A biorefinery for conversion of citrus peel waste into essential oils, pectin, fertilizer and succinic acid via different fermentation strategies
[Display omitted] •A biorefinery process isolated essential oils (0.43%) and pectin (30.53%) from CPW.•D-limonene comprised 97% of essential oil’s composition among 17 compounds detected.•Combined use of CSL and vitamins in CPW hydrolyzates enhanced succinate production.•Fed-batch fermentation impro...
Saved in:
Published in | Waste management (Elmsford) Vol. 113; pp. 469 - 477 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0956-053X 1879-2456 1879-2456 |
DOI | 10.1016/j.wasman.2020.06.020 |
Cover
Abstract | [Display omitted]
•A biorefinery process isolated essential oils (0.43%) and pectin (30.53%) from CPW.•D-limonene comprised 97% of essential oil’s composition among 17 compounds detected.•Combined use of CSL and vitamins in CPW hydrolyzates enhanced succinate production.•Fed-batch fermentation improved succinate production from CPW hydrolyzates by 27%•Biorefinery residues were used as fertilizer imposing stress on plant growth.
A process for the valorization of citrus peel waste (CPW) has been developed aiming to produce succinic acid and a series of added-value products through the biorefinery platform. CPW was subject to physicochemical and biological treatment to isolate essential oils (0.43%) and pectin (30.53%) as extractable products, pretreating the material for subsequent production of succinic acid that enabled application of remaining biorefinery residues (BR) as fertilizer substitute. Cellulose, hemicellulose and lignin contents of CPW accounted for 22.45%, 8.05% and 0.66% respectively, while acid hydrolysis reduced hemicellulose by 3.42% in BR. Moreover, essential oils extracted from CPW included 17 compounds, among which D-limonene reached 96.7%. The hydrolyzate generated was fermented for succinic acid production using Actinobacillus succinogenes. Different batch experiments demonstrated that the combined use of corn steep liquor (CSL) and vitamins in a lab-scale bioreactor resulted in product concentration and yield that reached 18.5 g L−1 and 0.62 g g−1 respectively. Although simultaneous saccharification and fermentation (SSF) could not enhance succinic acid production, a fed-batch fermentation strategy increased succinic acid concentration and yield generating 22.4 g L−1 and 0.73 g g−1 respectively, while the mass of the platform chemical formed was enhanced by 27% as compared to the batch process. BR was explored as fertilizer substitute aiming to close the loop in the management of CPW towards development of a zero-waste process demonstrating that although the material imposed stress on plant growth, the content of potassium, phosphorus and nitrogen in the mixture increased. |
---|---|
AbstractList | A process for the valorization of citrus peel waste (CPW) has been developed aiming to produce succinic acid and a series of added-value products through the biorefinery platform. CPW was subject to physicochemical and biological treatment to isolate essential oils (0.43%) and pectin (30.53%) as extractable products, pretreating the material for subsequent production of succinic acid that enabled application of remaining biorefinery residues (BR) as fertilizer substitute. Cellulose, hemicellulose and lignin contents of CPW accounted for 22.45%, 8.05% and 0.66% respectively, while acid hydrolysis reduced hemicellulose by 3.42% in BR. Moreover, essential oils extracted from CPW included 17 compounds, among which D-limonene reached 96.7%. The hydrolyzate generated was fermented for succinic acid production using Actinobacillus succinogenes. Different batch experiments demonstrated that the combined use of corn steep liquor (CSL) and vitamins in a lab-scale bioreactor resulted in product concentration and yield that reached 18.5 g L-1 and 0.62 g g-1 respectively. Although simultaneous saccharification and fermentation (SSF) could not enhance succinic acid production, a fed-batch fermentation strategy increased succinic acid concentration and yield generating 22.4 g L-1 and 0.73 g g-1 respectively, while the mass of the platform chemical formed was enhanced by 27% as compared to the batch process. BR was explored as fertilizer substitute aiming to close the loop in the management of CPW towards development of a zero-waste process demonstrating that although the material imposed stress on plant growth, the content of potassium, phosphorus and nitrogen in the mixture increased.A process for the valorization of citrus peel waste (CPW) has been developed aiming to produce succinic acid and a series of added-value products through the biorefinery platform. CPW was subject to physicochemical and biological treatment to isolate essential oils (0.43%) and pectin (30.53%) as extractable products, pretreating the material for subsequent production of succinic acid that enabled application of remaining biorefinery residues (BR) as fertilizer substitute. Cellulose, hemicellulose and lignin contents of CPW accounted for 22.45%, 8.05% and 0.66% respectively, while acid hydrolysis reduced hemicellulose by 3.42% in BR. Moreover, essential oils extracted from CPW included 17 compounds, among which D-limonene reached 96.7%. The hydrolyzate generated was fermented for succinic acid production using Actinobacillus succinogenes. Different batch experiments demonstrated that the combined use of corn steep liquor (CSL) and vitamins in a lab-scale bioreactor resulted in product concentration and yield that reached 18.5 g L-1 and 0.62 g g-1 respectively. Although simultaneous saccharification and fermentation (SSF) could not enhance succinic acid production, a fed-batch fermentation strategy increased succinic acid concentration and yield generating 22.4 g L-1 and 0.73 g g-1 respectively, while the mass of the platform chemical formed was enhanced by 27% as compared to the batch process. BR was explored as fertilizer substitute aiming to close the loop in the management of CPW towards development of a zero-waste process demonstrating that although the material imposed stress on plant growth, the content of potassium, phosphorus and nitrogen in the mixture increased. A process for the valorization of citrus peel waste (CPW) has been developed aiming to produce succinic acid and a series of added-value products through the biorefinery platform. CPW was subject to physicochemical and biological treatment to isolate essential oils (0.43%) and pectin (30.53%) as extractable products, pretreating the material for subsequent production of succinic acid that enabled application of remaining biorefinery residues (BR) as fertilizer substitute. Cellulose, hemicellulose and lignin contents of CPW accounted for 22.45%, 8.05% and 0.66% respectively, while acid hydrolysis reduced hemicellulose by 3.42% in BR. Moreover, essential oils extracted from CPW included 17 compounds, among which D-limonene reached 96.7%. The hydrolyzate generated was fermented for succinic acid production using Actinobacillus succinogenes. Different batch experiments demonstrated that the combined use of corn steep liquor (CSL) and vitamins in a lab-scale bioreactor resulted in product concentration and yield that reached 18.5 g L⁻¹ and 0.62 g g⁻¹ respectively. Although simultaneous saccharification and fermentation (SSF) could not enhance succinic acid production, a fed-batch fermentation strategy increased succinic acid concentration and yield generating 22.4 g L⁻¹ and 0.73 g g⁻¹ respectively, while the mass of the platform chemical formed was enhanced by 27% as compared to the batch process. BR was explored as fertilizer substitute aiming to close the loop in the management of CPW towards development of a zero-waste process demonstrating that although the material imposed stress on plant growth, the content of potassium, phosphorus and nitrogen in the mixture increased. [Display omitted] •A biorefinery process isolated essential oils (0.43%) and pectin (30.53%) from CPW.•D-limonene comprised 97% of essential oil’s composition among 17 compounds detected.•Combined use of CSL and vitamins in CPW hydrolyzates enhanced succinate production.•Fed-batch fermentation improved succinate production from CPW hydrolyzates by 27%•Biorefinery residues were used as fertilizer imposing stress on plant growth. A process for the valorization of citrus peel waste (CPW) has been developed aiming to produce succinic acid and a series of added-value products through the biorefinery platform. CPW was subject to physicochemical and biological treatment to isolate essential oils (0.43%) and pectin (30.53%) as extractable products, pretreating the material for subsequent production of succinic acid that enabled application of remaining biorefinery residues (BR) as fertilizer substitute. Cellulose, hemicellulose and lignin contents of CPW accounted for 22.45%, 8.05% and 0.66% respectively, while acid hydrolysis reduced hemicellulose by 3.42% in BR. Moreover, essential oils extracted from CPW included 17 compounds, among which D-limonene reached 96.7%. The hydrolyzate generated was fermented for succinic acid production using Actinobacillus succinogenes. Different batch experiments demonstrated that the combined use of corn steep liquor (CSL) and vitamins in a lab-scale bioreactor resulted in product concentration and yield that reached 18.5 g L−1 and 0.62 g g−1 respectively. Although simultaneous saccharification and fermentation (SSF) could not enhance succinic acid production, a fed-batch fermentation strategy increased succinic acid concentration and yield generating 22.4 g L−1 and 0.73 g g−1 respectively, while the mass of the platform chemical formed was enhanced by 27% as compared to the batch process. BR was explored as fertilizer substitute aiming to close the loop in the management of CPW towards development of a zero-waste process demonstrating that although the material imposed stress on plant growth, the content of potassium, phosphorus and nitrogen in the mixture increased. |
Author | Tzortzakis, Nikolaos Patsalou, Maria Chrysargyris, Antonios Koutinas, Michalis |
Author_xml | – sequence: 1 givenname: Maria surname: Patsalou fullname: Patsalou, Maria organization: Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus – sequence: 2 givenname: Antonios surname: Chrysargyris fullname: Chrysargyris, Antonios organization: Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus – sequence: 3 givenname: Nikolaos surname: Tzortzakis fullname: Tzortzakis, Nikolaos organization: Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus – sequence: 4 givenname: Michalis orcidid: 0000-0002-5371-4280 surname: Koutinas fullname: Koutinas, Michalis email: michail.koutinas@cut.ac.cy organization: Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Limassol, Cyprus |
BookMark | eNqFUT1vFDEQtVAicUn4BxQuKbKLvev17lIgRVGASJFoQKKzfPYYzWnPPjy-Q8m_4B_j46goSPWKeR-a9y7YWUwRGHstRSuF1G837U9LWxvbTnSiFbqt8IKt5DTOTacGfcZWYh50I4b-20t2QbQRQqpJihX7dcPXmDIEjJAfeUiZuxQPkAlT5ClwhyXvie8AFl5TCnCMJXEggljQLjzhQtf17grGax4gF1zwCTK30XPaO4cRHbcOPT-g5R5D5VTtkbqtaMsxiUq2Bb4j0BU7D3YhePUXL9nXD3dfbj81D58_3t_ePDSuH7vSzHK2azsG7TX0oF3QsvNqrTotlXLBawvDOAqYoJ_E7EelQwfSDtPaT70F0V-yNyffXU4_9kDFbJEcLIuNkPZkuqFTvRzUMD5PVXJWNbZXlfruRHU5EdVeTS3wz4v1QVyMFOY4mdmY02TmOJkR2lSoYvWPeJdxa_Pjc7L3JxnUug4I2ZBDiA485jqL8Qn_b_AbX3m4ZA |
CitedBy_id | crossref_primary_10_1016_j_biortech_2025_132305 crossref_primary_10_1016_j_jclepro_2023_140005 crossref_primary_10_1016_j_biteb_2023_101469 crossref_primary_10_1016_j_ijbiomac_2024_131798 crossref_primary_10_1016_j_eti_2021_101914 crossref_primary_10_1016_j_foodhyd_2022_107564 crossref_primary_10_1016_j_biortech_2020_124559 crossref_primary_10_1016_j_indcrop_2024_120069 crossref_primary_10_1007_s10163_022_01527_1 crossref_primary_10_1016_j_ijbiomac_2023_123929 crossref_primary_10_1002_bbb_2586 crossref_primary_10_3390_biomass4030044 crossref_primary_10_1016_j_biortech_2023_130158 crossref_primary_10_1016_j_biortech_2022_127064 crossref_primary_10_1002_jsfa_12537 crossref_primary_10_3390_horticulturae9040474 crossref_primary_10_1016_j_ijhydene_2025_02_358 crossref_primary_10_1016_j_foodchem_2021_131763 crossref_primary_10_1016_j_cofs_2024_101147 crossref_primary_10_1016_j_biombioe_2024_107514 crossref_primary_10_1039_D4NJ04738A crossref_primary_10_1007_s12649_021_01542_7 crossref_primary_10_1016_j_rser_2021_111823 crossref_primary_10_1016_j_indcrop_2023_117124 crossref_primary_10_3390_ijms25158299 crossref_primary_10_1016_j_susmat_2024_e01117 crossref_primary_10_1016_j_scp_2023_101362 crossref_primary_10_3389_fbioe_2025_1556516 crossref_primary_10_1007_s13399_023_04639_2 crossref_primary_10_1007_s12649_024_02718_7 crossref_primary_10_1021_acsomega_4c00112 crossref_primary_10_1016_j_jclepro_2021_128814 crossref_primary_10_3390_fermentation9030222 crossref_primary_10_1016_j_biortech_2022_127776 crossref_primary_10_1016_j_jenvman_2025_124106 crossref_primary_10_1016_j_jenvman_2023_119071 crossref_primary_10_3390_antiox11091739 crossref_primary_10_1016_j_ifset_2021_102850 crossref_primary_10_1016_j_wasman_2023_06_030 crossref_primary_10_3390_agronomy13041074 crossref_primary_10_1007_s13399_022_02943_x crossref_primary_10_1016_j_procbio_2021_05_005 crossref_primary_10_3390_pr12102298 crossref_primary_10_1016_j_bej_2023_109191 crossref_primary_10_1016_j_biortech_2023_129761 crossref_primary_10_56845_terys_v1i1_171 crossref_primary_10_1016_j_lwt_2021_111133 crossref_primary_10_1007_s12393_024_09390_6 crossref_primary_10_1016_j_biortech_2021_126010 crossref_primary_10_1093_jimb_kuab056 crossref_primary_10_1016_j_renene_2023_01_110 crossref_primary_10_1016_j_biortech_2020_124603 crossref_primary_10_1007_s44274_024_00144_z crossref_primary_10_1016_j_scp_2022_100940 crossref_primary_10_1007_s12649_024_02557_6 crossref_primary_10_3390_pr13030766 crossref_primary_10_3390_fermentation9070663 crossref_primary_10_1016_j_seppur_2024_130590 crossref_primary_10_1007_s12649_022_01735_8 crossref_primary_10_1016_j_cep_2023_109407 crossref_primary_10_1016_j_biombioe_2023_107034 crossref_primary_10_3390_pr10081668 crossref_primary_10_5327_Z2176_94781859 crossref_primary_10_1016_j_indcrop_2023_117500 crossref_primary_10_14483_23448393_17783 |
Cites_doi | 10.1016/j.biortech.2013.11.062 10.3390/agronomy9110693 10.1016/j.ultsonch.2014.11.015 10.1007/s11356-019-04261-8 10.1080/0972060X.2018.1436986 10.1021/jf073388r 10.1016/j.biortech.2012.06.101 10.1111/jiec.12743 10.1093/aob/mcu150 10.1080/1040841X.2018.1423616 10.1016/j.renene.2020.03.087 10.1016/j.biortech.2008.11.043 10.1007/s12649-017-0124-6 10.1088/1755-1315/36/1/012058 10.1016/j.envint.2019.03.076 10.1016/j.foodcont.2010.11.021 10.1021/acssuschemeng.9b02281 10.15376/biores.12.1.1706-1722 10.1016/j.nbt.2013.06.006 10.1007/s00449-010-0414-x 10.1016/j.enzmictec.2010.12.009 10.3109/07388550903425201 10.1016/j.foodchem.2005.04.040 10.1039/c2gc36978h 10.1002/bit.21694 10.1016/j.biortech.2007.03.044 10.1016/j.jclepro.2017.08.039 10.3390/molecules24132451 10.1002/jctb.1862 10.1016/j.bej.2016.04.005 10.1016/j.aquaculture.2014.12.015 10.1016/j.jfoodeng.2008.06.034 10.1021/ac60111a017 10.1039/c3cs60293a 10.1007/s10295-010-0874-7 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.wasman.2020.06.020 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-2456 |
EndPage | 477 |
ExternalDocumentID | 10_1016_j_wasman_2020_06_020 S0956053X20303305 |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 4.4 457 4G. 5VS 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL SDF SDG SES SPC SPCBC SSE SSJ SSZ T5K Y6R ~02 ~G- 1~5 29R 53G 7-5 AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG RPZ SEN SEW SSH TAE WUQ 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c372t-919aba7f6d6e3e6cf612d4b426144cfd6ae5770e8e3809d746f2e1a58bd83ae03 |
IEDL.DBID | AIKHN |
ISSN | 0956-053X 1879-2456 |
IngestDate | Fri Sep 05 08:46:46 EDT 2025 Fri Sep 05 09:13:54 EDT 2025 Thu Apr 24 23:04:48 EDT 2025 Tue Jul 01 01:03:18 EDT 2025 Fri Feb 23 02:49:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | BD ADF tsc ADL AFP CPW MDA sa BR FW NDF TPS CSL drm HPLC Fertilizer SR TSB A. succinogenes SSF AWHC GC-MS Succinic acid Citrus peel waste Biorefinery |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-919aba7f6d6e3e6cf612d4b426144cfd6ae5770e8e3809d746f2e1a58bd83ae03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5371-4280 |
PQID | 2419414434 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2524315457 proquest_miscellaneous_2419414434 crossref_citationtrail_10_1016_j_wasman_2020_06_020 crossref_primary_10_1016_j_wasman_2020_06_020 elsevier_sciencedirect_doi_10_1016_j_wasman_2020_06_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-15 |
PublicationDateYYYYMMDD | 2020-07-15 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Waste management (Elmsford) |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kaya, Sousa, Crepeau, Sorensen, Ralet (b0095) 2014; 114 Li, Jiang, Chen, Ye, Shang, Wei, Ying, Chang (b0115) 2010; 33 Borges, Pereira (b0015) 2011; 38 Tan, Jahim, Wu, Harun, Mumtaz (b0185) 2016; 36 Zheng, Dong, Sun, Ni, Fang (b0210) 2009; 100 Jantama, Haupt, Svorono, Zhang, Moore, Shanmugam, Ingram (b0080) 2008; 99 Patsalou, Samanides, Protopapa, Stavrinou, Vyrides, Koutinas (b0165) 2019; 24 Acar, Kesbic, Yilmaz, Gultepe, Turker (b0005) 2015; 437 Nagy, Al-Mahdy, Ab, El Aziz, Kandil, Tantawy, El Alfy (b0145) 2018; 21 Boukroufa, Boutekedjiret, Petigny, Rakotomanomana, Chemat (b0020) 2015; 24 Li, Lei, Zhang, Li, Xing, Gao, Gong, Yan, Wang, Su, Ma (b0120) 2013; 135 Heller, Selke, Keoleian (b0070) 2019; 23 Satari, Palhed, Karimi, Lundin, Taherzadeh, Zamani (b0180) 2017; 12 Chrysargyris, Stamatakis, Moustakas, Prasad, Tzortzakis (b0040) 2018; 9 Hilali, Fabiano-Tixier, Ruiz, Hejjaj, Nouh, Idlimam, Bily, Mandi, Chemat (b0075) 2019; 7 Liu, Zheng, Sun, Ni, Dong, Wei (b0130) 2008; 83 Koutinas, Vlysidis, Pleissner, Kopsahelis, Garcia, Kookos, Papanikolaou, Kwan, Lin (b0105) 2014; 43 Espina, Somolinos, Loran, Conchello, Garcia, Pagan (b0060) 2011; 22 Pfaltzgraff, De Bruyn, Cooper, Budarin, Clark (b0170) 2013; 15 Patsalou, Menikea, Makri, Vasquez, Drouza, Koutinas (b0160) 2017; 166 FAO, 2017. Citrus fruit fresh and processed. Statistical bulletin 2016. Pateraki, Patsalou, Vlysidis, Kopsahelis, Webb, Koutinas, Koutinas (b0155) 2016; 112 Adams (b0010) 2012 Owen, Laird (b0150) 2018; 44 Tsang, Kumar, Samadar, Yang, Lee, Ok, Song, Kim, Kwon, Jeon (b0190) 2019; 127 Van De Graaf, Vallianpoer, Fiey, Delattre, Schulten (b0195) 2012; 2012 Carvalho, Matos, Roca, Reis (b0030) 2014; 31 Chen, Zhang, Miao, Wei, Chen (b0035) 2011; 48 Chrysargyris, Antoniou, Athinodorou, Vassiliou, Papadaki, Tzortzakis (b0045) 2019; 26 Chrysargyris, Prasad, Kavanagh, Tzortzakis (b0050) 2019; 9 Vlysidis, Koutinas, Kookos (b0200) 2017 Dubois, Gilles, Hamilton (b0055) 1956; 28 Marin, Soler-Rivas, Benavente-Garcia, Castillo, Perez-Alvarez (b0140) 2007; 100 Rivas, Torrado, Torre, Converti, Dominguez (b0175) 2008; 56 Kamaliroosta, Zolfaghari, Shafiee, Larijani, Zojaji (b0090) 2016; 6 Kyriakou, Patsalou, Xiaris, Tsevis, Koutsokeras, Constantinides, Koutinas (b0110) 2020; 155 Wilkins, Widmer, Cameron, Grohmann (b0205) 2005; 118 Liu, Zheng, Sun, Ni, Dong, Zhu (b0125) 2008; 99 Bousbia, Vian, Ferhat, Meklati, Chemat (b0025) 2009; 90 Lopez, Li, Thompson (b0135) 2010; 30 Kosseva (b0100) 2013 Jiang, Dai, Xi, Wu, Kong, Ma, Zhang, Chen, Wei (b0085) 2014; 153 Pfaltzgraff (10.1016/j.wasman.2020.06.020_b0170) 2013; 15 10.1016/j.wasman.2020.06.020_b0065 Heller (10.1016/j.wasman.2020.06.020_b0070) 2019; 23 Patsalou (10.1016/j.wasman.2020.06.020_b0165) 2019; 24 Carvalho (10.1016/j.wasman.2020.06.020_b0030) 2014; 31 Bousbia (10.1016/j.wasman.2020.06.020_b0025) 2009; 90 Kyriakou (10.1016/j.wasman.2020.06.020_b0110) 2020; 155 Hilali (10.1016/j.wasman.2020.06.020_b0075) 2019; 7 Jantama (10.1016/j.wasman.2020.06.020_b0080) 2008; 99 Rivas (10.1016/j.wasman.2020.06.020_b0175) 2008; 56 Liu (10.1016/j.wasman.2020.06.020_b0130) 2008; 83 Boukroufa (10.1016/j.wasman.2020.06.020_b0020) 2015; 24 Espina (10.1016/j.wasman.2020.06.020_b0060) 2011; 22 Kosseva (10.1016/j.wasman.2020.06.020_b0100) 2013 Wilkins (10.1016/j.wasman.2020.06.020_b0205) 2005; 118 Vlysidis (10.1016/j.wasman.2020.06.020_b0200) 2017 Tsang (10.1016/j.wasman.2020.06.020_b0190) 2019; 127 Acar (10.1016/j.wasman.2020.06.020_b0005) 2015; 437 Nagy (10.1016/j.wasman.2020.06.020_b0145) 2018; 21 Li (10.1016/j.wasman.2020.06.020_b0120) 2013; 135 Li (10.1016/j.wasman.2020.06.020_b0115) 2010; 33 Marin (10.1016/j.wasman.2020.06.020_b0140) 2007; 100 Patsalou (10.1016/j.wasman.2020.06.020_b0160) 2017; 166 Koutinas (10.1016/j.wasman.2020.06.020_b0105) 2014; 43 Chrysargyris (10.1016/j.wasman.2020.06.020_b0045) 2019; 26 Jiang (10.1016/j.wasman.2020.06.020_b0085) 2014; 153 Owen (10.1016/j.wasman.2020.06.020_b0150) 2018; 44 Chrysargyris (10.1016/j.wasman.2020.06.020_b0040) 2018; 9 Liu (10.1016/j.wasman.2020.06.020_b0125) 2008; 99 Adams (10.1016/j.wasman.2020.06.020_b0010) 2012 Kamaliroosta (10.1016/j.wasman.2020.06.020_b0090) 2016; 6 Kaya (10.1016/j.wasman.2020.06.020_b0095) 2014; 114 Chrysargyris (10.1016/j.wasman.2020.06.020_b0050) 2019; 9 Lopez (10.1016/j.wasman.2020.06.020_b0135) 2010; 30 Chen (10.1016/j.wasman.2020.06.020_b0035) 2011; 48 Satari (10.1016/j.wasman.2020.06.020_b0180) 2017; 12 Tan (10.1016/j.wasman.2020.06.020_b0185) 2016; 36 Dubois (10.1016/j.wasman.2020.06.020_b0055) 1956; 28 Pateraki (10.1016/j.wasman.2020.06.020_b0155) 2016; 112 Van De Graaf (10.1016/j.wasman.2020.06.020_b0195) 2012; 2012 Zheng (10.1016/j.wasman.2020.06.020_b0210) 2009; 100 Borges (10.1016/j.wasman.2020.06.020_b0015) 2011; 38 |
References_xml | – volume: 90 start-page: 409 year: 2009 end-page: 413 ident: b0025 article-title: A new process for extraction of essential oil from Citrus peels: Microwave hydrodiffusion and gravity publication-title: J. Food Eng. – volume: 26 start-page: 35461 year: 2019 end-page: 35472 ident: b0045 article-title: Deployment of olive-stone waste as a substitute growing medium component for publication-title: Environ. Sci. Pollut. Res. – volume: 31 start-page: 133 year: 2014 end-page: 139 ident: b0030 article-title: Succinic acid production from glycerol by publication-title: New Biotechnol. – volume: 43 start-page: 2587 year: 2014 end-page: 2627 ident: b0105 article-title: Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers publication-title: Chem. Soc. Rev. – volume: 166 start-page: 706 year: 2017 end-page: 716 ident: b0160 article-title: Development of a citrus peel-based biorefinery strategy for the production of succinic acid publication-title: J. Clean. Prod. – volume: 23 start-page: 480 year: 2019 end-page: 495 ident: b0070 article-title: Mapping the influence of food waste in food packaging environmental performance assessments publication-title: J. Ind. Ecol. – volume: 127 start-page: 625 year: 2019 end-page: 644 ident: b0190 article-title: Production of bioplastic through food waste valorization publication-title: Environ. Int. – start-page: 147 year: 2017 end-page: 164 ident: b0200 article-title: Techno-economic evaluation of refining of food supply chain wastes for the production of chemicals and biopolymers publication-title: Food Waste Reduction and Valorisation: Sustainability Assessment and Policy Analysis – volume: 99 start-page: 1140 year: 2008 end-page: 1153 ident: b0080 article-title: Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of publication-title: Biotechnol. Bioeng. – volume: 437 start-page: 282 year: 2015 end-page: 286 ident: b0005 article-title: Evaluation of the effects of essential oil extracted from sweet orange peel ( publication-title: Aquaculture – volume: 30 start-page: 63 year: 2010 end-page: 69 ident: b0135 article-title: Biorefinery of waste orange peel publication-title: Crit. Rev. Biotechnol. – volume: 36 start-page: 012058 year: 2016 ident: b0185 article-title: Use of corn steep liquor as an economical nitrogen source for biosuccinic acid production by publication-title: IOP Conf. Ser.: Earth Environ. Sci. – volume: 100 start-page: 736 year: 2007 end-page: 741 ident: b0140 article-title: By-products from different citrus processes as a source of customized functional fibres publication-title: Food Chem. – volume: 48 start-page: 339 year: 2011 end-page: 344 ident: b0035 article-title: Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using publication-title: Enz. Microb. Technol. – volume: 44 start-page: 414 year: 2018 end-page: 435 ident: b0150 article-title: Synchronous application of antibiotics and essential oils: dual mechanisms of action as a potential solution to antibiotic resistance publication-title: Crit. Rev. Microbiol. – volume: 21 start-page: 264 year: 2018 end-page: 272 ident: b0145 article-title: Chemical composition and antiviral activity of essential oils from publication-title: J. Essent. Oil Bear. Pl. – volume: 114 start-page: 1319 year: 2014 end-page: 1326 ident: b0095 article-title: Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction publication-title: Ann. Bot. – volume: 28 start-page: 350 year: 1956 end-page: 356 ident: b0055 article-title: Colorimetric method for determination of sugars and related substances publication-title: Anal. Chem. – reference: FAO, 2017. Citrus fruit fresh and processed. Statistical bulletin 2016. – volume: 6 start-page: 69 year: 2016 end-page: 76 ident: b0090 article-title: Chemical identifications of citrus peels essential oils publication-title: J. Food Biosci. Technol. – volume: 7 start-page: 11815 year: 2019 end-page: 11822 ident: b0075 article-title: Green extraction of essential oils, polyphenols, and pectins from orange peel employing solar energy: Toward a zero-waste biorefinery publication-title: ACS Sustain. Chem. Eng. – year: 2012 ident: b0010 article-title: Identification of essential oil components by gas chromatography and mass spectroscopy – volume: 24 start-page: 72 year: 2015 end-page: 79 ident: b0020 article-title: Bio-refinery of orange peels waste: A new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin publication-title: Ultrason. Sonochem. – volume: 83 start-page: 722 year: 2008 end-page: 729 ident: b0130 article-title: Strategies of pH control and glucose fed-batch fermentation for production of succinic acid by publication-title: J. Chem. Technol. Biotechnol. – volume: 153 start-page: 327 year: 2014 end-page: 332 ident: b0085 article-title: Succinic acid production from sucrose by publication-title: Bioresour. Technol. – volume: 33 start-page: 911 year: 2010 end-page: 920 ident: b0115 article-title: Effect of redox potential regulation on succinic acid production by publication-title: Bioprocess Biosyst. Eng. – volume: 15 start-page: 307 year: 2013 end-page: 314 ident: b0170 article-title: Food waste biomass: A resource for high-value chemicals publication-title: Green Chem. – volume: 56 start-page: 2380 year: 2008 end-page: 2387 ident: b0175 article-title: Submerged citric acid fermentation on orange peel autohydrolysate publication-title: J. Agric. Food Chem. – volume: 22 start-page: 896 year: 2011 end-page: 902 ident: b0060 article-title: Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes publication-title: Food Control – start-page: 37 year: 2013 end-page: 60 ident: b0100 article-title: Sources, characterization, and composition of food industry wastes publication-title: Food industry wastes – volume: 9 start-page: 2285 year: 2018 end-page: 2294 ident: b0040 article-title: Evaluation of municipal solid waste compost and/or fertigation as peat substituent for pepper seedlings production publication-title: Waste Biomass Valorization. – volume: 24 start-page: 2451 year: 2019 ident: b0165 article-title: A citrus peel waste biorefinery for ethanol and methane production publication-title: Molecules – volume: 38 start-page: 1001 year: 2011 end-page: 1011 ident: b0015 article-title: Succinic acid production form sugarcane bagasse hemicellulose hydrolysate by publication-title: J. Ind. Microbiol. Biotechnol. – volume: 100 start-page: 2425 year: 2009 end-page: 2429 ident: b0210 article-title: Fermentative production of succinic acid from straw hydrolysate by publication-title: Bioresour. Technol. – volume: 99 start-page: 1736 year: 2008 end-page: 1742 ident: b0125 article-title: Economical succinic acid production from cane molasses by publication-title: Bioresour. Technol. – volume: 12 start-page: 1706 year: 2017 end-page: 1722 ident: b0180 article-title: Process optimization for citrus waste biorefinery via simultaneous pectin extraction and pretreatment publication-title: Bioresources – volume: 135 start-page: 604 year: 2013 end-page: 609 ident: b0120 article-title: Efficient decolorization and deproteinization using uniform polymer microspheres in the succinic acid biorefinery from bio-waste cotton ( publication-title: Bioresour. Technol. – volume: 9 start-page: 693 year: 2019 ident: b0050 article-title: Biochar type and ratio as a peat additive/partial peat replacement in growing media for cabbage seedling production publication-title: Agronomy – volume: 2012 start-page: A1 year: 2012 ident: b0195 article-title: Process for the crystallization of succinic acid publication-title: US patent – volume: 112 start-page: 285 year: 2016 end-page: 303 ident: b0155 article-title: : Advances on succinic acid production and prospects for development of integrated biorefineries publication-title: Biochem. Eng. J. – volume: 155 start-page: 53 year: 2020 end-page: 64 ident: b0110 article-title: Enhancing bioproduction and thermotolerance in publication-title: Renew. Energy – volume: 118 start-page: 419 year: 2005 end-page: 422 ident: b0205 article-title: Effect of seasonal variation on enzymatic hydrolysis of Valencia orange peel waste publication-title: Proc. Fla. State Hort. Soc. – volume: 153 start-page: 327 year: 2014 ident: 10.1016/j.wasman.2020.06.020_b0085 article-title: Succinic acid production from sucrose by Actinobacillus succinogenes NJ113 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.11.062 – volume: 9 start-page: 693 year: 2019 ident: 10.1016/j.wasman.2020.06.020_b0050 article-title: Biochar type and ratio as a peat additive/partial peat replacement in growing media for cabbage seedling production publication-title: Agronomy doi: 10.3390/agronomy9110693 – volume: 24 start-page: 72 year: 2015 ident: 10.1016/j.wasman.2020.06.020_b0020 article-title: Bio-refinery of orange peels waste: A new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2014.11.015 – volume: 26 start-page: 35461 year: 2019 ident: 10.1016/j.wasman.2020.06.020_b0045 article-title: Deployment of olive-stone waste as a substitute growing medium component for Brassica seedlings production in nurseries publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-04261-8 – volume: 21 start-page: 264 year: 2018 ident: 10.1016/j.wasman.2020.06.020_b0145 article-title: Chemical composition and antiviral activity of essential oils from Citrus reshni hort. ex Tanaka (Cleopatra mandarin) cultivated in Egypt publication-title: J. Essent. Oil Bear. Pl. doi: 10.1080/0972060X.2018.1436986 – volume: 56 start-page: 2380 year: 2008 ident: 10.1016/j.wasman.2020.06.020_b0175 article-title: Submerged citric acid fermentation on orange peel autohydrolysate publication-title: J. Agric. Food Chem. doi: 10.1021/jf073388r – volume: 135 start-page: 604 year: 2013 ident: 10.1016/j.wasman.2020.06.020_b0120 article-title: Efficient decolorization and deproteinization using uniform polymer microspheres in the succinic acid biorefinery from bio-waste cotton (Gossypium hirsutum) stalks publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.06.101 – volume: 23 start-page: 480 year: 2019 ident: 10.1016/j.wasman.2020.06.020_b0070 article-title: Mapping the influence of food waste in food packaging environmental performance assessments publication-title: J. Ind. Ecol. doi: 10.1111/jiec.12743 – volume: 114 start-page: 1319 year: 2014 ident: 10.1016/j.wasman.2020.06.020_b0095 article-title: Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction publication-title: Ann. Bot. doi: 10.1093/aob/mcu150 – volume: 44 start-page: 414 year: 2018 ident: 10.1016/j.wasman.2020.06.020_b0150 article-title: Synchronous application of antibiotics and essential oils: dual mechanisms of action as a potential solution to antibiotic resistance publication-title: Crit. Rev. Microbiol. doi: 10.1080/1040841X.2018.1423616 – volume: 155 start-page: 53 year: 2020 ident: 10.1016/j.wasman.2020.06.020_b0110 article-title: Enhancing bioproduction and thermotolerance in Saccharomyces cerevisiae via cell immobilization on biochar: Application in a citrus peel waste biorefinery publication-title: Renew. Energy doi: 10.1016/j.renene.2020.03.087 – volume: 6 start-page: 69 year: 2016 ident: 10.1016/j.wasman.2020.06.020_b0090 article-title: Chemical identifications of citrus peels essential oils publication-title: J. Food Biosci. Technol. – ident: 10.1016/j.wasman.2020.06.020_b0065 – start-page: 147 year: 2017 ident: 10.1016/j.wasman.2020.06.020_b0200 article-title: Techno-economic evaluation of refining of food supply chain wastes for the production of chemicals and biopolymers – volume: 100 start-page: 2425 year: 2009 ident: 10.1016/j.wasman.2020.06.020_b0210 article-title: Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.11.043 – volume: 9 start-page: 2285 year: 2018 ident: 10.1016/j.wasman.2020.06.020_b0040 article-title: Evaluation of municipal solid waste compost and/or fertigation as peat substituent for pepper seedlings production publication-title: Waste Biomass Valorization. doi: 10.1007/s12649-017-0124-6 – volume: 36 start-page: 012058 year: 2016 ident: 10.1016/j.wasman.2020.06.020_b0185 article-title: Use of corn steep liquor as an economical nitrogen source for biosuccinic acid production by Actinobacillus succinogenes publication-title: IOP Conf. Ser.: Earth Environ. Sci. doi: 10.1088/1755-1315/36/1/012058 – volume: 127 start-page: 625 year: 2019 ident: 10.1016/j.wasman.2020.06.020_b0190 article-title: Production of bioplastic through food waste valorization publication-title: Environ. Int. doi: 10.1016/j.envint.2019.03.076 – volume: 22 start-page: 896 year: 2011 ident: 10.1016/j.wasman.2020.06.020_b0060 article-title: Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes publication-title: Food Control doi: 10.1016/j.foodcont.2010.11.021 – volume: 7 start-page: 11815 year: 2019 ident: 10.1016/j.wasman.2020.06.020_b0075 article-title: Green extraction of essential oils, polyphenols, and pectins from orange peel employing solar energy: Toward a zero-waste biorefinery publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02281 – volume: 12 start-page: 1706 year: 2017 ident: 10.1016/j.wasman.2020.06.020_b0180 article-title: Process optimization for citrus waste biorefinery via simultaneous pectin extraction and pretreatment publication-title: Bioresources doi: 10.15376/biores.12.1.1706-1722 – volume: 31 start-page: 133 year: 2014 ident: 10.1016/j.wasman.2020.06.020_b0030 article-title: Succinic acid production from glycerol by Actinobacillus succinogenes using dimethylsulfoxide as electron acceptor publication-title: New Biotechnol. doi: 10.1016/j.nbt.2013.06.006 – volume: 33 start-page: 911 year: 2010 ident: 10.1016/j.wasman.2020.06.020_b0115 article-title: Effect of redox potential regulation on succinic acid production by Actinobacillus succinogenes publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-010-0414-x – volume: 48 start-page: 339 year: 2011 ident: 10.1016/j.wasman.2020.06.020_b0035 article-title: Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes publication-title: Enz. Microb. Technol. doi: 10.1016/j.enzmictec.2010.12.009 – volume: 30 start-page: 63 year: 2010 ident: 10.1016/j.wasman.2020.06.020_b0135 article-title: Biorefinery of waste orange peel publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388550903425201 – volume: 100 start-page: 736 year: 2007 ident: 10.1016/j.wasman.2020.06.020_b0140 article-title: By-products from different citrus processes as a source of customized functional fibres publication-title: Food Chem. doi: 10.1016/j.foodchem.2005.04.040 – volume: 15 start-page: 307 year: 2013 ident: 10.1016/j.wasman.2020.06.020_b0170 article-title: Food waste biomass: A resource for high-value chemicals publication-title: Green Chem. doi: 10.1039/c2gc36978h – volume: 99 start-page: 1140 year: 2008 ident: 10.1016/j.wasman.2020.06.020_b0080 article-title: Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21694 – volume: 118 start-page: 419 year: 2005 ident: 10.1016/j.wasman.2020.06.020_b0205 article-title: Effect of seasonal variation on enzymatic hydrolysis of Valencia orange peel waste publication-title: Proc. Fla. State Hort. Soc. – volume: 2012 start-page: A1 issue: 0238722 year: 2012 ident: 10.1016/j.wasman.2020.06.020_b0195 article-title: Process for the crystallization of succinic acid publication-title: US patent – volume: 99 start-page: 1736 year: 2008 ident: 10.1016/j.wasman.2020.06.020_b0125 article-title: Economical succinic acid production from cane molasses by Actinobacillus succinogenes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.03.044 – volume: 166 start-page: 706 year: 2017 ident: 10.1016/j.wasman.2020.06.020_b0160 article-title: Development of a citrus peel-based biorefinery strategy for the production of succinic acid publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.08.039 – volume: 24 start-page: 2451 year: 2019 ident: 10.1016/j.wasman.2020.06.020_b0165 article-title: A citrus peel waste biorefinery for ethanol and methane production publication-title: Molecules doi: 10.3390/molecules24132451 – volume: 83 start-page: 722 year: 2008 ident: 10.1016/j.wasman.2020.06.020_b0130 article-title: Strategies of pH control and glucose fed-batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.1862 – volume: 112 start-page: 285 year: 2016 ident: 10.1016/j.wasman.2020.06.020_b0155 article-title: Actinobacillus succinogenes: Advances on succinic acid production and prospects for development of integrated biorefineries publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2016.04.005 – volume: 437 start-page: 282 year: 2015 ident: 10.1016/j.wasman.2020.06.020_b0005 article-title: Evaluation of the effects of essential oil extracted from sweet orange peel (Citrus sinensis) on growth rate of tilapia (Oreochromis mossambicus) and possible disease resistance against Streptococcus iniae publication-title: Aquaculture doi: 10.1016/j.aquaculture.2014.12.015 – volume: 90 start-page: 409 year: 2009 ident: 10.1016/j.wasman.2020.06.020_b0025 article-title: A new process for extraction of essential oil from Citrus peels: Microwave hydrodiffusion and gravity publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2008.06.034 – volume: 28 start-page: 350 year: 1956 ident: 10.1016/j.wasman.2020.06.020_b0055 article-title: Colorimetric method for determination of sugars and related substances publication-title: Anal. Chem. doi: 10.1021/ac60111a017 – year: 2012 ident: 10.1016/j.wasman.2020.06.020_b0010 – volume: 43 start-page: 2587 year: 2014 ident: 10.1016/j.wasman.2020.06.020_b0105 article-title: Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60293a – volume: 38 start-page: 1001 year: 2011 ident: 10.1016/j.wasman.2020.06.020_b0015 article-title: Succinic acid production form sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-010-0874-7 – start-page: 37 year: 2013 ident: 10.1016/j.wasman.2020.06.020_b0100 article-title: Sources, characterization, and composition of food industry wastes |
SSID | ssj0014810 |
Score | 2.5358946 |
Snippet | [Display omitted]
•A biorefinery process isolated essential oils (0.43%) and pectin (30.53%) from CPW.•D-limonene comprised 97% of essential oil’s composition... A process for the valorization of citrus peel waste (CPW) has been developed aiming to produce succinic acid and a series of added-value products through the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 469 |
SubjectTerms | A. succinogenes acid hydrolysis Actinobacillus succinogenes batch fermentation biological treatment bioreactors Biorefinery biorefining cellulose Citrus peel waste citrus peels corn steep liquor Fertilizer fertilizers hemicellulose hydrolysates lignin limonene nitrogen pectins phosphorus plant growth potassium saccharification Succinic acid wastes |
Title | A biorefinery for conversion of citrus peel waste into essential oils, pectin, fertilizer and succinic acid via different fermentation strategies |
URI | https://dx.doi.org/10.1016/j.wasman.2020.06.020 https://www.proquest.com/docview/2419414434 https://www.proquest.com/docview/2524315457 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXa7QE4ICiglo9qkDg2bGI7cXJcragWEL1Apb1FtjORgrbJiqQgOPAf-MfMeJMKEKISxyR2ZHnGM2N73hshXuTk9Z1XNsq8w0grLCJLbjJCo7U1iY1RM3b43Xm2utBv1ul6TywnLAynVY62f2fTg7Ue38zH2Zxvm2b-nin0SIXWkvSUduXpvjiQ5O3zmThYvH67Or--TNB5ICUIlHvcYULQhTSvL7a_tEyEKuNA5MmFv__uof6w1cEBnd0Td8fIERa7wd0Xe9geilvLqWDbobjzC7fgA_FjAa7hKiKM7vsKFJtCyDAPx2PQ1eAD3gK2iBug4Q0ITTt0wFziLS37DXTNpj-FgMRsT6HmBOxN8w0_gW0r6K-8Z0wlWN9U8LmxMJVaGbjp5QhpaqEfJjKKh-Li7NWH5Soa6y9EXhk5kB0srLOmzqoMFWa-pmio0o43XVr7usospsbEmKPK46IyOqslJjbNXZUri7F6JGZt1-KRgMTJwsoqpg9KS6tdUhv6mXK0QfUGq2Ohpjkv_UhOzjUyNuWUhfax3EmqZEmVnIwn42MRXffa7sg5bmhvJnGWvylZSf7jhp7PJ-mXJFW-VLEtdld9SRFQoWk-lP5Hm1RSnEaxqnn83yN4Im7zEx8rJ-lTMSMVwWcUDw3uROy__J6cjFr_EzpvDlA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKORQOCAqI8jlIHBs2iZ14c6xWVAu0vdBKe7NsZyIFpcmKpK3gwH_gHzPjTSpAiEpc43FkeSYzY2feGyHezCnqOy9tlHuHkZJYRJbCZIRaKasTG6Ni7PDxSb48Ux9W2WpLLCYsDJdVjr5_49ODtx6fzMbdnK3revaJKfTIhFYp2SmdyrNb4rbiNgdk1G-_X9d5ULofKAkC4R6LT_i5UOR1ZftzyzSoaRxoPLnt99_j0x-eOoSfw_vi3pg3wsFmaQ_EFra7YmcxtWvbFXd_YRZ8KH4cgKu5hwhj-74CZaYQ6svD5Rh0FfiAtoA1YgO0vAGhbocOmEm8pY--ga5u-n0IOMx2Hyouv27qb_gFbFtCf-E9IyrB-rqEy9rC1GhlYNHzEdDUQj9MVBSPxNnhu9PFMhq7L0Re6nQgL1hYZ3WVlzlKzH1FuVCpHB-5lPJVmVvMtI5xjnIeF6VWeZViYrO5K-fSYiwfi-22a_GJgMSlhU3LmAakSq1ySaXpZdLR8dRrLPeEnPbc-JGanDtkNGaqQftsNpoyrCnDpXhpvCei61nrDTXHDfJ6Uqf5zcQMRY8bZr6etG9Iq_xLxbbYXfSG8p9C0X5I9Q-ZLKUsjTJV_fS_V_BK7CxPj4_M0fuTj8_EHR7hC-Ykey62yVzwBWVGg3sZLP8ncrwPEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+biorefinery+for+conversion+of+citrus+peel+waste+into+essential+oils%2C+pectin%2C+fertilizer+and+succinic+acid+via+different+fermentation+strategies&rft.jtitle=Waste+management+%28Elmsford%29&rft.au=Patsalou%2C+Maria&rft.au=Chrysargyris%2C+Antonios&rft.au=Tzortzakis%2C+Nikolaos&rft.au=Koutinas%2C+Michalis&rft.date=2020-07-15&rft.issn=0956-053X&rft.volume=113&rft.spage=469&rft.epage=477&rft_id=info:doi/10.1016%2Fj.wasman.2020.06.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_wasman_2020_06_020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-053X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-053X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-053X&client=summon |