page: 12 ident: bib0013 article-title: On the editing rate of the multiedit algorithm publication-title: Pattern Recogn. Lett. – volume: 174 start-page: 410 year: 2010 end-page: 441 ident: bib0025 article-title: Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts publication-title: Artif. Intell. – volume: 18 start-page: 392 year: 2009 end-page: 418 ident: bib0024 article-title: A divide-and-conquer recursive approach for scaling up instance selection algorithms publication-title: Data Min. Knowl. Discov. – volume: 20 start-page: 276 year: 2012 end-page: 290 ident: bib0006 article-title: Genetic training instance selection in multiobjective evolutionary fuzzy systems: a coevolutionary approach publication-title: IEEE Trans. Fuzzy Syst. – year: 2006 ident: bib0001 publication-title: Pattern Recognition and Machine Learning – volume: 14 start-page: 515 year: 1968 end-page: 516 ident: bib0008 article-title: The condensed nearest neighbor rule publication-title: IEEE Trans. Inf. Theory – volume: 8 start-page: 527 year: 2004 end-page: 533 ident: bib0005 article-title: Genetic algorithms for outlier detection and variable selection in linear regression models publication-title: Soft Comput. – volume: 19 start-page: 816 year: 2007 end-page: 855 ident: bib0022 article-title: Neighborhood property–based pattern selection for support vector machines publication-title: Neural Comput. – volume: 38 start-page: 257 year: 2000 end-page: 286 ident: bib0018 article-title: Reduction techniques for instance-based learning algorithms publication-title: Mach. Learn. – volume: 34 start-page: 133 year: 2010 end-page: 143 ident: bib0002 article-title: A review of instance selection methods publication-title: Artif. Intell. Rev. – volume: 19 start-page: 1593 year: 2007 end-page: 1606 ident: bib0023 article-title: Distributed nearest neighbor-based condensation of very large data sets publication-title: IEEE Trans. Knowl. Data Eng. – volume: SMC-2 start-page: 408 issue: 3 year: 1972 ident: 10.1016/j.neucom.2017.04.018_bib0012 article-title: Asymptotic properties of nearest neighbor rules using edited data publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1972.4309137 – start-page: 414 year: 2010 ident: 10.1016/j.neucom.2017.04.018_bib0031 article-title: Do we need whatever more than K-NN? – volume: 9 start-page: 997 year: 2008 ident: 10.1016/j.neucom.2017.04.018_bib0020 article-title: Hit miss networks with applications to instance selection publication-title: J. Mach. Learn. Res. – start-page: 283 year: 1999 ident: 10.1016/j.neucom.2017.04.018_bib0019 article-title: On the consistency of information filters for lazy learning algorithms – volume: 36 start-page: 1009 issue: 4 year: 2003 ident: 10.1016/j.neucom.2017.04.018_bib0010 article-title: Finding representative patterns with ordered projections publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(02)00119-X – volume: 19 start-page: 787 issue: 06 year: 2005 ident: 10.1016/j.neucom.2017.04.018_bib0011 article-title: Decision boundary preserving prototype selection for nearest neighbor classification publication-title: Int. J. Pattern Recogn. Artif. Intell. doi: 10.1142/S0218001405004332 – volume: 73 start-page: 2030 issue: 10 year: 2010 ident: 10.1016/j.neucom.2017.04.018_bib0026 article-title: New method for instance or prototype selection using mutual information in time series prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.11.031 – volume: 8 start-page: 527 issue: 8 year: 2004 ident: 10.1016/j.neucom.2017.04.018_bib0005 article-title: Genetic algorithms for outlier detection and variable selection in linear regression models publication-title: Soft Comput. doi: 10.1007/s00500-003-0310-2 – year: 2006 ident: 10.1016/j.neucom.2017.04.018_bib0001 – volume: 14 start-page: 515 issue: 3 year: 1968 ident: 10.1016/j.neucom.2017.04.018_bib0008 article-title: The condensed nearest neighbor rule publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1968.1054155 – volume: 19 start-page: 1450 issue: 11 year: 2007 ident: 10.1016/j.neucom.2017.04.018_bib0021 article-title: Fast nearest neighbor condensation for large data sets classification publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2007.190645 – year: 2012 ident: 10.1016/j.neucom.2017.04.018_bib0028 – volume: 17 start-page: 255 issue: 2–3 year: 2010 ident: 10.1016/j.neucom.2017.04.018_bib0030 article-title: Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework publication-title: J.Mult.-Valued Log. Soft Comput. – volume: 34 start-page: 133 issue: 2 year: 2010 ident: 10.1016/j.neucom.2017.04.018_bib0002 article-title: A review of instance selection methods publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-010-9165-y – start-page: 598 year: 2004 ident: 10.1016/j.neucom.2017.04.018_bib0016 article-title: Comparison of instances seletion algorithms i. algorithms survey – volume: 14 start-page: 50 issue: 1 year: 1968 ident: 10.1016/j.neucom.2017.04.018_bib0029 article-title: Estimation by the nearest neighbor rule publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1968.1054098 – volume: 20 start-page: 63 issue: 1–2 year: 1995 ident: 10.1016/j.neucom.2017.04.018_bib0015 article-title: Recursive automatic bias selection for classifier construction publication-title: Mach. Learn. doi: 10.1007/BF00993475 – volume: 20 start-page: 276 issue: 2 year: 2012 ident: 10.1016/j.neucom.2017.04.018_bib0006 article-title: Genetic training instance selection in multiobjective evolutionary fuzzy systems: a coevolutionary approach publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2011.2173582 – volume: 24 start-page: 511 issue: 3 year: 1994 ident: 10.1016/j.neucom.2017.04.018_bib0009 article-title: Minimal consistent set (MCS) identification for optimal nearest neighbor decision systems design publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.278999 – volume: 19 start-page: 816 issue: 3 year: 2007 ident: 10.1016/j.neucom.2017.04.018_bib0022 article-title: Neighborhood property–based pattern selection for support vector machines publication-title: Neural Comput. doi: 10.1162/neco.2007.19.3.816 – volume: 18 start-page: 507 issue: 6 year: 1997 ident: 10.1016/j.neucom.2017.04.018_bib0014 article-title: Prototype selection for the nearest neighbour rule through proximity graphs publication-title: Pattern Recogn. Lett. doi: 10.1016/S0167-8655(97)00035-4 – volume: 174 start-page: 410 issue: 5 year: 2010 ident: 10.1016/j.neucom.2017.04.018_bib0025 article-title: Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts publication-title: Artif. Intell. doi: 10.1016/j.artint.2010.01.001 – volume: 18 start-page: 392 issue: 3 year: 2009 ident: 10.1016/j.neucom.2017.04.018_bib0024 article-title: A divide-and-conquer recursive approach for scaling up instance selection algorithms publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-008-0121-2 – volume: 30 start-page: 69 year: 2016 ident: 10.1016/j.neucom.2017.04.018_bib0004 article-title: Fusion of instance selection methods in regression tasks publication-title: Inf. Fusion doi: 10.1016/j.inffus.2015.12.002 – volume: 34 start-page: 417 issue: 3 year: 2012 ident: 10.1016/j.neucom.2017.04.018_bib0003 article-title: Prototype selection for nearest neighbor classification: taxonomy and empirical study publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.142 – volume: 6 start-page: 37 issue: 1 year: 1991 ident: 10.1016/j.neucom.2017.04.018_bib0017 article-title: Instance-based learning algorithms publication-title: Mach. Learn. doi: 10.1007/BF00153759 – volume: 19 start-page: 1593 issue: 12 year: 2007 ident: 10.1016/j.neucom.2017.04.018_bib0023 article-title: Distributed nearest neighbor-based condensation of very large data sets publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2007.190665 – volume: 4 start-page: 9 issue: 1 year: 1986 ident: 10.1016/j.neucom.2017.04.018_bib0013 article-title: On the editing rate of the multiedit algorithm publication-title: Pattern Recogn. Lett. doi: 10.1016/0167-8655(86)90066-8 – volume: 38 start-page: 257 issue: 3 year: 2000 ident: 10.1016/j.neucom.2017.04.018_bib0018 article-title: Reduction techniques for instance-based learning algorithms publication-title: Mach. Learn. doi: 10.1023/A:1007626913721 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 10.1016/j.neucom.2017.04.018_bib0007 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – start-page: 1 year: 2013 ident: 10.1016/j.neucom.2017.04.018_bib0027 article-title: An instance selection algorithm for regression and its application in variance reduction |
| SSID | ssj0017129 |
| Score | 2.6152363 |
| Snippet | The k-Nearest Neighbor algorithm(kNN) is an algorithm that is very simple to understand for classification or regression. It is also a lazy algorithm that does... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 26 |
| SubjectTerms | Data reduction Instance selection Nearest neighbor Regression Significant difference |
| Title | An efficient instance selection algorithm for k nearest neighbor regression |
| URI | https://dx.doi.org/10.1016/j.neucom.2017.04.018 |
| Volume | 251 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvXjxW6wfZQ9eY5PsbNIcS7FUC71oobdld7Op1ZqWNr36253dJEVBFDyFhF0Ij8nMm_D2DSG3YDIfZIrMTXVTDzLDvSRCIhcprYzKIqS0TuU7joYTeJzyaYP067MwVlZZ5f4yp7tsXT3pVGh2VvN558lPQuyiAuTUzE5OsZ6gALGdYnD3sZN5BHEQln57Iffs6vr4nNN45WZrNSNYBGNneGpHf_xUnr6UnMEROai4Iu2Vr3NMGiY_IYf1HAZafZanZNTLqXFWEFhB6NwRPm3oxo24QdypXMyW63nx8k6RotI3mlvj2k2BV2zNMQjo2sxKPWx-RiaD--f-0KuGJHiaxWHhSaR8jCGqwFMrJdVYlBSXoQLMYrEGX0MslfSzJEgU9hpaQgZZoHkogTPdZeekmS9zc0FoyAzHDkwnBhQYnao0kmmG_ZnyeVfypEVYjY3QlYO4HWSxELVU7FWUiAqLqPBBIKIt4u12rUoHjT_WxzXs4lskCEzyv-68_PfOK7Jv7-y_4iC6Js1ivTU3SDYK1XbR1CZ7vYfRcPwJUI_VTg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHvTi24jPPXittPto6ZEQCQpyERJum93tFqtYCJSrv93ZPogmRhNPTdrdpPkynfm-5tsZhG6ZiV0mI2BuqhU5LDbcCX0gcr7SyqjYB0qbu3yHfm_MHid8UkOd6iyMtVWWub_I6Xm2Lu80SzSbiyRpPrshARXlAaemdnIK20LbjJPAKrC7j43Pwws8UjTcI9yxy6vzc7nJKzVraxqBKhjkHU_t7I-f6tOXmtM9QHslWcTt4n0OUc2kR2i_GsSAy-_yGPXbKTZ5LwgoITjJGZ82eJXPuAHgsZxN58ske3nHwFHxG05t59pVBlfQ5hAFeGmmhSE2PUHj7v2o03PKKQmOpgHJHAmcj1KAlfHIekk1VCXFJVEM0ligmatZIJV049ALFYgNLVnMYk9zIhmnukVPUT2dp-YMYUINBwmmQ8MUMzpSkS-jGASacnlL8rCBaIWN0GULcTvJYiYqr9irKBAVFlHhMgGINpCz2bUoWmj8sT6oYBffQkFAlv915_m_d96gnd7oaSAGD8P-Bdq1T-yPY8-_RPVsuTZXwDwydZ1H1idm9dbj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+instance+selection+algorithm+for+k+nearest+neighbor+regression&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Song%2C+Yunsheng&rft.au=Liang%2C+Jiye&rft.au=Lu%2C+Jing&rft.au=Zhao%2C+Xingwang&rft.date=2017-08-16&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=251&rft.spage=26&rft.epage=34&rft_id=info:doi/10.1016%2Fj.neucom.2017.04.018&rft.externalDocID=S0925231217306884 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |