A biorefinery for conversion of citrus peel waste into essential oils, pectin, fertilizer and succinic acid via different fermentation strategies

[Display omitted] •A biorefinery process isolated essential oils (0.43%) and pectin (30.53%) from CPW.•D-limonene comprised 97% of essential oil’s composition among 17 compounds detected.•Combined use of CSL and vitamins in CPW hydrolyzates enhanced succinate production.•Fed-batch fermentation impro...

Full description

Saved in:
Bibliographic Details
Published inWaste management (Elmsford) Vol. 113; pp. 469 - 477
Main Authors Patsalou, Maria, Chrysargyris, Antonios, Tzortzakis, Nikolaos, Koutinas, Michalis
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.07.2020
Subjects
Online AccessGet full text
ISSN0956-053X
1879-2456
1879-2456
DOI10.1016/j.wasman.2020.06.020

Cover

Abstract [Display omitted] •A biorefinery process isolated essential oils (0.43%) and pectin (30.53%) from CPW.•D-limonene comprised 97% of essential oil’s composition among 17 compounds detected.•Combined use of CSL and vitamins in CPW hydrolyzates enhanced succinate production.•Fed-batch fermentation improved succinate production from CPW hydrolyzates by 27%•Biorefinery residues were used as fertilizer imposing stress on plant growth. A process for the valorization of citrus peel waste (CPW) has been developed aiming to produce succinic acid and a series of added-value products through the biorefinery platform. CPW was subject to physicochemical and biological treatment to isolate essential oils (0.43%) and pectin (30.53%) as extractable products, pretreating the material for subsequent production of succinic acid that enabled application of remaining biorefinery residues (BR) as fertilizer substitute. Cellulose, hemicellulose and lignin contents of CPW accounted for 22.45%, 8.05% and 0.66% respectively, while acid hydrolysis reduced hemicellulose by 3.42% in BR. Moreover, essential oils extracted from CPW included 17 compounds, among which D-limonene reached 96.7%. The hydrolyzate generated was fermented for succinic acid production using Actinobacillus succinogenes. Different batch experiments demonstrated that the combined use of corn steep liquor (CSL) and vitamins in a lab-scale bioreactor resulted in product concentration and yield that reached 18.5 g L−1 and 0.62 g g−1 respectively. Although simultaneous saccharification and fermentation (SSF) could not enhance succinic acid production, a fed-batch fermentation strategy increased succinic acid concentration and yield generating 22.4 g L−1 and 0.73 g g−1 respectively, while the mass of the platform chemical formed was enhanced by 27% as compared to the batch process. BR was explored as fertilizer substitute aiming to close the loop in the management of CPW towards development of a zero-waste process demonstrating that although the material imposed stress on plant growth, the content of potassium, phosphorus and nitrogen in the mixture increased.
AbstractList A process for the valorization of citrus peel waste (CPW) has been developed aiming to produce succinic acid and a series of added-value products through the biorefinery platform. CPW was subject to physicochemical and biological treatment to isolate essential oils (0.43%) and pectin (30.53%) as extractable products, pretreating the material for subsequent production of succinic acid that enabled application of remaining biorefinery residues (BR) as fertilizer substitute. Cellulose, hemicellulose and lignin contents of CPW accounted for 22.45%, 8.05% and 0.66% respectively, while acid hydrolysis reduced hemicellulose by 3.42% in BR. Moreover, essential oils extracted from CPW included 17 compounds, among which D-limonene reached 96.7%. The hydrolyzate generated was fermented for succinic acid production using Actinobacillus succinogenes. Different batch experiments demonstrated that the combined use of corn steep liquor (CSL) and vitamins in a lab-scale bioreactor resulted in product concentration and yield that reached 18.5 g L-1 and 0.62 g g-1 respectively. Although simultaneous saccharification and fermentation (SSF) could not enhance succinic acid production, a fed-batch fermentation strategy increased succinic acid concentration and yield generating 22.4 g L-1 and 0.73 g g-1 respectively, while the mass of the platform chemical formed was enhanced by 27% as compared to the batch process. BR was explored as fertilizer substitute aiming to close the loop in the management of CPW towards development of a zero-waste process demonstrating that although the material imposed stress on plant growth, the content of potassium, phosphorus and nitrogen in the mixture increased.A process for the valorization of citrus peel waste (CPW) has been developed aiming to produce succinic acid and a series of added-value products through the biorefinery platform. CPW was subject to physicochemical and biological treatment to isolate essential oils (0.43%) and pectin (30.53%) as extractable products, pretreating the material for subsequent production of succinic acid that enabled application of remaining biorefinery residues (BR) as fertilizer substitute. Cellulose, hemicellulose and lignin contents of CPW accounted for 22.45%, 8.05% and 0.66% respectively, while acid hydrolysis reduced hemicellulose by 3.42% in BR. Moreover, essential oils extracted from CPW included 17 compounds, among which D-limonene reached 96.7%. The hydrolyzate generated was fermented for succinic acid production using Actinobacillus succinogenes. Different batch experiments demonstrated that the combined use of corn steep liquor (CSL) and vitamins in a lab-scale bioreactor resulted in product concentration and yield that reached 18.5 g L-1 and 0.62 g g-1 respectively. Although simultaneous saccharification and fermentation (SSF) could not enhance succinic acid production, a fed-batch fermentation strategy increased succinic acid concentration and yield generating 22.4 g L-1 and 0.73 g g-1 respectively, while the mass of the platform chemical formed was enhanced by 27% as compared to the batch process. BR was explored as fertilizer substitute aiming to close the loop in the management of CPW towards development of a zero-waste process demonstrating that although the material imposed stress on plant growth, the content of potassium, phosphorus and nitrogen in the mixture increased.
A process for the valorization of citrus peel waste (CPW) has been developed aiming to produce succinic acid and a series of added-value products through the biorefinery platform. CPW was subject to physicochemical and biological treatment to isolate essential oils (0.43%) and pectin (30.53%) as extractable products, pretreating the material for subsequent production of succinic acid that enabled application of remaining biorefinery residues (BR) as fertilizer substitute. Cellulose, hemicellulose and lignin contents of CPW accounted for 22.45%, 8.05% and 0.66% respectively, while acid hydrolysis reduced hemicellulose by 3.42% in BR. Moreover, essential oils extracted from CPW included 17 compounds, among which D-limonene reached 96.7%. The hydrolyzate generated was fermented for succinic acid production using Actinobacillus succinogenes. Different batch experiments demonstrated that the combined use of corn steep liquor (CSL) and vitamins in a lab-scale bioreactor resulted in product concentration and yield that reached 18.5 g L⁻¹ and 0.62 g g⁻¹ respectively. Although simultaneous saccharification and fermentation (SSF) could not enhance succinic acid production, a fed-batch fermentation strategy increased succinic acid concentration and yield generating 22.4 g L⁻¹ and 0.73 g g⁻¹ respectively, while the mass of the platform chemical formed was enhanced by 27% as compared to the batch process. BR was explored as fertilizer substitute aiming to close the loop in the management of CPW towards development of a zero-waste process demonstrating that although the material imposed stress on plant growth, the content of potassium, phosphorus and nitrogen in the mixture increased.
[Display omitted] •A biorefinery process isolated essential oils (0.43%) and pectin (30.53%) from CPW.•D-limonene comprised 97% of essential oil’s composition among 17 compounds detected.•Combined use of CSL and vitamins in CPW hydrolyzates enhanced succinate production.•Fed-batch fermentation improved succinate production from CPW hydrolyzates by 27%•Biorefinery residues were used as fertilizer imposing stress on plant growth. A process for the valorization of citrus peel waste (CPW) has been developed aiming to produce succinic acid and a series of added-value products through the biorefinery platform. CPW was subject to physicochemical and biological treatment to isolate essential oils (0.43%) and pectin (30.53%) as extractable products, pretreating the material for subsequent production of succinic acid that enabled application of remaining biorefinery residues (BR) as fertilizer substitute. Cellulose, hemicellulose and lignin contents of CPW accounted for 22.45%, 8.05% and 0.66% respectively, while acid hydrolysis reduced hemicellulose by 3.42% in BR. Moreover, essential oils extracted from CPW included 17 compounds, among which D-limonene reached 96.7%. The hydrolyzate generated was fermented for succinic acid production using Actinobacillus succinogenes. Different batch experiments demonstrated that the combined use of corn steep liquor (CSL) and vitamins in a lab-scale bioreactor resulted in product concentration and yield that reached 18.5 g L−1 and 0.62 g g−1 respectively. Although simultaneous saccharification and fermentation (SSF) could not enhance succinic acid production, a fed-batch fermentation strategy increased succinic acid concentration and yield generating 22.4 g L−1 and 0.73 g g−1 respectively, while the mass of the platform chemical formed was enhanced by 27% as compared to the batch process. BR was explored as fertilizer substitute aiming to close the loop in the management of CPW towards development of a zero-waste process demonstrating that although the material imposed stress on plant growth, the content of potassium, phosphorus and nitrogen in the mixture increased.
Author Tzortzakis, Nikolaos
Patsalou, Maria
Chrysargyris, Antonios
Koutinas, Michalis
Author_xml – sequence: 1
  givenname: Maria
  surname: Patsalou
  fullname: Patsalou, Maria
  organization: Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
– sequence: 2
  givenname: Antonios
  surname: Chrysargyris
  fullname: Chrysargyris, Antonios
  organization: Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
– sequence: 3
  givenname: Nikolaos
  surname: Tzortzakis
  fullname: Tzortzakis, Nikolaos
  organization: Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
– sequence: 4
  givenname: Michalis
  orcidid: 0000-0002-5371-4280
  surname: Koutinas
  fullname: Koutinas, Michalis
  email: michail.koutinas@cut.ac.cy
  organization: Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus
BookMark eNqFUT1vFDEQtVAicUn4BxQuKbKLvev17lIgRVGASJFoQKKzfPYYzWnPPjy-Q8m_4B_j46goSPWKeR-a9y7YWUwRGHstRSuF1G837U9LWxvbTnSiFbqt8IKt5DTOTacGfcZWYh50I4b-20t2QbQRQqpJihX7dcPXmDIEjJAfeUiZuxQPkAlT5ClwhyXvie8AFl5TCnCMJXEggljQLjzhQtf17grGax4gF1zwCTK30XPaO4cRHbcOPT-g5R5D5VTtkbqtaMsxiUq2Bb4j0BU7D3YhePUXL9nXD3dfbj81D58_3t_ePDSuH7vSzHK2azsG7TX0oF3QsvNqrTotlXLBawvDOAqYoJ_E7EelQwfSDtPaT70F0V-yNyffXU4_9kDFbJEcLIuNkPZkuqFTvRzUMD5PVXJWNbZXlfruRHU5EdVeTS3wz4v1QVyMFOY4mdmY02TmOJkR2lSoYvWPeJdxa_Pjc7L3JxnUug4I2ZBDiA485jqL8Qn_b_AbX3m4ZA
CitedBy_id crossref_primary_10_1016_j_biortech_2025_132305
crossref_primary_10_1016_j_jclepro_2023_140005
crossref_primary_10_1016_j_biteb_2023_101469
crossref_primary_10_1016_j_ijbiomac_2024_131798
crossref_primary_10_1016_j_eti_2021_101914
crossref_primary_10_1016_j_foodhyd_2022_107564
crossref_primary_10_1016_j_biortech_2020_124559
crossref_primary_10_1016_j_indcrop_2024_120069
crossref_primary_10_1007_s10163_022_01527_1
crossref_primary_10_1016_j_ijbiomac_2023_123929
crossref_primary_10_1002_bbb_2586
crossref_primary_10_3390_biomass4030044
crossref_primary_10_1016_j_biortech_2023_130158
crossref_primary_10_1016_j_biortech_2022_127064
crossref_primary_10_1002_jsfa_12537
crossref_primary_10_3390_horticulturae9040474
crossref_primary_10_1016_j_ijhydene_2025_02_358
crossref_primary_10_1016_j_foodchem_2021_131763
crossref_primary_10_1016_j_cofs_2024_101147
crossref_primary_10_1016_j_biombioe_2024_107514
crossref_primary_10_1039_D4NJ04738A
crossref_primary_10_1007_s12649_021_01542_7
crossref_primary_10_1016_j_rser_2021_111823
crossref_primary_10_1016_j_indcrop_2023_117124
crossref_primary_10_3390_ijms25158299
crossref_primary_10_1016_j_susmat_2024_e01117
crossref_primary_10_1016_j_scp_2023_101362
crossref_primary_10_3389_fbioe_2025_1556516
crossref_primary_10_1007_s13399_023_04639_2
crossref_primary_10_1007_s12649_024_02718_7
crossref_primary_10_1021_acsomega_4c00112
crossref_primary_10_1016_j_jclepro_2021_128814
crossref_primary_10_3390_fermentation9030222
crossref_primary_10_1016_j_biortech_2022_127776
crossref_primary_10_1016_j_jenvman_2025_124106
crossref_primary_10_1016_j_jenvman_2023_119071
crossref_primary_10_3390_antiox11091739
crossref_primary_10_1016_j_ifset_2021_102850
crossref_primary_10_1016_j_wasman_2023_06_030
crossref_primary_10_3390_agronomy13041074
crossref_primary_10_1007_s13399_022_02943_x
crossref_primary_10_1016_j_procbio_2021_05_005
crossref_primary_10_3390_pr12102298
crossref_primary_10_1016_j_bej_2023_109191
crossref_primary_10_1016_j_biortech_2023_129761
crossref_primary_10_56845_terys_v1i1_171
crossref_primary_10_1016_j_lwt_2021_111133
crossref_primary_10_1007_s12393_024_09390_6
crossref_primary_10_1016_j_biortech_2021_126010
crossref_primary_10_1093_jimb_kuab056
crossref_primary_10_1016_j_renene_2023_01_110
crossref_primary_10_1016_j_biortech_2020_124603
crossref_primary_10_1007_s44274_024_00144_z
crossref_primary_10_1016_j_scp_2022_100940
crossref_primary_10_1007_s12649_024_02557_6
crossref_primary_10_3390_pr13030766
crossref_primary_10_3390_fermentation9070663
crossref_primary_10_1016_j_seppur_2024_130590
crossref_primary_10_1007_s12649_022_01735_8
crossref_primary_10_1016_j_cep_2023_109407
crossref_primary_10_1016_j_biombioe_2023_107034
crossref_primary_10_3390_pr10081668
crossref_primary_10_5327_Z2176_94781859
crossref_primary_10_1016_j_indcrop_2023_117500
crossref_primary_10_14483_23448393_17783
Cites_doi 10.1016/j.biortech.2013.11.062
10.3390/agronomy9110693
10.1016/j.ultsonch.2014.11.015
10.1007/s11356-019-04261-8
10.1080/0972060X.2018.1436986
10.1021/jf073388r
10.1016/j.biortech.2012.06.101
10.1111/jiec.12743
10.1093/aob/mcu150
10.1080/1040841X.2018.1423616
10.1016/j.renene.2020.03.087
10.1016/j.biortech.2008.11.043
10.1007/s12649-017-0124-6
10.1088/1755-1315/36/1/012058
10.1016/j.envint.2019.03.076
10.1016/j.foodcont.2010.11.021
10.1021/acssuschemeng.9b02281
10.15376/biores.12.1.1706-1722
10.1016/j.nbt.2013.06.006
10.1007/s00449-010-0414-x
10.1016/j.enzmictec.2010.12.009
10.3109/07388550903425201
10.1016/j.foodchem.2005.04.040
10.1039/c2gc36978h
10.1002/bit.21694
10.1016/j.biortech.2007.03.044
10.1016/j.jclepro.2017.08.039
10.3390/molecules24132451
10.1002/jctb.1862
10.1016/j.bej.2016.04.005
10.1016/j.aquaculture.2014.12.015
10.1016/j.jfoodeng.2008.06.034
10.1021/ac60111a017
10.1039/c3cs60293a
10.1007/s10295-010-0874-7
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.wasman.2020.06.020
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-2456
EndPage 477
ExternalDocumentID 10_1016_j_wasman_2020_06_020
S0956053X20303305
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
4.4
457
4G.
5VS
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
SDF
SDG
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
Y6R
~02
~G-
1~5
29R
53G
7-5
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
RPZ
SEN
SEW
SSH
TAE
WUQ
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c372t-919aba7f6d6e3e6cf612d4b426144cfd6ae5770e8e3809d746f2e1a58bd83ae03
IEDL.DBID AIKHN
ISSN 0956-053X
1879-2456
IngestDate Fri Sep 05 08:46:46 EDT 2025
Fri Sep 05 09:13:54 EDT 2025
Thu Apr 24 23:04:48 EDT 2025
Tue Jul 01 01:03:18 EDT 2025
Fri Feb 23 02:49:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords BD
ADF
tsc
ADL
AFP
CPW
MDA
sa
BR
FW
NDF
TPS
CSL
drm
HPLC
Fertilizer
SR
TSB
A. succinogenes
SSF
AWHC
GC-MS
Succinic acid
Citrus peel waste
Biorefinery
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-919aba7f6d6e3e6cf612d4b426144cfd6ae5770e8e3809d746f2e1a58bd83ae03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5371-4280
PQID 2419414434
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2524315457
proquest_miscellaneous_2419414434
crossref_citationtrail_10_1016_j_wasman_2020_06_020
crossref_primary_10_1016_j_wasman_2020_06_020
elsevier_sciencedirect_doi_10_1016_j_wasman_2020_06_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-15
PublicationDateYYYYMMDD 2020-07-15
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Waste management (Elmsford)
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kaya, Sousa, Crepeau, Sorensen, Ralet (b0095) 2014; 114
Li, Jiang, Chen, Ye, Shang, Wei, Ying, Chang (b0115) 2010; 33
Borges, Pereira (b0015) 2011; 38
Tan, Jahim, Wu, Harun, Mumtaz (b0185) 2016; 36
Zheng, Dong, Sun, Ni, Fang (b0210) 2009; 100
Jantama, Haupt, Svorono, Zhang, Moore, Shanmugam, Ingram (b0080) 2008; 99
Patsalou, Samanides, Protopapa, Stavrinou, Vyrides, Koutinas (b0165) 2019; 24
Acar, Kesbic, Yilmaz, Gultepe, Turker (b0005) 2015; 437
Nagy, Al-Mahdy, Ab, El Aziz, Kandil, Tantawy, El Alfy (b0145) 2018; 21
Boukroufa, Boutekedjiret, Petigny, Rakotomanomana, Chemat (b0020) 2015; 24
Li, Lei, Zhang, Li, Xing, Gao, Gong, Yan, Wang, Su, Ma (b0120) 2013; 135
Heller, Selke, Keoleian (b0070) 2019; 23
Satari, Palhed, Karimi, Lundin, Taherzadeh, Zamani (b0180) 2017; 12
Chrysargyris, Stamatakis, Moustakas, Prasad, Tzortzakis (b0040) 2018; 9
Hilali, Fabiano-Tixier, Ruiz, Hejjaj, Nouh, Idlimam, Bily, Mandi, Chemat (b0075) 2019; 7
Liu, Zheng, Sun, Ni, Dong, Wei (b0130) 2008; 83
Koutinas, Vlysidis, Pleissner, Kopsahelis, Garcia, Kookos, Papanikolaou, Kwan, Lin (b0105) 2014; 43
Espina, Somolinos, Loran, Conchello, Garcia, Pagan (b0060) 2011; 22
Pfaltzgraff, De Bruyn, Cooper, Budarin, Clark (b0170) 2013; 15
Patsalou, Menikea, Makri, Vasquez, Drouza, Koutinas (b0160) 2017; 166
FAO, 2017. Citrus fruit fresh and processed. Statistical bulletin 2016.
Pateraki, Patsalou, Vlysidis, Kopsahelis, Webb, Koutinas, Koutinas (b0155) 2016; 112
Adams (b0010) 2012
Owen, Laird (b0150) 2018; 44
Tsang, Kumar, Samadar, Yang, Lee, Ok, Song, Kim, Kwon, Jeon (b0190) 2019; 127
Van De Graaf, Vallianpoer, Fiey, Delattre, Schulten (b0195) 2012; 2012
Carvalho, Matos, Roca, Reis (b0030) 2014; 31
Chen, Zhang, Miao, Wei, Chen (b0035) 2011; 48
Chrysargyris, Antoniou, Athinodorou, Vassiliou, Papadaki, Tzortzakis (b0045) 2019; 26
Chrysargyris, Prasad, Kavanagh, Tzortzakis (b0050) 2019; 9
Vlysidis, Koutinas, Kookos (b0200) 2017
Dubois, Gilles, Hamilton (b0055) 1956; 28
Marin, Soler-Rivas, Benavente-Garcia, Castillo, Perez-Alvarez (b0140) 2007; 100
Rivas, Torrado, Torre, Converti, Dominguez (b0175) 2008; 56
Kamaliroosta, Zolfaghari, Shafiee, Larijani, Zojaji (b0090) 2016; 6
Kyriakou, Patsalou, Xiaris, Tsevis, Koutsokeras, Constantinides, Koutinas (b0110) 2020; 155
Wilkins, Widmer, Cameron, Grohmann (b0205) 2005; 118
Liu, Zheng, Sun, Ni, Dong, Zhu (b0125) 2008; 99
Bousbia, Vian, Ferhat, Meklati, Chemat (b0025) 2009; 90
Lopez, Li, Thompson (b0135) 2010; 30
Kosseva (b0100) 2013
Jiang, Dai, Xi, Wu, Kong, Ma, Zhang, Chen, Wei (b0085) 2014; 153
Pfaltzgraff (10.1016/j.wasman.2020.06.020_b0170) 2013; 15
10.1016/j.wasman.2020.06.020_b0065
Heller (10.1016/j.wasman.2020.06.020_b0070) 2019; 23
Patsalou (10.1016/j.wasman.2020.06.020_b0165) 2019; 24
Carvalho (10.1016/j.wasman.2020.06.020_b0030) 2014; 31
Bousbia (10.1016/j.wasman.2020.06.020_b0025) 2009; 90
Kyriakou (10.1016/j.wasman.2020.06.020_b0110) 2020; 155
Hilali (10.1016/j.wasman.2020.06.020_b0075) 2019; 7
Jantama (10.1016/j.wasman.2020.06.020_b0080) 2008; 99
Rivas (10.1016/j.wasman.2020.06.020_b0175) 2008; 56
Liu (10.1016/j.wasman.2020.06.020_b0130) 2008; 83
Boukroufa (10.1016/j.wasman.2020.06.020_b0020) 2015; 24
Espina (10.1016/j.wasman.2020.06.020_b0060) 2011; 22
Kosseva (10.1016/j.wasman.2020.06.020_b0100) 2013
Wilkins (10.1016/j.wasman.2020.06.020_b0205) 2005; 118
Vlysidis (10.1016/j.wasman.2020.06.020_b0200) 2017
Tsang (10.1016/j.wasman.2020.06.020_b0190) 2019; 127
Acar (10.1016/j.wasman.2020.06.020_b0005) 2015; 437
Nagy (10.1016/j.wasman.2020.06.020_b0145) 2018; 21
Li (10.1016/j.wasman.2020.06.020_b0120) 2013; 135
Li (10.1016/j.wasman.2020.06.020_b0115) 2010; 33
Marin (10.1016/j.wasman.2020.06.020_b0140) 2007; 100
Patsalou (10.1016/j.wasman.2020.06.020_b0160) 2017; 166
Koutinas (10.1016/j.wasman.2020.06.020_b0105) 2014; 43
Chrysargyris (10.1016/j.wasman.2020.06.020_b0045) 2019; 26
Jiang (10.1016/j.wasman.2020.06.020_b0085) 2014; 153
Owen (10.1016/j.wasman.2020.06.020_b0150) 2018; 44
Chrysargyris (10.1016/j.wasman.2020.06.020_b0040) 2018; 9
Liu (10.1016/j.wasman.2020.06.020_b0125) 2008; 99
Adams (10.1016/j.wasman.2020.06.020_b0010) 2012
Kamaliroosta (10.1016/j.wasman.2020.06.020_b0090) 2016; 6
Kaya (10.1016/j.wasman.2020.06.020_b0095) 2014; 114
Chrysargyris (10.1016/j.wasman.2020.06.020_b0050) 2019; 9
Lopez (10.1016/j.wasman.2020.06.020_b0135) 2010; 30
Chen (10.1016/j.wasman.2020.06.020_b0035) 2011; 48
Satari (10.1016/j.wasman.2020.06.020_b0180) 2017; 12
Tan (10.1016/j.wasman.2020.06.020_b0185) 2016; 36
Dubois (10.1016/j.wasman.2020.06.020_b0055) 1956; 28
Pateraki (10.1016/j.wasman.2020.06.020_b0155) 2016; 112
Van De Graaf (10.1016/j.wasman.2020.06.020_b0195) 2012; 2012
Zheng (10.1016/j.wasman.2020.06.020_b0210) 2009; 100
Borges (10.1016/j.wasman.2020.06.020_b0015) 2011; 38
References_xml – volume: 90
  start-page: 409
  year: 2009
  end-page: 413
  ident: b0025
  article-title: A new process for extraction of essential oil from Citrus peels: Microwave hydrodiffusion and gravity
  publication-title: J. Food Eng.
– volume: 26
  start-page: 35461
  year: 2019
  end-page: 35472
  ident: b0045
  article-title: Deployment of olive-stone waste as a substitute growing medium component for
  publication-title: Environ. Sci. Pollut. Res.
– volume: 31
  start-page: 133
  year: 2014
  end-page: 139
  ident: b0030
  article-title: Succinic acid production from glycerol by
  publication-title: New Biotechnol.
– volume: 43
  start-page: 2587
  year: 2014
  end-page: 2627
  ident: b0105
  article-title: Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers
  publication-title: Chem. Soc. Rev.
– volume: 166
  start-page: 706
  year: 2017
  end-page: 716
  ident: b0160
  article-title: Development of a citrus peel-based biorefinery strategy for the production of succinic acid
  publication-title: J. Clean. Prod.
– volume: 23
  start-page: 480
  year: 2019
  end-page: 495
  ident: b0070
  article-title: Mapping the influence of food waste in food packaging environmental performance assessments
  publication-title: J. Ind. Ecol.
– volume: 127
  start-page: 625
  year: 2019
  end-page: 644
  ident: b0190
  article-title: Production of bioplastic through food waste valorization
  publication-title: Environ. Int.
– start-page: 147
  year: 2017
  end-page: 164
  ident: b0200
  article-title: Techno-economic evaluation of refining of food supply chain wastes for the production of chemicals and biopolymers
  publication-title: Food Waste Reduction and Valorisation: Sustainability Assessment and Policy Analysis
– volume: 99
  start-page: 1140
  year: 2008
  end-page: 1153
  ident: b0080
  article-title: Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of
  publication-title: Biotechnol. Bioeng.
– volume: 437
  start-page: 282
  year: 2015
  end-page: 286
  ident: b0005
  article-title: Evaluation of the effects of essential oil extracted from sweet orange peel (
  publication-title: Aquaculture
– volume: 30
  start-page: 63
  year: 2010
  end-page: 69
  ident: b0135
  article-title: Biorefinery of waste orange peel
  publication-title: Crit. Rev. Biotechnol.
– volume: 36
  start-page: 012058
  year: 2016
  ident: b0185
  article-title: Use of corn steep liquor as an economical nitrogen source for biosuccinic acid production by
  publication-title: IOP Conf. Ser.: Earth Environ. Sci.
– volume: 100
  start-page: 736
  year: 2007
  end-page: 741
  ident: b0140
  article-title: By-products from different citrus processes as a source of customized functional fibres
  publication-title: Food Chem.
– volume: 48
  start-page: 339
  year: 2011
  end-page: 344
  ident: b0035
  article-title: Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using
  publication-title: Enz. Microb. Technol.
– volume: 44
  start-page: 414
  year: 2018
  end-page: 435
  ident: b0150
  article-title: Synchronous application of antibiotics and essential oils: dual mechanisms of action as a potential solution to antibiotic resistance
  publication-title: Crit. Rev. Microbiol.
– volume: 21
  start-page: 264
  year: 2018
  end-page: 272
  ident: b0145
  article-title: Chemical composition and antiviral activity of essential oils from
  publication-title: J. Essent. Oil Bear. Pl.
– volume: 114
  start-page: 1319
  year: 2014
  end-page: 1326
  ident: b0095
  article-title: Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction
  publication-title: Ann. Bot.
– volume: 28
  start-page: 350
  year: 1956
  end-page: 356
  ident: b0055
  article-title: Colorimetric method for determination of sugars and related substances
  publication-title: Anal. Chem.
– reference: FAO, 2017. Citrus fruit fresh and processed. Statistical bulletin 2016.
– volume: 6
  start-page: 69
  year: 2016
  end-page: 76
  ident: b0090
  article-title: Chemical identifications of citrus peels essential oils
  publication-title: J. Food Biosci. Technol.
– volume: 7
  start-page: 11815
  year: 2019
  end-page: 11822
  ident: b0075
  article-title: Green extraction of essential oils, polyphenols, and pectins from orange peel employing solar energy: Toward a zero-waste biorefinery
  publication-title: ACS Sustain. Chem. Eng.
– year: 2012
  ident: b0010
  article-title: Identification of essential oil components by gas chromatography and mass spectroscopy
– volume: 24
  start-page: 72
  year: 2015
  end-page: 79
  ident: b0020
  article-title: Bio-refinery of orange peels waste: A new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin
  publication-title: Ultrason. Sonochem.
– volume: 83
  start-page: 722
  year: 2008
  end-page: 729
  ident: b0130
  article-title: Strategies of pH control and glucose fed-batch fermentation for production of succinic acid by
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 153
  start-page: 327
  year: 2014
  end-page: 332
  ident: b0085
  article-title: Succinic acid production from sucrose by
  publication-title: Bioresour. Technol.
– volume: 33
  start-page: 911
  year: 2010
  end-page: 920
  ident: b0115
  article-title: Effect of redox potential regulation on succinic acid production by
  publication-title: Bioprocess Biosyst. Eng.
– volume: 15
  start-page: 307
  year: 2013
  end-page: 314
  ident: b0170
  article-title: Food waste biomass: A resource for high-value chemicals
  publication-title: Green Chem.
– volume: 56
  start-page: 2380
  year: 2008
  end-page: 2387
  ident: b0175
  article-title: Submerged citric acid fermentation on orange peel autohydrolysate
  publication-title: J. Agric. Food Chem.
– volume: 22
  start-page: 896
  year: 2011
  end-page: 902
  ident: b0060
  article-title: Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes
  publication-title: Food Control
– start-page: 37
  year: 2013
  end-page: 60
  ident: b0100
  article-title: Sources, characterization, and composition of food industry wastes
  publication-title: Food industry wastes
– volume: 9
  start-page: 2285
  year: 2018
  end-page: 2294
  ident: b0040
  article-title: Evaluation of municipal solid waste compost and/or fertigation as peat substituent for pepper seedlings production
  publication-title: Waste Biomass Valorization.
– volume: 24
  start-page: 2451
  year: 2019
  ident: b0165
  article-title: A citrus peel waste biorefinery for ethanol and methane production
  publication-title: Molecules
– volume: 38
  start-page: 1001
  year: 2011
  end-page: 1011
  ident: b0015
  article-title: Succinic acid production form sugarcane bagasse hemicellulose hydrolysate by
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 100
  start-page: 2425
  year: 2009
  end-page: 2429
  ident: b0210
  article-title: Fermentative production of succinic acid from straw hydrolysate by
  publication-title: Bioresour. Technol.
– volume: 99
  start-page: 1736
  year: 2008
  end-page: 1742
  ident: b0125
  article-title: Economical succinic acid production from cane molasses by
  publication-title: Bioresour. Technol.
– volume: 12
  start-page: 1706
  year: 2017
  end-page: 1722
  ident: b0180
  article-title: Process optimization for citrus waste biorefinery via simultaneous pectin extraction and pretreatment
  publication-title: Bioresources
– volume: 135
  start-page: 604
  year: 2013
  end-page: 609
  ident: b0120
  article-title: Efficient decolorization and deproteinization using uniform polymer microspheres in the succinic acid biorefinery from bio-waste cotton (
  publication-title: Bioresour. Technol.
– volume: 9
  start-page: 693
  year: 2019
  ident: b0050
  article-title: Biochar type and ratio as a peat additive/partial peat replacement in growing media for cabbage seedling production
  publication-title: Agronomy
– volume: 2012
  start-page: A1
  year: 2012
  ident: b0195
  article-title: Process for the crystallization of succinic acid
  publication-title: US patent
– volume: 112
  start-page: 285
  year: 2016
  end-page: 303
  ident: b0155
  article-title: : Advances on succinic acid production and prospects for development of integrated biorefineries
  publication-title: Biochem. Eng. J.
– volume: 155
  start-page: 53
  year: 2020
  end-page: 64
  ident: b0110
  article-title: Enhancing bioproduction and thermotolerance in
  publication-title: Renew. Energy
– volume: 118
  start-page: 419
  year: 2005
  end-page: 422
  ident: b0205
  article-title: Effect of seasonal variation on enzymatic hydrolysis of Valencia orange peel waste
  publication-title: Proc. Fla. State Hort. Soc.
– volume: 153
  start-page: 327
  year: 2014
  ident: 10.1016/j.wasman.2020.06.020_b0085
  article-title: Succinic acid production from sucrose by Actinobacillus succinogenes NJ113
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.11.062
– volume: 9
  start-page: 693
  year: 2019
  ident: 10.1016/j.wasman.2020.06.020_b0050
  article-title: Biochar type and ratio as a peat additive/partial peat replacement in growing media for cabbage seedling production
  publication-title: Agronomy
  doi: 10.3390/agronomy9110693
– volume: 24
  start-page: 72
  year: 2015
  ident: 10.1016/j.wasman.2020.06.020_b0020
  article-title: Bio-refinery of orange peels waste: A new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2014.11.015
– volume: 26
  start-page: 35461
  year: 2019
  ident: 10.1016/j.wasman.2020.06.020_b0045
  article-title: Deployment of olive-stone waste as a substitute growing medium component for Brassica seedlings production in nurseries
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-04261-8
– volume: 21
  start-page: 264
  year: 2018
  ident: 10.1016/j.wasman.2020.06.020_b0145
  article-title: Chemical composition and antiviral activity of essential oils from Citrus reshni hort. ex Tanaka (Cleopatra mandarin) cultivated in Egypt
  publication-title: J. Essent. Oil Bear. Pl.
  doi: 10.1080/0972060X.2018.1436986
– volume: 56
  start-page: 2380
  year: 2008
  ident: 10.1016/j.wasman.2020.06.020_b0175
  article-title: Submerged citric acid fermentation on orange peel autohydrolysate
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf073388r
– volume: 135
  start-page: 604
  year: 2013
  ident: 10.1016/j.wasman.2020.06.020_b0120
  article-title: Efficient decolorization and deproteinization using uniform polymer microspheres in the succinic acid biorefinery from bio-waste cotton (Gossypium hirsutum) stalks
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.06.101
– volume: 23
  start-page: 480
  year: 2019
  ident: 10.1016/j.wasman.2020.06.020_b0070
  article-title: Mapping the influence of food waste in food packaging environmental performance assessments
  publication-title: J. Ind. Ecol.
  doi: 10.1111/jiec.12743
– volume: 114
  start-page: 1319
  year: 2014
  ident: 10.1016/j.wasman.2020.06.020_b0095
  article-title: Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcu150
– volume: 44
  start-page: 414
  year: 2018
  ident: 10.1016/j.wasman.2020.06.020_b0150
  article-title: Synchronous application of antibiotics and essential oils: dual mechanisms of action as a potential solution to antibiotic resistance
  publication-title: Crit. Rev. Microbiol.
  doi: 10.1080/1040841X.2018.1423616
– volume: 155
  start-page: 53
  year: 2020
  ident: 10.1016/j.wasman.2020.06.020_b0110
  article-title: Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: Application in a citrus peel waste biorefinery
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.03.087
– volume: 6
  start-page: 69
  year: 2016
  ident: 10.1016/j.wasman.2020.06.020_b0090
  article-title: Chemical identifications of citrus peels essential oils
  publication-title: J. Food Biosci. Technol.
– ident: 10.1016/j.wasman.2020.06.020_b0065
– start-page: 147
  year: 2017
  ident: 10.1016/j.wasman.2020.06.020_b0200
  article-title: Techno-economic evaluation of refining of food supply chain wastes for the production of chemicals and biopolymers
– volume: 100
  start-page: 2425
  year: 2009
  ident: 10.1016/j.wasman.2020.06.020_b0210
  article-title: Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.11.043
– volume: 9
  start-page: 2285
  year: 2018
  ident: 10.1016/j.wasman.2020.06.020_b0040
  article-title: Evaluation of municipal solid waste compost and/or fertigation as peat substituent for pepper seedlings production
  publication-title: Waste Biomass Valorization.
  doi: 10.1007/s12649-017-0124-6
– volume: 36
  start-page: 012058
  year: 2016
  ident: 10.1016/j.wasman.2020.06.020_b0185
  article-title: Use of corn steep liquor as an economical nitrogen source for biosuccinic acid production by Actinobacillus succinogenes
  publication-title: IOP Conf. Ser.: Earth Environ. Sci.
  doi: 10.1088/1755-1315/36/1/012058
– volume: 127
  start-page: 625
  year: 2019
  ident: 10.1016/j.wasman.2020.06.020_b0190
  article-title: Production of bioplastic through food waste valorization
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.03.076
– volume: 22
  start-page: 896
  year: 2011
  ident: 10.1016/j.wasman.2020.06.020_b0060
  article-title: Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2010.11.021
– volume: 7
  start-page: 11815
  year: 2019
  ident: 10.1016/j.wasman.2020.06.020_b0075
  article-title: Green extraction of essential oils, polyphenols, and pectins from orange peel employing solar energy: Toward a zero-waste biorefinery
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b02281
– volume: 12
  start-page: 1706
  year: 2017
  ident: 10.1016/j.wasman.2020.06.020_b0180
  article-title: Process optimization for citrus waste biorefinery via simultaneous pectin extraction and pretreatment
  publication-title: Bioresources
  doi: 10.15376/biores.12.1.1706-1722
– volume: 31
  start-page: 133
  year: 2014
  ident: 10.1016/j.wasman.2020.06.020_b0030
  article-title: Succinic acid production from glycerol by Actinobacillus succinogenes using dimethylsulfoxide as electron acceptor
  publication-title: New Biotechnol.
  doi: 10.1016/j.nbt.2013.06.006
– volume: 33
  start-page: 911
  year: 2010
  ident: 10.1016/j.wasman.2020.06.020_b0115
  article-title: Effect of redox potential regulation on succinic acid production by Actinobacillus succinogenes
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-010-0414-x
– volume: 48
  start-page: 339
  year: 2011
  ident: 10.1016/j.wasman.2020.06.020_b0035
  article-title: Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes
  publication-title: Enz. Microb. Technol.
  doi: 10.1016/j.enzmictec.2010.12.009
– volume: 30
  start-page: 63
  year: 2010
  ident: 10.1016/j.wasman.2020.06.020_b0135
  article-title: Biorefinery of waste orange peel
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.3109/07388550903425201
– volume: 100
  start-page: 736
  year: 2007
  ident: 10.1016/j.wasman.2020.06.020_b0140
  article-title: By-products from different citrus processes as a source of customized functional fibres
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2005.04.040
– volume: 15
  start-page: 307
  year: 2013
  ident: 10.1016/j.wasman.2020.06.020_b0170
  article-title: Food waste biomass: A resource for high-value chemicals
  publication-title: Green Chem.
  doi: 10.1039/c2gc36978h
– volume: 99
  start-page: 1140
  year: 2008
  ident: 10.1016/j.wasman.2020.06.020_b0080
  article-title: Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21694
– volume: 118
  start-page: 419
  year: 2005
  ident: 10.1016/j.wasman.2020.06.020_b0205
  article-title: Effect of seasonal variation on enzymatic hydrolysis of Valencia orange peel waste
  publication-title: Proc. Fla. State Hort. Soc.
– volume: 2012
  start-page: A1
  issue: 0238722
  year: 2012
  ident: 10.1016/j.wasman.2020.06.020_b0195
  article-title: Process for the crystallization of succinic acid
  publication-title: US patent
– volume: 99
  start-page: 1736
  year: 2008
  ident: 10.1016/j.wasman.2020.06.020_b0125
  article-title: Economical succinic acid production from cane molasses by Actinobacillus succinogenes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.03.044
– volume: 166
  start-page: 706
  year: 2017
  ident: 10.1016/j.wasman.2020.06.020_b0160
  article-title: Development of a citrus peel-based biorefinery strategy for the production of succinic acid
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.08.039
– volume: 24
  start-page: 2451
  year: 2019
  ident: 10.1016/j.wasman.2020.06.020_b0165
  article-title: A citrus peel waste biorefinery for ethanol and methane production
  publication-title: Molecules
  doi: 10.3390/molecules24132451
– volume: 83
  start-page: 722
  year: 2008
  ident: 10.1016/j.wasman.2020.06.020_b0130
  article-title: Strategies of pH control and glucose fed-batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.1862
– volume: 112
  start-page: 285
  year: 2016
  ident: 10.1016/j.wasman.2020.06.020_b0155
  article-title: Actinobacillus succinogenes: Advances on succinic acid production and prospects for development of integrated biorefineries
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2016.04.005
– volume: 437
  start-page: 282
  year: 2015
  ident: 10.1016/j.wasman.2020.06.020_b0005
  article-title: Evaluation of the effects of essential oil extracted from sweet orange peel (Citrus sinensis) on growth rate of tilapia (Oreochromis mossambicus) and possible disease resistance against Streptococcus iniae
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2014.12.015
– volume: 90
  start-page: 409
  year: 2009
  ident: 10.1016/j.wasman.2020.06.020_b0025
  article-title: A new process for extraction of essential oil from Citrus peels: Microwave hydrodiffusion and gravity
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2008.06.034
– volume: 28
  start-page: 350
  year: 1956
  ident: 10.1016/j.wasman.2020.06.020_b0055
  article-title: Colorimetric method for determination of sugars and related substances
  publication-title: Anal. Chem.
  doi: 10.1021/ac60111a017
– year: 2012
  ident: 10.1016/j.wasman.2020.06.020_b0010
– volume: 43
  start-page: 2587
  year: 2014
  ident: 10.1016/j.wasman.2020.06.020_b0105
  article-title: Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60293a
– volume: 38
  start-page: 1001
  year: 2011
  ident: 10.1016/j.wasman.2020.06.020_b0015
  article-title: Succinic acid production form sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-010-0874-7
– start-page: 37
  year: 2013
  ident: 10.1016/j.wasman.2020.06.020_b0100
  article-title: Sources, characterization, and composition of food industry wastes
SSID ssj0014810
Score 2.5358946
Snippet [Display omitted] •A biorefinery process isolated essential oils (0.43%) and pectin (30.53%) from CPW.•D-limonene comprised 97% of essential oil’s composition...
A process for the valorization of citrus peel waste (CPW) has been developed aiming to produce succinic acid and a series of added-value products through the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 469
SubjectTerms A. succinogenes
acid hydrolysis
Actinobacillus succinogenes
batch fermentation
biological treatment
bioreactors
Biorefinery
biorefining
cellulose
Citrus peel waste
citrus peels
corn steep liquor
Fertilizer
fertilizers
hemicellulose
hydrolysates
lignin
limonene
nitrogen
pectins
phosphorus
plant growth
potassium
saccharification
Succinic acid
wastes
Title A biorefinery for conversion of citrus peel waste into essential oils, pectin, fertilizer and succinic acid via different fermentation strategies
URI https://dx.doi.org/10.1016/j.wasman.2020.06.020
https://www.proquest.com/docview/2419414434
https://www.proquest.com/docview/2524315457
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXa7QE4ICiglo9qkDg2bGI7cXJcragWEL1Apb1FtjORgrbJiqQgOPAf-MfMeJMKEKISxyR2ZHnGM2N73hshXuTk9Z1XNsq8w0grLCJLbjJCo7U1iY1RM3b43Xm2utBv1ul6TywnLAynVY62f2fTg7Ue38zH2Zxvm2b-nin0SIXWkvSUduXpvjiQ5O3zmThYvH67Or--TNB5ICUIlHvcYULQhTSvL7a_tEyEKuNA5MmFv__uof6w1cEBnd0Td8fIERa7wd0Xe9geilvLqWDbobjzC7fgA_FjAa7hKiKM7vsKFJtCyDAPx2PQ1eAD3gK2iBug4Q0ITTt0wFziLS37DXTNpj-FgMRsT6HmBOxN8w0_gW0r6K-8Z0wlWN9U8LmxMJVaGbjp5QhpaqEfJjKKh-Li7NWH5Soa6y9EXhk5kB0srLOmzqoMFWa-pmio0o43XVr7usospsbEmKPK46IyOqslJjbNXZUri7F6JGZt1-KRgMTJwsoqpg9KS6tdUhv6mXK0QfUGq2Ohpjkv_UhOzjUyNuWUhfax3EmqZEmVnIwn42MRXffa7sg5bmhvJnGWvylZSf7jhp7PJ-mXJFW-VLEtdld9SRFQoWk-lP5Hm1RSnEaxqnn83yN4Im7zEx8rJ-lTMSMVwWcUDw3uROy__J6cjFr_EzpvDlA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKORQOCAqI8jlIHBs2iZ14c6xWVAu0vdBKe7NsZyIFpcmKpK3gwH_gHzPjTSpAiEpc43FkeSYzY2feGyHezCnqOy9tlHuHkZJYRJbCZIRaKasTG6Ni7PDxSb48Ux9W2WpLLCYsDJdVjr5_49ODtx6fzMbdnK3revaJKfTIhFYp2SmdyrNb4rbiNgdk1G-_X9d5ULofKAkC4R6LT_i5UOR1ZftzyzSoaRxoPLnt99_j0x-eOoSfw_vi3pg3wsFmaQ_EFra7YmcxtWvbFXd_YRZ8KH4cgKu5hwhj-74CZaYQ6svD5Rh0FfiAtoA1YgO0vAGhbocOmEm8pY--ga5u-n0IOMx2Hyouv27qb_gFbFtCf-E9IyrB-rqEy9rC1GhlYNHzEdDUQj9MVBSPxNnhu9PFMhq7L0Re6nQgL1hYZ3WVlzlKzH1FuVCpHB-5lPJVmVvMtI5xjnIeF6VWeZViYrO5K-fSYiwfi-22a_GJgMSlhU3LmAakSq1ySaXpZdLR8dRrLPeEnPbc-JGanDtkNGaqQftsNpoyrCnDpXhpvCei61nrDTXHDfJ6Uqf5zcQMRY8bZr6etG9Iq_xLxbbYXfSG8p9C0X5I9Q-ZLKUsjTJV_fS_V_BK7CxPj4_M0fuTj8_EHR7hC-Ykey62yVzwBWVGg3sZLP8ncrwPEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+biorefinery+for+conversion+of+citrus+peel+waste+into+essential+oils%2C+pectin%2C+fertilizer+and+succinic+acid+via+different+fermentation+strategies&rft.jtitle=Waste+management+%28Elmsford%29&rft.au=Patsalou%2C+Maria&rft.au=Chrysargyris%2C+Antonios&rft.au=Tzortzakis%2C+Nikolaos&rft.au=Koutinas%2C+Michalis&rft.date=2020-07-15&rft.issn=0956-053X&rft.volume=113&rft.spage=469&rft.epage=477&rft_id=info:doi/10.1016%2Fj.wasman.2020.06.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_wasman_2020_06_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-053X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-053X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-053X&client=summon