A novel machine learning method for evaluating the impact of emission sources on ozone formation

Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanat...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental pollution (1987) Vol. 316; no. Pt 2; p. 120685
Main Authors Cheng, Yong, Huang, Xiao-Feng, Peng, Yan, Tang, Meng-Xue, Zhu, Bo, Xia, Shi-Yong, He, Ling-Yan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text
ISSN0269-7491
1873-6424
1873-6424
DOI10.1016/j.envpol.2022.120685

Cover

Abstract Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanation (PMF-SHAP) for evaluating the impact of emission sources on ozone formation, which can quantify the main emission sources of ozone pollution. In this method, we first used the PMF model to identify the source of volatile organic compounds (VOCs), and then quantified various emission sources using a combination of machine learning (ML) models and the SHAP algorithm. The R2 of the optimal ML model in this method was as high as 0.96, indicating that the prediction performance was excellent. Furthermore, we explored the impact of different emission sources on ozone formation, and found that ozone formation in Shenzhen was more affected by VOCs, of which vehicle emission sources may have the greatest impact. Our results suggest that the appropriate combination of traditional models with ML models can well address environmental pollution problems. Moreover, the conclusions obtained based on the PMF-SHAP method were different from the traditional ozone formation potential (OFP) results, providing valuable clues for related mechanism studies. [Display omitted] •A novel method is used to quantify various emission sources on O3 formation.•The results of PMF-SHAP provide valuable clues for related mechanism studies.•Vehicle emission sources in Shenzhen may have the greatest impact on O3 formation.
AbstractList Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanation (PMF-SHAP) for evaluating the impact of emission sources on ozone formation, which can quantify the main emission sources of ozone pollution. In this method, we first used the PMF model to identify the source of volatile organic compounds (VOCs), and then quantified various emission sources using a combination of machine learning (ML) models and the SHAP algorithm. The R² of the optimal ML model in this method was as high as 0.96, indicating that the prediction performance was excellent. Furthermore, we explored the impact of different emission sources on ozone formation, and found that ozone formation in Shenzhen was more affected by VOCs, of which vehicle emission sources may have the greatest impact. Our results suggest that the appropriate combination of traditional models with ML models can well address environmental pollution problems. Moreover, the conclusions obtained based on the PMF-SHAP method were different from the traditional ozone formation potential (OFP) results, providing valuable clues for related mechanism studies.
Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanation (PMF-SHAP) for evaluating the impact of emission sources on ozone formation, which can quantify the main emission sources of ozone pollution. In this method, we first used the PMF model to identify the source of volatile organic compounds (VOCs), and then quantified various emission sources using a combination of machine learning (ML) models and the SHAP algorithm. The R2 of the optimal ML model in this method was as high as 0.96, indicating that the prediction performance was excellent. Furthermore, we explored the impact of different emission sources on ozone formation, and found that ozone formation in Shenzhen was more affected by VOCs, of which vehicle emission sources may have the greatest impact. Our results suggest that the appropriate combination of traditional models with ML models can well address environmental pollution problems. Moreover, the conclusions obtained based on the PMF-SHAP method were different from the traditional ozone formation potential (OFP) results, providing valuable clues for related mechanism studies.Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanation (PMF-SHAP) for evaluating the impact of emission sources on ozone formation, which can quantify the main emission sources of ozone pollution. In this method, we first used the PMF model to identify the source of volatile organic compounds (VOCs), and then quantified various emission sources using a combination of machine learning (ML) models and the SHAP algorithm. The R2 of the optimal ML model in this method was as high as 0.96, indicating that the prediction performance was excellent. Furthermore, we explored the impact of different emission sources on ozone formation, and found that ozone formation in Shenzhen was more affected by VOCs, of which vehicle emission sources may have the greatest impact. Our results suggest that the appropriate combination of traditional models with ML models can well address environmental pollution problems. Moreover, the conclusions obtained based on the PMF-SHAP method were different from the traditional ozone formation potential (OFP) results, providing valuable clues for related mechanism studies.
Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution sources and formulate control strategies. In present study, we proposed a novel method of positive matrix factorization-SHapley Additive explanation (PMF-SHAP) for evaluating the impact of emission sources on ozone formation, which can quantify the main emission sources of ozone pollution. In this method, we first used the PMF model to identify the source of volatile organic compounds (VOCs), and then quantified various emission sources using a combination of machine learning (ML) models and the SHAP algorithm. The R2 of the optimal ML model in this method was as high as 0.96, indicating that the prediction performance was excellent. Furthermore, we explored the impact of different emission sources on ozone formation, and found that ozone formation in Shenzhen was more affected by VOCs, of which vehicle emission sources may have the greatest impact. Our results suggest that the appropriate combination of traditional models with ML models can well address environmental pollution problems. Moreover, the conclusions obtained based on the PMF-SHAP method were different from the traditional ozone formation potential (OFP) results, providing valuable clues for related mechanism studies. [Display omitted] •A novel method is used to quantify various emission sources on O3 formation.•The results of PMF-SHAP provide valuable clues for related mechanism studies.•Vehicle emission sources in Shenzhen may have the greatest impact on O3 formation.
ArticleNumber 120685
Author Peng, Yan
Zhu, Bo
Huang, Xiao-Feng
Cheng, Yong
Xia, Shi-Yong
He, Ling-Yan
Tang, Meng-Xue
Author_xml – sequence: 1
  givenname: Yong
  orcidid: 0000-0001-9590-9548
  surname: Cheng
  fullname: Cheng, Yong
– sequence: 2
  givenname: Xiao-Feng
  surname: Huang
  fullname: Huang, Xiao-Feng
  email: huangxf@pku.edu.cn
– sequence: 3
  givenname: Yan
  surname: Peng
  fullname: Peng, Yan
– sequence: 4
  givenname: Meng-Xue
  surname: Tang
  fullname: Tang, Meng-Xue
– sequence: 5
  givenname: Bo
  surname: Zhu
  fullname: Zhu, Bo
– sequence: 6
  givenname: Shi-Yong
  surname: Xia
  fullname: Xia, Shi-Yong
– sequence: 7
  givenname: Ling-Yan
  surname: He
  fullname: He, Ling-Yan
BookMark eNqFkE1vGyEQhlGVSnU-_kEPHHtZlwGWxT1UiqJ-RIrUS3OmGIYaaxdcwJbaX991tqcektOMRu_zavRckouUExLyFtgaGKj3-zWm0yGPa844XwNnSvevyAr0IDolubwgK8bVphvkBt6Qy1r3jDEphFiRH7c05ROOdLJuFxPSEW1JMf2kE7Zd9jTkQvFkx6Nt52vbIY3TwbpGc6A4xVpjTrTmY3FY6bzmP_NzZ2yaiZyuyetgx4o3_-YVefz86fvd1-7h25f7u9uHzomBt05zDyz0oLdowSFsthIVMMSt3CoA6z0GxUFa55nnPngcVADcqJ7ZAYcgrsi7pfdQ8q8j1mbm3xyOo02Yj9UI6IVmWqj-xSgfhAatuZJzVC5RV3KtBYM5lDjZ8tsAM2f3Zm8W9-bs3izuZ-zDf5iL7UlHKzaOL8EfFxhnXaeIxVQXMTn0saBrxuf4fMFfDY2mRA
CitedBy_id crossref_primary_10_1016_j_jenvman_2023_119587
crossref_primary_10_1016_j_scitotenv_2024_172544
crossref_primary_10_1021_acs_estlett_3c00084
crossref_primary_10_1016_j_envpol_2025_125979
crossref_primary_10_1029_2024JD041593
crossref_primary_10_1016_j_envpol_2023_122223
crossref_primary_10_1016_j_jhazmat_2025_137763
crossref_primary_10_1016_j_scitotenv_2024_171295
crossref_primary_10_3390_su16177315
crossref_primary_10_1007_s10661_024_12489_2
crossref_primary_10_3390_atmos14020308
crossref_primary_10_1016_j_envpol_2024_123662
crossref_primary_10_1016_j_apr_2023_101999
crossref_primary_10_1016_j_atmosenv_2024_120916
crossref_primary_10_5194_gmd_17_4331_2024
crossref_primary_10_1016_j_scitotenv_2024_170009
crossref_primary_10_1029_2023EA003346
crossref_primary_10_1016_j_envres_2023_116329
crossref_primary_10_1029_2024JD042477
Cites_doi 10.5194/acp-20-14347-2020
10.1038/s41467-021-24823-0
10.1360/TB-2019-0598
10.1360/TB-2021-0638
10.1021/acs.est.1c03421
10.1016/j.envpol.2020.114152
10.1016/j.jenvman.2007.12.008
10.1021/acs.est.1c02950
10.1029/2021GL094133
10.1021/es0625982
10.1016/j.jclepro.2021.129451
10.1029/2020GL091202
10.1016/j.envpol.2019.113599
10.1016/j.watres.2022.118714
10.5194/acp-6-3625-2006
10.1016/j.atmosenv.2020.117741
10.1016/S1352-2310(01)00138-8
10.1021/acs.est.6b03634
10.1021/acs.est.7b05509
10.1016/j.envpol.2017.01.026
10.1021/acs.est.6b00345
10.1016/j.atmosenv.2018.12.025
10.1021/acs.est.1c04201
10.1021/acs.est.1c06157
10.1016/j.scitotenv.2021.152661
10.1126/science.aau5631
10.1016/j.envpol.2021.117860
10.1016/j.envpol.2021.117523
10.1021/acs.estlett.1c00835
10.1016/j.atmosenv.2010.01.026
10.1021/es901688e
10.1038/s42256-019-0138-9
10.5194/acp-21-11053-2021
10.5194/acp-17-12871-2017
10.1126/science.abd4250
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.envpol.2022.120685
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 10_1016_j_envpol_2022_120685
S0269749122018991
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5VS
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
XPP
ZMT
~G-
29G
53G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
OHT
R2-
SEN
SEW
VH1
WUQ
XJT
XOL
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c372t-82d10f518bea1ce19b4e610eeb4b611addef6214acd0d2dfde76f1e9650a7e7f3
IEDL.DBID .~1
ISSN 0269-7491
1873-6424
IngestDate Wed Oct 01 14:29:57 EDT 2025
Sun Sep 28 01:45:30 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Thu Oct 09 00:29:23 EDT 2025
Fri Feb 23 02:39:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords VOCs
Ozone
Emission sources
SHAP
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-82d10f518bea1ce19b4e610eeb4b611addef6214acd0d2dfde76f1e9650a7e7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9590-9548
PQID 2738188264
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153808365
proquest_miscellaneous_2738188264
crossref_primary_10_1016_j_envpol_2022_120685
crossref_citationtrail_10_1016_j_envpol_2022_120685
elsevier_sciencedirect_doi_10_1016_j_envpol_2022_120685
PublicationCentury 2000
PublicationDate 2023-01-01
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Environmental pollution (1987)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bland, Battifarano, Pradas del Real, Sarret, Lowry (bib2) 2022; 56
Luecken, Napelenok, Strum, Scheffe, Phillips (bib15) 2018; 52
Huang, Cao, Tian, Zhu, Saikawa, Lin, Cheng, He, Hu, Zhang, Lu, Liu, Daellenbach, Slowik, Tang, Zou, Sun, Xu, Jiang, Shen, Ng, Prévôt (bib10) 2021; 55
Rybarczyk, Zalakeviciute (bib23) 2021; 48
Atkinson, Baulch, Cox, Crowley, Hampson, Hynes, Jenkin, Rossi, Troe, Subcommittee (bib1) 2006; 6
Liu, Song, Liu, Zhang, Hui, Kong, Zhang, Zhang, Qu, An, Ma, Tan, Feng (bib13) 2020; 257
Shu, Xie, Gao, Wang, Fang, Liu, Huang, Peng (bib26) 2017; 17
Zhu, Sima, Lu, Menniti, Schauer, Ren (bib37) 2022; 220
Cheng, Zhu, Peng, Huang, He (bib5) 2021; 326
Cheng, Zhang, Liu, Chen, Wang (bib4) 2019; 200
Niu, Huang, Wang, Wang, Lin, Chen, Zhu, Zhu, He (bib19) 2022; 67
Qiu, Liu, Tan, Chen, Lu, Zhang (bib22) 2020; 65
Shao, Zhang, Zeng, Tang, Zhang, Zhong, Wang (bib24) 2009; 90
Zahrt, Henle, Rose, Wang, Darrow, Denmark (bib31) 2019; 363
Nair, Yu, Campuzano‐Jost, DeMott, Levin, Jimenez, Peischl, Pollack, Fredrickson, Beyersdorf, Nault, Park, Yum, Palm, Xu, Bourgeois, Anderson, Nenes, Ziemba, Moore, Lee, Park, Thompson, Flocke, Huey, Kim, Peng (bib18) 2021; 48
Wu, Xie (bib28) 2017; 51
Zhang, Song, Wang, Zeng, Hu, Lu, Xie, Carter (bib33) 2022; 9
Huang, Zhang, Xia, Han, Wang, Yu, Feng (bib9) 2020; 261
Kurtenbach, Becker, Gomes, Kleffmann, Lörzer, Spittler, Wiesen, Ackermann, Geyer, Platt (bib12) 2001; 35
Song, Shao, Liu, Lu, Kuster, Goldan, Xie (bib27) 2007; 41
Liu, Lu, Zhang, Liu, Jiang (bib14) 2022; 56
Shrock, E., Fujimura, E., Kula, T., Timms, R.T., Lee, I.-H., Leng, Y., Robinson, M.L., Sie, B.M., Li, M.Z., Chen, Y., Logue, J., Zuiani, A., McCulloch, D., Lelis, F.J.N., Henson, S., Monaco, D.R., Travers, M., Habibi, S., Clarke, W.A., Caturegli, P., Laeyendecker, O., Piechocka-Trocha, A., Li, J.Z., Khatri, A., Chu, H.Y., Villani, A.-C., Kays, K., Goldberg, M.B., Hacohen, N., Filbin, M.R., Yu, X.G., Walker, B.D., Wesemann, D.R., Larman, H.B., Lederer, J.A., Elledge, S.J., Lavin-Parsons, K., Parry, B., Lilley, B., Lodenstein, C., McKaig, B., Charland, N., Khanna, H., Margolin, J., Gonye, A., Gushterova, I., Lasalle, T., Sharma, N., Russo, B.C., Rojas-Lopez, M., Sade-Feldman, M., Manakongtreecheep, K., Tantivit, J., Thomas, M.F., Abayneh, B.A., Allen, P., Antille, D., Armstrong, K., Boyce, S., Braley, J., Branch, K., Broderick, K., Carney, J., Chan, A., Davidson, S., Dougan, M., Drew, D., Elliman, A., Flaherty, K., Flannery, J., Forde, P., Gettings, E., Griffin, A., Grimmel, S., Grinke, K., Hall, K., Healy, M., Henault, D., Holland, G., Kayitesi, C., LaValle, V., Lu, Y., Luthern, S., Marchewka, J., Martino, B., McNamara, R., Nambu, C., Nelson, S., Noone, M., Ommerborn, C., Pacheco, L.C., Phan, N., Porto, F.A., Ryan, E., Selleck, K., Slaughenhaupt, S., Sheppard, K.S., Suschana, E., Wilson, V., Alter, G., Balazs, A., Bals, J., Barbash, M., Bartsch, Y., Boucau, J., Chevalier, J., Chowdhury, F., Einkauf, K., Fallon, J., Fedirko, L., Finn, K., Garcia-Broncano, P., Hartana, C., Jiang, C., Kaplonek, P., Karpell, M., Lam, E.C., Lefteri, K., Lian, X., Lichterfeld, M., Lingwood, D., Liu, H., Liu, J., Ly, N., Michell, A., Millstrom, I., Miranda, N., O’Callaghan, C., Osborn, M., Pillai, S., Rassadkina, Y., Reissis, A., Ruzicka, F., Seiger, K., Sessa, L., Sharr, C., Shin, S., Singh, N., Sun, W., Sun, X., Ticheli, H., Trocha-Piechocka, A., Worrall, D., Zhu, A., Daley, G., Golan, D., Heller, H., Sharpe, A., Jilg, N., Rosenthal, A., Wong, C., 2020. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science. 370(6520), eabd4250. doi:10.1126/science.abd4250.
Ogata, Takegami, Ozaki, Nakashima, Onozuka, Murata, Nakaoku, Suzuki, Hagihara, Noguchi, Iihara, Kitazume, Morioka, Yamazaki, Yoshida, Yamagata, Nishimura (bib20) 2021; 12
Zhu, Huang, Xia, Lin, Cheng, He (bib36) 2021; 285
Ding, Xing, Wang, Dong, Zhang, Liu, Hao (bib6) 2022; 56
Fang, Zhu, Wang, Xing, Zhao, Fan, Li, Yang, Chen, Huang (bib7) 2021; 289
Yan, Peng, Li, Li, Li, Bai (bib30) 2017; 223
Ou, Yuan, Zheng, Huang, Shao, Li, Huang, Guo, Louie (bib21) 2016; 50
Huang, Hsieh (bib8) 2020; 240
Zhang, Xue, Carter, Pei, Chen, Mu, Wang, Zhang, Wang (bib32) 2021; 21
Zheng, Shao, Che, Zhang, Zhong, Zhang, Streets (bib34) 2009; 43
Zhong, Zhang, Bagheri, Burken, Gu, Li, Ma, Marrone, Ren, Schrier, Shi, Tan, Wang, Wang, Wong, Xiao, Yu, Zhu, Zhang (bib35) 2021; 55
Lundberg, Erion, Chen, DeGrave, Prutkin, Nair, Katz, Himmelfarb, Bansal, Lee (bib16) 2020; 2
Shapley (bib38) 1953
Huang, Yuan, Duan, Liu, Fu, Liang, Li, Huang (bib11) 2022; 813
Carter (bib3) 2010; 44
Xing, Li, Jiang, Wang, Ding, Dong, Zhu, Hao (bib29) 2020; 20
Zahrt (10.1016/j.envpol.2022.120685_bib31) 2019; 363
Zhu (10.1016/j.envpol.2022.120685_bib36) 2021; 285
Nair (10.1016/j.envpol.2022.120685_bib18) 2021; 48
Rybarczyk (10.1016/j.envpol.2022.120685_bib23) 2021; 48
Huang (10.1016/j.envpol.2022.120685_bib11) 2022; 813
Xing (10.1016/j.envpol.2022.120685_bib29) 2020; 20
Kurtenbach (10.1016/j.envpol.2022.120685_bib12) 2001; 35
Fang (10.1016/j.envpol.2022.120685_bib7) 2021; 289
Liu (10.1016/j.envpol.2022.120685_bib13) 2020; 257
Shapley (10.1016/j.envpol.2022.120685_bib38) 1953
Ding (10.1016/j.envpol.2022.120685_bib6) 2022; 56
Niu (10.1016/j.envpol.2022.120685_bib19) 2022; 67
Wu (10.1016/j.envpol.2022.120685_bib28) 2017; 51
Cheng (10.1016/j.envpol.2022.120685_bib5) 2021; 326
Shu (10.1016/j.envpol.2022.120685_bib26) 2017; 17
Lundberg (10.1016/j.envpol.2022.120685_bib16) 2020; 2
Liu (10.1016/j.envpol.2022.120685_bib14) 2022; 56
Zhong (10.1016/j.envpol.2022.120685_bib35) 2021; 55
Zhang (10.1016/j.envpol.2022.120685_bib32) 2021; 21
Bland (10.1016/j.envpol.2022.120685_bib2) 2022; 56
10.1016/j.envpol.2022.120685_bib39
Zhu (10.1016/j.envpol.2022.120685_bib37) 2022; 220
Qiu (10.1016/j.envpol.2022.120685_bib22) 2020; 65
Ogata (10.1016/j.envpol.2022.120685_bib20) 2021; 12
Luecken (10.1016/j.envpol.2022.120685_bib15) 2018; 52
Shao (10.1016/j.envpol.2022.120685_bib24) 2009; 90
Carter (10.1016/j.envpol.2022.120685_bib3) 2010; 44
Huang (10.1016/j.envpol.2022.120685_bib9) 2020; 261
Yan (10.1016/j.envpol.2022.120685_bib30) 2017; 223
Cheng (10.1016/j.envpol.2022.120685_bib4) 2019; 200
Song (10.1016/j.envpol.2022.120685_bib27) 2007; 41
Atkinson (10.1016/j.envpol.2022.120685_bib1) 2006; 6
Huang (10.1016/j.envpol.2022.120685_bib8) 2020; 240
Zhang (10.1016/j.envpol.2022.120685_bib33) 2022; 9
Huang (10.1016/j.envpol.2022.120685_bib10) 2021; 55
Zheng (10.1016/j.envpol.2022.120685_bib34) 2009; 43
Ou (10.1016/j.envpol.2022.120685_bib21) 2016; 50
References_xml – volume: 21
  start-page: 11053
  year: 2021
  end-page: 11068
  ident: bib32
  article-title: Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity
  publication-title: Atmos. Chem. Phys.
– volume: 257
  year: 2020
  ident: bib13
  article-title: Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China
  publication-title: Environ. Pollut.
– volume: 41
  start-page: 4348
  year: 2007
  end-page: 4353
  ident: bib27
  article-title: Source apportionment of ambient volatile organic compounds in beijing
  publication-title: Environ. Sci. Technol.
– volume: 55
  start-page: 11557
  year: 2021
  end-page: 11567
  ident: bib10
  article-title: Critical role of simultaneous reduction of atmospheric odd oxygen for winter haze mitigation
  publication-title: Environ. Sci. Technol.
– volume: 220
  year: 2022
  ident: bib37
  article-title: Adaptive soft sensing of river flow prediction for wastewater treatment operation and risk management
  publication-title: Water Res.
– volume: 44
  start-page: 5324
  year: 2010
  end-page: 5335
  ident: bib3
  article-title: Development of the SAPRC-07 chemical mechanism
  publication-title: Atmos. Environ.
– volume: 67
  start-page: 2060
  year: 2022
  ident: bib19
  article-title: Effects of nighttime heterogeneous reactions on the formation of secondary aerosols and ozone in the Pearl River Delta
  publication-title: Chin. Sci. Bull.
– volume: 17
  start-page: 12871
  year: 2017
  end-page: 12891
  ident: bib26
  article-title: Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China
  publication-title: Atmos. Chem. Phys.
– volume: 55
  start-page: 12741
  year: 2021
  end-page: 12754
  ident: bib35
  article-title: Machine learning: new ideas and tools in environmental science and engineering
  publication-title: Environ. Sci. Technol.
– volume: 326
  year: 2021
  ident: bib5
  article-title: Multiple strategies for a novel hybrid forecasting algorithm of ozone based on data-driven models
  publication-title: J. Clean. Prod.
– volume: 65
  start-page: 610
  year: 2020
  end-page: 621
  ident: bib22
  article-title: Calculation of maximum incremental reactivity scales based on typical megacities in China
  publication-title: Chin. Sci. Bull.
– volume: 6
  start-page: 3625
  year: 2006
  end-page: 4055
  ident: bib1
  article-title: Evaluated kinetic and photochemical data for atmospheric chemistry: volume II - gas phase reactions of organic species
  publication-title: Atmos. Chem. Phys.
– volume: 12
  start-page: 4575
  year: 2021
  ident: bib20
  article-title: Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts
  publication-title: Nat. Commun.
– volume: 240
  year: 2020
  ident: bib8
  article-title: VOC characteristics and sources at nine photochemical assessment monitoring stations in western Taiwan
  publication-title: Atmos. Environ.
– volume: 48
  year: 2021
  ident: bib23
  article-title: Assessing the COVID-19 impact on air quality: a machine learning approach
  publication-title: Geophys. Res. Lett.
– volume: 56
  start-page: 2124
  year: 2022
  end-page: 2133
  ident: bib14
  article-title: Data-Driven machine learning in environmental pollution: gains and problems
  publication-title: Environ. Sci. Technol.
– volume: 20
  start-page: 14347
  year: 2020
  end-page: 14359
  ident: bib29
  article-title: Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic on the North China Plain: a response modeling study
  publication-title: Atmos. Chem. Phys.
– volume: 2
  start-page: 56
  year: 2020
  end-page: 67
  ident: bib16
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat. Mach. Intell.
– volume: 223
  start-page: 295
  year: 2017
  end-page: 304
  ident: bib30
  article-title: Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: a study in Shuozhou, China
  publication-title: Environ. Pollut.
– volume: 363
  year: 2019
  ident: bib31
  article-title: Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning
  publication-title: Science
– volume: 35
  start-page: 3385
  year: 2001
  end-page: 3394
  ident: bib12
  article-title: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel
  publication-title: Atmos. Environ.
– reference: Shrock, E., Fujimura, E., Kula, T., Timms, R.T., Lee, I.-H., Leng, Y., Robinson, M.L., Sie, B.M., Li, M.Z., Chen, Y., Logue, J., Zuiani, A., McCulloch, D., Lelis, F.J.N., Henson, S., Monaco, D.R., Travers, M., Habibi, S., Clarke, W.A., Caturegli, P., Laeyendecker, O., Piechocka-Trocha, A., Li, J.Z., Khatri, A., Chu, H.Y., Villani, A.-C., Kays, K., Goldberg, M.B., Hacohen, N., Filbin, M.R., Yu, X.G., Walker, B.D., Wesemann, D.R., Larman, H.B., Lederer, J.A., Elledge, S.J., Lavin-Parsons, K., Parry, B., Lilley, B., Lodenstein, C., McKaig, B., Charland, N., Khanna, H., Margolin, J., Gonye, A., Gushterova, I., Lasalle, T., Sharma, N., Russo, B.C., Rojas-Lopez, M., Sade-Feldman, M., Manakongtreecheep, K., Tantivit, J., Thomas, M.F., Abayneh, B.A., Allen, P., Antille, D., Armstrong, K., Boyce, S., Braley, J., Branch, K., Broderick, K., Carney, J., Chan, A., Davidson, S., Dougan, M., Drew, D., Elliman, A., Flaherty, K., Flannery, J., Forde, P., Gettings, E., Griffin, A., Grimmel, S., Grinke, K., Hall, K., Healy, M., Henault, D., Holland, G., Kayitesi, C., LaValle, V., Lu, Y., Luthern, S., Marchewka, J., Martino, B., McNamara, R., Nambu, C., Nelson, S., Noone, M., Ommerborn, C., Pacheco, L.C., Phan, N., Porto, F.A., Ryan, E., Selleck, K., Slaughenhaupt, S., Sheppard, K.S., Suschana, E., Wilson, V., Alter, G., Balazs, A., Bals, J., Barbash, M., Bartsch, Y., Boucau, J., Chevalier, J., Chowdhury, F., Einkauf, K., Fallon, J., Fedirko, L., Finn, K., Garcia-Broncano, P., Hartana, C., Jiang, C., Kaplonek, P., Karpell, M., Lam, E.C., Lefteri, K., Lian, X., Lichterfeld, M., Lingwood, D., Liu, H., Liu, J., Ly, N., Michell, A., Millstrom, I., Miranda, N., O’Callaghan, C., Osborn, M., Pillai, S., Rassadkina, Y., Reissis, A., Ruzicka, F., Seiger, K., Sessa, L., Sharr, C., Shin, S., Singh, N., Sun, W., Sun, X., Ticheli, H., Trocha-Piechocka, A., Worrall, D., Zhu, A., Daley, G., Golan, D., Heller, H., Sharpe, A., Jilg, N., Rosenthal, A., Wong, C., 2020. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science. 370(6520), eabd4250. doi:10.1126/science.abd4250.
– volume: 51
  start-page: 2574
  year: 2017
  end-page: 2583
  ident: bib28
  article-title: Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds
  publication-title: Environ. Sci. Technol.
– volume: 289
  year: 2021
  ident: bib7
  article-title: Source impact and contribution analysis of ambient ozone using multi-modeling approaches over the Pearl River Delta region, China
  publication-title: Environ. Pollut.
– volume: 48
  year: 2021
  ident: bib18
  article-title: Machine learning uncovers aerosol size information from chemistry and meteorology to quantify potential cloud‐forming particles
  publication-title: Geophys. Res. Lett.
– volume: 43
  start-page: 8580
  year: 2009
  end-page: 8586
  ident: bib34
  article-title: Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta, China
  publication-title: Environ. Sci. Technol.
– volume: 813
  year: 2022
  ident: bib11
  article-title: Quantification of temperature dependence of vehicle evaporative volatile organic compound emissions from different fuel types in China
  publication-title: Sci. Total Environ.
– volume: 52
  start-page: 4668
  year: 2018
  end-page: 4675
  ident: bib15
  article-title: Sensitivity of ambient atmospheric formaldehyde and ozone to precursor species and source types across the United States
  publication-title: Environ. Sci. Technol.
– volume: 56
  start-page: 2990
  year: 2022
  end-page: 3001
  ident: bib2
  article-title: Distinguishing engineered TiO2 nanomaterials from natural Ti nanomaterials in soil using spICP-TOFMS and machine learning
  publication-title: Environ. Sci. Technol.
– volume: 261
  year: 2020
  ident: bib9
  article-title: Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in North and South China
  publication-title: Environ. Pollut.
– volume: 50
  start-page: 5720
  year: 2016
  end-page: 5728
  ident: bib21
  article-title: Ambient ozone control in a photochemically active region: short-term despiking or long-term attainment?
  publication-title: Environ. Sci. Technol.
– volume: 56
  start-page: 739
  year: 2022
  end-page: 749
  ident: bib6
  article-title: Optimization of a NOx and VOC cooperative control strategy based on clean air benefits
  publication-title: Environ. Sci. Technol.
– volume: 200
  start-page: 264
  year: 2019
  end-page: 279
  ident: bib4
  article-title: Hybrid algorithm for short-term forecasting of PM2.5 in China
  publication-title: Atmos. Environ.
– start-page: 307
  year: 1953
  end-page: 317
  ident: bib38
  article-title: A value for n-person games
  publication-title: Contributions to the Theory of Games II
– volume: 90
  start-page: 512
  year: 2009
  end-page: 518
  ident: bib24
  article-title: Ground-level ozone in the Pearl River Delta and the roles of VOC and NO(x) in its production
  publication-title: J. Environ. Manag.
– volume: 9
  start-page: 10
  year: 2022
  end-page: 15
  ident: bib33
  article-title: Observation-based estimations of relative ozone impacts by using volatile organic compounds reactivities
  publication-title: Environ. Sci. Technol. Lett.
– volume: 285
  year: 2021
  ident: bib36
  article-title: Biomass-burning emissions could significantly enhance the atmospheric oxidizing capacity in continental air pollution
  publication-title: Environ. Pollut.
– volume: 20
  start-page: 14347
  issue: 22
  year: 2020
  ident: 10.1016/j.envpol.2022.120685_bib29
  article-title: Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic on the North China Plain: a response modeling study
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-14347-2020
– volume: 12
  start-page: 4575
  issue: 1
  year: 2021
  ident: 10.1016/j.envpol.2022.120685_bib20
  article-title: Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24823-0
– volume: 65
  start-page: 610
  issue: 7
  year: 2020
  ident: 10.1016/j.envpol.2022.120685_bib22
  article-title: Calculation of maximum incremental reactivity scales based on typical megacities in China
  publication-title: Chin. Sci. Bull.
  doi: 10.1360/TB-2019-0598
– volume: 67
  start-page: 2060
  year: 2022
  ident: 10.1016/j.envpol.2022.120685_bib19
  article-title: Effects of nighttime heterogeneous reactions on the formation of secondary aerosols and ozone in the Pearl River Delta
  publication-title: Chin. Sci. Bull.
  doi: 10.1360/TB-2021-0638
– volume: 55
  start-page: 11557
  issue: 17
  year: 2021
  ident: 10.1016/j.envpol.2022.120685_bib10
  article-title: Critical role of simultaneous reduction of atmospheric odd oxygen for winter haze mitigation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c03421
– volume: 261
  year: 2020
  ident: 10.1016/j.envpol.2022.120685_bib9
  article-title: Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in North and South China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114152
– volume: 90
  start-page: 512
  issue: 1
  year: 2009
  ident: 10.1016/j.envpol.2022.120685_bib24
  article-title: Ground-level ozone in the Pearl River Delta and the roles of VOC and NO(x) in its production
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2007.12.008
– volume: 56
  start-page: 2990
  issue: 5
  year: 2022
  ident: 10.1016/j.envpol.2022.120685_bib2
  article-title: Distinguishing engineered TiO2 nanomaterials from natural Ti nanomaterials in soil using spICP-TOFMS and machine learning
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c02950
– volume: 48
  issue: 21
  year: 2021
  ident: 10.1016/j.envpol.2022.120685_bib18
  article-title: Machine learning uncovers aerosol size information from chemistry and meteorology to quantify potential cloud‐forming particles
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL094133
– volume: 41
  start-page: 4348
  issue: 12
  year: 2007
  ident: 10.1016/j.envpol.2022.120685_bib27
  article-title: Source apportionment of ambient volatile organic compounds in beijing
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0625982
– volume: 326
  year: 2021
  ident: 10.1016/j.envpol.2022.120685_bib5
  article-title: Multiple strategies for a novel hybrid forecasting algorithm of ozone based on data-driven models
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.129451
– volume: 48
  issue: 4
  year: 2021
  ident: 10.1016/j.envpol.2022.120685_bib23
  article-title: Assessing the COVID-19 impact on air quality: a machine learning approach
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL091202
– volume: 257
  year: 2020
  ident: 10.1016/j.envpol.2022.120685_bib13
  article-title: Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113599
– volume: 220
  year: 2022
  ident: 10.1016/j.envpol.2022.120685_bib37
  article-title: Adaptive soft sensing of river flow prediction for wastewater treatment operation and risk management
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118714
– volume: 6
  start-page: 3625
  issue: 11
  year: 2006
  ident: 10.1016/j.envpol.2022.120685_bib1
  article-title: Evaluated kinetic and photochemical data for atmospheric chemistry: volume II - gas phase reactions of organic species
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-6-3625-2006
– volume: 240
  year: 2020
  ident: 10.1016/j.envpol.2022.120685_bib8
  article-title: VOC characteristics and sources at nine photochemical assessment monitoring stations in western Taiwan
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2020.117741
– volume: 35
  start-page: 3385
  issue: 20
  year: 2001
  ident: 10.1016/j.envpol.2022.120685_bib12
  article-title: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(01)00138-8
– volume: 51
  start-page: 2574
  issue: 5
  year: 2017
  ident: 10.1016/j.envpol.2022.120685_bib28
  article-title: Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03634
– volume: 52
  start-page: 4668
  issue: 8
  year: 2018
  ident: 10.1016/j.envpol.2022.120685_bib15
  article-title: Sensitivity of ambient atmospheric formaldehyde and ozone to precursor species and source types across the United States
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05509
– volume: 223
  start-page: 295
  year: 2017
  ident: 10.1016/j.envpol.2022.120685_bib30
  article-title: Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: a study in Shuozhou, China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.01.026
– volume: 50
  start-page: 5720
  issue: 11
  year: 2016
  ident: 10.1016/j.envpol.2022.120685_bib21
  article-title: Ambient ozone control in a photochemically active region: short-term despiking or long-term attainment?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00345
– volume: 200
  start-page: 264
  year: 2019
  ident: 10.1016/j.envpol.2022.120685_bib4
  article-title: Hybrid algorithm for short-term forecasting of PM2.5 in China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.12.025
– volume: 56
  start-page: 739
  issue: 2
  year: 2022
  ident: 10.1016/j.envpol.2022.120685_bib6
  article-title: Optimization of a NOx and VOC cooperative control strategy based on clean air benefits
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c04201
– volume: 56
  start-page: 2124
  issue: 4
  year: 2022
  ident: 10.1016/j.envpol.2022.120685_bib14
  article-title: Data-Driven machine learning in environmental pollution: gains and problems
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c06157
– volume: 813
  year: 2022
  ident: 10.1016/j.envpol.2022.120685_bib11
  article-title: Quantification of temperature dependence of vehicle evaporative volatile organic compound emissions from different fuel types in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.152661
– volume: 363
  issue: 6424
  year: 2019
  ident: 10.1016/j.envpol.2022.120685_bib31
  article-title: Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning
  publication-title: Science
  doi: 10.1126/science.aau5631
– volume: 289
  year: 2021
  ident: 10.1016/j.envpol.2022.120685_bib7
  article-title: Source impact and contribution analysis of ambient ozone using multi-modeling approaches over the Pearl River Delta region, China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.117860
– volume: 285
  year: 2021
  ident: 10.1016/j.envpol.2022.120685_bib36
  article-title: Biomass-burning emissions could significantly enhance the atmospheric oxidizing capacity in continental air pollution
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.117523
– volume: 9
  start-page: 10
  issue: 1
  year: 2022
  ident: 10.1016/j.envpol.2022.120685_bib33
  article-title: Observation-based estimations of relative ozone impacts by using volatile organic compounds reactivities
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.1c00835
– volume: 55
  start-page: 12741
  issue: 19
  year: 2021
  ident: 10.1016/j.envpol.2022.120685_bib35
  article-title: Machine learning: new ideas and tools in environmental science and engineering
  publication-title: Environ. Sci. Technol.
– start-page: 307
  year: 1953
  ident: 10.1016/j.envpol.2022.120685_bib38
  article-title: A value for n-person games
– volume: 44
  start-page: 5324
  issue: 40
  year: 2010
  ident: 10.1016/j.envpol.2022.120685_bib3
  article-title: Development of the SAPRC-07 chemical mechanism
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.01.026
– volume: 43
  start-page: 8580
  issue: 22
  year: 2009
  ident: 10.1016/j.envpol.2022.120685_bib34
  article-title: Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta, China
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es901688e
– volume: 2
  start-page: 56
  issue: 1
  year: 2020
  ident: 10.1016/j.envpol.2022.120685_bib16
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0138-9
– volume: 21
  start-page: 11053
  issue: 14
  year: 2021
  ident: 10.1016/j.envpol.2022.120685_bib32
  article-title: Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-21-11053-2021
– volume: 17
  start-page: 12871
  issue: 21
  year: 2017
  ident: 10.1016/j.envpol.2022.120685_bib26
  article-title: Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-17-12871-2017
– ident: 10.1016/j.envpol.2022.120685_bib39
  doi: 10.1126/science.abd4250
SSID ssj0004333
Score 2.5424213
Snippet Ambient ozone air pollution is one of the most important environmental challenges in China today, and it is particularly significant to identify pollution...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120685
SubjectTerms air pollution
algorithms
China
Emission sources
Machine learning
Ozone
particulate emissions
prediction
SHAP
VOCs
volatile organic compounds
Title A novel machine learning method for evaluating the impact of emission sources on ozone formation
URI https://dx.doi.org/10.1016/j.envpol.2022.120685
https://www.proquest.com/docview/2738188264
https://www.proquest.com/docview/3153808365
Volume 316
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: AKRWK
  dateStart: 19870101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_IvOhBdCrOjxFBvNUtada0xyIbU9GLCt5iPxKZzHa4KejBv92XpJ0fKIK3EpI0zUvfV957P4CDkPaQyjaqUXQ9TpX2wixnXs5R1kaZEtxCJ5xfBMNrfnrTu1mA4zoXxoRVVrzf8XTLrauWTrWbnclo1LlE6wGV4YgylGFoNdgMdi4MisHR20eYB_cdnDx29kzvOn3Oxnip4nlSmgsIxo4o6wYGUfln8fSNUVvpM1iFlUptJLFb2RosqKIJ63GBJvPDCzkkNpDTesibsPypxmATNvsfqWw4Q_UvT9fhNiZF-azG5MHGUypSAUjcEYcqTVCdJXUxcGxFTZG4nEpSamJg4oyjjTjv_5TgY_la4jTzdMgNuB70r46HXoW34GW-YDMvZDnt6h4NU5XQTNEo5Qq1K6VSngaUGk6oA0Z5kuXdnOU6VyLQVEWo5CVCCe1vQqPAF20BEX6QUM4SkQQJz1Dk6VSjLaZ9HkY0DKMW-PU2y6wqRm4wMcayjjq7l4440hBHOuK0wJuPmrhiHH_0FzUF5ZdDJVFe_DFyvya4xP00lyhJocqnqTSpTPgFqEf-3sc3YsSU_e5t_3sFO7BkkO2dt2cXGrPHJ7WH-s8sbdsD3obF-ORsePEOTm0Gdg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-pBdFVcnxHEW91NmjbtcRFl1V0vKniLfSSysraLuwp68Lc7SVpfKIK3EpI0zaTzysx8AHsRDZDKNqpRtD1OlfaiLGdezlHWxpkS3EIn9M_D7hU_vQ6up-CwzoUxYZUV73c83XLrqqVV7WZrNBi0LtB6QGU4pgxlGFoNaALN8IAJY4EdvH7EeXDf4cljb890r_PnbJCXKp5GpbmBYOyAsnZoIJV_lk_fOLUVP8eLsFDpjaTjlrYEU6powHKnQJv5_pnsExvJaV3kDZj_VGSwAatHH7lsOEP1M4-X4aZDivJJDcm9DahUpEKQuCUOVpqgPkvqauDYiqoicUmVpNTE4MQZTxtx7v8xwcfypcRp3vMhV-Dq-OjysOtVgAte5gs28SKW07YOaJSqhGaKxilXqF4plfI0pNSwQh0yypMsb-cs17kSoaYqRi0vEUpofxWmC3zRGhDhhwnlLBFJmPAMZZ5ONRpj2udRTKMoboJfb7PMqmrkBhRjKOuwszvpiCMNcaQjThO891EjV43jj_6ipqD8cqokCow_Ru7WBJe4n-YWJSlU-TiWJpcJvwAVyd_7-EaOmLrfwfq_V7ADs93Lfk_2Ts7PNmDOwNw7188mTE8eHtUWKkOTdNse9jdJfwgL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+machine+learning+method+for+evaluating+the+impact+of+emission+sources+on+ozone+formation&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Cheng%2C+Yong&rft.au=Huang%2C+Xiao+Feng&rft.au=Peng%2C+Yan&rft.au=Tang%2C+Meng-Xue&rft.date=2023-01-01&rft.issn=0269-7491&rft.volume=316+p.120685-&rft_id=info:doi/10.1016%2Fj.envpol.2022.120685&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon