Automata Based Hybrid PSO–GWO Algorithm for Secured Energy Efficient Optimal Routing in Wireless Sensor Network

The main objective in wireless sensor networks is to exploit efficiently the sensor nodes and to prolong the lifetime of the network. The discussion of energy is a significant concern to extend the lifetime of the network. Moreover, a nature inspired hybrid optimization approach called hybrid Partic...

Full description

Saved in:
Bibliographic Details
Published inWireless personal communications Vol. 117; no. 2; pp. 545 - 559
Main Authors Prithi, S., Sumathi, S.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0929-6212
1572-834X
DOI10.1007/s11277-020-07882-2

Cover

Abstract The main objective in wireless sensor networks is to exploit efficiently the sensor nodes and to prolong the lifetime of the network. The discussion of energy is a significant concern to extend the lifetime of the network. Moreover, a nature inspired hybrid optimization approach called hybrid Particle Swarm Optimization–Grey Wolf Optimizer (PSO–GWO) is used in this work to efficiently utilize the energy and to transmit the data securely in an augmented path. A Learning Dynamic Deterministic Finite Automata (LD 2 FA) has been innovated and initiated to learn the dynamic role of the environment. LD 2 FA is mainly used to provide the learned and accepted string to hybrid PSO–GGWO so that the routes are optimized. Hybrid PSO–GWO is used to choose the optimal next node for each path to obtain the optimal route. The simulation results are obtained in MATLAB for 100–700 sensor nodes in a region of 500 × 500 m 2  which demonstrate that the proposed LD 2 FA based Hybrid PSO–GWO algorithm obtains better results when compared with existing algorithms. It is observed that LD 2 FA based Hybrid PSO–GWO has an increase of 18% and 48% betterment in lifetime of the network than PSO and GLBCA, nearly 57% and 75% increase in network lifetime when compared with GA and LDC respectively. It also shows an improvement of 24% increase compared to cluster-based IDS, nearly a rise of 90% throughput when compared with lightweight IDS. The consumption of energy is reduced by 13% and 15% than PSO and GA and an increase of 15% utilization of energy than LDC. Therefore, LD 2 FA based Hybrid PSO–GWO is been considered to efficiently utilize energy in an optimal route.
AbstractList The main objective in wireless sensor networks is to exploit efficiently the sensor nodes and to prolong the lifetime of the network. The discussion of energy is a significant concern to extend the lifetime of the network. Moreover, a nature inspired hybrid optimization approach called hybrid Particle Swarm Optimization–Grey Wolf Optimizer (PSO–GWO) is used in this work to efficiently utilize the energy and to transmit the data securely in an augmented path. A Learning Dynamic Deterministic Finite Automata (LD2FA) has been innovated and initiated to learn the dynamic role of the environment. LD2FA is mainly used to provide the learned and accepted string to hybrid PSO–GGWO so that the routes are optimized. Hybrid PSO–GWO is used to choose the optimal next node for each path to obtain the optimal route. The simulation results are obtained in MATLAB for 100–700 sensor nodes in a region of 500 × 500 m2 which demonstrate that the proposed LD2FA based Hybrid PSO–GWO algorithm obtains better results when compared with existing algorithms. It is observed that LD2FA based Hybrid PSO–GWO has an increase of 18% and 48% betterment in lifetime of the network than PSO and GLBCA, nearly 57% and 75% increase in network lifetime when compared with GA and LDC respectively. It also shows an improvement of 24% increase compared to cluster-based IDS, nearly a rise of 90% throughput when compared with lightweight IDS. The consumption of energy is reduced by 13% and 15% than PSO and GA and an increase of 15% utilization of energy than LDC. Therefore, LD2FA based Hybrid PSO–GWO is been considered to efficiently utilize energy in an optimal route.
The main objective in wireless sensor networks is to exploit efficiently the sensor nodes and to prolong the lifetime of the network. The discussion of energy is a significant concern to extend the lifetime of the network. Moreover, a nature inspired hybrid optimization approach called hybrid Particle Swarm Optimization–Grey Wolf Optimizer (PSO–GWO) is used in this work to efficiently utilize the energy and to transmit the data securely in an augmented path. A Learning Dynamic Deterministic Finite Automata (LD 2 FA) has been innovated and initiated to learn the dynamic role of the environment. LD 2 FA is mainly used to provide the learned and accepted string to hybrid PSO–GGWO so that the routes are optimized. Hybrid PSO–GWO is used to choose the optimal next node for each path to obtain the optimal route. The simulation results are obtained in MATLAB for 100–700 sensor nodes in a region of 500 × 500 m 2  which demonstrate that the proposed LD 2 FA based Hybrid PSO–GWO algorithm obtains better results when compared with existing algorithms. It is observed that LD 2 FA based Hybrid PSO–GWO has an increase of 18% and 48% betterment in lifetime of the network than PSO and GLBCA, nearly 57% and 75% increase in network lifetime when compared with GA and LDC respectively. It also shows an improvement of 24% increase compared to cluster-based IDS, nearly a rise of 90% throughput when compared with lightweight IDS. The consumption of energy is reduced by 13% and 15% than PSO and GA and an increase of 15% utilization of energy than LDC. Therefore, LD 2 FA based Hybrid PSO–GWO is been considered to efficiently utilize energy in an optimal route.
Author Sumathi, S.
Prithi, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Prithi
  fullname: Prithi, S.
  email: prithi.s@rajalakshmi.edu.in
  organization: Department of CSE, Rajalakshmi Engineering College, Department of EEE, PSG College of Technology
– sequence: 2
  givenname: S.
  surname: Sumathi
  fullname: Sumathi, S.
  organization: Department of EEE, PSG College of Technology
BookMark eNp9kMtKAzEUhoMoWC8v4CrgejSXdjKzrFIvIFa8oLuQyZzU6DSpSQbpznfwDX0SoxUEF67O5v_Of863hdadd4DQHiUHlBBxGCllQhSEkYKIqmIFW0MDOhKsqPjwYR0NSM3qomSUbaKtGJ8IyVjNBuhl3Cc_V0nhIxWhxWfLJtgWX91MP97eT--neNzNfLDpcY6ND_gGdB9ybOIgzJZ4YozVFlzC00Wyc9Xha98n62bYOnxvA3QQY4ZczOwlpFcfnnfQhlFdhN2fuY3uTia3x2fFxfT0_Hh8UWguWCrKtoIaNFWgKCl5PRpyCqpUbQkNCKOGgpDWCCaU0LRtqNCm0RSaWpUjw-qGb6P91d5F8C89xCSffB9crpRsWJecjATnOcVWKR18jAGMXIT8SFhKSuSXWrlSK7Na-a1WsgxVfyBtk0rWuxSU7f5H-QqNucfNIPxe9Q_1CQghkjI
CitedBy_id crossref_primary_10_1007_s11277_023_10773_x
crossref_primary_10_1016_j_knosys_2021_107379
crossref_primary_10_1007_s00521_023_08511_2
crossref_primary_10_1080_03772063_2024_2369722
crossref_primary_10_1016_j_aej_2023_09_064
crossref_primary_10_1007_s11042_022_12658_w
crossref_primary_10_1007_s12083_024_01650_w
crossref_primary_10_32604_iasc_2023_029489
crossref_primary_10_1109_ACCESS_2024_3461794
crossref_primary_10_3390_electronics11101545
crossref_primary_10_3390_electronics11244122
crossref_primary_10_1007_s11277_022_09557_6
crossref_primary_10_3390_biomimetics8020165
crossref_primary_10_1016_j_suscom_2023_100866
crossref_primary_10_1007_s11276_024_03677_6
crossref_primary_10_1109_JSEN_2022_3233361
crossref_primary_10_3233_JIFS_212455
crossref_primary_10_3233_JIFS_230564
crossref_primary_10_1109_JIOT_2024_3463011
crossref_primary_10_1002_dac_6016
crossref_primary_10_1007_s12083_024_01846_0
crossref_primary_10_1088_2631_8695_adb37b
Cites_doi 10.1109/HICSS.2000.926982
10.1109/GLOCOM.2009.5425895
10.1016/j.engappai.2014.04.009
10.1016/j.comcom.2008.05.038
10.1007/s10207-014-0241-1
10.1145/1402958.1402983
10.1109/GLOCOM.2016.7841588
10.1145/2979779.2979840
10.1016/j.adhoc.2019.102024
10.1109/TMC.2004.41
10.1016/j.comcom.2007.10.020
10.1016/S1007-0214(11)70075-X
10.1109/JSEN.2012.2225423
10.1016/j.comcom.2009.11.008
10.1016/j.ieri.2014.09.063
10.1145/1452335.1452339
10.1109/ICNN.1995.488968
10.1109/BWCCA.2013.34
10.1145/1364654.1364656
10.1109/CCDC.2013.6561655
10.1016/j.advengsoft.2013.12.007
10.1016/j.swevo.2013.04.002i
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11277-020-07882-2
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Journalism & Communications
Engineering
EISSN 1572-834X
EndPage 559
ExternalDocumentID 10_1007_s11277_020_07882_2
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FD6
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c372t-6d8e9ec1aea106395431ea6ad6ebe7fa4700df727a7c1db17cfbc1eb9a65f29b3
IEDL.DBID AGYKE
ISSN 0929-6212
IngestDate Thu Sep 25 00:45:16 EDT 2025
Thu Apr 24 23:01:35 EDT 2025
Wed Oct 01 03:57:37 EDT 2025
Fri Feb 21 02:49:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Wireless sensor network
Dynamic deterministic finite automata
Routing
Grey wolf optimization
Clustering
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-6d8e9ec1aea106395431ea6ad6ebe7fa4700df727a7c1db17cfbc1eb9a65f29b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2496305733
PQPubID 2043826
PageCount 15
ParticipantIDs proquest_journals_2496305733
crossref_primary_10_1007_s11277_020_07882_2
crossref_citationtrail_10_1007_s11277_020_07882_2
springer_journals_10_1007_s11277_020_07882_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Wireless personal communications
PublicationTitleAbbrev Wireless Pers Commun
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Sumathi, S., &  Prithi, S. (2017). A survey on recent DFA compression techniques for deep packet inspection in network intrusion detection system. Journal of Electrical Engineering,17(3).
Furtado, H., & Trobec, R. (2011). Applications of wireless sensors in medicine. In Proceedings of the 34th international convention (pp. 257–261).
YeMLiC, G Chen, J Wu,An energy efficient clustering scheme in wireless sensor networksAd Hoc & Sensor Wireless Networks2007399119
ZhuY-HWuW-DPanJTangY-PAn energy-efficient data gathering algorithm to prolong lifetime of wireless sensor networksComputer Communications201033563964710.1016/j.comcom.2009.11.008
Depedri, A., Zanella, A., & Verdone, R. (2003). An energy efficient protocol for wireless sensor networks. In Proceedings of AINS (pp. 1–6).
Fan, X., & Song, Y. (2007). Improvement on LEACH protocol of wireless sensor network. In Proceeding of the international conference on sensor technologies and applications (pp. 260–264).
Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of IEEE international conference on system sciences Jan. 7, 2000 (p. 10).
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the 1995 IEEE international conference on neural network.
WangSSChenZPA link-aware clustering mechanism for energy-efficient routing in wireless sensor networksIEEE Sensors Journal201313272873610.1109/JSEN.2012.2225423
KuilaPJanaPKEnergy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approachEngineering Applications of Artificial Intelligence20143312714010.1016/j.engappai.2014.04.009
Snort: Light weight intrusion detection for networks. Columbia, MD: Sourcefire, Inc. http://www.snort.org/.
Manikandan, A., & Rajarajachozhan, C. (2017). Artificial bee colony for socially aware networking. Journal of Chemical and Pharmaceutical Sciences, Special Issue (2), 299–301.
LowCPFangCNgJMAngYHEfficient load-balancing clustering algorithms for wireless sensor networksComputer Communications20083175075910.1016/j.comcom.2007.10.020
AtaulBClustering strategies for improving the lifetime of two-tired sensor networksComputer Communications2008313451345910.1016/j.comcom.2008.05.038
Bro: A system for detecting network intruders in real time. Berkeley, CA: Lawrence Berkeley National Laboratory. http://www.bro-ids.org.
Han, L. (2011). LEACH-HIR: An energy efficient routing algorithm for Heterogenous WSN. In IEEE international conference on intelligent computing and intelligent systems (ICIS) (Vol. 2, pp. 507–511).
KuilaPGuptaSKJanaPKA novel evolutionary approach for load balanced clustering problem for wireless sensor networksSwarm and Evolutionary Computation201310.1016/j.swevo.2013.04.002i
Li, X., Gang, W., Zongqi, L., & Yanyan, Z. (2013). An energy-efficient routing protocol based on particle swarm clustering algorithm and inter-cluster routing algorithm for WSN. In 2013 25th Chinese control and decision conference (CCDC) (pp. 4029–4033).
Ficara, D., Giordano, S., Procissi, G., Vitucci, F., Antichi, G., & Pietro, A. D. (2008). An improved DFA for fast regular expression matching. In Proceedings of the ACM SIGCOMM computer communication review, 2008 (No. 38, Issue 5, pp. 29–40).
PrithiSSumathiSLD2FA-PSO: A novel learning dynamic deterministic finite automata with PSO algorithm for secured energy efficient routing in wireless sensor networkAd Hoc Networks20209710202410.1016/j.adhoc.2019.102024
Singh, S., & Kushwah, R. S. (2016). Energy efficient approach for intrusion detection system for WSN by applying optimal clustering and genetic algorithm. In Proceedings of the international conference on advances in information communication technology and computing- AICTC’16.
Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. In Proceedings of international workshop sensor and actor network protocols and applications, Boston, MA (pp. 251–261).
RahmanMNMatinEfficient algorithm for prolonging network lifetime of wireless sensor networkTsinghua Science and Technology201116656156810.1016/S1007-0214(11)70075-X
Riecker, M., Biedermann, S., Bansarkhani, R. E., & Hollick, M. (2014). Lightweight energy consumption-based intrusion detection system for wireless sensor networks, special issue paper. Berlin: Springer. https://doi.org/10.1007/s10207-014-0241-1.
YounisKOFahmySHEED: a hybrid, energy-efficient distributed clustering approach for ad hoc sensor networksMobile Computing, IEEE Transactions on20043436637910.1109/TMC.2004.41
YeZMohamadianHAdaptive clustering based dynamic routing of wireless sensor networks via generalized ant colony optimizationIERI Procedia20141021010.1016/j.ieri.2014.09.063
William, J., & Eatherton, W. (2005). An encoded version of reg-ex database from Cisco systems provided for research purposes.
Becchi, M., & Crowley, P. (2007). A hybrid finite automaton for practical deep packet inspection. In Proceedings of the ACM conference on emerging networking experiments and technologies.
MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdvances in Engineering Software201469466110.1016/j.advengsoft.2013.12.007
Mainetti, L., Patrono, L., & Vilei, A. (2011). Evolution of wireless sensor networks towards the internet of things: A survey. In International conference on software, telecommunications and computer networks (SoftCOM) (pp. 1–6).
Wang, N., Zhou, Y., & Xiang, W. (2016). An energy efficient clustering protocol for lifetime maximization in wireless sensor networks. In Proceedings of the IEEE conference on global communications (GLOBECO) Dec. 4–8 (pp. 1–6)
Yi, G., Guiling, S., Weixiang, L., & Yong, P. (2009). Recluster-LEACH: A recluster control algorithm based on density for wireless sensor network. In: 2nd international conference on power electronics and intelligent transportation system (Vol. 3, pp. 198–202).
Smith, R., Estan, C., Jha, S., & Kong, S. (2008). Deflating the big bang: Fast and scalable deep packet inspection with extended finite automata. In Proceedings of the ACM SIGCOMM 2008 conference on applications, technologies, architectures, and protocols for computer communications (pp. 207–218).
Antichi, G., Di Pietro, A., Ficara, D., Giordano, S., Procissi, G., & Vitucci, F. (2009). Second-order differential encoding of deterministic finite automata. In Proceedings of the 28th IEEE conference on global telecommunications (pp. 2838–2843).
Mahmood, D., Javaid, N., Mahmood, S., Qureshi, S., Memon, A. M., & Zaman, T. (2013). MODLEACH: A variant of LEACH for WSNs. In BWCCA ‘13 proceedings of the 2013 eighth international conference on broadband and wireless computing, communication and applications.
7882_CR19
7882_CR2
7882_CR1
7882_CR16
P Kuila (7882_CR28) 2013
S Prithi (7882_CR32) 2020; 97
7882_CR36
7882_CR13
7882_CR35
7882_CR12
7882_CR34
KO Younis (7882_CR6) 2004; 3
7882_CR11
CP Low (7882_CR29) 2008; 31
7882_CR10
P Kuila (7882_CR18) 2014; 33
SS Wang (7882_CR4) 2013; 13
7882_CR27
7882_CR26
7882_CR25
7882_CR24
P Kuila (7882_CR31) 2014; 33
7882_CR23
7882_CR22
S Mirjalili (7882_CR33) 2014; 69
7882_CR21
7882_CR20
MN Rahman (7882_CR15) 2011; 16
7882_CR3
7882_CR5
Z Ye (7882_CR17) 2014; 10
7882_CR8
Y-H Zhu (7882_CR14) 2010; 33
B Ataul (7882_CR30) 2008; 31
M Ye (7882_CR7) 2007; 3
7882_CR9
References_xml – reference: Furtado, H., & Trobec, R. (2011). Applications of wireless sensors in medicine. In Proceedings of the 34th international convention (pp. 257–261).
– reference: KuilaPJanaPKEnergy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approachEngineering Applications of Artificial Intelligence20143312714010.1016/j.engappai.2014.04.009
– reference: KuilaPGuptaSKJanaPKA novel evolutionary approach for load balanced clustering problem for wireless sensor networksSwarm and Evolutionary Computation201310.1016/j.swevo.2013.04.002i
– reference: Becchi, M., & Crowley, P. (2007). A hybrid finite automaton for practical deep packet inspection. In Proceedings of the ACM conference on emerging networking experiments and technologies.
– reference: YeMLiC, G Chen, J Wu,An energy efficient clustering scheme in wireless sensor networksAd Hoc & Sensor Wireless Networks2007399119
– reference: LowCPFangCNgJMAngYHEfficient load-balancing clustering algorithms for wireless sensor networksComputer Communications20083175075910.1016/j.comcom.2007.10.020
– reference: AtaulBClustering strategies for improving the lifetime of two-tired sensor networksComputer Communications2008313451345910.1016/j.comcom.2008.05.038
– reference: Riecker, M., Biedermann, S., Bansarkhani, R. E., & Hollick, M. (2014). Lightweight energy consumption-based intrusion detection system for wireless sensor networks, special issue paper. Berlin: Springer. https://doi.org/10.1007/s10207-014-0241-1.
– reference: Sumathi, S., &  Prithi, S. (2017). A survey on recent DFA compression techniques for deep packet inspection in network intrusion detection system. Journal of Electrical Engineering,17(3).
– reference: Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. In Proceedings of international workshop sensor and actor network protocols and applications, Boston, MA (pp. 251–261).
– reference: Antichi, G., Di Pietro, A., Ficara, D., Giordano, S., Procissi, G., & Vitucci, F. (2009). Second-order differential encoding of deterministic finite automata. In Proceedings of the 28th IEEE conference on global telecommunications (pp. 2838–2843).
– reference: Mainetti, L., Patrono, L., & Vilei, A. (2011). Evolution of wireless sensor networks towards the internet of things: A survey. In International conference on software, telecommunications and computer networks (SoftCOM) (pp. 1–6).
– reference: WangSSChenZPA link-aware clustering mechanism for energy-efficient routing in wireless sensor networksIEEE Sensors Journal201313272873610.1109/JSEN.2012.2225423
– reference: PrithiSSumathiSLD2FA-PSO: A novel learning dynamic deterministic finite automata with PSO algorithm for secured energy efficient routing in wireless sensor networkAd Hoc Networks20209710202410.1016/j.adhoc.2019.102024
– reference: Snort: Light weight intrusion detection for networks. Columbia, MD: Sourcefire, Inc. http://www.snort.org/.
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdvances in Engineering Software201469466110.1016/j.advengsoft.2013.12.007
– reference: Depedri, A., Zanella, A., & Verdone, R. (2003). An energy efficient protocol for wireless sensor networks. In Proceedings of AINS (pp. 1–6).
– reference: Han, L. (2011). LEACH-HIR: An energy efficient routing algorithm for Heterogenous WSN. In IEEE international conference on intelligent computing and intelligent systems (ICIS) (Vol. 2, pp. 507–511).
– reference: YounisKOFahmySHEED: a hybrid, energy-efficient distributed clustering approach for ad hoc sensor networksMobile Computing, IEEE Transactions on20043436637910.1109/TMC.2004.41
– reference: Singh, S., & Kushwah, R. S. (2016). Energy efficient approach for intrusion detection system for WSN by applying optimal clustering and genetic algorithm. In Proceedings of the international conference on advances in information communication technology and computing- AICTC’16.
– reference: William, J., & Eatherton, W. (2005). An encoded version of reg-ex database from Cisco systems provided for research purposes.
– reference: Li, X., Gang, W., Zongqi, L., & Yanyan, Z. (2013). An energy-efficient routing protocol based on particle swarm clustering algorithm and inter-cluster routing algorithm for WSN. In 2013 25th Chinese control and decision conference (CCDC) (pp. 4029–4033).
– reference: Fan, X., & Song, Y. (2007). Improvement on LEACH protocol of wireless sensor network. In Proceeding of the international conference on sensor technologies and applications (pp. 260–264).
– reference: Yi, G., Guiling, S., Weixiang, L., & Yong, P. (2009). Recluster-LEACH: A recluster control algorithm based on density for wireless sensor network. In: 2nd international conference on power electronics and intelligent transportation system (Vol. 3, pp. 198–202).
– reference: Smith, R., Estan, C., Jha, S., & Kong, S. (2008). Deflating the big bang: Fast and scalable deep packet inspection with extended finite automata. In Proceedings of the ACM SIGCOMM 2008 conference on applications, technologies, architectures, and protocols for computer communications (pp. 207–218).
– reference: Manikandan, A., & Rajarajachozhan, C. (2017). Artificial bee colony for socially aware networking. Journal of Chemical and Pharmaceutical Sciences, Special Issue (2), 299–301.
– reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the 1995 IEEE international conference on neural network.
– reference: Wang, N., Zhou, Y., & Xiang, W. (2016). An energy efficient clustering protocol for lifetime maximization in wireless sensor networks. In Proceedings of the IEEE conference on global communications (GLOBECO) Dec. 4–8 (pp. 1–6)
– reference: RahmanMNMatinEfficient algorithm for prolonging network lifetime of wireless sensor networkTsinghua Science and Technology201116656156810.1016/S1007-0214(11)70075-X
– reference: Mahmood, D., Javaid, N., Mahmood, S., Qureshi, S., Memon, A. M., & Zaman, T. (2013). MODLEACH: A variant of LEACH for WSNs. In BWCCA ‘13 proceedings of the 2013 eighth international conference on broadband and wireless computing, communication and applications.
– reference: ZhuY-HWuW-DPanJTangY-PAn energy-efficient data gathering algorithm to prolong lifetime of wireless sensor networksComputer Communications201033563964710.1016/j.comcom.2009.11.008
– reference: Bro: A system for detecting network intruders in real time. Berkeley, CA: Lawrence Berkeley National Laboratory. http://www.bro-ids.org.
– reference: Ficara, D., Giordano, S., Procissi, G., Vitucci, F., Antichi, G., & Pietro, A. D. (2008). An improved DFA for fast regular expression matching. In Proceedings of the ACM SIGCOMM computer communication review, 2008 (No. 38, Issue 5, pp. 29–40).
– reference: Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of IEEE international conference on system sciences Jan. 7, 2000 (p. 10).
– reference: YeZMohamadianHAdaptive clustering based dynamic routing of wireless sensor networks via generalized ant colony optimizationIERI Procedia20141021010.1016/j.ieri.2014.09.063
– ident: 7882_CR5
  doi: 10.1109/HICSS.2000.926982
– ident: 7882_CR26
  doi: 10.1109/GLOCOM.2009.5425895
– volume: 33
  start-page: 127
  year: 2014
  ident: 7882_CR31
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2014.04.009
– ident: 7882_CR11
– volume: 31
  start-page: 3451
  year: 2008
  ident: 7882_CR30
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2008.05.038
– ident: 7882_CR36
  doi: 10.1007/s10207-014-0241-1
– volume: 33
  start-page: 127
  year: 2014
  ident: 7882_CR18
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2014.04.009
– ident: 7882_CR21
– ident: 7882_CR25
  doi: 10.1145/1402958.1402983
– ident: 7882_CR8
– ident: 7882_CR23
– ident: 7882_CR3
  doi: 10.1109/GLOCOM.2016.7841588
– ident: 7882_CR35
  doi: 10.1145/2979779.2979840
– volume: 97
  start-page: 102024
  year: 2020
  ident: 7882_CR32
  publication-title: Ad Hoc Networks
  doi: 10.1016/j.adhoc.2019.102024
– volume: 3
  start-page: 366
  issue: 4
  year: 2004
  ident: 7882_CR6
  publication-title: Mobile Computing, IEEE Transactions on
  doi: 10.1109/TMC.2004.41
– volume: 3
  start-page: 99
  year: 2007
  ident: 7882_CR7
  publication-title: Ad Hoc & Sensor Wireless Networks
– ident: 7882_CR2
– ident: 7882_CR1
– ident: 7882_CR27
– volume: 31
  start-page: 750
  year: 2008
  ident: 7882_CR29
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2007.10.020
– volume: 16
  start-page: 561
  issue: 6
  year: 2011
  ident: 7882_CR15
  publication-title: Tsinghua Science and Technology
  doi: 10.1016/S1007-0214(11)70075-X
– volume: 13
  start-page: 728
  issue: 2
  year: 2013
  ident: 7882_CR4
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2012.2225423
– volume: 33
  start-page: 639
  issue: 5
  year: 2010
  ident: 7882_CR14
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2009.11.008
– volume: 10
  start-page: 2
  year: 2014
  ident: 7882_CR17
  publication-title: IERI Procedia
  doi: 10.1016/j.ieri.2014.09.063
– ident: 7882_CR24
  doi: 10.1145/1452335.1452339
– ident: 7882_CR12
– ident: 7882_CR34
  doi: 10.1109/ICNN.1995.488968
– ident: 7882_CR10
– ident: 7882_CR13
  doi: 10.1109/BWCCA.2013.34
– ident: 7882_CR9
– ident: 7882_CR19
  doi: 10.1145/1364654.1364656
– ident: 7882_CR16
  doi: 10.1109/CCDC.2013.6561655
– ident: 7882_CR22
– volume: 69
  start-page: 46
  year: 2014
  ident: 7882_CR33
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 7882_CR20
– year: 2013
  ident: 7882_CR28
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2013.04.002i
SSID ssj0010092
Score 2.38895
Snippet The main objective in wireless sensor networks is to exploit efficiently the sensor nodes and to prolong the lifetime of the network. The discussion of energy...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 545
SubjectTerms Algorithms
Communications Engineering
Computer Communication Networks
Energy
Energy utilization
Engineering
Networks
Nodes
Particle swarm optimization
Sensors
Signal,Image and Speech Processing
Wireless networks
Wireless sensor networks
Title Automata Based Hybrid PSO–GWO Algorithm for Secured Energy Efficient Optimal Routing in Wireless Sensor Network
URI https://link.springer.com/article/10.1007/s11277-020-07882-2
https://www.proquest.com/docview/2496305733
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: ADMLS
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-834X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-834X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010092
  issn: 0929-6212
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BucCBHVEolQ-ICwQ1aZbmmKIuAtEiQQWcIm-BijYFkh7gxD_wh3wJYzehgACJc8aOY09mnj0zzwC7kScRhDrSoL46rUInazD0M4bLIorwXJi-ptg47bjtnn185VxlRWFJnu2ehyS1pZ4Wu5kq3Ki2O-jWEBei4Z3TfFsFmAta1yeNj-iBIhLSHHsqtQNtc1Ys83MvXx3SFGV-C4xqf9Ncgl4-0kmayd3hOGWH_PkbieN_P2UZFjMASoKJxqzAjIxXYeETLeEqbGdC_WRI9siXEpJkDR6CcTpCnEtJHT2gIO0nVfRFzs67by-vrcsuCQY3o8d-ejskCIiJPtBHsYYuMiQNTVmBno500VgNcSQqJwlfS_oxUam4AzS92ChOsG1nkqO-Dr1m4-KobWQXNxi86lmp4Yqa9CU3qaSmgkCq3l5SlwoXVcaLqO1VKiJC5EQ9bgpmejxi3JTMp64TWT6rbkAhHsVyE4jDK9SmlcihrGpT4dc4swX3FQmOqHlCFMHMVy_kGau5ulxjEE75mNVkhzjZoZ7s0CrC_keb-wmnx5_SpVwpwuz_TkLctLpVzSVZhIN8jaePf-9t63_i2zBvqSQanfRWgkL6OJY7iIJSVkalb9brnXKm_GWY7VnBO47GAJs
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YPKgHo6gRQd2D8aJN6JseqwFReZgIkVuzryoJFKXl4M3_4D_0lzi7tFSMmnju7Lbp1858uzPzLUInoSuAhNpCI57crYIgq1GIM5pDQwL0nOuekthod5xm37oZ2IO0KSzOqt2zlKTy1Hmzmy7TjXK5A2ENeCE43lUpYCUV8_uGv8gdSBkhpbAnCzvAM6etMj_PsRyOco75LS2qok1jC22mNBH7c1y30YqIimjji3hgEZVTo2E8xqd4qdEj3kEv_iyZABsl-ALiFMfNV9mahe_uux9v71cPXeyPHifTYfI0xkBbsdp2B7O6agXEdSUsAfEId8GljOFJZOUQ3BYPIywLZkfgIGFQFMPYzrySfBf1G_XeZVNLj1fQmOkaiebwmvAE04kguiQqsiteEIdwB4B1Q2K51SoPgd8Ql-mc6i4LKdMF9Yhjh4ZHzT1UiCaR2EfYZlVikWpoE2pahHs1Ri3OPClVw2su5yWkZ285YKn2uDwCYxTkqskSmQCQCRQygVFCZ4sxz3PljT-tKxl4QfoXxgEsLR1TKT6W0HkGaH7599kO_md-jNaavXYraF13bsto3ZBlL6pMrYIKyXQmDoG3JPRIfaafHVLkDw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFJ0YTYwujKJGBHUWxo020NIHXaKC-AISJbJr5lUlgYK0LNz5D_6hX-KdaUvBqInrzkybudN7z8y95wxCx74jAIRaQiOuPK2CIKtRiDOaTX0C8JzrrpLYuG_Zza5507N6cyx-Ve2epiRjToNUaQqi0pj7pYz4psvUo9z6QIgDjAhOeMWUQgmwortGbZZHkJJCSm1PFnmAl05oMz-PsRiaMrz5LUWqIk9jE20kkBHXYhtvoSUR5ND6nJBgDhWSRv1wiE_wAukj3EavtWk0AmRK8DnELI6bb5KmhTsP7c_3j6unNq4NnkeTfvQyxABhsTqCh2Z1RQvEdSUyAXOD2-BehvAlsooIXov7AZbFswNwltApCKFvK64q30HdRv3xoqklVy1orOIYkWbzqnAF04kgugQtkiEviE24DUZ2fGI65TL3AesQh-mc6g7zKdMFdYlt-YZLK7toORgFYg9hi5WJScq-RWjFJNytMmpy5krZGl51OM8jPZ1ljyU65PI6jIGXKShLy3hgGU9ZxjPy6HTWZxyrcPzZupgaz0v-yNCDbaZdUeqPeXSWGjR7_Pto-_9rfoRWO5cN7-66dVtAa4asgFEVa0W0HE2m4gAgTEQP1Sr9Aj6i6Es
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automata+Based+Hybrid+PSO%E2%80%93GWO+Algorithm+for+Secured+Energy+Efficient+Optimal+Routing+in+Wireless+Sensor+Network&rft.jtitle=Wireless+personal+communications&rft.au=Prithi%2C+S&rft.au=Sumathi%2C+S&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0929-6212&rft.eissn=1572-834X&rft.volume=117&rft.issue=2&rft.spage=545&rft.epage=559&rft_id=info:doi/10.1007%2Fs11277-020-07882-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-6212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-6212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-6212&client=summon