Learning unified binary codes for cross-modal retrieval via latent semantic hashing
Nowadays the amount of multimedia data such as images and text is growing exponentially on social websites, arousing the demand of effective and efficient cross-modal retrieval. The cross-modal hashing based methods have attracted considerable attention recently as they can learn efficient binary co...
Saved in:
| Published in | Neurocomputing (Amsterdam) Vol. 213; pp. 191 - 203 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
12.11.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-2312 1872-8286 |
| DOI | 10.1016/j.neucom.2015.11.133 |
Cover
| Abstract | Nowadays the amount of multimedia data such as images and text is growing exponentially on social websites, arousing the demand of effective and efficient cross-modal retrieval. The cross-modal hashing based methods have attracted considerable attention recently as they can learn efficient binary codes for heterogeneous data, which enables large-scale similarity search. Generally, to effectively construct the cross-correlation between different modalities, these methods try to find a joint abstraction space where the heterogeneous data can be projected. Then a quantization rule is applied to convert the abstraction representation to binary codes. However, these methods may not effectively bridge the semantic gap through the latent abstraction space because they fail to capture latent information between heterogeneous data. In addition, most of these methods apply the simplest quantization scheme (i.e. sign function) which may cause information loss of the abstraction representation and result in inferior binary codes. To address these challenges, in this paper, we present a novel cross-modal hashing based method that generates unified binary codes combining different modalities. Specifically, we first extract semantic features from the modalities of images and text to capture latent information. Then these semantic features are projected to a joint abstraction space. Finally, the abstraction space is rotated to produce better unified binary codes with much less quantization loss, while preserving the locality structure of projected data. We integrate the binary code learning procedures above to develop an iterative algorithm for optimal solutions. Moreover, we further exploit the useful class label information to reduce the semantic gap between different modalities to benefit the binary code learning. Extensive experiments on four multimedia datasets show that the proposed binary coding schemes outperform several other state-of-the-art methods under cross-modal scenarios. |
|---|---|
| AbstractList | Nowadays the amount of multimedia data such as images and text is growing exponentially on social websites, arousing the demand of effective and efficient cross-modal retrieval. The cross-modal hashing based methods have attracted considerable attention recently as they can learn efficient binary codes for heterogeneous data, which enables large-scale similarity search. Generally, to effectively construct the cross-correlation between different modalities, these methods try to find a joint abstraction space where the heterogeneous data can be projected. Then a quantization rule is applied to convert the abstraction representation to binary codes. However, these methods may not effectively bridge the semantic gap through the latent abstraction space because they fail to capture latent information between heterogeneous data. In addition, most of these methods apply the simplest quantization scheme (i.e. sign function) which may cause information loss of the abstraction representation and result in inferior binary codes. To address these challenges, in this paper, we present a novel cross-modal hashing based method that generates unified binary codes combining different modalities. Specifically, we first extract semantic features from the modalities of images and text to capture latent information. Then these semantic features are projected to a joint abstraction space. Finally, the abstraction space is rotated to produce better unified binary codes with much less quantization loss, while preserving the locality structure of projected data. We integrate the binary code learning procedures above to develop an iterative algorithm for optimal solutions. Moreover, we further exploit the useful class label information to reduce the semantic gap between different modalities to benefit the binary code learning. Extensive experiments on four multimedia datasets show that the proposed binary coding schemes outperform several other state-of-the-art methods under cross-modal scenarios. |
| Author | Xu, Xing Shimada, Atsushi Taniguchi, Rin-ichiro Lu, Huimin He, Li |
| Author_xml | – sequence: 1 givenname: Xing surname: Xu fullname: Xu, Xing email: xing@limu.ait.kyushu-u.ac.jp organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, China – sequence: 2 givenname: Li surname: He fullname: He, Li email: lih@qti.qualcomm.com organization: Qualcomm Technologies, Inc., USA – sequence: 3 givenname: Atsushi surname: Shimada fullname: Shimada, Atsushi email: atsushi@limu.ait.kyushu-u.ac.jp organization: Department of Advanced Information Technology, Kyushu University, Japan – sequence: 4 givenname: Rin-ichiro surname: Taniguchi fullname: Taniguchi, Rin-ichiro email: rin@kyudai.jp organization: Department of Advanced Information Technology, Kyushu University, Japan – sequence: 5 givenname: Huimin surname: Lu fullname: Lu, Huimin email: luhuimin@ieee.org organization: Department of Electronics and Electrical Engineering, Kyushu Institute of Technology, Japan |
| BookMark | eNqFkMtOwzAQRS1UJNrCH7DwDyR4nMRNWCChipdUiQWwtvyYUFepjWy3En9PSlmxgNXczbm6c2Zk4oNHQi6BlcBAXG1KjzsTtiVn0JQAJVTVCZlCu-BFy1sxIVPW8abgFfAzMktpwxgsgHdT8rJCFb3z73TnXe_QUu28ip_UBIuJ9iFSE0NKxTZYNdCIOTrcj2nvFB1URp9pwq3y2Rm6Vmk9Vp2T014NCS9-7py83d-9Lh-L1fPD0_J2VZhqwXMhrBKcmc7qBgGE6JraIGrWNQ3W2JsxgDVWm6YF3VWVxrrTtRZcM1Fb0NWc1Mfe74URe_kR3XYcL4HJgxi5kUcx8iBGAshRzIhd_8KMyyq74HNUbvgPvjnCOD62dxhlMg69QesimixtcH8XfAFYJoVz |
| CitedBy_id | crossref_primary_10_1007_s11276_019_02217_x crossref_primary_10_1007_s11042_019_7343_8 crossref_primary_10_1109_ACCESS_2019_2900489 crossref_primary_10_1007_s11042_019_7240_1 crossref_primary_10_1016_j_knosys_2019_105428 crossref_primary_10_1016_j_patcog_2018_05_018 crossref_primary_10_1007_s11280_018_0556_3 crossref_primary_10_1016_j_sigpro_2018_09_007 crossref_primary_10_1109_TFUZZ_2020_2984991 crossref_primary_10_1016_j_neucom_2016_11_081 crossref_primary_10_1016_j_knosys_2021_106851 crossref_primary_10_1007_s11042_017_5364_8 crossref_primary_10_1016_j_neucom_2018_11_042 crossref_primary_10_1016_j_patcog_2020_107523 crossref_primary_10_1007_s11042_017_4893_5 crossref_primary_10_1007_s11042_018_6915_3 crossref_primary_10_1109_ACCESS_2019_2940766 crossref_primary_10_1016_j_neucom_2017_05_099 crossref_primary_10_1007_s00521_018_03968_y crossref_primary_10_1016_j_neucom_2019_04_041 crossref_primary_10_1007_s11042_018_6784_9 crossref_primary_10_1007_s11042_018_7063_5 crossref_primary_10_1007_s11042_020_08798_6 crossref_primary_10_1007_s11280_018_0541_x crossref_primary_10_1145_3387164 crossref_primary_10_1007_s11042_018_5988_3 crossref_primary_10_1016_j_future_2018_03_047 crossref_primary_10_1109_ACCESS_2020_2967594 crossref_primary_10_1007_s12652_020_02177_7 crossref_primary_10_1007_s11042_017_4932_2 crossref_primary_10_1016_j_cosrev_2020_100336 crossref_primary_10_1007_s11042_017_4489_0 crossref_primary_10_1007_s11042_019_7211_6 crossref_primary_10_1155_2022_7839840 crossref_primary_10_1007_s11042_017_4672_3 crossref_primary_10_1007_s11042_017_4917_1 crossref_primary_10_1016_j_aej_2020_02_034 crossref_primary_10_1109_ACCESS_2020_3015528 |
| Cites_doi | 10.1109/34.598228 10.1109/TMM.2015.2390499 10.1109/TPAMI.2007.1097 10.1162/089976600300015349 10.1016/j.ijar.2008.11.006 10.1109/CVPR.2012.6247923 10.1109/TPAMI.2011.190 10.1162/0899766042321814 10.1145/2600428.2609610 10.1109/ICCV.2013.261 10.1145/1646396.1646452 10.1007/s11263-011-0494-3 10.1109/TPAMI.2013.142 10.5244/C.24.58 10.1145/1873951.1873987 10.1109/CVPR.2009.5206659 10.1109/CVPR.2010.5539928 10.1145/1327452.1327494 10.1007/s11263-013-0658-4 10.1109/CVPR.2010.5539994 10.1145/1835449.1835455 10.1109/CVPR.2011.5995432 10.1145/2009916.2009950 10.1109/TPAMI.2013.225 10.1109/CVPR.2015.7298598 10.1609/aaai.v26i1.8208 10.1007/978-3-642-33715-4_39 10.1109/CVPR.2011.5995350 10.1145/2463676.2465274 10.1109/ICME.2015.7177396 10.1109/TMM.2007.900138 10.1023/A:1011139631724 10.1093/biomet/28.3-4.321 10.7551/mitpress/7503.003.0105 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. |
| Copyright_xml | – notice: 2016 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2015.11.133 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 203 |
| ExternalDocumentID | 10_1016_j_neucom_2015_11_133 S0925231216307184 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c372t-6da620c9db5e1166954ceeb0955e4efc0951dcdbc581b933be49b4b62b064d1b3 |
| IEDL.DBID | .~1 |
| ISSN | 0925-2312 |
| IngestDate | Wed Oct 01 05:57:20 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Fri Feb 23 02:28:32 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hashing Cross-modal retrieval Matrix factorization Sparse coding Binary representation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-6da620c9db5e1166954ceeb0955e4efc0951dcdbc581b933be49b4b62b064d1b3 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2015_11_133 crossref_citationtrail_10_1016_j_neucom_2015_11_133 elsevier_sciencedirect_doi_10_1016_j_neucom_2015_11_133 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-11-12 |
| PublicationDateYYYYMMDD | 2016-11-12 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-12 day: 12 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | X. Xu, A. Shimada, R.-I. Taniguchi, L. He, Coupled dictionary learning and feature mapping for cross-modal retrieval, in: IEEE International Conference on Multimedia and Expo (ICME), 2015, pp. 1–6. H. Lee, A. Battle, R. Raina, A.Y. Ng, Efficient sparse coding algorithms, in: Advances in Neural Information Processing Systems (NIPS), 2006. F. Shen, C. Shen, W. Liu, H. Tao Shen, Supervised discrete hashing, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 37–45. A. Sharma, A. Kumar, H. Daume, D.W. Jacobs, Generalized multiview analysis: a discriminative latent space, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2160–2167. A. Rahimi, B. Recht, Random features for large-scale kernel machines, in: Advances in Neural Information Processing Systems (NIPS), 2008, pp. 1177–1184. Costa Pereira, Coviello, Doyle, Rasiwasia, Lanckriet, Levy, Vasconcelos (bib35) 2014; 36 Y. Jia, M. Salzmann, T. Darrell, Learning cross-modality similarity for multinomial data, in: IEEE International Conference on Computer Vision (ICCV), 2011. Oliva, Torralba (bib33) 2001; 42 A. Li, S. Shan, X. Chen, , W. Gao, Maximizing intra-individual correlations for face recognition across pose differences, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009, pp. 605–611. Hardoon, Szedmak, Shawe-Tylor (bib1) 2004; 16 J. Zhou, G. Ding, Y. Guo, Latent semantic sparse hashing for cross-modal similarity search, in: Proceedings of the 37th International ACM SIGIR Conference on Research Development in Information Retrieval (SIGIR), 2014, pp. 415–424. W. Kong, W.J. Li, Double-bit quantization for hashing, in: The 26th AAAI Conference on Artificial Intelligence (AAAI), 2012. Hwang, Grauman (bib34) 2012; 34 Salakhutdinov, Hinton (bib27) 2009; 50 N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle, G. Lanckriet, R. Levy, N. Vasconcelos, A new approach to cross-modal multimedia retrieval, in: ACM International Conference on Multimedia, 2010, pp. 251–260. H. Hotelling, Relations between two sets of variates, Biometrika 28 (3-4), 1936, 321-377 Hwang, Grauman (bib8) 2012; 100 Tenenbaum, Freeman (bib20) 2000; 12 Andoni, Indyk (bib24) 2008; 51 Masci, Bronstein, Bronstein, Schmidhuber (bib31) 2014; 36 Y. Zhen, D.-Y. Yeung, Co-regularized hashing for multimodal data, in: Advances in Neural Information Processing Systems (NIPS), 2012, pp. 1385–1393. K. Wang, R. He, W. Wang, L. Wang, T. Tan, Learning coupled feature spaces for cross-modal matching, in: IEEE International Conference on Computer Vision (ICCV), 2013, pp. 2088–2095. Y. Gong, S. Lazebnik, Iterative quantization: a procrustean approach to learning binary codes, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 817–824. Kang, Xiang, Liao, Xu (bib37) 2015; 17 J. Song, Y. Yang, Y. Yang, Z. Huang, H.T. Shen, Inter-media hashing for large-scale retrieval from heterogeneous data sources, in: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD ’13, 2013, pp. 785–796. Gong, Ke, Isard, Lazebnik (bib17) 2014; 106 D. Zhang, J. Wang, D. Cai, J. Lu, Self-taught hashing for fast similarity search, in: Proceedings of the 33th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR), 2010. M. Bronstein, A. Bronstein, F. Michel, N. Paragios, Data fusion through cross-modality metric learning using similarity-sensitive hashing, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 3594–3601. S.J. Hwang, K. Grauman, Accounting for the relative importance of objects in image retrieval, in: Proceedings of the British Machine Vision Conference (BMVC), 2010, pp. 1–12. A. Sharma, D.W. Jacobs, Bypassing synthesis: Pls for face recognition with pose, low-resolution and sketch, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 593–600. D. Zhang, F. Wang, L. Si, Composite hashing with multiple information sources, in: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), SIGIR ’11, 2011, pp. 225–234. . Gong, Ke, Isard, Lazebnik (bib40) 2014; 106 Rasiwasia, Moreno, Vasconcelos (bib23) 2007; 9 J. Wang, S. Kumar, S.-F. Chang, Semi-supervised hashing for scalable image retrieval, in: IEEE Computer Vision and Pattern Recognition, 2010, pp. 3424–3431. Monay, Gatica-Perez (bib2) 2007; 29 T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y. Zheng, Nus-wide: a real-world web image database from national university of singapore, in: Proceedings of the ACM International Conference on Image and Video Retrieval, 2009, pp. 48:1–48:9. M. Raginsky, S. Lazebnik, Locality-sensitive binary codes from shift-invariant kernels, in: Advances in Neural Information Processing Systems (NIPS), 2009, pp. 1509–1517. S. Kim, Y. Kang, S. Choi, Sequential spectral learning to hash with multiple representations, in: Proceedings of the 12th European Conference on Computer Vision (ECCV), 2012, pp. 538–551. S. Kumar, R. Udupa, Learning hash functions for cross-view similarity search, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI’11, 2011, pp. 1360–1365. A. Sharma, A. Kumar, H. Daume, D. Jacobs, Generalized multiview analysis: a discriminative latent space, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2160–2167. Belhumeur, Hespanha, Kriegman (bib21) 1997; 19 Gong (10.1016/j.neucom.2015.11.133_bib17) 2014; 106 10.1016/j.neucom.2015.11.133_bib10 10.1016/j.neucom.2015.11.133_bib32 10.1016/j.neucom.2015.11.133_bib30 Andoni (10.1016/j.neucom.2015.11.133_bib24) 2008; 51 Masci (10.1016/j.neucom.2015.11.133_bib31) 2014; 36 Kang (10.1016/j.neucom.2015.11.133_bib37) 2015; 17 Gong (10.1016/j.neucom.2015.11.133_bib40) 2014; 106 10.1016/j.neucom.2015.11.133_bib25 Salakhutdinov (10.1016/j.neucom.2015.11.133_bib27) 2009; 50 Tenenbaum (10.1016/j.neucom.2015.11.133_bib20) 2000; 12 10.1016/j.neucom.2015.11.133_bib22 Costa Pereira (10.1016/j.neucom.2015.11.133_bib35) 2014; 36 10.1016/j.neucom.2015.11.133_bib29 10.1016/j.neucom.2015.11.133_bib28 10.1016/j.neucom.2015.11.133_bib26 10.1016/j.neucom.2015.11.133_bib9 Hwang (10.1016/j.neucom.2015.11.133_bib8) 2012; 100 10.1016/j.neucom.2015.11.133_bib42 10.1016/j.neucom.2015.11.133_bib41 Rasiwasia (10.1016/j.neucom.2015.11.133_bib23) 2007; 9 10.1016/j.neucom.2015.11.133_bib3 10.1016/j.neucom.2015.11.133_bib5 10.1016/j.neucom.2015.11.133_bib4 10.1016/j.neucom.2015.11.133_bib7 10.1016/j.neucom.2015.11.133_bib6 10.1016/j.neucom.2015.11.133_bib19 Hwang (10.1016/j.neucom.2015.11.133_bib34) 2012; 34 10.1016/j.neucom.2015.11.133_bib14 10.1016/j.neucom.2015.11.133_bib36 10.1016/j.neucom.2015.11.133_bib13 10.1016/j.neucom.2015.11.133_bib12 Belhumeur (10.1016/j.neucom.2015.11.133_bib21) 1997; 19 10.1016/j.neucom.2015.11.133_bib11 Monay (10.1016/j.neucom.2015.11.133_bib2) 2007; 29 10.1016/j.neucom.2015.11.133_bib18 10.1016/j.neucom.2015.11.133_bib39 10.1016/j.neucom.2015.11.133_bib16 Oliva (10.1016/j.neucom.2015.11.133_bib33) 2001; 42 10.1016/j.neucom.2015.11.133_bib38 Hardoon (10.1016/j.neucom.2015.11.133_bib1) 2004; 16 10.1016/j.neucom.2015.11.133_bib15 |
| References_xml | – volume: 50 start-page: 969 year: 2009 end-page: 978 ident: bib27 article-title: Semantic hashing publication-title: Int. J. Approx. Reason. – reference: T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y. Zheng, Nus-wide: a real-world web image database from national university of singapore, in: Proceedings of the ACM International Conference on Image and Video Retrieval, 2009, pp. 48:1–48:9. – reference: M. Raginsky, S. Lazebnik, Locality-sensitive binary codes from shift-invariant kernels, in: Advances in Neural Information Processing Systems (NIPS), 2009, pp. 1509–1517. – volume: 42 start-page: 145 year: 2001 end-page: 175 ident: bib33 article-title: Modeling the shape of the scene publication-title: Int. J. Comput. Vis. – volume: 17 start-page: 370 year: 2015 end-page: 381 ident: bib37 article-title: Learning consistent feature representation for cross-modal multimedia retrieval publication-title: IEEE Trans. Multimed. – reference: N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle, G. Lanckriet, R. Levy, N. Vasconcelos, A new approach to cross-modal multimedia retrieval, in: ACM International Conference on Multimedia, 2010, pp. 251–260. – reference: Y. Jia, M. Salzmann, T. Darrell, Learning cross-modality similarity for multinomial data, in: IEEE International Conference on Computer Vision (ICCV), 2011. – reference: X. Xu, A. Shimada, R.-I. Taniguchi, L. He, Coupled dictionary learning and feature mapping for cross-modal retrieval, in: IEEE International Conference on Multimedia and Expo (ICME), 2015, pp. 1–6. – reference: D. Zhang, J. Wang, D. Cai, J. Lu, Self-taught hashing for fast similarity search, in: Proceedings of the 33th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR), 2010. – volume: 34 start-page: 1145 year: 2012 end-page: 1158 ident: bib34 article-title: Reading between the lines publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: J. Song, Y. Yang, Y. Yang, Z. Huang, H.T. Shen, Inter-media hashing for large-scale retrieval from heterogeneous data sources, in: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, SIGMOD ’13, 2013, pp. 785–796. – reference: W. Kong, W.J. Li, Double-bit quantization for hashing, in: The 26th AAAI Conference on Artificial Intelligence (AAAI), 2012. – reference: A. Sharma, D.W. Jacobs, Bypassing synthesis: Pls for face recognition with pose, low-resolution and sketch, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 593–600. – reference: J. Zhou, G. Ding, Y. Guo, Latent semantic sparse hashing for cross-modal similarity search, in: Proceedings of the 37th International ACM SIGIR Conference on Research Development in Information Retrieval (SIGIR), 2014, pp. 415–424. – reference: F. Shen, C. Shen, W. Liu, H. Tao Shen, Supervised discrete hashing, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 37–45. – reference: A. Rahimi, B. Recht, Random features for large-scale kernel machines, in: Advances in Neural Information Processing Systems (NIPS), 2008, pp. 1177–1184. – reference: J. Wang, S. Kumar, S.-F. Chang, Semi-supervised hashing for scalable image retrieval, in: IEEE Computer Vision and Pattern Recognition, 2010, pp. 3424–3431. – reference: A. Sharma, A. Kumar, H. Daume, D. Jacobs, Generalized multiview analysis: a discriminative latent space, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2160–2167. – volume: 12 start-page: 1247 year: 2000 end-page: 1283 ident: bib20 article-title: Separating style and content with bilinear models publication-title: Neural Comput. – reference: Y. Gong, S. Lazebnik, Iterative quantization: a procrustean approach to learning binary codes, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 817–824. – volume: 19 start-page: 711 year: 1997 end-page: 720 ident: bib21 article-title: Eigenfaces vs. fisherfaces publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 9 start-page: 923 year: 2007 end-page: 938 ident: bib23 article-title: Bridging the gap publication-title: IEEE Trans. Multimed. – volume: 100 start-page: 134 year: 2012 end-page: 153 ident: bib8 article-title: Learning the relative importance of objects from tagged images for retrieval and cross-modal search publication-title: Int. J. Comput. Vis. – volume: 51 start-page: 117 year: 2008 end-page: 122 ident: bib24 article-title: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions publication-title: ACM Commun. – reference: K. Wang, R. He, W. Wang, L. Wang, T. Tan, Learning coupled feature spaces for cross-modal matching, in: IEEE International Conference on Computer Vision (ICCV), 2013, pp. 2088–2095. – volume: 106 start-page: 210 year: 2014 end-page: 233 ident: bib17 article-title: A multi-view embedding space for modeling internet images, tags, and their semantics publication-title: Int. J. Comput. Vis. – reference: A. Sharma, A. Kumar, H. Daume, D.W. Jacobs, Generalized multiview analysis: a discriminative latent space, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2160–2167. – reference: H. Hotelling, Relations between two sets of variates, Biometrika 28 (3-4), 1936, 321-377, – reference: . – volume: 16 start-page: 2639 year: 2004 end-page: 2664 ident: bib1 article-title: Canonical correlation analysis publication-title: Neural Comput. – reference: Y. Zhen, D.-Y. Yeung, Co-regularized hashing for multimodal data, in: Advances in Neural Information Processing Systems (NIPS), 2012, pp. 1385–1393. – reference: H. Lee, A. Battle, R. Raina, A.Y. Ng, Efficient sparse coding algorithms, in: Advances in Neural Information Processing Systems (NIPS), 2006. – reference: S.J. Hwang, K. Grauman, Accounting for the relative importance of objects in image retrieval, in: Proceedings of the British Machine Vision Conference (BMVC), 2010, pp. 1–12. – reference: M. Bronstein, A. Bronstein, F. Michel, N. Paragios, Data fusion through cross-modality metric learning using similarity-sensitive hashing, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 3594–3601. – reference: S. Kim, Y. Kang, S. Choi, Sequential spectral learning to hash with multiple representations, in: Proceedings of the 12th European Conference on Computer Vision (ECCV), 2012, pp. 538–551. – reference: A. Li, S. Shan, X. Chen, , W. Gao, Maximizing intra-individual correlations for face recognition across pose differences, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009, pp. 605–611. – volume: 106 start-page: 210 year: 2014 end-page: 233 ident: bib40 article-title: A multi-view embedding space for modeling internet images, tags, and their semantics publication-title: Int. J. Comput. Vis. – reference: D. Zhang, F. Wang, L. Si, Composite hashing with multiple information sources, in: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), SIGIR ’11, 2011, pp. 225–234. – reference: S. Kumar, R. Udupa, Learning hash functions for cross-view similarity search, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI’11, 2011, pp. 1360–1365. – volume: 36 start-page: 521 year: 2014 end-page: 535 ident: bib35 article-title: On the role of correlation and abstraction in cross-modal multimedia retrieval publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 29 start-page: 1802 year: 2007 end-page: 1817 ident: bib2 article-title: Modeling semantic aspects for cross-media image indexing publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 36 start-page: 824 year: 2014 end-page: 830 ident: bib31 article-title: Multimodal similarity-preserving hashing publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 19 start-page: 711 year: 1997 ident: 10.1016/j.neucom.2015.11.133_bib21 article-title: Eigenfaces vs. fisherfaces publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.598228 – volume: 17 start-page: 370 issue: 3 year: 2015 ident: 10.1016/j.neucom.2015.11.133_bib37 article-title: Learning consistent feature representation for cross-modal multimedia retrieval publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2015.2390499 – volume: 29 start-page: 1802 issue: 10 year: 2007 ident: 10.1016/j.neucom.2015.11.133_bib2 article-title: Modeling semantic aspects for cross-media image indexing publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1097 – volume: 12 start-page: 1247 issue: 6 year: 2000 ident: 10.1016/j.neucom.2015.11.133_bib20 article-title: Separating style and content with bilinear models publication-title: Neural Comput. doi: 10.1162/089976600300015349 – volume: 50 start-page: 969 issue: 7 year: 2009 ident: 10.1016/j.neucom.2015.11.133_bib27 article-title: Semantic hashing publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2008.11.006 – ident: 10.1016/j.neucom.2015.11.133_bib6 doi: 10.1109/CVPR.2012.6247923 – volume: 34 start-page: 1145 issue: 6 year: 2012 ident: 10.1016/j.neucom.2015.11.133_bib34 article-title: Reading between the lines publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.190 – volume: 16 start-page: 2639 issue: 12 year: 2004 ident: 10.1016/j.neucom.2015.11.133_bib1 article-title: Canonical correlation analysis publication-title: Neural Comput. doi: 10.1162/0899766042321814 – ident: 10.1016/j.neucom.2015.11.133_bib15 doi: 10.1145/2600428.2609610 – ident: 10.1016/j.neucom.2015.11.133_bib36 doi: 10.1109/ICCV.2013.261 – ident: 10.1016/j.neucom.2015.11.133_bib39 doi: 10.1145/1646396.1646452 – ident: 10.1016/j.neucom.2015.11.133_bib42 – volume: 100 start-page: 134 year: 2012 ident: 10.1016/j.neucom.2015.11.133_bib8 article-title: Learning the relative importance of objects from tagged images for retrieval and cross-modal search publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-011-0494-3 – volume: 36 start-page: 521 issue: 3 year: 2014 ident: 10.1016/j.neucom.2015.11.133_bib35 article-title: On the role of correlation and abstraction in cross-modal multimedia retrieval publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.142 – ident: 10.1016/j.neucom.2015.11.133_bib38 doi: 10.1109/CVPR.2012.6247923 – ident: 10.1016/j.neucom.2015.11.133_bib3 doi: 10.5244/C.24.58 – ident: 10.1016/j.neucom.2015.11.133_bib5 doi: 10.1145/1873951.1873987 – ident: 10.1016/j.neucom.2015.11.133_bib18 doi: 10.1109/CVPR.2009.5206659 – ident: 10.1016/j.neucom.2015.11.133_bib12 doi: 10.1109/CVPR.2010.5539928 – ident: 10.1016/j.neucom.2015.11.133_bib11 – volume: 51 start-page: 117 issue: 1 year: 2008 ident: 10.1016/j.neucom.2015.11.133_bib24 article-title: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions publication-title: ACM Commun. doi: 10.1145/1327452.1327494 – volume: 106 start-page: 210 issue: 2 year: 2014 ident: 10.1016/j.neucom.2015.11.133_bib40 article-title: A multi-view embedding space for modeling internet images, tags, and their semantics publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0658-4 – ident: 10.1016/j.neucom.2015.11.133_bib26 doi: 10.1109/CVPR.2010.5539994 – ident: 10.1016/j.neucom.2015.11.133_bib25 doi: 10.1145/1835449.1835455 – ident: 10.1016/j.neucom.2015.11.133_bib28 doi: 10.1109/CVPR.2011.5995432 – ident: 10.1016/j.neucom.2015.11.133_bib7 – ident: 10.1016/j.neucom.2015.11.133_bib10 doi: 10.1145/2009916.2009950 – volume: 36 start-page: 824 issue: 4 year: 2014 ident: 10.1016/j.neucom.2015.11.133_bib31 article-title: Multimodal similarity-preserving hashing publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.225 – ident: 10.1016/j.neucom.2015.11.133_bib30 doi: 10.1109/CVPR.2015.7298598 – volume: 106 start-page: 210 issue: 2 year: 2014 ident: 10.1016/j.neucom.2015.11.133_bib17 article-title: A multi-view embedding space for modeling internet images, tags, and their semantics publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0658-4 – ident: 10.1016/j.neucom.2015.11.133_bib29 doi: 10.1609/aaai.v26i1.8208 – ident: 10.1016/j.neucom.2015.11.133_bib41 – ident: 10.1016/j.neucom.2015.11.133_bib13 doi: 10.1007/978-3-642-33715-4_39 – ident: 10.1016/j.neucom.2015.11.133_bib19 doi: 10.1109/CVPR.2011.5995350 – ident: 10.1016/j.neucom.2015.11.133_bib4 doi: 10.1145/2463676.2465274 – ident: 10.1016/j.neucom.2015.11.133_bib9 doi: 10.1109/ICME.2015.7177396 – volume: 9 start-page: 923 issue: 5 year: 2007 ident: 10.1016/j.neucom.2015.11.133_bib23 article-title: Bridging the gap publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2007.900138 – ident: 10.1016/j.neucom.2015.11.133_bib22 doi: 10.1109/ICCV.2013.261 – volume: 42 start-page: 145 issue: 3 year: 2001 ident: 10.1016/j.neucom.2015.11.133_bib33 article-title: Modeling the shape of the scene publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1011139631724 – ident: 10.1016/j.neucom.2015.11.133_bib16 doi: 10.1093/biomet/28.3-4.321 – ident: 10.1016/j.neucom.2015.11.133_bib32 doi: 10.7551/mitpress/7503.003.0105 – ident: 10.1016/j.neucom.2015.11.133_bib14 |
| SSID | ssj0017129 |
| Score | 2.4074697 |
| Snippet | Nowadays the amount of multimedia data such as images and text is growing exponentially on social websites, arousing the demand of effective and efficient... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 191 |
| SubjectTerms | Binary representation Cross-modal retrieval Hashing Matrix factorization Sparse coding |
| Title | Learning unified binary codes for cross-modal retrieval via latent semantic hashing |
| URI | https://dx.doi.org/10.1016/j.neucom.2015.11.133 |
| Volume | 213 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YPXbbOvPI6lWKpiL7XQW8g-opE2LX149Lc7m0dREAWPCTtJ-HYy8y3MfIPQbeJxaYT2iJKJR4QwnCibJoQnUviJ0z9PXXPy08gfTsTDVE4bqF_3wriyyir2lzG9iNbVnW6FZneZZd2xFzE4RVEGjALyZOg0QYUI3BSDzseuzIMGlJV6e0wSt7punytqvHK7dTUjkAQlxI4O5fzn9PQl5QyO0EHFFXGv_Jxj1LD5CTqs5zDg6rc8ReNKJPUFb_MsBU6JVdFli12_-hoDLcXF28h8YeB5q2KIFngYfs8SPAOymW_w2s4B40zj13K60hmaDO6e-0NSDUsgmgdsQ3yT-MzTkVHSUur7kRSQ_5RTmLPCptpRKaON0hKIasS5siJSQvlMASkxVPFz1MwXub1AmGmqlQZqQ1MrQhmGJoCNNDpkViqqkxbiNUaxrpTE3UCLWVyXjL3FJbKxQxYOGTEg20JkZ7UslTT-WB_U8MffPCKGYP-r5eW_La_QPlz5rteQsmvU3Ky29gZIx0a1C69qo73e_eNw9Al4ltjO |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgHODCjiirD1xN4y3LESGqAi0XWombFS-BoDatoOXItzPOgkBCIHFNPEn0PJl5lubNIHSWBlxaYQKiZRoQISwn2mUp4akUYer7n2denDy4C3sjcfMgH5bQZaOF8WWVdeyvYnoZresrnRrNzizPO_dBwuAURRkwCsiTsVhGK0KyyJ_Azt8_6zxoRFnVcI9J4pc3-rmyyKtwC180AllQQvA4p5z_nJ--5JzuJlqvySK-qL5nCy25YhttNIMYcP1f7qD7ukvqI14UeQakEutSZou9YP0VAy_F5dvIZGrheS_lFC1wMfyWp3gMbLOY41c3AZBzg5-q8Uq7aNS9Gl72SD0tgRgesTkJbRqywCRWS0dpGCZSQALUvsWcEy4znktZY7WRwFQTzrUTiRY6ZBpYiaWa76FWMS3cPsLMUKMNcBuaORHLOLYR7KQ1MXNSU5O2EW8wUqZuJe4nWoxVUzP2rCpklUcWThkKkG0j8mk1q1pp_LE-auBX31xCQbT_1fLg35anaLU3HPRV__ru9hCtwZ3QCw8pO0Kt-cvCHQMDmeuT0sM-AJ8W2mM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+unified+binary+codes+for+cross-modal+retrieval+via+latent+semantic+hashing&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Xu%2C+Xing&rft.au=He%2C+Li&rft.au=Shimada%2C+Atsushi&rft.au=Taniguchi%2C+Rin-ichiro&rft.date=2016-11-12&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=213&rft.spage=191&rft.epage=203&rft_id=info:doi/10.1016%2Fj.neucom.2015.11.133&rft.externalDocID=S0925231216307184 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |