The 5-azacytidine-induced epimutagenesis of sugarcane (Saccharum spp. hybrids) for aluminium tolerance

A protocol for generating aluminium (Al) tolerant sugarcane using 5-azacytidine (5-azaC)-induced epimutagenesis was developed. Eight (8) plantlets per gram of cultivar N51 calli were generated from the 5-azaC (100 μM) and Al (1.5–50 mM) treatment (+Az + Al) when compared with 104 plantlets from non-...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1867; no. 12; p. 130491
Main Authors Koetle, Motselisi Jane, Osborn, Christine, Snyman, Sandra Jane, Rutherford, Richard Stuart
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2023
Subjects
Online AccessGet full text
ISSN0304-4165
1872-8006
1872-8006
DOI10.1016/j.bbagen.2023.130491

Cover

Abstract A protocol for generating aluminium (Al) tolerant sugarcane using 5-azacytidine (5-azaC)-induced epimutagenesis was developed. Eight (8) plantlets per gram of cultivar N51 calli were generated from the 5-azaC (100 μM) and Al (1.5–50 mM) treatment (+Az + Al) when compared with 104 plantlets from non-mutagenised, no Al control treatment. Following in vitro selection on 60 mM Al, ex vitro stress over four rounds of chimera dissolution during vegetative propagation was applied. In the final stress round, 36% of the Mut 2 epilines survived with plants showing higher relative water content (61.2%) when compared with 47.3% from the stressed control (S N51). The Mut 2 line maintained a higher green leaf area (83.4%) and longer roots (32.4 cm) under stress than S N51 (61.4% and 26.3 cm, respectively). Overall, Mut 2 had a high stress tolerance index of 85.4%, compared with 79.0% from the S N51, nearing that of the non-stressed N51 control (NS N51, 100%) when data were analysed using PCA and clustering analyses of morpho-physiological traits. Analysis of molecular variance (AMOVA) revealed high epigenetic differentiation (ɸst = 0.67) and a variation of 66.6% observed among N51 genotypes. The principal coordinate analysis (PCoA) showed that Mut 2 was epigenetically distinct from S N51. These findings support previous studies that 5-azaC can be used for novel trait creation via epimutagenesis and highlights the necessity for chimera dissolution to achieve stable traits in epibreeding of sugarcane. •Mut 2, had a high Al stress tolerance index of 85.4% vs 79.0% observed in the stressed control.•Epiline Mut 2 had higher relative water content (61.2%), leaf area (83.4%), and root length (32.4 cm) than stressed control (47.3%, 61.4%, 26.3 cm respectively).•High epigenetic differentiation (66.6%) between Mut 2 and control lines was recorded, indicating 5-azaC-induced epigenetic changes and distinctness.•5-azaC enables novel trait creation and the study highlights the importance of chimera dissolution for stable traits in epibreeding.
AbstractList A protocol for generating aluminium (Al) tolerant sugarcane using 5-azacytidine (5-azaC)-induced epimutagenesis was developed. Eight (8) plantlets per gram of cultivar N51 calli were generated from the 5-azaC (100 μM) and Al (1.5–50 mM) treatment (+Az + Al) when compared with 104 plantlets from non-mutagenised, no Al control treatment. Following in vitro selection on 60 mM Al, ex vitro stress over four rounds of chimera dissolution during vegetative propagation was applied. In the final stress round, 36% of the Mut 2 epilines survived with plants showing higher relative water content (61.2%) when compared with 47.3% from the stressed control (S N51). The Mut 2 line maintained a higher green leaf area (83.4%) and longer roots (32.4 cm) under stress than S N51 (61.4% and 26.3 cm, respectively). Overall, Mut 2 had a high stress tolerance index of 85.4%, compared with 79.0% from the S N51, nearing that of the non-stressed N51 control (NS N51, 100%) when data were analysed using PCA and clustering analyses of morpho-physiological traits. Analysis of molecular variance (AMOVA) revealed high epigenetic differentiation (ɸst = 0.67) and a variation of 66.6% observed among N51 genotypes. The principal coordinate analysis (PCoA) showed that Mut 2 was epigenetically distinct from S N51. These findings support previous studies that 5-azaC can be used for novel trait creation via epimutagenesis and highlights the necessity for chimera dissolution to achieve stable traits in epibreeding of sugarcane.
A protocol for generating aluminium (Al) tolerant sugarcane using 5-azacytidine (5-azaC)-induced epimutagenesis was developed. Eight (8) plantlets per gram of cultivar N51 calli were generated from the 5-azaC (100 μM) and Al (1.5–50 mM) treatment (+Az + Al) when compared with 104 plantlets from non-mutagenised, no Al control treatment. Following in vitro selection on 60 mM Al, ex vitro stress over four rounds of chimera dissolution during vegetative propagation was applied. In the final stress round, 36% of the Mut 2 epilines survived with plants showing higher relative water content (61.2%) when compared with 47.3% from the stressed control (S N51). The Mut 2 line maintained a higher green leaf area (83.4%) and longer roots (32.4 cm) under stress than S N51 (61.4% and 26.3 cm, respectively). Overall, Mut 2 had a high stress tolerance index of 85.4%, compared with 79.0% from the S N51, nearing that of the non-stressed N51 control (NS N51, 100%) when data were analysed using PCA and clustering analyses of morpho-physiological traits. Analysis of molecular variance (AMOVA) revealed high epigenetic differentiation (ɸst = 0.67) and a variation of 66.6% observed among N51 genotypes. The principal coordinate analysis (PCoA) showed that Mut 2 was epigenetically distinct from S N51. These findings support previous studies that 5-azaC can be used for novel trait creation via epimutagenesis and highlights the necessity for chimera dissolution to achieve stable traits in epibreeding of sugarcane. •Mut 2, had a high Al stress tolerance index of 85.4% vs 79.0% observed in the stressed control.•Epiline Mut 2 had higher relative water content (61.2%), leaf area (83.4%), and root length (32.4 cm) than stressed control (47.3%, 61.4%, 26.3 cm respectively).•High epigenetic differentiation (66.6%) between Mut 2 and control lines was recorded, indicating 5-azaC-induced epigenetic changes and distinctness.•5-azaC enables novel trait creation and the study highlights the importance of chimera dissolution for stable traits in epibreeding.
A protocol for generating aluminium (Al) tolerant sugarcane using 5-azacytidine (5-azaC)-induced epimutagenesis was developed. Eight (8) plantlets per gram of cultivar N51 calli were generated from the 5-azaC (100 μM) and Al (1.5-50 mM) treatment (+Az + Al) when compared with 104 plantlets from non-mutagenised, no Al control treatment. Following in vitro selection on 60 mM Al, ex vitro stress over four rounds of chimera dissolution during vegetative propagation was applied. In the final stress round, 36% of the Mut 2 epilines survived with plants showing higher relative water content (61.2%) when compared with 47.3% from the stressed control (S N51). The Mut 2 line maintained a higher green leaf area (83.4%) and longer roots (32.4 cm) under stress than S N51 (61.4% and 26.3 cm, respectively). Overall, Mut 2 had a high stress tolerance index of 85.4%, compared with 79.0% from the S N51, nearing that of the non-stressed N51 control (NS N51, 100%) when data were analysed using PCA and clustering analyses of morpho-physiological traits. Analysis of molecular variance (AMOVA) revealed high epigenetic differentiation (ɸst = 0.67) and a variation of 66.6% observed among N51 genotypes. The principal coordinate analysis (PCoA) showed that Mut 2 was epigenetically distinct from S N51. These findings support previous studies that 5-azaC can be used for novel trait creation via epimutagenesis and highlights the necessity for chimera dissolution to achieve stable traits in epibreeding of sugarcane.A protocol for generating aluminium (Al) tolerant sugarcane using 5-azacytidine (5-azaC)-induced epimutagenesis was developed. Eight (8) plantlets per gram of cultivar N51 calli were generated from the 5-azaC (100 μM) and Al (1.5-50 mM) treatment (+Az + Al) when compared with 104 plantlets from non-mutagenised, no Al control treatment. Following in vitro selection on 60 mM Al, ex vitro stress over four rounds of chimera dissolution during vegetative propagation was applied. In the final stress round, 36% of the Mut 2 epilines survived with plants showing higher relative water content (61.2%) when compared with 47.3% from the stressed control (S N51). The Mut 2 line maintained a higher green leaf area (83.4%) and longer roots (32.4 cm) under stress than S N51 (61.4% and 26.3 cm, respectively). Overall, Mut 2 had a high stress tolerance index of 85.4%, compared with 79.0% from the S N51, nearing that of the non-stressed N51 control (NS N51, 100%) when data were analysed using PCA and clustering analyses of morpho-physiological traits. Analysis of molecular variance (AMOVA) revealed high epigenetic differentiation (ɸst = 0.67) and a variation of 66.6% observed among N51 genotypes. The principal coordinate analysis (PCoA) showed that Mut 2 was epigenetically distinct from S N51. These findings support previous studies that 5-azaC can be used for novel trait creation via epimutagenesis and highlights the necessity for chimera dissolution to achieve stable traits in epibreeding of sugarcane.
ArticleNumber 130491
Author Rutherford, Richard Stuart
Osborn, Christine
Koetle, Motselisi Jane
Snyman, Sandra Jane
Author_xml – sequence: 1
  givenname: Motselisi Jane
  surname: Koetle
  fullname: Koetle, Motselisi Jane
  email: KoetleM@arc.agric.za
  organization: South African Sugarcane Research Institute, Private Bag X02, Mount Edgecombe, Durban 4300, South Africa
– sequence: 2
  givenname: Christine
  surname: Osborn
  fullname: Osborn, Christine
  organization: Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
– sequence: 3
  givenname: Sandra Jane
  surname: Snyman
  fullname: Snyman, Sandra Jane
  organization: South African Sugarcane Research Institute, Private Bag X02, Mount Edgecombe, Durban 4300, South Africa
– sequence: 4
  givenname: Richard Stuart
  surname: Rutherford
  fullname: Rutherford, Richard Stuart
  organization: South African Sugarcane Research Institute, Private Bag X02, Mount Edgecombe, Durban 4300, South Africa
BookMark eNqFUU1r3DAUFCWFbtL-gx50TA92JVmW5B4KJfQLAj0kdyFLz1kttuRKcmH766vFPfXQvMuDeTPDY-YaXYUYAKG3lLSUUPH-1I6jeYLQMsK6lnaED_QFOlAlWaMIEVfoQCrYcCr6V-g65xOp0w_9AU2PR8B9Y34bey7e-QCND26z4DCsftnKxReyzzhOOG9PJlkTAN8-GGuPJm0Lzuva4uN5TN7ld3iKCZt5W3zw9VbiDMkEC6_Ry8nMGd783Tfo4cvnx7tvzf2Pr9_vPt03tpOsNHIQ3E2DHHtJmCIj4VIp1SlLhRt5BZQxtKOcCzESq4iSjnFg3PTCmL67Qbe765rizw1y0YvPFua5vhy3rDvac6qUkORZKlNSsYHyfqjUDzvVpphzgklbX0zxMZRk_Kwp0ZcW9EnvLehLC3pvoYr5P-I1-cWk83Oyj7sMali_PCSdrYcapPMJbNEu-v8b_AF-QKRe
CitedBy_id crossref_primary_10_1007_s11627_025_10517_5
crossref_primary_10_1016_j_bbagen_2024_130708
Cites_doi 10.1051/agro:2001105
10.1146/annurev.arplant.55.031903.141655
10.1111/j.1365-3040.2011.02409.x
10.1016/j.jplph.2007.01.014
10.1093/nar/gkab828
10.1016/j.sajb.2013.02.123
10.1016/S0074-7696(07)64005-4
10.1007/s11816-013-0287-y
10.1016/j.copbio.2015.01.003
10.1093/jxb/erg128
10.1016/j.plantsci.2019.110376
10.1007/s12298-022-01262-9
10.1016/j.hjb.2016.01.006
10.1007/s11104-014-2073-1
10.1104/pp.110.156794
10.1111/1755-0998.12064
10.1093/aob/mcq134
10.1111/j.1399-3054.1962.tb08052.x
10.3390/ijms21217934
10.1007/s12355-017-0524-8
10.1093/genetics/142.3.1061
10.1038/s41598-018-20653-1
10.1371/journal.pone.0241493
10.1371/journal.pone.0217806
10.1007/s12042-022-09323-9
10.1590/1413-7054202044015120
10.1590/S1415-47572001000100029
10.1186/s12870-021-02975-x
10.1007/s11738-016-2277-5
10.1023/A:1006248916412
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2023.130491
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 10_1016_j_bbagen_2023_130491
S0304416523001897
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACIUM
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AFJKZ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAYWO
AAYXX
ACRLP
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSU
7X8
ACLOT
EFKBS
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c372t-7964df97b570280b04788838c16db480b8aa1314466b0c8087d24e24a56aa53
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Sat Sep 27 21:07:01 EDT 2025
Sun Sep 28 06:24:49 EDT 2025
Tue Jul 01 00:22:18 EDT 2025
Thu Apr 24 22:57:11 EDT 2025
Sun Apr 06 06:54:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Chimera dissolution
Demethylation
Epibreeding
Abiotic stress
Acidic soils
Mutant line
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-7964df97b570280b04788838c16db480b8aa1314466b0c8087d24e24a56aa53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2878291459
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3154188670
proquest_miscellaneous_2878291459
crossref_citationtrail_10_1016_j_bbagen_2023_130491
crossref_primary_10_1016_j_bbagen_2023_130491
elsevier_sciencedirect_doi_10_1016_j_bbagen_2023_130491
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rutherford, Snyman, Watt (bb0160) 2015; 89 1
Famoso, Clark, Shaff (bb0030) 2010; 153
Albertse, Joshi (bb0005) 2013; 86
Silva, Mateus-Rosa, França S de (bb0175) 2019; 14
Kochian, Hoekenga, Piñeros (bb0050) 2004; 55
Purnamaningsih, Hutami (bb0120) 2016; 23
Paszkowski (bb0105) 2015; 32
Borges, Cazetta, de Sousa (bb0020) 2020; 44
Ma (bb0070) 2007; 264
Bassi, Menossi, Mattiello (bb0015) 2018; 8
Magaña-Cerino, Peniche-Pavía, Tiessen (bb0080) 2020; 70
da Silva, Gonçalves, dos Santos (bb0170) 2020; 15
Pérez-Figueroa (bb0110) 2013; 13
Ribeiro, de Marcos, de Freitas-Silva (bb0135) 2022; 28
Koetle, Snyman, Rutherford (bb0060) 2022; 15
Lamari (bb0065) 2008
Munsamy, Rutherford, Snyman (bb0095) 2013; 7
Watt (bb0180) 2003; 54
Masoabi, Lloyd, Kossmann (bb0085) 2018; 20
Rosa-Santos, da Silva, Kumar (bb0145) 2020; 21
Rucińska-Sobkowiak (bb0155) 2016; 38
Ma, Chen, Shen (bb0075) 2014; 381
Rout, Samantaray, Das (bb0150) 2001; 21
Giannakoula, Moustakas, Mylona (bb0040) 2008; 165
Gaudin, Mcclymont, Holmes (bb0035) 2011; 34
Michalakis, Excoffier (bb0090) 1996; 142
Ribeiro, Vinecky, Duarte (bb0130) 2021; 21
Jankowicz-Cieslak, Till (bb0045) 2016; vol. 3
Koetle, Jacob, Snyman (bb0055) 2022
Ramgareeb, Watt, Marsh (bb0125) 1999; 56
Murashige, Skoog (bb0100) 1962; 15
Baránek, Otmar, Krečmerová (bb0010) 2019; 47
Roquis, Robertson, Yu (bb0140) 2021; 49
Sharpe (bb0165) 2015; 20
Perrone, Martinelli (bb0115) 2020; 294
Drummond, Guimarães, Felix (bb0025) 2001; 24
Zheng (bb0185) 2010; 106
Paszkowski (10.1016/j.bbagen.2023.130491_bb0105) 2015; 32
da Silva (10.1016/j.bbagen.2023.130491_bb0170) 2020; 15
Jankowicz-Cieslak (10.1016/j.bbagen.2023.130491_bb0045) 2016; vol. 3
Gaudin (10.1016/j.bbagen.2023.130491_bb0035) 2011; 34
Michalakis (10.1016/j.bbagen.2023.130491_bb0090) 1996; 142
Baránek (10.1016/j.bbagen.2023.130491_bb0010) 2019; 47
Drummond (10.1016/j.bbagen.2023.130491_bb0025) 2001; 24
Zheng (10.1016/j.bbagen.2023.130491_bb0185) 2010; 106
Ma (10.1016/j.bbagen.2023.130491_bb0075) 2014; 381
Pérez-Figueroa (10.1016/j.bbagen.2023.130491_bb0110) 2013; 13
Albertse (10.1016/j.bbagen.2023.130491_bb0005) 2013; 86
Ribeiro (10.1016/j.bbagen.2023.130491_bb0135) 2022; 28
Perrone (10.1016/j.bbagen.2023.130491_bb0115) 2020; 294
Masoabi (10.1016/j.bbagen.2023.130491_bb0085) 2018; 20
Watt (10.1016/j.bbagen.2023.130491_bb0180) 2003; 54
Magaña-Cerino (10.1016/j.bbagen.2023.130491_bb0080) 2020; 70
Bassi (10.1016/j.bbagen.2023.130491_bb0015) 2018; 8
Roquis (10.1016/j.bbagen.2023.130491_bb0140) 2021; 49
Giannakoula (10.1016/j.bbagen.2023.130491_bb0040) 2008; 165
Rucińska-Sobkowiak (10.1016/j.bbagen.2023.130491_bb0155) 2016; 38
Kochian (10.1016/j.bbagen.2023.130491_bb0050) 2004; 55
Rutherford (10.1016/j.bbagen.2023.130491_bb0160) 2015; 89 1
Sharpe (10.1016/j.bbagen.2023.130491_bb0165) 2015; 20
Murashige (10.1016/j.bbagen.2023.130491_bb0100) 1962; 15
Rosa-Santos (10.1016/j.bbagen.2023.130491_bb0145) 2020; 21
Koetle (10.1016/j.bbagen.2023.130491_bb0055) 2022
Ma (10.1016/j.bbagen.2023.130491_bb0070) 2007; 264
Ramgareeb (10.1016/j.bbagen.2023.130491_bb0125) 1999; 56
Famoso (10.1016/j.bbagen.2023.130491_bb0030) 2010; 153
Purnamaningsih (10.1016/j.bbagen.2023.130491_bb0120) 2016; 23
Koetle (10.1016/j.bbagen.2023.130491_bb0060) 2022; 15
Munsamy (10.1016/j.bbagen.2023.130491_bb0095) 2013; 7
Rout (10.1016/j.bbagen.2023.130491_bb0150) 2001; 21
Borges (10.1016/j.bbagen.2023.130491_bb0020) 2020; 44
Ribeiro (10.1016/j.bbagen.2023.130491_bb0130) 2021; 21
Lamari (10.1016/j.bbagen.2023.130491_bb0065) 2008
Silva (10.1016/j.bbagen.2023.130491_bb0175) 2019; 14
References_xml – volume: 49
  start-page: 10431
  year: 2021
  ident: bb0140
  article-title: Genomic impact of stress induced transposable element mobility in
  publication-title: Nucleic Acids Res.
– volume: 15
  start-page: 288
  year: 2022
  end-page: 300
  ident: bb0060
  article-title: morpho-physiological screening of drought tolerant sugarcane epimutants generated via 5-azacytidine and imidacloprid treatments
  publication-title: Trop. Plant Biol.
– volume: 15
  year: 2020
  ident: bb0170
  article-title: Sugarcane mosaic virus mediated changes in cytosine methylation pattern and differentially transcribed fragments in resistance-contrasting sugarcane genotypes
  publication-title: PLoS One
– volume: 20
  start-page: 148
  year: 2015
  ident: bb0165
  article-title: Your Chi-Square test is statistically significant: now what?
  publication-title: Pract. Assess. Res. Eval.
– volume: 106
  start-page: 183
  year: 2010
  end-page: 184
  ident: bb0185
  article-title: Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency
  publication-title: Ann. Bot.
– volume: 55
  start-page: 459
  year: 2004
  end-page: 493
  ident: bb0050
  article-title: How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorous efficiency
  publication-title: Annu. Rev. Plant Biol.
– volume: 142
  start-page: 1061
  year: 1996
  end-page: 1064
  ident: bb0090
  article-title: A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci
  publication-title: Genetics
– volume: 15
  start-page: 473
  year: 1962
  end-page: 497
  ident: bb0100
  article-title: A revised medium for rapid growth and bioassays with tobacco tissue cultures
  publication-title: Physiol. Plant.
– volume: 264
  start-page: 225
  year: 2007
  end-page: 252
  ident: bb0070
  article-title: Syndrome of aluminium toxicity and diversity of aluminium resistance in higher plants
  publication-title: Int. Rev. Cytol.
– volume: 89 1
  start-page: 1
  year: 2015
  end-page: 16
  ident: bb0160
  article-title: studies on somaclonal variation and induced mutagenesis: progress and prospects in sugarcane (
  publication-title: J. Hortic. Sci. Biotechnol.
– volume: 381
  start-page: 1
  year: 2014
  end-page: 12
  ident: bb0075
  article-title: Molecular mechanisms of Al tolerance in gramineous plants
  publication-title: Plant Soil
– volume: 21
  start-page: 1
  year: 2020
  end-page: 17
  ident: bb0145
  article-title: Molecular mechanisms underlying sugarcane response to aluminium stress by RNA-seq
  publication-title: Int. J. Mol. Sci.
– year: 2022
  ident: bb0055
  article-title: Long-term cultivation of adaptable cultivars in different agro-climatic zones influences the epigenetic diversity of south African sugarcane (
  publication-title: Sugar Tech.
– year: 2008
  ident: bb0065
  article-title: Assess 2.0: Image Analysis Software for Disease Quantification
– volume: 47
  start-page: 896
  year: 2019
  end-page: 902
  ident: bb0010
  article-title: Effect of different DNA demethylating agents on
  publication-title: Not. Bot. Horti. Agrobot. Cluj-Napoca.
– volume: 86
  start-page: 171
  year: 2013
  ident: bb0005
  article-title: Microsatellite DNA fingerprinting and cultivar identification in sugarcane using a semi-automated genetic analyser
  publication-title: S. Afr. J. Bot.
– volume: 24
  start-page: 221
  year: 2001
  end-page: 230
  ident: bb0025
  article-title: Prospecting sugarcane genes involved in aluminium tolerance
  publication-title: Genet. Mol. Biol.
– volume: 23
  start-page: 1
  year: 2016
  end-page: 6
  ident: bb0120
  article-title: Increasing Al-tolerance of sugarcane using ethyl methane sulphonate and
  publication-title: HAYATI J. Biosci.
– volume: 21
  start-page: 3
  year: 2001
  end-page: 21
  ident: bb0150
  article-title: Aluminium toxicity in plants: a review
  publication-title: Agronomie
– volume: 8
  start-page: 1
  year: 2018
  end-page: 13
  ident: bb0015
  article-title: Nitrogen supply influences photosynthesis establishment along the sugarcane leaf
  publication-title: Sci. Report.
– volume: 153
  start-page: 1678
  year: 2010
  end-page: 1691
  ident: bb0030
  article-title: Development of a novel aluminium tolerance phenotyping platform used for comparisons of cereal aluminium tolerance and investigations into rice aluminium tolerance mechanisms
  publication-title: Plant Physiol.
– volume: 32
  start-page: 200
  year: 2015
  end-page: 206
  ident: bb0105
  article-title: Controlled activation of retrotransposition for plant breeding
  publication-title: Curr. Opin. Biotechnol.
– volume: 28
  start-page: 2085
  year: 2022
  end-page: 2098
  ident: bb0135
  article-title: Aluminium promotes changes in rice root structure and ascorbate and glutathione metabolism
  publication-title: Physiol. Mol. Biol. Plants
– volume: 34
  start-page: 2122
  year: 2011
  end-page: 2137
  ident: bb0035
  article-title: Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (
  publication-title: Plant Cell Environ.
– volume: 7
  start-page: 489
  year: 2013
  end-page: 502
  ident: bb0095
  article-title: 5-Azacytidine as a tool to induce somaclonal variants with useful traits in sugarcane (
  publication-title: Plant. Biotechnol. Rep.
– volume: 294
  year: 2020
  ident: bb0115
  article-title: Plant stress biology in epigenomic era
  publication-title: Plant Sci.
– volume: 165
  start-page: 385
  year: 2008
  end-page: 396
  ident: bb0040
  article-title: Aluminium tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline, and decreased levels of lipid peroxidation and Al accumulation
  publication-title: J. Plant Physiol.
– volume: 20
  start-page: 50
  year: 2018
  end-page: 59
  ident: bb0085
  article-title: Ethyl methanesulfonate mutagenesis and
  publication-title: Sugar Tech.
– volume: 70
  start-page: 85
  year: 2020
  end-page: 99
  ident: bb0080
  article-title: Pigmented maize (
  publication-title: Polish J. Food. Nutr. Sci.
– volume: 14
  start-page: e0217806
  year: 2019
  ident: bb0175
  article-title: Microtranscriptome of contrasting sugarcane cultivars in response to aluminium stress
  publication-title: PLoS One
– volume: 56
  start-page: 65
  year: 1999
  end-page: 68
  ident: bb0125
  article-title: Assessment of Al
  publication-title: Plant Cell Tissue Organ Cult.
– volume: 54
  start-page: 1163
  year: 2003
  end-page: 1174
  ident: bb0180
  article-title: Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress
  publication-title: J. Exp. Bot.
– volume: 13
  start-page: 522
  year: 2013
  end-page: 527
  ident: bb0110
  article-title: Msap: a tool for the statistical analysis of methylation-sensitive amplified polymorphism data
  publication-title: Mol. Ecol. Resour.
– volume: 21
  start-page: 1
  year: 2021
  end-page: 15
  ident: bb0130
  article-title: Enhanced aluminium tolerance in sugarcane: evaluation of
  publication-title: BMC Plant Biol.
– volume: 38
  start-page: 257
  year: 2016
  ident: bb0155
  article-title: Water relations in plants subjected to heavy metal stresses
  publication-title: Acta Physiol. Plant.
– volume: 44
  start-page: 1
  year: 2020
  end-page: 18
  ident: bb0020
  article-title: Aluminium toxicity reduces the nutritional efficiency of macronutrients and micronutrients in sugarcane seedlings
  publication-title: Ciênc Agrotec.
– volume: vol. 3
  start-page: 39
  year: 2016
  end-page: 54
  ident: bb0045
  article-title: Chemical mutagenesis and chimera dissolution in vegetatively propagated banana
  publication-title: Biotechnologies for Plant Mutation Breeding: Protocols
– year: 2008
  ident: 10.1016/j.bbagen.2023.130491_bb0065
– year: 2022
  ident: 10.1016/j.bbagen.2023.130491_bb0055
  article-title: Long-term cultivation of adaptable cultivars in different agro-climatic zones influences the epigenetic diversity of south African sugarcane (Saccharum spp.)
  publication-title: Sugar Tech.
– volume: 21
  start-page: 3
  year: 2001
  ident: 10.1016/j.bbagen.2023.130491_bb0150
  article-title: Aluminium toxicity in plants: a review
  publication-title: Agronomie
  doi: 10.1051/agro:2001105
– volume: 55
  start-page: 459
  year: 2004
  ident: 10.1016/j.bbagen.2023.130491_bb0050
  article-title: How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorous efficiency
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.55.031903.141655
– volume: 34
  start-page: 2122
  year: 2011
  ident: 10.1016/j.bbagen.2023.130491_bb0035
  article-title: Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02409.x
– volume: vol. 3
  start-page: 39
  year: 2016
  ident: 10.1016/j.bbagen.2023.130491_bb0045
  article-title: Chemical mutagenesis and chimera dissolution in vegetatively propagated banana
– volume: 165
  start-page: 385
  year: 2008
  ident: 10.1016/j.bbagen.2023.130491_bb0040
  article-title: Aluminium tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline, and decreased levels of lipid peroxidation and Al accumulation
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2007.01.014
– volume: 49
  start-page: 10431
  year: 2021
  ident: 10.1016/j.bbagen.2023.130491_bb0140
  article-title: Genomic impact of stress induced transposable element mobility in Arabidopsis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab828
– volume: 86
  start-page: 171
  year: 2013
  ident: 10.1016/j.bbagen.2023.130491_bb0005
  article-title: Microsatellite DNA fingerprinting and cultivar identification in sugarcane using a semi-automated genetic analyser
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2013.02.123
– volume: 264
  start-page: 225
  year: 2007
  ident: 10.1016/j.bbagen.2023.130491_bb0070
  article-title: Syndrome of aluminium toxicity and diversity of aluminium resistance in higher plants
  publication-title: Int. Rev. Cytol.
  doi: 10.1016/S0074-7696(07)64005-4
– volume: 7
  start-page: 489
  year: 2013
  ident: 10.1016/j.bbagen.2023.130491_bb0095
  article-title: 5-Azacytidine as a tool to induce somaclonal variants with useful traits in sugarcane (Saccharum spp.)
  publication-title: Plant. Biotechnol. Rep.
  doi: 10.1007/s11816-013-0287-y
– volume: 32
  start-page: 200
  year: 2015
  ident: 10.1016/j.bbagen.2023.130491_bb0105
  article-title: Controlled activation of retrotransposition for plant breeding
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2015.01.003
– volume: 54
  start-page: 1163
  year: 2003
  ident: 10.1016/j.bbagen.2023.130491_bb0180
  article-title: Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erg128
– volume: 294
  year: 2020
  ident: 10.1016/j.bbagen.2023.130491_bb0115
  article-title: Plant stress biology in epigenomic era
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2019.110376
– volume: 28
  start-page: 2085
  year: 2022
  ident: 10.1016/j.bbagen.2023.130491_bb0135
  article-title: Aluminium promotes changes in rice root structure and ascorbate and glutathione metabolism
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-022-01262-9
– volume: 23
  start-page: 1
  year: 2016
  ident: 10.1016/j.bbagen.2023.130491_bb0120
  article-title: Increasing Al-tolerance of sugarcane using ethyl methane sulphonate and in vitro selection in the low pH media
  publication-title: HAYATI J. Biosci.
  doi: 10.1016/j.hjb.2016.01.006
– volume: 70
  start-page: 85
  year: 2020
  ident: 10.1016/j.bbagen.2023.130491_bb0080
  article-title: Pigmented maize (Zea mays L.) contains anthocyanins with potential therapeutic action against oxidative stress – a review
  publication-title: Polish J. Food. Nutr. Sci.
– volume: 89 1
  start-page: 1
  year: 2015
  ident: 10.1016/j.bbagen.2023.130491_bb0160
  article-title: In vitro studies on somaclonal variation and induced mutagenesis: progress and prospects in sugarcane (Saccharum spp.) – a review
  publication-title: J. Hortic. Sci. Biotechnol.
– volume: 20
  start-page: 148
  year: 2015
  ident: 10.1016/j.bbagen.2023.130491_bb0165
  article-title: Your Chi-Square test is statistically significant: now what?
  publication-title: Pract. Assess. Res. Eval.
– volume: 381
  start-page: 1
  year: 2014
  ident: 10.1016/j.bbagen.2023.130491_bb0075
  article-title: Molecular mechanisms of Al tolerance in gramineous plants
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2073-1
– volume: 153
  start-page: 1678
  year: 2010
  ident: 10.1016/j.bbagen.2023.130491_bb0030
  article-title: Development of a novel aluminium tolerance phenotyping platform used for comparisons of cereal aluminium tolerance and investigations into rice aluminium tolerance mechanisms
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.156794
– volume: 13
  start-page: 522
  year: 2013
  ident: 10.1016/j.bbagen.2023.130491_bb0110
  article-title: Msap: a tool for the statistical analysis of methylation-sensitive amplified polymorphism data
  publication-title: Mol. Ecol. Resour.
  doi: 10.1111/1755-0998.12064
– volume: 47
  start-page: 896
  year: 2019
  ident: 10.1016/j.bbagen.2023.130491_bb0010
  article-title: Effect of different DNA demethylating agents on in vitro cultures of peach rootstock GF 677
  publication-title: Not. Bot. Horti. Agrobot. Cluj-Napoca.
– volume: 106
  start-page: 183
  year: 2010
  ident: 10.1016/j.bbagen.2023.130491_bb0185
  article-title: Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcq134
– volume: 15
  start-page: 473
  year: 1962
  ident: 10.1016/j.bbagen.2023.130491_bb0100
  article-title: A revised medium for rapid growth and bioassays with tobacco tissue cultures
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1962.tb08052.x
– volume: 21
  start-page: 1
  year: 2020
  ident: 10.1016/j.bbagen.2023.130491_bb0145
  article-title: Molecular mechanisms underlying sugarcane response to aluminium stress by RNA-seq
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21217934
– volume: 20
  start-page: 50
  year: 2018
  ident: 10.1016/j.bbagen.2023.130491_bb0085
  article-title: Ethyl methanesulfonate mutagenesis and in vitro polyethylene glycol selection for drought tolerance in sugarcane (Saccharum spp.)
  publication-title: Sugar Tech.
  doi: 10.1007/s12355-017-0524-8
– volume: 142
  start-page: 1061
  year: 1996
  ident: 10.1016/j.bbagen.2023.130491_bb0090
  article-title: A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci
  publication-title: Genetics
  doi: 10.1093/genetics/142.3.1061
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.bbagen.2023.130491_bb0015
  article-title: Nitrogen supply influences photosynthesis establishment along the sugarcane leaf
  publication-title: Sci. Report.
  doi: 10.1038/s41598-018-20653-1
– volume: 15
  year: 2020
  ident: 10.1016/j.bbagen.2023.130491_bb0170
  article-title: Sugarcane mosaic virus mediated changes in cytosine methylation pattern and differentially transcribed fragments in resistance-contrasting sugarcane genotypes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0241493
– volume: 14
  start-page: e0217806
  year: 2019
  ident: 10.1016/j.bbagen.2023.130491_bb0175
  article-title: Microtranscriptome of contrasting sugarcane cultivars in response to aluminium stress
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0217806
– volume: 15
  start-page: 288
  year: 2022
  ident: 10.1016/j.bbagen.2023.130491_bb0060
  article-title: Ex vitro morpho-physiological screening of drought tolerant sugarcane epimutants generated via 5-azacytidine and imidacloprid treatments
  publication-title: Trop. Plant Biol.
  doi: 10.1007/s12042-022-09323-9
– volume: 44
  start-page: 1
  year: 2020
  ident: 10.1016/j.bbagen.2023.130491_bb0020
  article-title: Aluminium toxicity reduces the nutritional efficiency of macronutrients and micronutrients in sugarcane seedlings
  publication-title: Ciênc Agrotec.
  doi: 10.1590/1413-7054202044015120
– volume: 24
  start-page: 221
  year: 2001
  ident: 10.1016/j.bbagen.2023.130491_bb0025
  article-title: Prospecting sugarcane genes involved in aluminium tolerance
  publication-title: Genet. Mol. Biol.
  doi: 10.1590/S1415-47572001000100029
– volume: 21
  start-page: 1
  year: 2021
  ident: 10.1016/j.bbagen.2023.130491_bb0130
  article-title: Enhanced aluminium tolerance in sugarcane: evaluation of SbMATE overexpression and genome-wide identification of ALMTs in Saccharum spp
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-021-02975-x
– volume: 38
  start-page: 257
  year: 2016
  ident: 10.1016/j.bbagen.2023.130491_bb0155
  article-title: Water relations in plants subjected to heavy metal stresses
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-016-2277-5
– volume: 56
  start-page: 65
  year: 1999
  ident: 10.1016/j.bbagen.2023.130491_bb0125
  article-title: Assessment of Al3+ availability in callus culture media for screening tolerant genotypes of Cynodon dactylon
  publication-title: Plant Cell Tissue Organ Cult.
  doi: 10.1023/A:1006248916412
SSID ssj0000595
Score 2.439518
Snippet A protocol for generating aluminium (Al) tolerant sugarcane using 5-azacytidine (5-azaC)-induced epimutagenesis was developed. Eight (8) plantlets per gram of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 130491
SubjectTerms Abiotic stress
Acidic soils
aluminum
callus
Chimera dissolution
cultivars
Demethylation
Epibreeding
epigenetics
leaf area
multidimensional scaling
Mutant line
plantlets
Saccharum
stress tolerance
sugarcane
variance
vegetative propagation
water content
Title The 5-azacytidine-induced epimutagenesis of sugarcane (Saccharum spp. hybrids) for aluminium tolerance
URI https://dx.doi.org/10.1016/j.bbagen.2023.130491
https://www.proquest.com/docview/2878291459
https://www.proquest.com/docview/3154188670
Volume 1867
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: ACRLP
  dateStart: 19950118
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: AIKHN
  dateStart: 19950118
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8006
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000595
  issn: 0304-4165
  databaseCode: AKRWK
  dateStart: 19640113
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9VAEF9KRfRStK3YVssKHuxh-5L9yG6O5WF5KvbyLPS27GY3GmnzgkkOr4f-7Z15SRSFUvCYzS4sM5OZ32S-CHnvgjS8CIYlXikmNXcsz3TCUp-HWJRwJqCj-PUiW1zKz1fqaovMp1oYTKscdf-g0zfaelyZjdScNVU1W2JQD-AE_tZMUpNjRTl2_wKZPr37k-YB8EENkQTJcPdUPrfJ8fIePlrsgsoFjkWWefqQefpHUW-sz_kLsjPCRno23Owl2Yr1Lnk6DJJc75Jn82lu2x4pgfNUMXfrinVXgWmKDPxu4GCgsalu-g4vE9uqpauStv13kHRXR_ph6QoswepvaNs0p_THGmu52hMKqJY6UGFVXcG7bnUdcRZH3CfL84_f5gs2TlNghdC8Y1hzGspce6UxnOqxLY8xwhRpFryEBeNcKtA9zHxSmMTowGXk0qnMOSVeke16VcfXhHJXagfAkgtppJDaA6rQQWXRSbD9wh0QMZHQFmOjcZx3cW2njLKfdiC8RcLbgfAHhP0-1QyNNh7Zryfu2L8ExoIteOTku4mZFliDARIg86pvLXiPhuepVPnDewRgztQYkOfD_77BEXmOT0NWzBuy3f3q41vANp0_3gjvMXly9unL4uIe5Vf3LQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVqhcEBQQLdAaiQMczCZ-xM6xWrXa0nYvW6TeLDtxSlCbjZrksPx6ZjYJCKSqUq-2R7JmJvOIZ-Yj5JPLpeFZbljklWJSc8fSREcs9mkesgJockwULxbJ_Lv8dqWutshs7IXBssrB9vc2fWOth5XpwM1pXZbTJT7qQTiBvzWj2KT6CdmWCmzyhGwfnZ7NF38NstqAr-B5hgRjB92mzMt7-G5xECoXiIws0_g-D_Wfrd44oJMX5PkQOdKj_nIvyVaodsnTHktyvUt2ZiN02ytSgPCpYu6Xy9ZtCd4pMEi9QYg5DXV527V4mdCUDV0VtOmuQdldFejnpcuwC6u7pU1df6U_1tjO1XyhENhSB1asrErYa1c3AeE4wmuyPDm-nM3ZAKjAMqF5y7DtNC9S7ZXGF1WPk3mMESaLk9xLWDDOxQIzxMRHmYmMzrkMXDqVOKfEGzKpVlV4Syh3hXYQW3IhjRRSewgsdK6S4CS4f-H2iBhZaLNh1jhCXtzYsajsp-0Zb5Hxtmf8HmF_qOp-1sYD5_UoHfuPzlhwBw9QfhyFaUE0-EYCbF51jYUE0vA0liq9_4yAsDM2BlR6_9E3OCQ788uLc3t-ujh7R57hTl8k855M2rsufIBQp_UHgyr_BlEu-dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+5-azacytidine-induced+epimutagenesis+of+sugarcane+%28Saccharum+spp.+hybrids%29+for+aluminium+tolerance&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Koetle%2C+Motselisi+Jane&rft.au=Osborn%2C+Christine&rft.au=Snyman%2C+Sandra+Jane&rft.au=Rutherford%2C+Richard+Stuart&rft.date=2023-12-01&rft.issn=0304-4165&rft.volume=1867&rft.issue=12+p.130491-&rft_id=info:doi/10.1016%2Fj.bbagen.2023.130491&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon