A novel machine learning method for evaluating the impact of emission sources on ozone formation
Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanat...
Saved in:
| Published in | Environmental pollution (1987) Vol. 316; no. Pt 2; p. 120685 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.01.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0269-7491 1873-6424 1873-6424 |
| DOI | 10.1016/j.envpol.2022.120685 |
Cover
| Abstract | Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanation (PMF-SHAP) for evaluating the impact of emission sources on ozone formation, which can quantify the main emission sources of ozone pollution. In this method, we first used the PMF model to identify the source of volatile organic compounds (VOCs), and then quantified various emission sources using a combination of machine learning (ML) models and the SHAP algorithm. The R2 of the optimal ML model in this method was as high as 0.96, indicating that the prediction performance was excellent. Furthermore, we explored the impact of different emission sources on ozone formation, and found that ozone formation in Shenzhen was more affected by VOCs, of which vehicle emission sources may have the greatest impact. Our results suggest that the appropriate combination of traditional models with ML models can well address environmental pollution problems. Moreover, the conclusions obtained based on the PMF-SHAP method were different from the traditional ozone formation potential (OFP) results, providing valuable clues for related mechanism studies.
[Display omitted]
•A novel method is used to quantify various emission sources on O3 formation.•The results of PMF-SHAP provide valuable clues for related mechanism studies.•Vehicle emission sources in Shenzhen may have the greatest impact on O3 formation. |
|---|---|
| AbstractList | Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanation (PMF-SHAP) for evaluating the impact of emission sources on ozone formation, which can quantify the main emission sources of ozone pollution. In this method, we first used the PMF model to identify the source of volatile organic compounds (VOCs), and then quantified various emission sources using a combination of machine learning (ML) models and the SHAP algorithm. The R² of the optimal ML model in this method was as high as 0.96, indicating that the prediction performance was excellent. Furthermore, we explored the impact of different emission sources on ozone formation, and found that ozone formation in Shenzhen was more affected by VOCs, of which vehicle emission sources may have the greatest impact. Our results suggest that the appropriate combination of traditional models with ML models can well address environmental pollution problems. Moreover, the conclusions obtained based on the PMF-SHAP method were different from the traditional ozone formation potential (OFP) results, providing valuable clues for related mechanism studies. Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanation (PMF-SHAP) for evaluating the impact of emission sources on ozone formation, which can quantify the main emission sources of ozone pollution. In this method, we first used the PMF model to identify the source of volatile organic compounds (VOCs), and then quantified various emission sources using a combination of machine learning (ML) models and the SHAP algorithm. The R2 of the optimal ML model in this method was as high as 0.96, indicating that the prediction performance was excellent. Furthermore, we explored the impact of different emission sources on ozone formation, and found that ozone formation in Shenzhen was more affected by VOCs, of which vehicle emission sources may have the greatest impact. Our results suggest that the appropriate combination of traditional models with ML models can well address environmental pollution problems. Moreover, the conclusions obtained based on the PMF-SHAP method were different from the traditional ozone formation potential (OFP) results, providing valuable clues for related mechanism studies.Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanation (PMF-SHAP) for evaluating the impact of emission sources on ozone formation, which can quantify the main emission sources of ozone pollution. In this method, we first used the PMF model to identify the source of volatile organic compounds (VOCs), and then quantified various emission sources using a combination of machine learning (ML) models and the SHAP algorithm. The R2 of the optimal ML model in this method was as high as 0.96, indicating that the prediction performance was excellent. Furthermore, we explored the impact of different emission sources on ozone formation, and found that ozone formation in Shenzhen was more affected by VOCs, of which vehicle emission sources may have the greatest impact. Our results suggest that the appropriate combination of traditional models with ML models can well address environmental pollution problems. Moreover, the conclusions obtained based on the PMF-SHAP method were different from the traditional ozone formation potential (OFP) results, providing valuable clues for related mechanism studies. Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanation (PMF-SHAP) for evaluating the impact of emission sources on ozone formation, which can quantify the main emission sources of ozone pollution. In this method, we first used the PMF model to identify the source of volatile organic compounds (VOCs), and then quantified various emission sources using a combination of machine learning (ML) models and the SHAP algorithm. The R2 of the optimal ML model in this method was as high as 0.96, indicating that the prediction performance was excellent. Furthermore, we explored the impact of different emission sources on ozone formation, and found that ozone formation in Shenzhen was more affected by VOCs, of which vehicle emission sources may have the greatest impact. Our results suggest that the appropriate combination of traditional models with ML models can well address environmental pollution problems. Moreover, the conclusions obtained based on the PMF-SHAP method were different from the traditional ozone formation potential (OFP) results, providing valuable clues for related mechanism studies. [Display omitted] •A novel method is used to quantify various emission sources on O3 formation.•The results of PMF-SHAP provide valuable clues for related mechanism studies.•Vehicle emission sources in Shenzhen may have the greatest impact on O3 formation. |
| ArticleNumber | 120685 |
| Author | Peng, Yan Zhu, Bo Huang, Xiao-Feng Cheng, Yong Xia, Shi-Yong He, Ling-Yan Tang, Meng-Xue |
| Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0001-9590-9548 surname: Cheng fullname: Cheng, Yong – sequence: 2 givenname: Xiao-Feng surname: Huang fullname: Huang, Xiao-Feng email: huangxf@pku.edu.cn – sequence: 3 givenname: Yan surname: Peng fullname: Peng, Yan – sequence: 4 givenname: Meng-Xue surname: Tang fullname: Tang, Meng-Xue – sequence: 5 givenname: Bo surname: Zhu fullname: Zhu, Bo – sequence: 6 givenname: Shi-Yong surname: Xia fullname: Xia, Shi-Yong – sequence: 7 givenname: Ling-Yan surname: He fullname: He, Ling-Yan |
| BookMark | eNqFkE1vGyEQhlGVSnU-_kEPHHtZlwGWxT1UiqJ-RIrUS3OmGIYaaxdcwJbaX991tqcektOMRu_zavRckouUExLyFtgaGKj3-zWm0yGPa844XwNnSvevyAr0IDolubwgK8bVphvkBt6Qy1r3jDEphFiRH7c05ROOdLJuFxPSEW1JMf2kE7Zd9jTkQvFkx6Nt52vbIY3TwbpGc6A4xVpjTrTmY3FY6bzmP_NzZ2yaiZyuyetgx4o3_-YVefz86fvd1-7h25f7u9uHzomBt05zDyz0oLdowSFsthIVMMSt3CoA6z0GxUFa55nnPngcVADcqJ7ZAYcgrsi7pfdQ8q8j1mbm3xyOo02Yj9UI6IVmWqj-xSgfhAatuZJzVC5RV3KtBYM5lDjZ8tsAM2f3Zm8W9-bs3izuZ-zDf5iL7UlHKzaOL8EfFxhnXaeIxVQXMTn0saBrxuf4fMFfDY2mRA |
| CitedBy_id | crossref_primary_10_1016_j_jenvman_2023_119587 crossref_primary_10_1016_j_scitotenv_2024_172544 crossref_primary_10_1021_acs_estlett_3c00084 crossref_primary_10_1016_j_envpol_2025_125979 crossref_primary_10_1029_2024JD041593 crossref_primary_10_1016_j_envpol_2023_122223 crossref_primary_10_1016_j_jhazmat_2025_137763 crossref_primary_10_1016_j_scitotenv_2024_171295 crossref_primary_10_3390_su16177315 crossref_primary_10_1007_s10661_024_12489_2 crossref_primary_10_3390_atmos14020308 crossref_primary_10_1016_j_envpol_2024_123662 crossref_primary_10_1016_j_apr_2023_101999 crossref_primary_10_1016_j_atmosenv_2024_120916 crossref_primary_10_5194_gmd_17_4331_2024 crossref_primary_10_1016_j_scitotenv_2024_170009 crossref_primary_10_1029_2023EA003346 crossref_primary_10_1016_j_envres_2023_116329 crossref_primary_10_1029_2024JD042477 |
| Cites_doi | 10.5194/acp-20-14347-2020 10.1038/s41467-021-24823-0 10.1360/TB-2019-0598 10.1360/TB-2021-0638 10.1021/acs.est.1c03421 10.1016/j.envpol.2020.114152 10.1016/j.jenvman.2007.12.008 10.1021/acs.est.1c02950 10.1029/2021GL094133 10.1021/es0625982 10.1016/j.jclepro.2021.129451 10.1029/2020GL091202 10.1016/j.envpol.2019.113599 10.1016/j.watres.2022.118714 10.5194/acp-6-3625-2006 10.1016/j.atmosenv.2020.117741 10.1016/S1352-2310(01)00138-8 10.1021/acs.est.6b03634 10.1021/acs.est.7b05509 10.1016/j.envpol.2017.01.026 10.1021/acs.est.6b00345 10.1016/j.atmosenv.2018.12.025 10.1021/acs.est.1c04201 10.1021/acs.est.1c06157 10.1016/j.scitotenv.2021.152661 10.1126/science.aau5631 10.1016/j.envpol.2021.117860 10.1016/j.envpol.2021.117523 10.1021/acs.estlett.1c00835 10.1016/j.atmosenv.2010.01.026 10.1021/es901688e 10.1038/s42256-019-0138-9 10.5194/acp-21-11053-2021 10.5194/acp-17-12871-2017 10.1126/science.abd4250 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.envpol.2022.120685 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Environmental Sciences |
| EISSN | 1873-6424 |
| ExternalDocumentID | 10_1016_j_envpol_2022_120685 S0269749122018991 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 4.4 457 5GY 5VS 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K TWZ WH7 XPP ZMT ~G- 29G 53G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ OHT R2- SEN SEW VH1 WUQ XJT XOL ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c372t-82d10f518bea1ce19b4e610eeb4b611addef6214acd0d2dfde76f1e9650a7e7f3 |
| IEDL.DBID | .~1 |
| ISSN | 0269-7491 1873-6424 |
| IngestDate | Wed Oct 01 14:29:57 EDT 2025 Sun Sep 28 01:45:30 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Thu Oct 09 00:29:23 EDT 2025 Fri Feb 23 02:39:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt 2 |
| Keywords | VOCs Ozone Emission sources SHAP Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-82d10f518bea1ce19b4e610eeb4b611addef6214acd0d2dfde76f1e9650a7e7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9590-9548 |
| PQID | 2738188264 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3153808365 proquest_miscellaneous_2738188264 crossref_primary_10_1016_j_envpol_2022_120685 crossref_citationtrail_10_1016_j_envpol_2022_120685 elsevier_sciencedirect_doi_10_1016_j_envpol_2022_120685 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 2023-01-00 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Environmental pollution (1987) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bland, Battifarano, Pradas del Real, Sarret, Lowry (bib2) 2022; 56 Luecken, Napelenok, Strum, Scheffe, Phillips (bib15) 2018; 52 Huang, Cao, Tian, Zhu, Saikawa, Lin, Cheng, He, Hu, Zhang, Lu, Liu, Daellenbach, Slowik, Tang, Zou, Sun, Xu, Jiang, Shen, Ng, Prévôt (bib10) 2021; 55 Rybarczyk, Zalakeviciute (bib23) 2021; 48 Atkinson, Baulch, Cox, Crowley, Hampson, Hynes, Jenkin, Rossi, Troe, Subcommittee (bib1) 2006; 6 Liu, Song, Liu, Zhang, Hui, Kong, Zhang, Zhang, Qu, An, Ma, Tan, Feng (bib13) 2020; 257 Shu, Xie, Gao, Wang, Fang, Liu, Huang, Peng (bib26) 2017; 17 Zhu, Sima, Lu, Menniti, Schauer, Ren (bib37) 2022; 220 Cheng, Zhu, Peng, Huang, He (bib5) 2021; 326 Cheng, Zhang, Liu, Chen, Wang (bib4) 2019; 200 Niu, Huang, Wang, Wang, Lin, Chen, Zhu, Zhu, He (bib19) 2022; 67 Qiu, Liu, Tan, Chen, Lu, Zhang (bib22) 2020; 65 Shao, Zhang, Zeng, Tang, Zhang, Zhong, Wang (bib24) 2009; 90 Zahrt, Henle, Rose, Wang, Darrow, Denmark (bib31) 2019; 363 Nair, Yu, Campuzano‐Jost, DeMott, Levin, Jimenez, Peischl, Pollack, Fredrickson, Beyersdorf, Nault, Park, Yum, Palm, Xu, Bourgeois, Anderson, Nenes, Ziemba, Moore, Lee, Park, Thompson, Flocke, Huey, Kim, Peng (bib18) 2021; 48 Wu, Xie (bib28) 2017; 51 Zhang, Song, Wang, Zeng, Hu, Lu, Xie, Carter (bib33) 2022; 9 Huang, Zhang, Xia, Han, Wang, Yu, Feng (bib9) 2020; 261 Kurtenbach, Becker, Gomes, Kleffmann, Lörzer, Spittler, Wiesen, Ackermann, Geyer, Platt (bib12) 2001; 35 Song, Shao, Liu, Lu, Kuster, Goldan, Xie (bib27) 2007; 41 Liu, Lu, Zhang, Liu, Jiang (bib14) 2022; 56 Shrock, E., Fujimura, E., Kula, T., Timms, R.T., Lee, I.-H., Leng, Y., Robinson, M.L., Sie, B.M., Li, M.Z., Chen, Y., Logue, J., Zuiani, A., McCulloch, D., Lelis, F.J.N., Henson, S., Monaco, D.R., Travers, M., Habibi, S., Clarke, W.A., Caturegli, P., Laeyendecker, O., Piechocka-Trocha, A., Li, J.Z., Khatri, A., Chu, H.Y., Villani, A.-C., Kays, K., Goldberg, M.B., Hacohen, N., Filbin, M.R., Yu, X.G., Walker, B.D., Wesemann, D.R., Larman, H.B., Lederer, J.A., Elledge, S.J., Lavin-Parsons, K., Parry, B., Lilley, B., Lodenstein, C., McKaig, B., Charland, N., Khanna, H., Margolin, J., Gonye, A., Gushterova, I., Lasalle, T., Sharma, N., Russo, B.C., Rojas-Lopez, M., Sade-Feldman, M., Manakongtreecheep, K., Tantivit, J., Thomas, M.F., Abayneh, B.A., Allen, P., Antille, D., Armstrong, K., Boyce, S., Braley, J., Branch, K., Broderick, K., Carney, J., Chan, A., Davidson, S., Dougan, M., Drew, D., Elliman, A., Flaherty, K., Flannery, J., Forde, P., Gettings, E., Griffin, A., Grimmel, S., Grinke, K., Hall, K., Healy, M., Henault, D., Holland, G., Kayitesi, C., LaValle, V., Lu, Y., Luthern, S., Marchewka, J., Martino, B., McNamara, R., Nambu, C., Nelson, S., Noone, M., Ommerborn, C., Pacheco, L.C., Phan, N., Porto, F.A., Ryan, E., Selleck, K., Slaughenhaupt, S., Sheppard, K.S., Suschana, E., Wilson, V., Alter, G., Balazs, A., Bals, J., Barbash, M., Bartsch, Y., Boucau, J., Chevalier, J., Chowdhury, F., Einkauf, K., Fallon, J., Fedirko, L., Finn, K., Garcia-Broncano, P., Hartana, C., Jiang, C., Kaplonek, P., Karpell, M., Lam, E.C., Lefteri, K., Lian, X., Lichterfeld, M., Lingwood, D., Liu, H., Liu, J., Ly, N., Michell, A., Millstrom, I., Miranda, N., O’Callaghan, C., Osborn, M., Pillai, S., Rassadkina, Y., Reissis, A., Ruzicka, F., Seiger, K., Sessa, L., Sharr, C., Shin, S., Singh, N., Sun, W., Sun, X., Ticheli, H., Trocha-Piechocka, A., Worrall, D., Zhu, A., Daley, G., Golan, D., Heller, H., Sharpe, A., Jilg, N., Rosenthal, A., Wong, C., 2020. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science. 370(6520), eabd4250. doi:10.1126/science.abd4250. Ogata, Takegami, Ozaki, Nakashima, Onozuka, Murata, Nakaoku, Suzuki, Hagihara, Noguchi, Iihara, Kitazume, Morioka, Yamazaki, Yoshida, Yamagata, Nishimura (bib20) 2021; 12 Zhu, Huang, Xia, Lin, Cheng, He (bib36) 2021; 285 Ding, Xing, Wang, Dong, Zhang, Liu, Hao (bib6) 2022; 56 Fang, Zhu, Wang, Xing, Zhao, Fan, Li, Yang, Chen, Huang (bib7) 2021; 289 Yan, Peng, Li, Li, Li, Bai (bib30) 2017; 223 Ou, Yuan, Zheng, Huang, Shao, Li, Huang, Guo, Louie (bib21) 2016; 50 Huang, Hsieh (bib8) 2020; 240 Zhang, Xue, Carter, Pei, Chen, Mu, Wang, Zhang, Wang (bib32) 2021; 21 Zheng, Shao, Che, Zhang, Zhong, Zhang, Streets (bib34) 2009; 43 Zhong, Zhang, Bagheri, Burken, Gu, Li, Ma, Marrone, Ren, Schrier, Shi, Tan, Wang, Wang, Wong, Xiao, Yu, Zhu, Zhang (bib35) 2021; 55 Lundberg, Erion, Chen, DeGrave, Prutkin, Nair, Katz, Himmelfarb, Bansal, Lee (bib16) 2020; 2 Shapley (bib38) 1953 Huang, Yuan, Duan, Liu, Fu, Liang, Li, Huang (bib11) 2022; 813 Carter (bib3) 2010; 44 Xing, Li, Jiang, Wang, Ding, Dong, Zhu, Hao (bib29) 2020; 20 Zahrt (10.1016/j.envpol.2022.120685_bib31) 2019; 363 Zhu (10.1016/j.envpol.2022.120685_bib36) 2021; 285 Nair (10.1016/j.envpol.2022.120685_bib18) 2021; 48 Rybarczyk (10.1016/j.envpol.2022.120685_bib23) 2021; 48 Huang (10.1016/j.envpol.2022.120685_bib11) 2022; 813 Xing (10.1016/j.envpol.2022.120685_bib29) 2020; 20 Kurtenbach (10.1016/j.envpol.2022.120685_bib12) 2001; 35 Fang (10.1016/j.envpol.2022.120685_bib7) 2021; 289 Liu (10.1016/j.envpol.2022.120685_bib13) 2020; 257 Shapley (10.1016/j.envpol.2022.120685_bib38) 1953 Ding (10.1016/j.envpol.2022.120685_bib6) 2022; 56 Niu (10.1016/j.envpol.2022.120685_bib19) 2022; 67 Wu (10.1016/j.envpol.2022.120685_bib28) 2017; 51 Cheng (10.1016/j.envpol.2022.120685_bib5) 2021; 326 Shu (10.1016/j.envpol.2022.120685_bib26) 2017; 17 Lundberg (10.1016/j.envpol.2022.120685_bib16) 2020; 2 Liu (10.1016/j.envpol.2022.120685_bib14) 2022; 56 Zhong (10.1016/j.envpol.2022.120685_bib35) 2021; 55 Zhang (10.1016/j.envpol.2022.120685_bib32) 2021; 21 Bland (10.1016/j.envpol.2022.120685_bib2) 2022; 56 10.1016/j.envpol.2022.120685_bib39 Zhu (10.1016/j.envpol.2022.120685_bib37) 2022; 220 Qiu (10.1016/j.envpol.2022.120685_bib22) 2020; 65 Ogata (10.1016/j.envpol.2022.120685_bib20) 2021; 12 Luecken (10.1016/j.envpol.2022.120685_bib15) 2018; 52 Shao (10.1016/j.envpol.2022.120685_bib24) 2009; 90 Carter (10.1016/j.envpol.2022.120685_bib3) 2010; 44 Huang (10.1016/j.envpol.2022.120685_bib9) 2020; 261 Yan (10.1016/j.envpol.2022.120685_bib30) 2017; 223 Cheng (10.1016/j.envpol.2022.120685_bib4) 2019; 200 Song (10.1016/j.envpol.2022.120685_bib27) 2007; 41 Atkinson (10.1016/j.envpol.2022.120685_bib1) 2006; 6 Huang (10.1016/j.envpol.2022.120685_bib8) 2020; 240 Zhang (10.1016/j.envpol.2022.120685_bib33) 2022; 9 Huang (10.1016/j.envpol.2022.120685_bib10) 2021; 55 Zheng (10.1016/j.envpol.2022.120685_bib34) 2009; 43 Ou (10.1016/j.envpol.2022.120685_bib21) 2016; 50 |
| References_xml | – volume: 21 start-page: 11053 year: 2021 end-page: 11068 ident: bib32 article-title: Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity publication-title: Atmos. Chem. Phys. – volume: 257 year: 2020 ident: bib13 article-title: Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China publication-title: Environ. Pollut. – volume: 41 start-page: 4348 year: 2007 end-page: 4353 ident: bib27 article-title: Source apportionment of ambient volatile organic compounds in beijing publication-title: Environ. Sci. Technol. – volume: 55 start-page: 11557 year: 2021 end-page: 11567 ident: bib10 article-title: Critical role of simultaneous reduction of atmospheric odd oxygen for winter haze mitigation publication-title: Environ. Sci. Technol. – volume: 220 year: 2022 ident: bib37 article-title: Adaptive soft sensing of river flow prediction for wastewater treatment operation and risk management publication-title: Water Res. – volume: 44 start-page: 5324 year: 2010 end-page: 5335 ident: bib3 article-title: Development of the SAPRC-07 chemical mechanism publication-title: Atmos. Environ. – volume: 67 start-page: 2060 year: 2022 ident: bib19 article-title: Effects of nighttime heterogeneous reactions on the formation of secondary aerosols and ozone in the Pearl River Delta publication-title: Chin. Sci. Bull. – volume: 17 start-page: 12871 year: 2017 end-page: 12891 ident: bib26 article-title: Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China publication-title: Atmos. Chem. Phys. – volume: 55 start-page: 12741 year: 2021 end-page: 12754 ident: bib35 article-title: Machine learning: new ideas and tools in environmental science and engineering publication-title: Environ. Sci. Technol. – volume: 326 year: 2021 ident: bib5 article-title: Multiple strategies for a novel hybrid forecasting algorithm of ozone based on data-driven models publication-title: J. Clean. Prod. – volume: 65 start-page: 610 year: 2020 end-page: 621 ident: bib22 article-title: Calculation of maximum incremental reactivity scales based on typical megacities in China publication-title: Chin. Sci. Bull. – volume: 6 start-page: 3625 year: 2006 end-page: 4055 ident: bib1 article-title: Evaluated kinetic and photochemical data for atmospheric chemistry: volume II - gas phase reactions of organic species publication-title: Atmos. Chem. Phys. – volume: 12 start-page: 4575 year: 2021 ident: bib20 article-title: Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts publication-title: Nat. Commun. – volume: 240 year: 2020 ident: bib8 article-title: VOC characteristics and sources at nine photochemical assessment monitoring stations in western Taiwan publication-title: Atmos. Environ. – volume: 48 year: 2021 ident: bib23 article-title: Assessing the COVID-19 impact on air quality: a machine learning approach publication-title: Geophys. Res. Lett. – volume: 56 start-page: 2124 year: 2022 end-page: 2133 ident: bib14 article-title: Data-Driven machine learning in environmental pollution: gains and problems publication-title: Environ. Sci. Technol. – volume: 20 start-page: 14347 year: 2020 end-page: 14359 ident: bib29 article-title: Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic on the North China Plain: a response modeling study publication-title: Atmos. Chem. Phys. – volume: 2 start-page: 56 year: 2020 end-page: 67 ident: bib16 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nat. Mach. Intell. – volume: 223 start-page: 295 year: 2017 end-page: 304 ident: bib30 article-title: Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: a study in Shuozhou, China publication-title: Environ. Pollut. – volume: 363 year: 2019 ident: bib31 article-title: Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning publication-title: Science – volume: 35 start-page: 3385 year: 2001 end-page: 3394 ident: bib12 article-title: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel publication-title: Atmos. Environ. – reference: Shrock, E., Fujimura, E., Kula, T., Timms, R.T., Lee, I.-H., Leng, Y., Robinson, M.L., Sie, B.M., Li, M.Z., Chen, Y., Logue, J., Zuiani, A., McCulloch, D., Lelis, F.J.N., Henson, S., Monaco, D.R., Travers, M., Habibi, S., Clarke, W.A., Caturegli, P., Laeyendecker, O., Piechocka-Trocha, A., Li, J.Z., Khatri, A., Chu, H.Y., Villani, A.-C., Kays, K., Goldberg, M.B., Hacohen, N., Filbin, M.R., Yu, X.G., Walker, B.D., Wesemann, D.R., Larman, H.B., Lederer, J.A., Elledge, S.J., Lavin-Parsons, K., Parry, B., Lilley, B., Lodenstein, C., McKaig, B., Charland, N., Khanna, H., Margolin, J., Gonye, A., Gushterova, I., Lasalle, T., Sharma, N., Russo, B.C., Rojas-Lopez, M., Sade-Feldman, M., Manakongtreecheep, K., Tantivit, J., Thomas, M.F., Abayneh, B.A., Allen, P., Antille, D., Armstrong, K., Boyce, S., Braley, J., Branch, K., Broderick, K., Carney, J., Chan, A., Davidson, S., Dougan, M., Drew, D., Elliman, A., Flaherty, K., Flannery, J., Forde, P., Gettings, E., Griffin, A., Grimmel, S., Grinke, K., Hall, K., Healy, M., Henault, D., Holland, G., Kayitesi, C., LaValle, V., Lu, Y., Luthern, S., Marchewka, J., Martino, B., McNamara, R., Nambu, C., Nelson, S., Noone, M., Ommerborn, C., Pacheco, L.C., Phan, N., Porto, F.A., Ryan, E., Selleck, K., Slaughenhaupt, S., Sheppard, K.S., Suschana, E., Wilson, V., Alter, G., Balazs, A., Bals, J., Barbash, M., Bartsch, Y., Boucau, J., Chevalier, J., Chowdhury, F., Einkauf, K., Fallon, J., Fedirko, L., Finn, K., Garcia-Broncano, P., Hartana, C., Jiang, C., Kaplonek, P., Karpell, M., Lam, E.C., Lefteri, K., Lian, X., Lichterfeld, M., Lingwood, D., Liu, H., Liu, J., Ly, N., Michell, A., Millstrom, I., Miranda, N., O’Callaghan, C., Osborn, M., Pillai, S., Rassadkina, Y., Reissis, A., Ruzicka, F., Seiger, K., Sessa, L., Sharr, C., Shin, S., Singh, N., Sun, W., Sun, X., Ticheli, H., Trocha-Piechocka, A., Worrall, D., Zhu, A., Daley, G., Golan, D., Heller, H., Sharpe, A., Jilg, N., Rosenthal, A., Wong, C., 2020. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science. 370(6520), eabd4250. doi:10.1126/science.abd4250. – volume: 51 start-page: 2574 year: 2017 end-page: 2583 ident: bib28 article-title: Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds publication-title: Environ. Sci. Technol. – volume: 289 year: 2021 ident: bib7 article-title: Source impact and contribution analysis of ambient ozone using multi-modeling approaches over the Pearl River Delta region, China publication-title: Environ. Pollut. – volume: 48 year: 2021 ident: bib18 article-title: Machine learning uncovers aerosol size information from chemistry and meteorology to quantify potential cloud‐forming particles publication-title: Geophys. Res. Lett. – volume: 43 start-page: 8580 year: 2009 end-page: 8586 ident: bib34 article-title: Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta, China publication-title: Environ. Sci. Technol. – volume: 813 year: 2022 ident: bib11 article-title: Quantification of temperature dependence of vehicle evaporative volatile organic compound emissions from different fuel types in China publication-title: Sci. Total Environ. – volume: 52 start-page: 4668 year: 2018 end-page: 4675 ident: bib15 article-title: Sensitivity of ambient atmospheric formaldehyde and ozone to precursor species and source types across the United States publication-title: Environ. Sci. Technol. – volume: 56 start-page: 2990 year: 2022 end-page: 3001 ident: bib2 article-title: Distinguishing engineered TiO2 nanomaterials from natural Ti nanomaterials in soil using spICP-TOFMS and machine learning publication-title: Environ. Sci. Technol. – volume: 261 year: 2020 ident: bib9 article-title: Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in North and South China publication-title: Environ. Pollut. – volume: 50 start-page: 5720 year: 2016 end-page: 5728 ident: bib21 article-title: Ambient ozone control in a photochemically active region: short-term despiking or long-term attainment? publication-title: Environ. Sci. Technol. – volume: 56 start-page: 739 year: 2022 end-page: 749 ident: bib6 article-title: Optimization of a NOx and VOC cooperative control strategy based on clean air benefits publication-title: Environ. Sci. Technol. – volume: 200 start-page: 264 year: 2019 end-page: 279 ident: bib4 article-title: Hybrid algorithm for short-term forecasting of PM2.5 in China publication-title: Atmos. Environ. – start-page: 307 year: 1953 end-page: 317 ident: bib38 article-title: A value for n-person games publication-title: Contributions to the Theory of Games II – volume: 90 start-page: 512 year: 2009 end-page: 518 ident: bib24 article-title: Ground-level ozone in the Pearl River Delta and the roles of VOC and NO(x) in its production publication-title: J. Environ. Manag. – volume: 9 start-page: 10 year: 2022 end-page: 15 ident: bib33 article-title: Observation-based estimations of relative ozone impacts by using volatile organic compounds reactivities publication-title: Environ. Sci. Technol. Lett. – volume: 285 year: 2021 ident: bib36 article-title: Biomass-burning emissions could significantly enhance the atmospheric oxidizing capacity in continental air pollution publication-title: Environ. Pollut. – volume: 20 start-page: 14347 issue: 22 year: 2020 ident: 10.1016/j.envpol.2022.120685_bib29 article-title: Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic on the North China Plain: a response modeling study publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-14347-2020 – volume: 12 start-page: 4575 issue: 1 year: 2021 ident: 10.1016/j.envpol.2022.120685_bib20 article-title: Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts publication-title: Nat. Commun. doi: 10.1038/s41467-021-24823-0 – volume: 65 start-page: 610 issue: 7 year: 2020 ident: 10.1016/j.envpol.2022.120685_bib22 article-title: Calculation of maximum incremental reactivity scales based on typical megacities in China publication-title: Chin. Sci. Bull. doi: 10.1360/TB-2019-0598 – volume: 67 start-page: 2060 year: 2022 ident: 10.1016/j.envpol.2022.120685_bib19 article-title: Effects of nighttime heterogeneous reactions on the formation of secondary aerosols and ozone in the Pearl River Delta publication-title: Chin. Sci. Bull. doi: 10.1360/TB-2021-0638 – volume: 55 start-page: 11557 issue: 17 year: 2021 ident: 10.1016/j.envpol.2022.120685_bib10 article-title: Critical role of simultaneous reduction of atmospheric odd oxygen for winter haze mitigation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c03421 – volume: 261 year: 2020 ident: 10.1016/j.envpol.2022.120685_bib9 article-title: Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in North and South China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114152 – volume: 90 start-page: 512 issue: 1 year: 2009 ident: 10.1016/j.envpol.2022.120685_bib24 article-title: Ground-level ozone in the Pearl River Delta and the roles of VOC and NO(x) in its production publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2007.12.008 – volume: 56 start-page: 2990 issue: 5 year: 2022 ident: 10.1016/j.envpol.2022.120685_bib2 article-title: Distinguishing engineered TiO2 nanomaterials from natural Ti nanomaterials in soil using spICP-TOFMS and machine learning publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c02950 – volume: 48 issue: 21 year: 2021 ident: 10.1016/j.envpol.2022.120685_bib18 article-title: Machine learning uncovers aerosol size information from chemistry and meteorology to quantify potential cloud‐forming particles publication-title: Geophys. Res. Lett. doi: 10.1029/2021GL094133 – volume: 41 start-page: 4348 issue: 12 year: 2007 ident: 10.1016/j.envpol.2022.120685_bib27 article-title: Source apportionment of ambient volatile organic compounds in beijing publication-title: Environ. Sci. Technol. doi: 10.1021/es0625982 – volume: 326 year: 2021 ident: 10.1016/j.envpol.2022.120685_bib5 article-title: Multiple strategies for a novel hybrid forecasting algorithm of ozone based on data-driven models publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.129451 – volume: 48 issue: 4 year: 2021 ident: 10.1016/j.envpol.2022.120685_bib23 article-title: Assessing the COVID-19 impact on air quality: a machine learning approach publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL091202 – volume: 257 year: 2020 ident: 10.1016/j.envpol.2022.120685_bib13 article-title: Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113599 – volume: 220 year: 2022 ident: 10.1016/j.envpol.2022.120685_bib37 article-title: Adaptive soft sensing of river flow prediction for wastewater treatment operation and risk management publication-title: Water Res. doi: 10.1016/j.watres.2022.118714 – volume: 6 start-page: 3625 issue: 11 year: 2006 ident: 10.1016/j.envpol.2022.120685_bib1 article-title: Evaluated kinetic and photochemical data for atmospheric chemistry: volume II - gas phase reactions of organic species publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-6-3625-2006 – volume: 240 year: 2020 ident: 10.1016/j.envpol.2022.120685_bib8 article-title: VOC characteristics and sources at nine photochemical assessment monitoring stations in western Taiwan publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2020.117741 – volume: 35 start-page: 3385 issue: 20 year: 2001 ident: 10.1016/j.envpol.2022.120685_bib12 article-title: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(01)00138-8 – volume: 51 start-page: 2574 issue: 5 year: 2017 ident: 10.1016/j.envpol.2022.120685_bib28 article-title: Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03634 – volume: 52 start-page: 4668 issue: 8 year: 2018 ident: 10.1016/j.envpol.2022.120685_bib15 article-title: Sensitivity of ambient atmospheric formaldehyde and ozone to precursor species and source types across the United States publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05509 – volume: 223 start-page: 295 year: 2017 ident: 10.1016/j.envpol.2022.120685_bib30 article-title: Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: a study in Shuozhou, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.01.026 – volume: 50 start-page: 5720 issue: 11 year: 2016 ident: 10.1016/j.envpol.2022.120685_bib21 article-title: Ambient ozone control in a photochemically active region: short-term despiking or long-term attainment? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00345 – volume: 200 start-page: 264 year: 2019 ident: 10.1016/j.envpol.2022.120685_bib4 article-title: Hybrid algorithm for short-term forecasting of PM2.5 in China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.12.025 – volume: 56 start-page: 739 issue: 2 year: 2022 ident: 10.1016/j.envpol.2022.120685_bib6 article-title: Optimization of a NOx and VOC cooperative control strategy based on clean air benefits publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c04201 – volume: 56 start-page: 2124 issue: 4 year: 2022 ident: 10.1016/j.envpol.2022.120685_bib14 article-title: Data-Driven machine learning in environmental pollution: gains and problems publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c06157 – volume: 813 year: 2022 ident: 10.1016/j.envpol.2022.120685_bib11 article-title: Quantification of temperature dependence of vehicle evaporative volatile organic compound emissions from different fuel types in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.152661 – volume: 363 issue: 6424 year: 2019 ident: 10.1016/j.envpol.2022.120685_bib31 article-title: Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning publication-title: Science doi: 10.1126/science.aau5631 – volume: 289 year: 2021 ident: 10.1016/j.envpol.2022.120685_bib7 article-title: Source impact and contribution analysis of ambient ozone using multi-modeling approaches over the Pearl River Delta region, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.117860 – volume: 285 year: 2021 ident: 10.1016/j.envpol.2022.120685_bib36 article-title: Biomass-burning emissions could significantly enhance the atmospheric oxidizing capacity in continental air pollution publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.117523 – volume: 9 start-page: 10 issue: 1 year: 2022 ident: 10.1016/j.envpol.2022.120685_bib33 article-title: Observation-based estimations of relative ozone impacts by using volatile organic compounds reactivities publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.1c00835 – volume: 55 start-page: 12741 issue: 19 year: 2021 ident: 10.1016/j.envpol.2022.120685_bib35 article-title: Machine learning: new ideas and tools in environmental science and engineering publication-title: Environ. Sci. Technol. – start-page: 307 year: 1953 ident: 10.1016/j.envpol.2022.120685_bib38 article-title: A value for n-person games – volume: 44 start-page: 5324 issue: 40 year: 2010 ident: 10.1016/j.envpol.2022.120685_bib3 article-title: Development of the SAPRC-07 chemical mechanism publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.01.026 – volume: 43 start-page: 8580 issue: 22 year: 2009 ident: 10.1016/j.envpol.2022.120685_bib34 article-title: Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta, China publication-title: Environ. Sci. Technol. doi: 10.1021/es901688e – volume: 2 start-page: 56 issue: 1 year: 2020 ident: 10.1016/j.envpol.2022.120685_bib16 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0138-9 – volume: 21 start-page: 11053 issue: 14 year: 2021 ident: 10.1016/j.envpol.2022.120685_bib32 article-title: Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-11053-2021 – volume: 17 start-page: 12871 issue: 21 year: 2017 ident: 10.1016/j.envpol.2022.120685_bib26 article-title: Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-17-12871-2017 – ident: 10.1016/j.envpol.2022.120685_bib39 doi: 10.1126/science.abd4250 |
| SSID | ssj0004333 |
| Score | 2.5424213 |
| Snippet | Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 120685 |
| SubjectTerms | air pollution algorithms China Emission sources Machine learning Ozone particulate emissions prediction SHAP VOCs volatile organic compounds |
| Title | A novel machine learning method for evaluating the impact of emission sources on ozone formation |
| URI | https://dx.doi.org/10.1016/j.envpol.2022.120685 https://www.proquest.com/docview/2738188264 https://www.proquest.com/docview/3153808365 |
| Volume | 316 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6424 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004333 issn: 0269-7491 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6424 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004333 issn: 0269-7491 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6424 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004333 issn: 0269-7491 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6424 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004333 issn: 0269-7491 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6424 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004333 issn: 0269-7491 databaseCode: AKRWK dateStart: 19870101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_IvOhBdCrOjxFBvNUtada0xyIbU9GLCt5iPxKZzHa4KejBv92XpJ0fKIK3EpI0zUvfV957P4CDkPaQyjaqUXQ9TpX2wixnXs5R1kaZEtxCJ5xfBMNrfnrTu1mA4zoXxoRVVrzf8XTLrauWTrWbnclo1LlE6wGV4YgylGFoNdgMdi4MisHR20eYB_cdnDx29kzvOn3Oxnip4nlSmgsIxo4o6wYGUfln8fSNUVvpM1iFlUptJLFb2RosqKIJ63GBJvPDCzkkNpDTesibsPypxmATNvsfqWw4Q_UvT9fhNiZF-azG5MHGUypSAUjcEYcqTVCdJXUxcGxFTZG4nEpSamJg4oyjjTjv_5TgY_la4jTzdMgNuB70r46HXoW34GW-YDMvZDnt6h4NU5XQTNEo5Qq1K6VSngaUGk6oA0Z5kuXdnOU6VyLQVEWo5CVCCe1vQqPAF20BEX6QUM4SkQQJz1Dk6VSjLaZ9HkY0DKMW-PU2y6wqRm4wMcayjjq7l4440hBHOuK0wJuPmrhiHH_0FzUF5ZdDJVFe_DFyvya4xP00lyhJocqnqTSpTPgFqEf-3sc3YsSU_e5t_3sFO7BkkO2dt2cXGrPHJ7WH-s8sbdsD3obF-ORsePEOTm0Gdg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-pBdFVcnxHEW91NmjbtcRFl1V0vKniLfSSysraLuwp68Lc7SVpfKIK3EpI0zaTzysx8AHsRDZDKNqpRtD1OlfaiLGdezlHWxpkS3EIn9M_D7hU_vQ6up-CwzoUxYZUV73c83XLrqqVV7WZrNBi0LtB6QGU4pgxlGFoNaALN8IAJY4EdvH7EeXDf4cljb890r_PnbJCXKp5GpbmBYOyAsnZoIJV_lk_fOLUVP8eLsFDpjaTjlrYEU6powHKnQJv5_pnsExvJaV3kDZj_VGSwAatHH7lsOEP1M4-X4aZDivJJDcm9DahUpEKQuCUOVpqgPkvqauDYiqoicUmVpNTE4MQZTxtx7v8xwcfypcRp3vMhV-Dq-OjysOtVgAte5gs28SKW07YOaJSqhGaKxilXqF4plfI0pNSwQh0yypMsb-cs17kSoaYqRi0vEUpofxWmC3zRGhDhhwnlLBFJmPAMZZ5ONRpj2udRTKMoboJfb7PMqmrkBhRjKOuwszvpiCMNcaQjThO891EjV43jj_6ipqD8cqokCow_Ru7WBJe4n-YWJSlU-TiWJpcJvwAVyd_7-EaOmLrfwfq_V7ADs93Lfk_2Ts7PNmDOwNw7188mTE8eHtUWKkOTdNse9jdJfwgL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+machine+learning+method+for+evaluating+the+impact+of+emission+sources+on+ozone+formation&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Cheng%2C+Yong&rft.au=Huang%2C+Xiao+Feng&rft.au=Peng%2C+Yan&rft.au=Tang%2C+Meng-Xue&rft.date=2023-01-01&rft.issn=0269-7491&rft.volume=316+p.120685-&rft_id=info:doi/10.1016%2Fj.envpol.2022.120685&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon |