The 5-azacytidine-induced epimutagenesis of sugarcane (Saccharum spp. hybrids) for aluminium tolerance
A protocol for generating aluminium (Al) tolerant sugarcane using 5-azacytidine (5-azaC)-induced epimutagenesis was developed. Eight (8) plantlets per gram of cultivar N51 calli were generated from the 5-azaC (100 μM) and Al (1.5–50 mM) treatment (+Az + Al) when compared with 104 plantlets from non-...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1867; no. 12; p. 130491 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2023.130491 |
Cover
Abstract | A protocol for generating aluminium (Al) tolerant sugarcane using 5-azacytidine (5-azaC)-induced epimutagenesis was developed. Eight (8) plantlets per gram of cultivar N51 calli were generated from the 5-azaC (100 μM) and Al (1.5–50 mM) treatment (+Az + Al) when compared with 104 plantlets from non-mutagenised, no Al control treatment. Following in vitro selection on 60 mM Al, ex vitro stress over four rounds of chimera dissolution during vegetative propagation was applied. In the final stress round, 36% of the Mut 2 epilines survived with plants showing higher relative water content (61.2%) when compared with 47.3% from the stressed control (S N51). The Mut 2 line maintained a higher green leaf area (83.4%) and longer roots (32.4 cm) under stress than S N51 (61.4% and 26.3 cm, respectively). Overall, Mut 2 had a high stress tolerance index of 85.4%, compared with 79.0% from the S N51, nearing that of the non-stressed N51 control (NS N51, 100%) when data were analysed using PCA and clustering analyses of morpho-physiological traits. Analysis of molecular variance (AMOVA) revealed high epigenetic differentiation (ɸst = 0.67) and a variation of 66.6% observed among N51 genotypes. The principal coordinate analysis (PCoA) showed that Mut 2 was epigenetically distinct from S N51. These findings support previous studies that 5-azaC can be used for novel trait creation via epimutagenesis and highlights the necessity for chimera dissolution to achieve stable traits in epibreeding of sugarcane.
•Mut 2, had a high Al stress tolerance index of 85.4% vs 79.0% observed in the stressed control.•Epiline Mut 2 had higher relative water content (61.2%), leaf area (83.4%), and root length (32.4 cm) than stressed control (47.3%, 61.4%, 26.3 cm respectively).•High epigenetic differentiation (66.6%) between Mut 2 and control lines was recorded, indicating 5-azaC-induced epigenetic changes and distinctness.•5-azaC enables novel trait creation and the study highlights the importance of chimera dissolution for stable traits in epibreeding. |
---|---|
AbstractList | A protocol for generating aluminium (Al) tolerant sugarcane using 5-azacytidine (5-azaC)-induced epimutagenesis was developed. Eight (8) plantlets per gram of cultivar N51 calli were generated from the 5-azaC (100 μM) and Al (1.5–50 mM) treatment (+Az + Al) when compared with 104 plantlets from non-mutagenised, no Al control treatment. Following in vitro selection on 60 mM Al, ex vitro stress over four rounds of chimera dissolution during vegetative propagation was applied. In the final stress round, 36% of the Mut 2 epilines survived with plants showing higher relative water content (61.2%) when compared with 47.3% from the stressed control (S N51). The Mut 2 line maintained a higher green leaf area (83.4%) and longer roots (32.4 cm) under stress than S N51 (61.4% and 26.3 cm, respectively). Overall, Mut 2 had a high stress tolerance index of 85.4%, compared with 79.0% from the S N51, nearing that of the non-stressed N51 control (NS N51, 100%) when data were analysed using PCA and clustering analyses of morpho-physiological traits. Analysis of molecular variance (AMOVA) revealed high epigenetic differentiation (ɸst = 0.67) and a variation of 66.6% observed among N51 genotypes. The principal coordinate analysis (PCoA) showed that Mut 2 was epigenetically distinct from S N51. These findings support previous studies that 5-azaC can be used for novel trait creation via epimutagenesis and highlights the necessity for chimera dissolution to achieve stable traits in epibreeding of sugarcane. A protocol for generating aluminium (Al) tolerant sugarcane using 5-azacytidine (5-azaC)-induced epimutagenesis was developed. Eight (8) plantlets per gram of cultivar N51 calli were generated from the 5-azaC (100 μM) and Al (1.5–50 mM) treatment (+Az + Al) when compared with 104 plantlets from non-mutagenised, no Al control treatment. Following in vitro selection on 60 mM Al, ex vitro stress over four rounds of chimera dissolution during vegetative propagation was applied. In the final stress round, 36% of the Mut 2 epilines survived with plants showing higher relative water content (61.2%) when compared with 47.3% from the stressed control (S N51). The Mut 2 line maintained a higher green leaf area (83.4%) and longer roots (32.4 cm) under stress than S N51 (61.4% and 26.3 cm, respectively). Overall, Mut 2 had a high stress tolerance index of 85.4%, compared with 79.0% from the S N51, nearing that of the non-stressed N51 control (NS N51, 100%) when data were analysed using PCA and clustering analyses of morpho-physiological traits. Analysis of molecular variance (AMOVA) revealed high epigenetic differentiation (ɸst = 0.67) and a variation of 66.6% observed among N51 genotypes. The principal coordinate analysis (PCoA) showed that Mut 2 was epigenetically distinct from S N51. These findings support previous studies that 5-azaC can be used for novel trait creation via epimutagenesis and highlights the necessity for chimera dissolution to achieve stable traits in epibreeding of sugarcane. •Mut 2, had a high Al stress tolerance index of 85.4% vs 79.0% observed in the stressed control.•Epiline Mut 2 had higher relative water content (61.2%), leaf area (83.4%), and root length (32.4 cm) than stressed control (47.3%, 61.4%, 26.3 cm respectively).•High epigenetic differentiation (66.6%) between Mut 2 and control lines was recorded, indicating 5-azaC-induced epigenetic changes and distinctness.•5-azaC enables novel trait creation and the study highlights the importance of chimera dissolution for stable traits in epibreeding. A protocol for generating aluminium (Al) tolerant sugarcane using 5-azacytidine (5-azaC)-induced epimutagenesis was developed. Eight (8) plantlets per gram of cultivar N51 calli were generated from the 5-azaC (100 μM) and Al (1.5-50 mM) treatment (+Az + Al) when compared with 104 plantlets from non-mutagenised, no Al control treatment. Following in vitro selection on 60 mM Al, ex vitro stress over four rounds of chimera dissolution during vegetative propagation was applied. In the final stress round, 36% of the Mut 2 epilines survived with plants showing higher relative water content (61.2%) when compared with 47.3% from the stressed control (S N51). The Mut 2 line maintained a higher green leaf area (83.4%) and longer roots (32.4 cm) under stress than S N51 (61.4% and 26.3 cm, respectively). Overall, Mut 2 had a high stress tolerance index of 85.4%, compared with 79.0% from the S N51, nearing that of the non-stressed N51 control (NS N51, 100%) when data were analysed using PCA and clustering analyses of morpho-physiological traits. Analysis of molecular variance (AMOVA) revealed high epigenetic differentiation (ɸst = 0.67) and a variation of 66.6% observed among N51 genotypes. The principal coordinate analysis (PCoA) showed that Mut 2 was epigenetically distinct from S N51. These findings support previous studies that 5-azaC can be used for novel trait creation via epimutagenesis and highlights the necessity for chimera dissolution to achieve stable traits in epibreeding of sugarcane.A protocol for generating aluminium (Al) tolerant sugarcane using 5-azacytidine (5-azaC)-induced epimutagenesis was developed. Eight (8) plantlets per gram of cultivar N51 calli were generated from the 5-azaC (100 μM) and Al (1.5-50 mM) treatment (+Az + Al) when compared with 104 plantlets from non-mutagenised, no Al control treatment. Following in vitro selection on 60 mM Al, ex vitro stress over four rounds of chimera dissolution during vegetative propagation was applied. In the final stress round, 36% of the Mut 2 epilines survived with plants showing higher relative water content (61.2%) when compared with 47.3% from the stressed control (S N51). The Mut 2 line maintained a higher green leaf area (83.4%) and longer roots (32.4 cm) under stress than S N51 (61.4% and 26.3 cm, respectively). Overall, Mut 2 had a high stress tolerance index of 85.4%, compared with 79.0% from the S N51, nearing that of the non-stressed N51 control (NS N51, 100%) when data were analysed using PCA and clustering analyses of morpho-physiological traits. Analysis of molecular variance (AMOVA) revealed high epigenetic differentiation (ɸst = 0.67) and a variation of 66.6% observed among N51 genotypes. The principal coordinate analysis (PCoA) showed that Mut 2 was epigenetically distinct from S N51. These findings support previous studies that 5-azaC can be used for novel trait creation via epimutagenesis and highlights the necessity for chimera dissolution to achieve stable traits in epibreeding of sugarcane. |
ArticleNumber | 130491 |
Author | Rutherford, Richard Stuart Osborn, Christine Koetle, Motselisi Jane Snyman, Sandra Jane |
Author_xml | – sequence: 1 givenname: Motselisi Jane surname: Koetle fullname: Koetle, Motselisi Jane email: KoetleM@arc.agric.za organization: South African Sugarcane Research Institute, Private Bag X02, Mount Edgecombe, Durban 4300, South Africa – sequence: 2 givenname: Christine surname: Osborn fullname: Osborn, Christine organization: Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa – sequence: 3 givenname: Sandra Jane surname: Snyman fullname: Snyman, Sandra Jane organization: South African Sugarcane Research Institute, Private Bag X02, Mount Edgecombe, Durban 4300, South Africa – sequence: 4 givenname: Richard Stuart surname: Rutherford fullname: Rutherford, Richard Stuart organization: South African Sugarcane Research Institute, Private Bag X02, Mount Edgecombe, Durban 4300, South Africa |
BookMark | eNqFUU1r3DAUFCWFbtL-gx50TA92JVmW5B4KJfQLAj0kdyFLz1kttuRKcmH766vFPfXQvMuDeTPDY-YaXYUYAKG3lLSUUPH-1I6jeYLQMsK6lnaED_QFOlAlWaMIEVfoQCrYcCr6V-g65xOp0w_9AU2PR8B9Y34bey7e-QCND26z4DCsftnKxReyzzhOOG9PJlkTAN8-GGuPJm0Lzuva4uN5TN7ld3iKCZt5W3zw9VbiDMkEC6_Ry8nMGd783Tfo4cvnx7tvzf2Pr9_vPt03tpOsNHIQ3E2DHHtJmCIj4VIp1SlLhRt5BZQxtKOcCzESq4iSjnFg3PTCmL67Qbe765rizw1y0YvPFua5vhy3rDvac6qUkORZKlNSsYHyfqjUDzvVpphzgklbX0zxMZRk_Kwp0ZcW9EnvLehLC3pvoYr5P-I1-cWk83Oyj7sMali_PCSdrYcapPMJbNEu-v8b_AF-QKRe |
CitedBy_id | crossref_primary_10_1007_s11627_025_10517_5 crossref_primary_10_1016_j_bbagen_2024_130708 |
Cites_doi | 10.1051/agro:2001105 10.1146/annurev.arplant.55.031903.141655 10.1111/j.1365-3040.2011.02409.x 10.1016/j.jplph.2007.01.014 10.1093/nar/gkab828 10.1016/j.sajb.2013.02.123 10.1016/S0074-7696(07)64005-4 10.1007/s11816-013-0287-y 10.1016/j.copbio.2015.01.003 10.1093/jxb/erg128 10.1016/j.plantsci.2019.110376 10.1007/s12298-022-01262-9 10.1016/j.hjb.2016.01.006 10.1007/s11104-014-2073-1 10.1104/pp.110.156794 10.1111/1755-0998.12064 10.1093/aob/mcq134 10.1111/j.1399-3054.1962.tb08052.x 10.3390/ijms21217934 10.1007/s12355-017-0524-8 10.1093/genetics/142.3.1061 10.1038/s41598-018-20653-1 10.1371/journal.pone.0241493 10.1371/journal.pone.0217806 10.1007/s12042-022-09323-9 10.1590/1413-7054202044015120 10.1590/S1415-47572001000100029 10.1186/s12870-021-02975-x 10.1007/s11738-016-2277-5 10.1023/A:1006248916412 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2023.130491 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 10_1016_j_bbagen_2023_130491 S0304416523001897 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABWVN ABXDB ACDAQ ACIUM ACRPL ADBBV ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AFJKZ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAYWO AAYXX ACRLP ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSU 7X8 ACLOT EFKBS EFLBG ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c372t-7964df97b570280b04788838c16db480b8aa1314466b0c8087d24e24a56aa53 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Sat Sep 27 21:07:01 EDT 2025 Sun Sep 28 06:24:49 EDT 2025 Tue Jul 01 00:22:18 EDT 2025 Thu Apr 24 22:57:11 EDT 2025 Sun Apr 06 06:54:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Chimera dissolution Demethylation Epibreeding Abiotic stress Acidic soils Mutant line |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-7964df97b570280b04788838c16db480b8aa1314466b0c8087d24e24a56aa53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2878291459 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3154188670 proquest_miscellaneous_2878291459 crossref_citationtrail_10_1016_j_bbagen_2023_130491 crossref_primary_10_1016_j_bbagen_2023_130491 elsevier_sciencedirect_doi_10_1016_j_bbagen_2023_130491 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rutherford, Snyman, Watt (bb0160) 2015; 89 1 Famoso, Clark, Shaff (bb0030) 2010; 153 Albertse, Joshi (bb0005) 2013; 86 Silva, Mateus-Rosa, França S de (bb0175) 2019; 14 Kochian, Hoekenga, Piñeros (bb0050) 2004; 55 Purnamaningsih, Hutami (bb0120) 2016; 23 Paszkowski (bb0105) 2015; 32 Borges, Cazetta, de Sousa (bb0020) 2020; 44 Ma (bb0070) 2007; 264 Bassi, Menossi, Mattiello (bb0015) 2018; 8 Magaña-Cerino, Peniche-Pavía, Tiessen (bb0080) 2020; 70 da Silva, Gonçalves, dos Santos (bb0170) 2020; 15 Pérez-Figueroa (bb0110) 2013; 13 Ribeiro, de Marcos, de Freitas-Silva (bb0135) 2022; 28 Koetle, Snyman, Rutherford (bb0060) 2022; 15 Lamari (bb0065) 2008 Munsamy, Rutherford, Snyman (bb0095) 2013; 7 Watt (bb0180) 2003; 54 Masoabi, Lloyd, Kossmann (bb0085) 2018; 20 Rosa-Santos, da Silva, Kumar (bb0145) 2020; 21 Rucińska-Sobkowiak (bb0155) 2016; 38 Ma, Chen, Shen (bb0075) 2014; 381 Rout, Samantaray, Das (bb0150) 2001; 21 Giannakoula, Moustakas, Mylona (bb0040) 2008; 165 Gaudin, Mcclymont, Holmes (bb0035) 2011; 34 Michalakis, Excoffier (bb0090) 1996; 142 Ribeiro, Vinecky, Duarte (bb0130) 2021; 21 Jankowicz-Cieslak, Till (bb0045) 2016; vol. 3 Koetle, Jacob, Snyman (bb0055) 2022 Ramgareeb, Watt, Marsh (bb0125) 1999; 56 Murashige, Skoog (bb0100) 1962; 15 Baránek, Otmar, Krečmerová (bb0010) 2019; 47 Roquis, Robertson, Yu (bb0140) 2021; 49 Sharpe (bb0165) 2015; 20 Perrone, Martinelli (bb0115) 2020; 294 Drummond, Guimarães, Felix (bb0025) 2001; 24 Zheng (bb0185) 2010; 106 Paszkowski (10.1016/j.bbagen.2023.130491_bb0105) 2015; 32 da Silva (10.1016/j.bbagen.2023.130491_bb0170) 2020; 15 Jankowicz-Cieslak (10.1016/j.bbagen.2023.130491_bb0045) 2016; vol. 3 Gaudin (10.1016/j.bbagen.2023.130491_bb0035) 2011; 34 Michalakis (10.1016/j.bbagen.2023.130491_bb0090) 1996; 142 Baránek (10.1016/j.bbagen.2023.130491_bb0010) 2019; 47 Drummond (10.1016/j.bbagen.2023.130491_bb0025) 2001; 24 Zheng (10.1016/j.bbagen.2023.130491_bb0185) 2010; 106 Ma (10.1016/j.bbagen.2023.130491_bb0075) 2014; 381 Pérez-Figueroa (10.1016/j.bbagen.2023.130491_bb0110) 2013; 13 Albertse (10.1016/j.bbagen.2023.130491_bb0005) 2013; 86 Ribeiro (10.1016/j.bbagen.2023.130491_bb0135) 2022; 28 Perrone (10.1016/j.bbagen.2023.130491_bb0115) 2020; 294 Masoabi (10.1016/j.bbagen.2023.130491_bb0085) 2018; 20 Watt (10.1016/j.bbagen.2023.130491_bb0180) 2003; 54 Magaña-Cerino (10.1016/j.bbagen.2023.130491_bb0080) 2020; 70 Bassi (10.1016/j.bbagen.2023.130491_bb0015) 2018; 8 Roquis (10.1016/j.bbagen.2023.130491_bb0140) 2021; 49 Giannakoula (10.1016/j.bbagen.2023.130491_bb0040) 2008; 165 Rucińska-Sobkowiak (10.1016/j.bbagen.2023.130491_bb0155) 2016; 38 Kochian (10.1016/j.bbagen.2023.130491_bb0050) 2004; 55 Rutherford (10.1016/j.bbagen.2023.130491_bb0160) 2015; 89 1 Sharpe (10.1016/j.bbagen.2023.130491_bb0165) 2015; 20 Murashige (10.1016/j.bbagen.2023.130491_bb0100) 1962; 15 Rosa-Santos (10.1016/j.bbagen.2023.130491_bb0145) 2020; 21 Koetle (10.1016/j.bbagen.2023.130491_bb0055) 2022 Ma (10.1016/j.bbagen.2023.130491_bb0070) 2007; 264 Ramgareeb (10.1016/j.bbagen.2023.130491_bb0125) 1999; 56 Famoso (10.1016/j.bbagen.2023.130491_bb0030) 2010; 153 Purnamaningsih (10.1016/j.bbagen.2023.130491_bb0120) 2016; 23 Koetle (10.1016/j.bbagen.2023.130491_bb0060) 2022; 15 Munsamy (10.1016/j.bbagen.2023.130491_bb0095) 2013; 7 Rout (10.1016/j.bbagen.2023.130491_bb0150) 2001; 21 Borges (10.1016/j.bbagen.2023.130491_bb0020) 2020; 44 Ribeiro (10.1016/j.bbagen.2023.130491_bb0130) 2021; 21 Lamari (10.1016/j.bbagen.2023.130491_bb0065) 2008 Silva (10.1016/j.bbagen.2023.130491_bb0175) 2019; 14 |
References_xml | – volume: 49 start-page: 10431 year: 2021 ident: bb0140 article-title: Genomic impact of stress induced transposable element mobility in publication-title: Nucleic Acids Res. – volume: 15 start-page: 288 year: 2022 end-page: 300 ident: bb0060 article-title: morpho-physiological screening of drought tolerant sugarcane epimutants generated via 5-azacytidine and imidacloprid treatments publication-title: Trop. Plant Biol. – volume: 15 year: 2020 ident: bb0170 article-title: Sugarcane mosaic virus mediated changes in cytosine methylation pattern and differentially transcribed fragments in resistance-contrasting sugarcane genotypes publication-title: PLoS One – volume: 20 start-page: 148 year: 2015 ident: bb0165 article-title: Your Chi-Square test is statistically significant: now what? publication-title: Pract. Assess. Res. Eval. – volume: 106 start-page: 183 year: 2010 end-page: 184 ident: bb0185 article-title: Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency publication-title: Ann. Bot. – volume: 55 start-page: 459 year: 2004 end-page: 493 ident: bb0050 article-title: How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorous efficiency publication-title: Annu. Rev. Plant Biol. – volume: 142 start-page: 1061 year: 1996 end-page: 1064 ident: bb0090 article-title: A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci publication-title: Genetics – volume: 15 start-page: 473 year: 1962 end-page: 497 ident: bb0100 article-title: A revised medium for rapid growth and bioassays with tobacco tissue cultures publication-title: Physiol. Plant. – volume: 264 start-page: 225 year: 2007 end-page: 252 ident: bb0070 article-title: Syndrome of aluminium toxicity and diversity of aluminium resistance in higher plants publication-title: Int. Rev. Cytol. – volume: 89 1 start-page: 1 year: 2015 end-page: 16 ident: bb0160 article-title: studies on somaclonal variation and induced mutagenesis: progress and prospects in sugarcane ( publication-title: J. Hortic. Sci. Biotechnol. – volume: 381 start-page: 1 year: 2014 end-page: 12 ident: bb0075 article-title: Molecular mechanisms of Al tolerance in gramineous plants publication-title: Plant Soil – volume: 21 start-page: 1 year: 2020 end-page: 17 ident: bb0145 article-title: Molecular mechanisms underlying sugarcane response to aluminium stress by RNA-seq publication-title: Int. J. Mol. Sci. – year: 2022 ident: bb0055 article-title: Long-term cultivation of adaptable cultivars in different agro-climatic zones influences the epigenetic diversity of south African sugarcane ( publication-title: Sugar Tech. – year: 2008 ident: bb0065 article-title: Assess 2.0: Image Analysis Software for Disease Quantification – volume: 47 start-page: 896 year: 2019 end-page: 902 ident: bb0010 article-title: Effect of different DNA demethylating agents on publication-title: Not. Bot. Horti. Agrobot. Cluj-Napoca. – volume: 86 start-page: 171 year: 2013 ident: bb0005 article-title: Microsatellite DNA fingerprinting and cultivar identification in sugarcane using a semi-automated genetic analyser publication-title: S. Afr. J. Bot. – volume: 24 start-page: 221 year: 2001 end-page: 230 ident: bb0025 article-title: Prospecting sugarcane genes involved in aluminium tolerance publication-title: Genet. Mol. Biol. – volume: 23 start-page: 1 year: 2016 end-page: 6 ident: bb0120 article-title: Increasing Al-tolerance of sugarcane using ethyl methane sulphonate and publication-title: HAYATI J. Biosci. – volume: 21 start-page: 3 year: 2001 end-page: 21 ident: bb0150 article-title: Aluminium toxicity in plants: a review publication-title: Agronomie – volume: 8 start-page: 1 year: 2018 end-page: 13 ident: bb0015 article-title: Nitrogen supply influences photosynthesis establishment along the sugarcane leaf publication-title: Sci. Report. – volume: 153 start-page: 1678 year: 2010 end-page: 1691 ident: bb0030 article-title: Development of a novel aluminium tolerance phenotyping platform used for comparisons of cereal aluminium tolerance and investigations into rice aluminium tolerance mechanisms publication-title: Plant Physiol. – volume: 32 start-page: 200 year: 2015 end-page: 206 ident: bb0105 article-title: Controlled activation of retrotransposition for plant breeding publication-title: Curr. Opin. Biotechnol. – volume: 28 start-page: 2085 year: 2022 end-page: 2098 ident: bb0135 article-title: Aluminium promotes changes in rice root structure and ascorbate and glutathione metabolism publication-title: Physiol. Mol. Biol. Plants – volume: 34 start-page: 2122 year: 2011 end-page: 2137 ident: bb0035 article-title: Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize ( publication-title: Plant Cell Environ. – volume: 7 start-page: 489 year: 2013 end-page: 502 ident: bb0095 article-title: 5-Azacytidine as a tool to induce somaclonal variants with useful traits in sugarcane ( publication-title: Plant. Biotechnol. Rep. – volume: 294 year: 2020 ident: bb0115 article-title: Plant stress biology in epigenomic era publication-title: Plant Sci. – volume: 165 start-page: 385 year: 2008 end-page: 396 ident: bb0040 article-title: Aluminium tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline, and decreased levels of lipid peroxidation and Al accumulation publication-title: J. Plant Physiol. – volume: 20 start-page: 50 year: 2018 end-page: 59 ident: bb0085 article-title: Ethyl methanesulfonate mutagenesis and publication-title: Sugar Tech. – volume: 70 start-page: 85 year: 2020 end-page: 99 ident: bb0080 article-title: Pigmented maize ( publication-title: Polish J. Food. Nutr. Sci. – volume: 14 start-page: e0217806 year: 2019 ident: bb0175 article-title: Microtranscriptome of contrasting sugarcane cultivars in response to aluminium stress publication-title: PLoS One – volume: 56 start-page: 65 year: 1999 end-page: 68 ident: bb0125 article-title: Assessment of Al publication-title: Plant Cell Tissue Organ Cult. – volume: 54 start-page: 1163 year: 2003 end-page: 1174 ident: bb0180 article-title: Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress publication-title: J. Exp. Bot. – volume: 13 start-page: 522 year: 2013 end-page: 527 ident: bb0110 article-title: Msap: a tool for the statistical analysis of methylation-sensitive amplified polymorphism data publication-title: Mol. Ecol. Resour. – volume: 21 start-page: 1 year: 2021 end-page: 15 ident: bb0130 article-title: Enhanced aluminium tolerance in sugarcane: evaluation of publication-title: BMC Plant Biol. – volume: 38 start-page: 257 year: 2016 ident: bb0155 article-title: Water relations in plants subjected to heavy metal stresses publication-title: Acta Physiol. Plant. – volume: 44 start-page: 1 year: 2020 end-page: 18 ident: bb0020 article-title: Aluminium toxicity reduces the nutritional efficiency of macronutrients and micronutrients in sugarcane seedlings publication-title: Ciênc Agrotec. – volume: vol. 3 start-page: 39 year: 2016 end-page: 54 ident: bb0045 article-title: Chemical mutagenesis and chimera dissolution in vegetatively propagated banana publication-title: Biotechnologies for Plant Mutation Breeding: Protocols – year: 2008 ident: 10.1016/j.bbagen.2023.130491_bb0065 – year: 2022 ident: 10.1016/j.bbagen.2023.130491_bb0055 article-title: Long-term cultivation of adaptable cultivars in different agro-climatic zones influences the epigenetic diversity of south African sugarcane (Saccharum spp.) publication-title: Sugar Tech. – volume: 21 start-page: 3 year: 2001 ident: 10.1016/j.bbagen.2023.130491_bb0150 article-title: Aluminium toxicity in plants: a review publication-title: Agronomie doi: 10.1051/agro:2001105 – volume: 55 start-page: 459 year: 2004 ident: 10.1016/j.bbagen.2023.130491_bb0050 article-title: How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorous efficiency publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.55.031903.141655 – volume: 34 start-page: 2122 year: 2011 ident: 10.1016/j.bbagen.2023.130491_bb0035 article-title: Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02409.x – volume: vol. 3 start-page: 39 year: 2016 ident: 10.1016/j.bbagen.2023.130491_bb0045 article-title: Chemical mutagenesis and chimera dissolution in vegetatively propagated banana – volume: 165 start-page: 385 year: 2008 ident: 10.1016/j.bbagen.2023.130491_bb0040 article-title: Aluminium tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline, and decreased levels of lipid peroxidation and Al accumulation publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2007.01.014 – volume: 49 start-page: 10431 year: 2021 ident: 10.1016/j.bbagen.2023.130491_bb0140 article-title: Genomic impact of stress induced transposable element mobility in Arabidopsis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab828 – volume: 86 start-page: 171 year: 2013 ident: 10.1016/j.bbagen.2023.130491_bb0005 article-title: Microsatellite DNA fingerprinting and cultivar identification in sugarcane using a semi-automated genetic analyser publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2013.02.123 – volume: 264 start-page: 225 year: 2007 ident: 10.1016/j.bbagen.2023.130491_bb0070 article-title: Syndrome of aluminium toxicity and diversity of aluminium resistance in higher plants publication-title: Int. Rev. Cytol. doi: 10.1016/S0074-7696(07)64005-4 – volume: 7 start-page: 489 year: 2013 ident: 10.1016/j.bbagen.2023.130491_bb0095 article-title: 5-Azacytidine as a tool to induce somaclonal variants with useful traits in sugarcane (Saccharum spp.) publication-title: Plant. Biotechnol. Rep. doi: 10.1007/s11816-013-0287-y – volume: 32 start-page: 200 year: 2015 ident: 10.1016/j.bbagen.2023.130491_bb0105 article-title: Controlled activation of retrotransposition for plant breeding publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.01.003 – volume: 54 start-page: 1163 year: 2003 ident: 10.1016/j.bbagen.2023.130491_bb0180 article-title: Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress publication-title: J. Exp. Bot. doi: 10.1093/jxb/erg128 – volume: 294 year: 2020 ident: 10.1016/j.bbagen.2023.130491_bb0115 article-title: Plant stress biology in epigenomic era publication-title: Plant Sci. doi: 10.1016/j.plantsci.2019.110376 – volume: 28 start-page: 2085 year: 2022 ident: 10.1016/j.bbagen.2023.130491_bb0135 article-title: Aluminium promotes changes in rice root structure and ascorbate and glutathione metabolism publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-022-01262-9 – volume: 23 start-page: 1 year: 2016 ident: 10.1016/j.bbagen.2023.130491_bb0120 article-title: Increasing Al-tolerance of sugarcane using ethyl methane sulphonate and in vitro selection in the low pH media publication-title: HAYATI J. Biosci. doi: 10.1016/j.hjb.2016.01.006 – volume: 70 start-page: 85 year: 2020 ident: 10.1016/j.bbagen.2023.130491_bb0080 article-title: Pigmented maize (Zea mays L.) contains anthocyanins with potential therapeutic action against oxidative stress – a review publication-title: Polish J. Food. Nutr. Sci. – volume: 89 1 start-page: 1 year: 2015 ident: 10.1016/j.bbagen.2023.130491_bb0160 article-title: In vitro studies on somaclonal variation and induced mutagenesis: progress and prospects in sugarcane (Saccharum spp.) – a review publication-title: J. Hortic. Sci. Biotechnol. – volume: 20 start-page: 148 year: 2015 ident: 10.1016/j.bbagen.2023.130491_bb0165 article-title: Your Chi-Square test is statistically significant: now what? publication-title: Pract. Assess. Res. Eval. – volume: 381 start-page: 1 year: 2014 ident: 10.1016/j.bbagen.2023.130491_bb0075 article-title: Molecular mechanisms of Al tolerance in gramineous plants publication-title: Plant Soil doi: 10.1007/s11104-014-2073-1 – volume: 153 start-page: 1678 year: 2010 ident: 10.1016/j.bbagen.2023.130491_bb0030 article-title: Development of a novel aluminium tolerance phenotyping platform used for comparisons of cereal aluminium tolerance and investigations into rice aluminium tolerance mechanisms publication-title: Plant Physiol. doi: 10.1104/pp.110.156794 – volume: 13 start-page: 522 year: 2013 ident: 10.1016/j.bbagen.2023.130491_bb0110 article-title: Msap: a tool for the statistical analysis of methylation-sensitive amplified polymorphism data publication-title: Mol. Ecol. Resour. doi: 10.1111/1755-0998.12064 – volume: 47 start-page: 896 year: 2019 ident: 10.1016/j.bbagen.2023.130491_bb0010 article-title: Effect of different DNA demethylating agents on in vitro cultures of peach rootstock GF 677 publication-title: Not. Bot. Horti. Agrobot. Cluj-Napoca. – volume: 106 start-page: 183 year: 2010 ident: 10.1016/j.bbagen.2023.130491_bb0185 article-title: Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency publication-title: Ann. Bot. doi: 10.1093/aob/mcq134 – volume: 15 start-page: 473 year: 1962 ident: 10.1016/j.bbagen.2023.130491_bb0100 article-title: A revised medium for rapid growth and bioassays with tobacco tissue cultures publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1962.tb08052.x – volume: 21 start-page: 1 year: 2020 ident: 10.1016/j.bbagen.2023.130491_bb0145 article-title: Molecular mechanisms underlying sugarcane response to aluminium stress by RNA-seq publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21217934 – volume: 20 start-page: 50 year: 2018 ident: 10.1016/j.bbagen.2023.130491_bb0085 article-title: Ethyl methanesulfonate mutagenesis and in vitro polyethylene glycol selection for drought tolerance in sugarcane (Saccharum spp.) publication-title: Sugar Tech. doi: 10.1007/s12355-017-0524-8 – volume: 142 start-page: 1061 year: 1996 ident: 10.1016/j.bbagen.2023.130491_bb0090 article-title: A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci publication-title: Genetics doi: 10.1093/genetics/142.3.1061 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.bbagen.2023.130491_bb0015 article-title: Nitrogen supply influences photosynthesis establishment along the sugarcane leaf publication-title: Sci. Report. doi: 10.1038/s41598-018-20653-1 – volume: 15 year: 2020 ident: 10.1016/j.bbagen.2023.130491_bb0170 article-title: Sugarcane mosaic virus mediated changes in cytosine methylation pattern and differentially transcribed fragments in resistance-contrasting sugarcane genotypes publication-title: PLoS One doi: 10.1371/journal.pone.0241493 – volume: 14 start-page: e0217806 year: 2019 ident: 10.1016/j.bbagen.2023.130491_bb0175 article-title: Microtranscriptome of contrasting sugarcane cultivars in response to aluminium stress publication-title: PLoS One doi: 10.1371/journal.pone.0217806 – volume: 15 start-page: 288 year: 2022 ident: 10.1016/j.bbagen.2023.130491_bb0060 article-title: Ex vitro morpho-physiological screening of drought tolerant sugarcane epimutants generated via 5-azacytidine and imidacloprid treatments publication-title: Trop. Plant Biol. doi: 10.1007/s12042-022-09323-9 – volume: 44 start-page: 1 year: 2020 ident: 10.1016/j.bbagen.2023.130491_bb0020 article-title: Aluminium toxicity reduces the nutritional efficiency of macronutrients and micronutrients in sugarcane seedlings publication-title: Ciênc Agrotec. doi: 10.1590/1413-7054202044015120 – volume: 24 start-page: 221 year: 2001 ident: 10.1016/j.bbagen.2023.130491_bb0025 article-title: Prospecting sugarcane genes involved in aluminium tolerance publication-title: Genet. Mol. Biol. doi: 10.1590/S1415-47572001000100029 – volume: 21 start-page: 1 year: 2021 ident: 10.1016/j.bbagen.2023.130491_bb0130 article-title: Enhanced aluminium tolerance in sugarcane: evaluation of SbMATE overexpression and genome-wide identification of ALMTs in Saccharum spp publication-title: BMC Plant Biol. doi: 10.1186/s12870-021-02975-x – volume: 38 start-page: 257 year: 2016 ident: 10.1016/j.bbagen.2023.130491_bb0155 article-title: Water relations in plants subjected to heavy metal stresses publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-016-2277-5 – volume: 56 start-page: 65 year: 1999 ident: 10.1016/j.bbagen.2023.130491_bb0125 article-title: Assessment of Al3+ availability in callus culture media for screening tolerant genotypes of Cynodon dactylon publication-title: Plant Cell Tissue Organ Cult. doi: 10.1023/A:1006248916412 |
SSID | ssj0000595 |
Score | 2.439518 |
Snippet | A protocol for generating aluminium (Al) tolerant sugarcane using 5-azacytidine (5-azaC)-induced epimutagenesis was developed. Eight (8) plantlets per gram of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 130491 |
SubjectTerms | Abiotic stress Acidic soils aluminum callus Chimera dissolution cultivars Demethylation Epibreeding epigenetics leaf area multidimensional scaling Mutant line plantlets Saccharum stress tolerance sugarcane variance vegetative propagation water content |
Title | The 5-azacytidine-induced epimutagenesis of sugarcane (Saccharum spp. hybrids) for aluminium tolerance |
URI | https://dx.doi.org/10.1016/j.bbagen.2023.130491 https://www.proquest.com/docview/2878291459 https://www.proquest.com/docview/3154188670 |
Volume | 1867 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: ACRLP dateStart: 19950118 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: AIKHN dateStart: 19950118 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8006 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000595 issn: 0304-4165 databaseCode: AKRWK dateStart: 19640113 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9VAEF9KRfRStK3YVssKHuxh-5L9yG6O5WF5KvbyLPS27GY3GmnzgkkOr4f-7Z15SRSFUvCYzS4sM5OZ32S-CHnvgjS8CIYlXikmNXcsz3TCUp-HWJRwJqCj-PUiW1zKz1fqaovMp1oYTKscdf-g0zfaelyZjdScNVU1W2JQD-AE_tZMUpNjRTl2_wKZPr37k-YB8EENkQTJcPdUPrfJ8fIePlrsgsoFjkWWefqQefpHUW-sz_kLsjPCRno23Owl2Yr1Lnk6DJJc75Jn82lu2x4pgfNUMXfrinVXgWmKDPxu4GCgsalu-g4vE9uqpauStv13kHRXR_ph6QoswepvaNs0p_THGmu52hMKqJY6UGFVXcG7bnUdcRZH3CfL84_f5gs2TlNghdC8Y1hzGspce6UxnOqxLY8xwhRpFryEBeNcKtA9zHxSmMTowGXk0qnMOSVeke16VcfXhHJXagfAkgtppJDaA6rQQWXRSbD9wh0QMZHQFmOjcZx3cW2njLKfdiC8RcLbgfAHhP0-1QyNNh7Zryfu2L8ExoIteOTku4mZFliDARIg86pvLXiPhuepVPnDewRgztQYkOfD_77BEXmOT0NWzBuy3f3q41vANp0_3gjvMXly9unL4uIe5Vf3LQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVqhcEBQQLdAaiQMczCZ-xM6xWrXa0nYvW6TeLDtxSlCbjZrksPx6ZjYJCKSqUq-2R7JmJvOIZ-Yj5JPLpeFZbljklWJSc8fSREcs9mkesgJockwULxbJ_Lv8dqWutshs7IXBssrB9vc2fWOth5XpwM1pXZbTJT7qQTiBvzWj2KT6CdmWCmzyhGwfnZ7NF38NstqAr-B5hgRjB92mzMt7-G5xECoXiIws0_g-D_Wfrd44oJMX5PkQOdKj_nIvyVaodsnTHktyvUt2ZiN02ytSgPCpYu6Xy9ZtCd4pMEi9QYg5DXV527V4mdCUDV0VtOmuQdldFejnpcuwC6u7pU1df6U_1tjO1XyhENhSB1asrErYa1c3AeE4wmuyPDm-nM3ZAKjAMqF5y7DtNC9S7ZXGF1WPk3mMESaLk9xLWDDOxQIzxMRHmYmMzrkMXDqVOKfEGzKpVlV4Syh3hXYQW3IhjRRSewgsdK6S4CS4f-H2iBhZaLNh1jhCXtzYsajsp-0Zb5Hxtmf8HmF_qOp-1sYD5_UoHfuPzlhwBw9QfhyFaUE0-EYCbF51jYUE0vA0liq9_4yAsDM2BlR6_9E3OCQ788uLc3t-ujh7R57hTl8k855M2rsufIBQp_UHgyr_BlEu-dg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+5-azacytidine-induced+epimutagenesis+of+sugarcane+%28Saccharum+spp.+hybrids%29+for+aluminium+tolerance&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Koetle%2C+Motselisi+Jane&rft.au=Osborn%2C+Christine&rft.au=Snyman%2C+Sandra+Jane&rft.au=Rutherford%2C+Richard+Stuart&rft.date=2023-12-01&rft.issn=0304-4165&rft.volume=1867&rft.issue=12+p.130491-&rft_id=info:doi/10.1016%2Fj.bbagen.2023.130491&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |