Learning unified binary codes for cross-modal retrieval via latent semantic hashing

Nowadays the amount of multimedia data such as images and text is growing exponentially on social websites, arousing the demand of effective and efficient cross-modal retrieval. The cross-modal hashing based methods have attracted considerable attention recently as they can learn efficient binary co...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 213; pp. 191 - 203
Main Authors Xu, Xing, He, Li, Shimada, Atsushi, Taniguchi, Rin-ichiro, Lu, Huimin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 12.11.2016
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2015.11.133

Cover

Abstract Nowadays the amount of multimedia data such as images and text is growing exponentially on social websites, arousing the demand of effective and efficient cross-modal retrieval. The cross-modal hashing based methods have attracted considerable attention recently as they can learn efficient binary codes for heterogeneous data, which enables large-scale similarity search. Generally, to effectively construct the cross-correlation between different modalities, these methods try to find a joint abstraction space where the heterogeneous data can be projected. Then a quantization rule is applied to convert the abstraction representation to binary codes. However, these methods may not effectively bridge the semantic gap through the latent abstraction space because they fail to capture latent information between heterogeneous data. In addition, most of these methods apply the simplest quantization scheme (i.e. sign function) which may cause information loss of the abstraction representation and result in inferior binary codes. To address these challenges, in this paper, we present a novel cross-modal hashing based method that generates unified binary codes combining different modalities. Specifically, we first extract semantic features from the modalities of images and text to capture latent information. Then these semantic features are projected to a joint abstraction space. Finally, the abstraction space is rotated to produce better unified binary codes with much less quantization loss, while preserving the locality structure of projected data. We integrate the binary code learning procedures above to develop an iterative algorithm for optimal solutions. Moreover, we further exploit the useful class label information to reduce the semantic gap between different modalities to benefit the binary code learning. Extensive experiments on four multimedia datasets show that the proposed binary coding schemes outperform several other state-of-the-art methods under cross-modal scenarios.
AbstractList Nowadays the amount of multimedia data such as images and text is growing exponentially on social websites, arousing the demand of effective and efficient cross-modal retrieval. The cross-modal hashing based methods have attracted considerable attention recently as they can learn efficient binary codes for heterogeneous data, which enables large-scale similarity search. Generally, to effectively construct the cross-correlation between different modalities, these methods try to find a joint abstraction space where the heterogeneous data can be projected. Then a quantization rule is applied to convert the abstraction representation to binary codes. However, these methods may not effectively bridge the semantic gap through the latent abstraction space because they fail to capture latent information between heterogeneous data. In addition, most of these methods apply the simplest quantization scheme (i.e. sign function) which may cause information loss of the abstraction representation and result in inferior binary codes. To address these challenges, in this paper, we present a novel cross-modal hashing based method that generates unified binary codes combining different modalities. Specifically, we first extract semantic features from the modalities of images and text to capture latent information. Then these semantic features are projected to a joint abstraction space. Finally, the abstraction space is rotated to produce better unified binary codes with much less quantization loss, while preserving the locality structure of projected data. We integrate the binary code learning procedures above to develop an iterative algorithm for optimal solutions. Moreover, we further exploit the useful class label information to reduce the semantic gap between different modalities to benefit the binary code learning. Extensive experiments on four multimedia datasets show that the proposed binary coding schemes outperform several other state-of-the-art methods under cross-modal scenarios.
Author Xu, Xing
Shimada, Atsushi
Taniguchi, Rin-ichiro
Lu, Huimin
He, Li
Author_xml – sequence: 1
  givenname: Xing
  surname: Xu
  fullname: Xu, Xing
  email: xing@limu.ait.kyushu-u.ac.jp
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, China
– sequence: 2
  givenname: Li
  surname: He
  fullname: He, Li
  email: lih@qti.qualcomm.com
  organization: Qualcomm Technologies, Inc., USA
– sequence: 3
  givenname: Atsushi
  surname: Shimada
  fullname: Shimada, Atsushi
  email: atsushi@limu.ait.kyushu-u.ac.jp
  organization: Department of Advanced Information Technology, Kyushu University, Japan
– sequence: 4
  givenname: Rin-ichiro
  surname: Taniguchi
  fullname: Taniguchi, Rin-ichiro
  email: rin@kyudai.jp
  organization: Department of Advanced Information Technology, Kyushu University, Japan
– sequence: 5
  givenname: Huimin
  surname: Lu
  fullname: Lu, Huimin
  email: luhuimin@ieee.org
  organization: Department of Electronics and Electrical Engineering, Kyushu Institute of Technology, Japan
BookMark eNqFkMtOwzAQRS1UJNrCH7DwDyR4nMRNWCChipdUiQWwtvyYUFepjWy3En9PSlmxgNXczbm6c2Zk4oNHQi6BlcBAXG1KjzsTtiVn0JQAJVTVCZlCu-BFy1sxIVPW8abgFfAzMktpwxgsgHdT8rJCFb3z73TnXe_QUu28ip_UBIuJ9iFSE0NKxTZYNdCIOTrcj2nvFB1URp9pwq3y2Rm6Vmk9Vp2T014NCS9-7py83d-9Lh-L1fPD0_J2VZhqwXMhrBKcmc7qBgGE6JraIGrWNQ3W2JsxgDVWm6YF3VWVxrrTtRZcM1Fb0NWc1Mfe74URe_kR3XYcL4HJgxi5kUcx8iBGAshRzIhd_8KMyyq74HNUbvgPvjnCOD62dxhlMg69QesimixtcH8XfAFYJoVz
CitedBy_id crossref_primary_10_1007_s11276_019_02217_x
crossref_primary_10_1007_s11042_019_7343_8
crossref_primary_10_1109_ACCESS_2019_2900489
crossref_primary_10_1007_s11042_019_7240_1
crossref_primary_10_1016_j_knosys_2019_105428
crossref_primary_10_1016_j_patcog_2018_05_018
crossref_primary_10_1007_s11280_018_0556_3
crossref_primary_10_1016_j_sigpro_2018_09_007
crossref_primary_10_1109_TFUZZ_2020_2984991
crossref_primary_10_1016_j_neucom_2016_11_081
crossref_primary_10_1016_j_knosys_2021_106851
crossref_primary_10_1007_s11042_017_5364_8
crossref_primary_10_1016_j_neucom_2018_11_042
crossref_primary_10_1016_j_patcog_2020_107523
crossref_primary_10_1007_s11042_017_4893_5
crossref_primary_10_1007_s11042_018_6915_3
crossref_primary_10_1109_ACCESS_2019_2940766
crossref_primary_10_1016_j_neucom_2017_05_099
crossref_primary_10_1007_s00521_018_03968_y
crossref_primary_10_1016_j_neucom_2019_04_041
crossref_primary_10_1007_s11042_018_6784_9
crossref_primary_10_1007_s11042_018_7063_5
crossref_primary_10_1007_s11042_020_08798_6
crossref_primary_10_1007_s11280_018_0541_x
crossref_primary_10_1145_3387164
crossref_primary_10_1007_s11042_018_5988_3
crossref_primary_10_1016_j_future_2018_03_047
crossref_primary_10_1109_ACCESS_2020_2967594
crossref_primary_10_1007_s12652_020_02177_7
crossref_primary_10_1007_s11042_017_4932_2
crossref_primary_10_1016_j_cosrev_2020_100336
crossref_primary_10_1007_s11042_017_4489_0
crossref_primary_10_1007_s11042_019_7211_6
crossref_primary_10_1155_2022_7839840
crossref_primary_10_1007_s11042_017_4672_3
crossref_primary_10_1007_s11042_017_4917_1
crossref_primary_10_1016_j_aej_2020_02_034
crossref_primary_10_1109_ACCESS_2020_3015528
Cites_doi 10.1109/34.598228
10.1109/TMM.2015.2390499
10.1109/TPAMI.2007.1097
10.1162/089976600300015349
10.1016/j.ijar.2008.11.006
10.1109/CVPR.2012.6247923
10.1109/TPAMI.2011.190
10.1162/0899766042321814
10.1145/2600428.2609610
10.1109/ICCV.2013.261
10.1145/1646396.1646452
10.1007/s11263-011-0494-3
10.1109/TPAMI.2013.142
10.5244/C.24.58
10.1145/1873951.1873987
10.1109/CVPR.2009.5206659
10.1109/CVPR.2010.5539928
10.1145/1327452.1327494
10.1007/s11263-013-0658-4
10.1109/CVPR.2010.5539994
10.1145/1835449.1835455
10.1109/CVPR.2011.5995432
10.1145/2009916.2009950
10.1109/TPAMI.2013.225
10.1109/CVPR.2015.7298598
10.1609/aaai.v26i1.8208
10.1007/978-3-642-33715-4_39
10.1109/CVPR.2011.5995350
10.1145/2463676.2465274
10.1109/ICME.2015.7177396
10.1109/TMM.2007.900138
10.1023/A:1011139631724
10.1093/biomet/28.3-4.321
10.7551/mitpress/7503.003.0105
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2015.11.133
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 203
ExternalDocumentID 10_1016_j_neucom_2015_11_133
S0925231216307184
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c372t-6da620c9db5e1166954ceeb0955e4efc0951dcdbc581b933be49b4b62b064d1b3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Wed Oct 01 05:57:20 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
Fri Feb 23 02:28:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hashing
Cross-modal retrieval
Matrix factorization
Sparse coding
Binary representation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-6da620c9db5e1166954ceeb0955e4efc0951dcdbc581b933be49b4b62b064d1b3
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_neucom_2015_11_133
crossref_citationtrail_10_1016_j_neucom_2015_11_133
elsevier_sciencedirect_doi_10_1016_j_neucom_2015_11_133
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-12
PublicationDateYYYYMMDD 2016-11-12
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-12
  day: 12
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References X. Xu, A. Shimada, R.-I. Taniguchi, L. He, Coupled dictionary learning and feature mapping for cross-modal retrieval, in: IEEE International Conference on Multimedia and Expo (ICME), 2015, pp. 1–6.
H. Lee, A. Battle, R. Raina, A.Y. Ng, Efficient sparse coding algorithms, in: Advances in Neural Information Processing Systems (NIPS), 2006.
F. Shen, C. Shen, W. Liu, H. Tao Shen, Supervised discrete hashing, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 37–45.
A. Sharma, A. Kumar, H. Daume, D.W. Jacobs, Generalized multiview analysis: a discriminative latent space, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2160–2167.
A. Rahimi, B. Recht, Random features for large-scale kernel machines, in: Advances in Neural Information Processing Systems (NIPS), 2008, pp. 1177–1184.
Costa Pereira, Coviello, Doyle, Rasiwasia, Lanckriet, Levy, Vasconcelos (bib35) 2014; 36
Y. Jia, M. Salzmann, T. Darrell, Learning cross-modality similarity for multinomial data, in: IEEE International Conference on Computer Vision (ICCV), 2011.
Oliva, Torralba (bib33) 2001; 42
A. Li, S. Shan, X. Chen, , W. Gao, Maximizing intra-individual correlations for face recognition across pose differences, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009, pp. 605–611.
Hardoon, Szedmak, Shawe-Tylor (bib1) 2004; 16
J. Zhou, G. Ding, Y. Guo, Latent semantic sparse hashing for cross-modal similarity search, in: Proceedings of the 37th International ACM SIGIR Conference on Research Development in Information Retrieval (SIGIR), 2014, pp. 415–424.
W. Kong, W.J. Li, Double-bit quantization for hashing, in: The 26th AAAI Conference on Artificial Intelligence (AAAI), 2012.
Hwang, Grauman (bib34) 2012; 34
Salakhutdinov, Hinton (bib27) 2009; 50
N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle, G. Lanckriet, R. Levy, N. Vasconcelos, A new approach to cross-modal multimedia retrieval, in: ACM International Conference on Multimedia, 2010, pp. 251–260.
H. Hotelling, Relations between two sets of variates, Biometrika 28 (3-4), 1936, 321-377
Hwang, Grauman (bib8) 2012; 100
Tenenbaum, Freeman (bib20) 2000; 12
Andoni, Indyk (bib24) 2008; 51
Masci, Bronstein, Bronstein, Schmidhuber (bib31) 2014; 36
Y. Zhen, D.-Y. Yeung, Co-regularized hashing for multimodal data, in: Advances in Neural Information Processing Systems (NIPS), 2012, pp. 1385–1393.
K. Wang, R. He, W. Wang, L. Wang, T. Tan, Learning coupled feature spaces for cross-modal matching, in: IEEE International Conference on Computer Vision (ICCV), 2013, pp. 2088–2095.
Y. Gong, S. Lazebnik, Iterative quantization: a procrustean approach to learning binary codes, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 817–824.
Kang, Xiang, Liao, Xu (bib37) 2015; 17
J. Song, Y. Yang, Y. Yang, Z. Huang, H.T. Shen, Inter-media hashing for large-scale retrieval from heterogeneous data sources, in: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD ’13, 2013, pp. 785–796.
Gong, Ke, Isard, Lazebnik (bib17) 2014; 106
D. Zhang, J. Wang, D. Cai, J. Lu, Self-taught hashing for fast similarity search, in: Proceedings of the 33th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR), 2010.
M. Bronstein, A. Bronstein, F. Michel, N. Paragios, Data fusion through cross-modality metric learning using similarity-sensitive hashing, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 3594–3601.
S.J. Hwang, K. Grauman, Accounting for the relative importance of objects in image retrieval, in: Proceedings of the British Machine Vision Conference (BMVC), 2010, pp. 1–12.
A. Sharma, D.W. Jacobs, Bypassing synthesis: Pls for face recognition with pose, low-resolution and sketch, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 593–600.
D. Zhang, F. Wang, L. Si, Composite hashing with multiple information sources, in: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), SIGIR ’11, 2011, pp. 225–234.
.
Gong, Ke, Isard, Lazebnik (bib40) 2014; 106
Rasiwasia, Moreno, Vasconcelos (bib23) 2007; 9
J. Wang, S. Kumar, S.-F. Chang, Semi-supervised hashing for scalable image retrieval, in: IEEE Computer Vision and Pattern Recognition, 2010, pp. 3424–3431.
Monay, Gatica-Perez (bib2) 2007; 29
T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y. Zheng, Nus-wide: a real-world web image database from national university of singapore, in: Proceedings of the ACM International Conference on Image and Video Retrieval, 2009, pp. 48:1–48:9.
M. Raginsky, S. Lazebnik, Locality-sensitive binary codes from shift-invariant kernels, in: Advances in Neural Information Processing Systems (NIPS), 2009, pp. 1509–1517.
S. Kim, Y. Kang, S. Choi, Sequential spectral learning to hash with multiple representations, in: Proceedings of the 12th European Conference on Computer Vision (ECCV), 2012, pp. 538–551.
S. Kumar, R. Udupa, Learning hash functions for cross-view similarity search, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI’11, 2011, pp. 1360–1365.
A. Sharma, A. Kumar, H. Daume, D. Jacobs, Generalized multiview analysis: a discriminative latent space, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2160–2167.
Belhumeur, Hespanha, Kriegman (bib21) 1997; 19
Gong (10.1016/j.neucom.2015.11.133_bib17) 2014; 106
10.1016/j.neucom.2015.11.133_bib10
10.1016/j.neucom.2015.11.133_bib32
10.1016/j.neucom.2015.11.133_bib30
Andoni (10.1016/j.neucom.2015.11.133_bib24) 2008; 51
Masci (10.1016/j.neucom.2015.11.133_bib31) 2014; 36
Kang (10.1016/j.neucom.2015.11.133_bib37) 2015; 17
Gong (10.1016/j.neucom.2015.11.133_bib40) 2014; 106
10.1016/j.neucom.2015.11.133_bib25
Salakhutdinov (10.1016/j.neucom.2015.11.133_bib27) 2009; 50
Tenenbaum (10.1016/j.neucom.2015.11.133_bib20) 2000; 12
10.1016/j.neucom.2015.11.133_bib22
Costa Pereira (10.1016/j.neucom.2015.11.133_bib35) 2014; 36
10.1016/j.neucom.2015.11.133_bib29
10.1016/j.neucom.2015.11.133_bib28
10.1016/j.neucom.2015.11.133_bib26
10.1016/j.neucom.2015.11.133_bib9
Hwang (10.1016/j.neucom.2015.11.133_bib8) 2012; 100
10.1016/j.neucom.2015.11.133_bib42
10.1016/j.neucom.2015.11.133_bib41
Rasiwasia (10.1016/j.neucom.2015.11.133_bib23) 2007; 9
10.1016/j.neucom.2015.11.133_bib3
10.1016/j.neucom.2015.11.133_bib5
10.1016/j.neucom.2015.11.133_bib4
10.1016/j.neucom.2015.11.133_bib7
10.1016/j.neucom.2015.11.133_bib6
10.1016/j.neucom.2015.11.133_bib19
Hwang (10.1016/j.neucom.2015.11.133_bib34) 2012; 34
10.1016/j.neucom.2015.11.133_bib14
10.1016/j.neucom.2015.11.133_bib36
10.1016/j.neucom.2015.11.133_bib13
10.1016/j.neucom.2015.11.133_bib12
Belhumeur (10.1016/j.neucom.2015.11.133_bib21) 1997; 19
10.1016/j.neucom.2015.11.133_bib11
Monay (10.1016/j.neucom.2015.11.133_bib2) 2007; 29
10.1016/j.neucom.2015.11.133_bib18
10.1016/j.neucom.2015.11.133_bib39
10.1016/j.neucom.2015.11.133_bib16
Oliva (10.1016/j.neucom.2015.11.133_bib33) 2001; 42
10.1016/j.neucom.2015.11.133_bib38
Hardoon (10.1016/j.neucom.2015.11.133_bib1) 2004; 16
10.1016/j.neucom.2015.11.133_bib15
References_xml – volume: 50
  start-page: 969
  year: 2009
  end-page: 978
  ident: bib27
  article-title: Semantic hashing
  publication-title: Int. J. Approx. Reason.
– reference: T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y. Zheng, Nus-wide: a real-world web image database from national university of singapore, in: Proceedings of the ACM International Conference on Image and Video Retrieval, 2009, pp. 48:1–48:9.
– reference: M. Raginsky, S. Lazebnik, Locality-sensitive binary codes from shift-invariant kernels, in: Advances in Neural Information Processing Systems (NIPS), 2009, pp. 1509–1517.
– volume: 42
  start-page: 145
  year: 2001
  end-page: 175
  ident: bib33
  article-title: Modeling the shape of the scene
  publication-title: Int. J. Comput. Vis.
– volume: 17
  start-page: 370
  year: 2015
  end-page: 381
  ident: bib37
  article-title: Learning consistent feature representation for cross-modal multimedia retrieval
  publication-title: IEEE Trans. Multimed.
– reference: N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle, G. Lanckriet, R. Levy, N. Vasconcelos, A new approach to cross-modal multimedia retrieval, in: ACM International Conference on Multimedia, 2010, pp. 251–260.
– reference: Y. Jia, M. Salzmann, T. Darrell, Learning cross-modality similarity for multinomial data, in: IEEE International Conference on Computer Vision (ICCV), 2011.
– reference: X. Xu, A. Shimada, R.-I. Taniguchi, L. He, Coupled dictionary learning and feature mapping for cross-modal retrieval, in: IEEE International Conference on Multimedia and Expo (ICME), 2015, pp. 1–6.
– reference: D. Zhang, J. Wang, D. Cai, J. Lu, Self-taught hashing for fast similarity search, in: Proceedings of the 33th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR), 2010.
– volume: 34
  start-page: 1145
  year: 2012
  end-page: 1158
  ident: bib34
  article-title: Reading between the lines
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: J. Song, Y. Yang, Y. Yang, Z. Huang, H.T. Shen, Inter-media hashing for large-scale retrieval from heterogeneous data sources, in: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD ’13, 2013, pp. 785–796.
– reference: W. Kong, W.J. Li, Double-bit quantization for hashing, in: The 26th AAAI Conference on Artificial Intelligence (AAAI), 2012.
– reference: A. Sharma, D.W. Jacobs, Bypassing synthesis: Pls for face recognition with pose, low-resolution and sketch, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 593–600.
– reference: J. Zhou, G. Ding, Y. Guo, Latent semantic sparse hashing for cross-modal similarity search, in: Proceedings of the 37th International ACM SIGIR Conference on Research Development in Information Retrieval (SIGIR), 2014, pp. 415–424.
– reference: F. Shen, C. Shen, W. Liu, H. Tao Shen, Supervised discrete hashing, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 37–45.
– reference: A. Rahimi, B. Recht, Random features for large-scale kernel machines, in: Advances in Neural Information Processing Systems (NIPS), 2008, pp. 1177–1184.
– reference: J. Wang, S. Kumar, S.-F. Chang, Semi-supervised hashing for scalable image retrieval, in: IEEE Computer Vision and Pattern Recognition, 2010, pp. 3424–3431.
– reference: A. Sharma, A. Kumar, H. Daume, D. Jacobs, Generalized multiview analysis: a discriminative latent space, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2160–2167.
– volume: 12
  start-page: 1247
  year: 2000
  end-page: 1283
  ident: bib20
  article-title: Separating style and content with bilinear models
  publication-title: Neural Comput.
– reference: Y. Gong, S. Lazebnik, Iterative quantization: a procrustean approach to learning binary codes, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 817–824.
– volume: 19
  start-page: 711
  year: 1997
  end-page: 720
  ident: bib21
  article-title: Eigenfaces vs. fisherfaces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 9
  start-page: 923
  year: 2007
  end-page: 938
  ident: bib23
  article-title: Bridging the gap
  publication-title: IEEE Trans. Multimed.
– volume: 100
  start-page: 134
  year: 2012
  end-page: 153
  ident: bib8
  article-title: Learning the relative importance of objects from tagged images for retrieval and cross-modal search
  publication-title: Int. J. Comput. Vis.
– volume: 51
  start-page: 117
  year: 2008
  end-page: 122
  ident: bib24
  article-title: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
  publication-title: ACM Commun.
– reference: K. Wang, R. He, W. Wang, L. Wang, T. Tan, Learning coupled feature spaces for cross-modal matching, in: IEEE International Conference on Computer Vision (ICCV), 2013, pp. 2088–2095.
– volume: 106
  start-page: 210
  year: 2014
  end-page: 233
  ident: bib17
  article-title: A multi-view embedding space for modeling internet images, tags, and their semantics
  publication-title: Int. J. Comput. Vis.
– reference: A. Sharma, A. Kumar, H. Daume, D.W. Jacobs, Generalized multiview analysis: a discriminative latent space, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2160–2167.
– reference: H. Hotelling, Relations between two sets of variates, Biometrika 28 (3-4), 1936, 321-377,
– reference: .
– volume: 16
  start-page: 2639
  year: 2004
  end-page: 2664
  ident: bib1
  article-title: Canonical correlation analysis
  publication-title: Neural Comput.
– reference: Y. Zhen, D.-Y. Yeung, Co-regularized hashing for multimodal data, in: Advances in Neural Information Processing Systems (NIPS), 2012, pp. 1385–1393.
– reference: H. Lee, A. Battle, R. Raina, A.Y. Ng, Efficient sparse coding algorithms, in: Advances in Neural Information Processing Systems (NIPS), 2006.
– reference: S.J. Hwang, K. Grauman, Accounting for the relative importance of objects in image retrieval, in: Proceedings of the British Machine Vision Conference (BMVC), 2010, pp. 1–12.
– reference: M. Bronstein, A. Bronstein, F. Michel, N. Paragios, Data fusion through cross-modality metric learning using similarity-sensitive hashing, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 3594–3601.
– reference: S. Kim, Y. Kang, S. Choi, Sequential spectral learning to hash with multiple representations, in: Proceedings of the 12th European Conference on Computer Vision (ECCV), 2012, pp. 538–551.
– reference: A. Li, S. Shan, X. Chen, , W. Gao, Maximizing intra-individual correlations for face recognition across pose differences, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009, pp. 605–611.
– volume: 106
  start-page: 210
  year: 2014
  end-page: 233
  ident: bib40
  article-title: A multi-view embedding space for modeling internet images, tags, and their semantics
  publication-title: Int. J. Comput. Vis.
– reference: D. Zhang, F. Wang, L. Si, Composite hashing with multiple information sources, in: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), SIGIR ’11, 2011, pp. 225–234.
– reference: S. Kumar, R. Udupa, Learning hash functions for cross-view similarity search, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI’11, 2011, pp. 1360–1365.
– volume: 36
  start-page: 521
  year: 2014
  end-page: 535
  ident: bib35
  article-title: On the role of correlation and abstraction in cross-modal multimedia retrieval
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 29
  start-page: 1802
  year: 2007
  end-page: 1817
  ident: bib2
  article-title: Modeling semantic aspects for cross-media image indexing
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 36
  start-page: 824
  year: 2014
  end-page: 830
  ident: bib31
  article-title: Multimodal similarity-preserving hashing
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 19
  start-page: 711
  year: 1997
  ident: 10.1016/j.neucom.2015.11.133_bib21
  article-title: Eigenfaces vs. fisherfaces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.598228
– volume: 17
  start-page: 370
  issue: 3
  year: 2015
  ident: 10.1016/j.neucom.2015.11.133_bib37
  article-title: Learning consistent feature representation for cross-modal multimedia retrieval
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2015.2390499
– volume: 29
  start-page: 1802
  issue: 10
  year: 2007
  ident: 10.1016/j.neucom.2015.11.133_bib2
  article-title: Modeling semantic aspects for cross-media image indexing
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1097
– volume: 12
  start-page: 1247
  issue: 6
  year: 2000
  ident: 10.1016/j.neucom.2015.11.133_bib20
  article-title: Separating style and content with bilinear models
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015349
– volume: 50
  start-page: 969
  issue: 7
  year: 2009
  ident: 10.1016/j.neucom.2015.11.133_bib27
  article-title: Semantic hashing
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2008.11.006
– ident: 10.1016/j.neucom.2015.11.133_bib6
  doi: 10.1109/CVPR.2012.6247923
– volume: 34
  start-page: 1145
  issue: 6
  year: 2012
  ident: 10.1016/j.neucom.2015.11.133_bib34
  article-title: Reading between the lines
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.190
– volume: 16
  start-page: 2639
  issue: 12
  year: 2004
  ident: 10.1016/j.neucom.2015.11.133_bib1
  article-title: Canonical correlation analysis
  publication-title: Neural Comput.
  doi: 10.1162/0899766042321814
– ident: 10.1016/j.neucom.2015.11.133_bib15
  doi: 10.1145/2600428.2609610
– ident: 10.1016/j.neucom.2015.11.133_bib36
  doi: 10.1109/ICCV.2013.261
– ident: 10.1016/j.neucom.2015.11.133_bib39
  doi: 10.1145/1646396.1646452
– ident: 10.1016/j.neucom.2015.11.133_bib42
– volume: 100
  start-page: 134
  year: 2012
  ident: 10.1016/j.neucom.2015.11.133_bib8
  article-title: Learning the relative importance of objects from tagged images for retrieval and cross-modal search
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-011-0494-3
– volume: 36
  start-page: 521
  issue: 3
  year: 2014
  ident: 10.1016/j.neucom.2015.11.133_bib35
  article-title: On the role of correlation and abstraction in cross-modal multimedia retrieval
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.142
– ident: 10.1016/j.neucom.2015.11.133_bib38
  doi: 10.1109/CVPR.2012.6247923
– ident: 10.1016/j.neucom.2015.11.133_bib3
  doi: 10.5244/C.24.58
– ident: 10.1016/j.neucom.2015.11.133_bib5
  doi: 10.1145/1873951.1873987
– ident: 10.1016/j.neucom.2015.11.133_bib18
  doi: 10.1109/CVPR.2009.5206659
– ident: 10.1016/j.neucom.2015.11.133_bib12
  doi: 10.1109/CVPR.2010.5539928
– ident: 10.1016/j.neucom.2015.11.133_bib11
– volume: 51
  start-page: 117
  issue: 1
  year: 2008
  ident: 10.1016/j.neucom.2015.11.133_bib24
  article-title: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
  publication-title: ACM Commun.
  doi: 10.1145/1327452.1327494
– volume: 106
  start-page: 210
  issue: 2
  year: 2014
  ident: 10.1016/j.neucom.2015.11.133_bib40
  article-title: A multi-view embedding space for modeling internet images, tags, and their semantics
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0658-4
– ident: 10.1016/j.neucom.2015.11.133_bib26
  doi: 10.1109/CVPR.2010.5539994
– ident: 10.1016/j.neucom.2015.11.133_bib25
  doi: 10.1145/1835449.1835455
– ident: 10.1016/j.neucom.2015.11.133_bib28
  doi: 10.1109/CVPR.2011.5995432
– ident: 10.1016/j.neucom.2015.11.133_bib7
– ident: 10.1016/j.neucom.2015.11.133_bib10
  doi: 10.1145/2009916.2009950
– volume: 36
  start-page: 824
  issue: 4
  year: 2014
  ident: 10.1016/j.neucom.2015.11.133_bib31
  article-title: Multimodal similarity-preserving hashing
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.225
– ident: 10.1016/j.neucom.2015.11.133_bib30
  doi: 10.1109/CVPR.2015.7298598
– volume: 106
  start-page: 210
  issue: 2
  year: 2014
  ident: 10.1016/j.neucom.2015.11.133_bib17
  article-title: A multi-view embedding space for modeling internet images, tags, and their semantics
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0658-4
– ident: 10.1016/j.neucom.2015.11.133_bib29
  doi: 10.1609/aaai.v26i1.8208
– ident: 10.1016/j.neucom.2015.11.133_bib41
– ident: 10.1016/j.neucom.2015.11.133_bib13
  doi: 10.1007/978-3-642-33715-4_39
– ident: 10.1016/j.neucom.2015.11.133_bib19
  doi: 10.1109/CVPR.2011.5995350
– ident: 10.1016/j.neucom.2015.11.133_bib4
  doi: 10.1145/2463676.2465274
– ident: 10.1016/j.neucom.2015.11.133_bib9
  doi: 10.1109/ICME.2015.7177396
– volume: 9
  start-page: 923
  issue: 5
  year: 2007
  ident: 10.1016/j.neucom.2015.11.133_bib23
  article-title: Bridging the gap
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2007.900138
– ident: 10.1016/j.neucom.2015.11.133_bib22
  doi: 10.1109/ICCV.2013.261
– volume: 42
  start-page: 145
  issue: 3
  year: 2001
  ident: 10.1016/j.neucom.2015.11.133_bib33
  article-title: Modeling the shape of the scene
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1011139631724
– ident: 10.1016/j.neucom.2015.11.133_bib16
  doi: 10.1093/biomet/28.3-4.321
– ident: 10.1016/j.neucom.2015.11.133_bib32
  doi: 10.7551/mitpress/7503.003.0105
– ident: 10.1016/j.neucom.2015.11.133_bib14
SSID ssj0017129
Score 2.4074697
Snippet Nowadays the amount of multimedia data such as images and text is growing exponentially on social websites, arousing the demand of effective and efficient...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 191
SubjectTerms Binary representation
Cross-modal retrieval
Hashing
Matrix factorization
Sparse coding
Title Learning unified binary codes for cross-modal retrieval via latent semantic hashing
URI https://dx.doi.org/10.1016/j.neucom.2015.11.133
Volume 213
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YPXbbOvPI6lWKpiL7XQW8g-opE2LX149Lc7m0dREAWPCTtJ-HYy8y3MfIPQbeJxaYT2iJKJR4QwnCibJoQnUviJ0z9PXXPy08gfTsTDVE4bqF_3wriyyir2lzG9iNbVnW6FZneZZd2xFzE4RVEGjALyZOg0QYUI3BSDzseuzIMGlJV6e0wSt7punytqvHK7dTUjkAQlxI4O5fzn9PQl5QyO0EHFFXGv_Jxj1LD5CTqs5zDg6rc8ReNKJPUFb_MsBU6JVdFli12_-hoDLcXF28h8YeB5q2KIFngYfs8SPAOymW_w2s4B40zj13K60hmaDO6e-0NSDUsgmgdsQ3yT-MzTkVHSUur7kRSQ_5RTmLPCptpRKaON0hKIasS5siJSQvlMASkxVPFz1MwXub1AmGmqlQZqQ1MrQhmGJoCNNDpkViqqkxbiNUaxrpTE3UCLWVyXjL3FJbKxQxYOGTEg20JkZ7UslTT-WB_U8MffPCKGYP-r5eW_La_QPlz5rteQsmvU3Ky29gZIx0a1C69qo73e_eNw9Al4ltjO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgHODCjiirD1xN4y3LESGqAi0XWombFS-BoDatoOXItzPOgkBCIHFNPEn0PJl5lubNIHSWBlxaYQKiZRoQISwn2mUp4akUYer7n2denDy4C3sjcfMgH5bQZaOF8WWVdeyvYnoZresrnRrNzizPO_dBwuAURRkwCsiTsVhGK0KyyJ_Azt8_6zxoRFnVcI9J4pc3-rmyyKtwC180AllQQvA4p5z_nJ--5JzuJlqvySK-qL5nCy25YhttNIMYcP1f7qD7ukvqI14UeQakEutSZou9YP0VAy_F5dvIZGrheS_lFC1wMfyWp3gMbLOY41c3AZBzg5-q8Uq7aNS9Gl72SD0tgRgesTkJbRqywCRWS0dpGCZSQALUvsWcEy4znktZY7WRwFQTzrUTiRY6ZBpYiaWa76FWMS3cPsLMUKMNcBuaORHLOLYR7KQ1MXNSU5O2EW8wUqZuJe4nWoxVUzP2rCpklUcWThkKkG0j8mk1q1pp_LE-auBX31xCQbT_1fLg35anaLU3HPRV__ru9hCtwZ3QCw8pO0Kt-cvCHQMDmeuT0sM-AJ8W2mM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+unified+binary+codes+for+cross-modal+retrieval+via+latent+semantic+hashing&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Xu%2C+Xing&rft.au=He%2C+Li&rft.au=Shimada%2C+Atsushi&rft.au=Taniguchi%2C+Rin-ichiro&rft.date=2016-11-12&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=213&rft.spage=191&rft.epage=203&rft_id=info:doi/10.1016%2Fj.neucom.2015.11.133&rft.externalDocID=S0925231216307184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon