An Acoustical and Lexical Machine-Learning Pipeline to Identify Connectional Silences

Developing scalable methods for conversation analytics is essential for health care communication science and quality improvement. To assess the feasibility of automating the identification of a conversational feature, which is associated with important patient outcomes. Using audio recordings from...

Full description

Saved in:
Bibliographic Details
Published inJournal of palliative medicine Vol. 26; no. 12; p. 1627
Main Authors Matt, Jeremy E, Rizzo, Donna M, Javed, Ali, Eppstein, Margaret J, Manukyan, Viktoria, Gramling, Cailin, Dewoolkar, Advik Mandar, Gramling, Robert
Format Journal Article
LanguageEnglish
Published United States 01.12.2023
Subjects
Online AccessGet more information
ISSN1557-7740
DOI10.1089/jpm.2023.0087

Cover

Abstract Developing scalable methods for conversation analytics is essential for health care communication science and quality improvement. To assess the feasibility of automating the identification of a conversational feature, which is associated with important patient outcomes. Using audio recordings from the Palliative Care Communication Research Initiative cohort study, we develop and test an automated measurement pipeline comprising three machine-learning (ML) tools-a random forest algorithm and a custom convolutional neural network that operate in parallel on audio recordings, and subsequently a natural language processing algorithm that uses brief excerpts of automated speech-to-text transcripts. Our ML pipeline identified with an overall sensitivity of 84% and specificity of 92%. For and subtypes, we observed sensitivities of 68% and 67%, and specificities of 95% and 97%, respectively. These findings support the capacity for coordinated and complementary ML methods to fully automate the identification of in natural hospital-based clinical conversations.
AbstractList Developing scalable methods for conversation analytics is essential for health care communication science and quality improvement. To assess the feasibility of automating the identification of a conversational feature, which is associated with important patient outcomes. Using audio recordings from the Palliative Care Communication Research Initiative cohort study, we develop and test an automated measurement pipeline comprising three machine-learning (ML) tools-a random forest algorithm and a custom convolutional neural network that operate in parallel on audio recordings, and subsequently a natural language processing algorithm that uses brief excerpts of automated speech-to-text transcripts. Our ML pipeline identified with an overall sensitivity of 84% and specificity of 92%. For and subtypes, we observed sensitivities of 68% and 67%, and specificities of 95% and 97%, respectively. These findings support the capacity for coordinated and complementary ML methods to fully automate the identification of in natural hospital-based clinical conversations.
Author Rizzo, Donna M
Javed, Ali
Gramling, Robert
Manukyan, Viktoria
Matt, Jeremy E
Eppstein, Margaret J
Gramling, Cailin
Dewoolkar, Advik Mandar
Author_xml – sequence: 1
  givenname: Jeremy E
  surname: Matt
  fullname: Matt, Jeremy E
  organization: Graduate Program in Complex Systems and Data Science, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont, USA
– sequence: 2
  givenname: Donna M
  surname: Rizzo
  fullname: Rizzo, Donna M
  organization: Department of Civil and Environmental Engineering, University of Vermont, Burlington, Vermont, USA
– sequence: 3
  givenname: Ali
  surname: Javed
  fullname: Javed, Ali
  organization: Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, USA
– sequence: 4
  givenname: Margaret J
  surname: Eppstein
  fullname: Eppstein, Margaret J
  organization: Department of Computer Science, University of Vermont, Burlington, Vermont, USA
– sequence: 5
  givenname: Viktoria
  surname: Manukyan
  fullname: Manukyan, Viktoria
  organization: InSpace Proximity, Burlington, Vermont, USA
– sequence: 6
  givenname: Cailin
  surname: Gramling
  fullname: Gramling, Cailin
  organization: Graduate Program in Complex Systems and Data Science, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont, USA
– sequence: 7
  givenname: Advik Mandar
  surname: Dewoolkar
  fullname: Dewoolkar, Advik Mandar
  organization: Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont, USA
– sequence: 8
  givenname: Robert
  surname: Gramling
  fullname: Gramling, Robert
  organization: Department of Family Medicine, University of Vermont, Burlington, Vermont, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37440175$$D View this record in MEDLINE/PubMed
BookMark eNo1j0tLxDAUhYMozkOXbiV_oPUm6W3aZRl8DFQUdNZDmtxqhjYtbQecf2_xsTqHD74DZ8XOQxeIsRsBsYAsvzv0bSxBqhgg02dsKRB1pHUCC7YaxwPMOAe8ZAulkwSExiXbFYEXtjuOk7em4SY4XtLXT3829tMHikoyQ_Dhg7_6npqZ8KnjW0dh8vWJb7oQyE6-C7Py5hsKlsYrdlGbZqTrv1yz3cP9--YpKl8et5uijKzScooyKyUkKFUlSWOa5olDU5ERrtJoIMmVkigcSeMMYQbCZimAA1SVQ1mjXLPb393-WLXk9v3gWzOc9v__5Df51VGS
CitedBy_id crossref_primary_10_1016_j_pec_2023_107790
crossref_primary_10_7759_cureus_80524
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1089/jpm.2023.0087
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Economics
EISSN 1557-7740
ExternalDocumentID 37440175
Genre Journal Article
GroupedDBID ---
.GJ
0R~
0VX
34G
36B
39C
4.4
53G
5GY
AABVL
AAETQ
AAWTL
ABBKN
ABIVO
ABJNI
ACGFS
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BNQNF
CAG
CGR
COF
CS3
CUY
CVF
DU5
EBS
ECM
EIF
EJD
EMOBN
F5P
IM4
J5H
LSO
MV1
NPM
NQHIM
O9-
P2P
RML
RMSOB
UE5
ID FETCH-LOGICAL-c372t-8c2204523b2e756694d5abea1db75a04933251de2adae5801c8600d053bd52f52
IngestDate Mon Jul 21 06:01:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords machine-learning
silence
human connection
conversation analysis
artificial intelligence
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-8c2204523b2e756694d5abea1db75a04933251de2adae5801c8600d053bd52f52
PMID 37440175
ParticipantIDs pubmed_primary_37440175
PublicationCentury 2000
PublicationDate 2023-Dec
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of palliative medicine
PublicationTitleAlternate J Palliat Med
PublicationYear 2023
SSID ssj0008905
Score 2.3822067
Snippet Developing scalable methods for conversation analytics is essential for health care communication science and quality improvement. To assess the feasibility of...
SourceID pubmed
SourceType Index Database
StartPage 1627
SubjectTerms Algorithms
Cohort Studies
Communication
Humans
Machine Learning
Natural Language Processing
Title An Acoustical and Lexical Machine-Learning Pipeline to Identify Connectional Silences
URI https://www.ncbi.nlm.nih.gov/pubmed/37440175
Volume 26
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB2qgnYjvt8yC7fRZibTpMsiiogtohbcybwCFU2DLSLd-efeebW1WlE3Yci0peSc3Jy5mXsPQkdM1anIBY8UFSRK6omO4KEgIsbjmpYg-DPrsdRq1y86yeU9u69U3ierSwbiWA6_rSv5D6pwDnA1VbJ_QHb0o3ACxoAvHAFhOP4K46Zxe-hZPy5f8n-l3-y4ZfdI6ugqZD6uu6W2ihK0pivOzU0wgCgrfTbwtmvrj_oz5GrJTWLGbjSafh9vPMPdTpkXU5wyqm246Q6HPafSi4KP866X_NWlWJtP3ZGiL8t-MN4M5rv-lZXPSRA6sb9D-zjKUhDurhNTCLSuND4QikyEzbjuGgR8iee1zLRDfSxNzwBie9F--hzAUT5bcKlpdBg7E5afZ6faa4epOTSXpsb7o23SPf5RnjVqzDdmhfHJp_9RRYvhu1NLEitN7lbQsgcJNx1BVlFFF2toKZSc99fQYssjto46zQKPOYOBM9hzBk9zBgfO4EEPB87gSc7gwJkN1Dk_uzu9iLy1RiRpSgZRJonxISBwg-oUFH0jUYwLzWMlUsZh1UgpCF-lCVdcM1AxMgNlrCBiC8VIzsgmmi96hd5GGBbYuUhyTrnKk4amXBoH-5zJROskVnIHbbmL81C6_ikP4bLtzpzZQ9UxrfbRQg43rD4A9TcQhxahDy_qWjw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Acoustical+and+Lexical+Machine-Learning+Pipeline+to+Identify+Connectional+Silences&rft.jtitle=Journal+of+palliative+medicine&rft.au=Matt%2C+Jeremy+E&rft.au=Rizzo%2C+Donna+M&rft.au=Javed%2C+Ali&rft.au=Eppstein%2C+Margaret+J&rft.date=2023-12-01&rft.eissn=1557-7740&rft.volume=26&rft.issue=12&rft.spage=1627&rft_id=info:doi/10.1089%2Fjpm.2023.0087&rft_id=info%3Apmid%2F37440175&rft_id=info%3Apmid%2F37440175&rft.externalDocID=37440175