Automata Based Hybrid PSO–GWO Algorithm for Secured Energy Efficient Optimal Routing in Wireless Sensor Network
The main objective in wireless sensor networks is to exploit efficiently the sensor nodes and to prolong the lifetime of the network. The discussion of energy is a significant concern to extend the lifetime of the network. Moreover, a nature inspired hybrid optimization approach called hybrid Partic...
Saved in:
| Published in | Wireless personal communications Vol. 117; no. 2; pp. 545 - 559 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.03.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0929-6212 1572-834X |
| DOI | 10.1007/s11277-020-07882-2 |
Cover
| Abstract | The main objective in wireless sensor networks is to exploit efficiently the sensor nodes and to prolong the lifetime of the network. The discussion of energy is a significant concern to extend the lifetime of the network. Moreover, a nature inspired hybrid optimization approach called hybrid Particle Swarm Optimization–Grey Wolf Optimizer (PSO–GWO) is used in this work to efficiently utilize the energy and to transmit the data securely in an augmented path. A Learning Dynamic Deterministic Finite Automata (LD
2
FA) has been innovated and initiated to learn the dynamic role of the environment. LD
2
FA is mainly used to provide the learned and accepted string to hybrid PSO–GGWO so that the routes are optimized. Hybrid PSO–GWO is used to choose the optimal next node for each path to obtain the optimal route. The simulation results are obtained in MATLAB for 100–700 sensor nodes in a region of 500 × 500 m
2
which demonstrate that the proposed LD
2
FA based Hybrid PSO–GWO algorithm obtains better results when compared with existing algorithms. It is observed that LD
2
FA based Hybrid PSO–GWO has an increase of 18% and 48% betterment in lifetime of the network than PSO and GLBCA, nearly 57% and 75% increase in network lifetime when compared with GA and LDC respectively. It also shows an improvement of 24% increase compared to cluster-based IDS, nearly a rise of 90% throughput when compared with lightweight IDS. The consumption of energy is reduced by 13% and 15% than PSO and GA and an increase of 15% utilization of energy than LDC. Therefore, LD
2
FA based Hybrid PSO–GWO is been considered to efficiently utilize energy in an optimal route. |
|---|---|
| AbstractList | The main objective in wireless sensor networks is to exploit efficiently the sensor nodes and to prolong the lifetime of the network. The discussion of energy is a significant concern to extend the lifetime of the network. Moreover, a nature inspired hybrid optimization approach called hybrid Particle Swarm Optimization–Grey Wolf Optimizer (PSO–GWO) is used in this work to efficiently utilize the energy and to transmit the data securely in an augmented path. A Learning Dynamic Deterministic Finite Automata (LD2FA) has been innovated and initiated to learn the dynamic role of the environment. LD2FA is mainly used to provide the learned and accepted string to hybrid PSO–GGWO so that the routes are optimized. Hybrid PSO–GWO is used to choose the optimal next node for each path to obtain the optimal route. The simulation results are obtained in MATLAB for 100–700 sensor nodes in a region of 500 × 500 m2 which demonstrate that the proposed LD2FA based Hybrid PSO–GWO algorithm obtains better results when compared with existing algorithms. It is observed that LD2FA based Hybrid PSO–GWO has an increase of 18% and 48% betterment in lifetime of the network than PSO and GLBCA, nearly 57% and 75% increase in network lifetime when compared with GA and LDC respectively. It also shows an improvement of 24% increase compared to cluster-based IDS, nearly a rise of 90% throughput when compared with lightweight IDS. The consumption of energy is reduced by 13% and 15% than PSO and GA and an increase of 15% utilization of energy than LDC. Therefore, LD2FA based Hybrid PSO–GWO is been considered to efficiently utilize energy in an optimal route. The main objective in wireless sensor networks is to exploit efficiently the sensor nodes and to prolong the lifetime of the network. The discussion of energy is a significant concern to extend the lifetime of the network. Moreover, a nature inspired hybrid optimization approach called hybrid Particle Swarm Optimization–Grey Wolf Optimizer (PSO–GWO) is used in this work to efficiently utilize the energy and to transmit the data securely in an augmented path. A Learning Dynamic Deterministic Finite Automata (LD 2 FA) has been innovated and initiated to learn the dynamic role of the environment. LD 2 FA is mainly used to provide the learned and accepted string to hybrid PSO–GGWO so that the routes are optimized. Hybrid PSO–GWO is used to choose the optimal next node for each path to obtain the optimal route. The simulation results are obtained in MATLAB for 100–700 sensor nodes in a region of 500 × 500 m 2 which demonstrate that the proposed LD 2 FA based Hybrid PSO–GWO algorithm obtains better results when compared with existing algorithms. It is observed that LD 2 FA based Hybrid PSO–GWO has an increase of 18% and 48% betterment in lifetime of the network than PSO and GLBCA, nearly 57% and 75% increase in network lifetime when compared with GA and LDC respectively. It also shows an improvement of 24% increase compared to cluster-based IDS, nearly a rise of 90% throughput when compared with lightweight IDS. The consumption of energy is reduced by 13% and 15% than PSO and GA and an increase of 15% utilization of energy than LDC. Therefore, LD 2 FA based Hybrid PSO–GWO is been considered to efficiently utilize energy in an optimal route. |
| Author | Sumathi, S. Prithi, S. |
| Author_xml | – sequence: 1 givenname: S. surname: Prithi fullname: Prithi, S. email: prithi.s@rajalakshmi.edu.in organization: Department of CSE, Rajalakshmi Engineering College, Department of EEE, PSG College of Technology – sequence: 2 givenname: S. surname: Sumathi fullname: Sumathi, S. organization: Department of EEE, PSG College of Technology |
| BookMark | eNp9kMtKAzEUhoMoWC8v4CrgejSXdjKzrFIvIFa8oLuQyZzU6DSpSQbpznfwDX0SoxUEF67O5v_Of863hdadd4DQHiUHlBBxGCllQhSEkYKIqmIFW0MDOhKsqPjwYR0NSM3qomSUbaKtGJ8IyVjNBuhl3Cc_V0nhIxWhxWfLJtgWX91MP97eT--neNzNfLDpcY6ND_gGdB9ybOIgzJZ4YozVFlzC00Wyc9Xha98n62bYOnxvA3QQY4ZczOwlpFcfnnfQhlFdhN2fuY3uTia3x2fFxfT0_Hh8UWguWCrKtoIaNFWgKCl5PRpyCqpUbQkNCKOGgpDWCCaU0LRtqNCm0RSaWpUjw-qGb6P91d5F8C89xCSffB9crpRsWJecjATnOcVWKR18jAGMXIT8SFhKSuSXWrlSK7Na-a1WsgxVfyBtk0rWuxSU7f5H-QqNucfNIPxe9Q_1CQghkjI |
| CitedBy_id | crossref_primary_10_1007_s11277_023_10773_x crossref_primary_10_1016_j_knosys_2021_107379 crossref_primary_10_1007_s00521_023_08511_2 crossref_primary_10_1080_03772063_2024_2369722 crossref_primary_10_1016_j_aej_2023_09_064 crossref_primary_10_1007_s11042_022_12658_w crossref_primary_10_1007_s12083_024_01650_w crossref_primary_10_32604_iasc_2023_029489 crossref_primary_10_1109_ACCESS_2024_3461794 crossref_primary_10_3390_electronics11101545 crossref_primary_10_3390_electronics11244122 crossref_primary_10_1007_s11277_022_09557_6 crossref_primary_10_3390_biomimetics8020165 crossref_primary_10_1016_j_suscom_2023_100866 crossref_primary_10_1007_s11276_024_03677_6 crossref_primary_10_1109_JSEN_2022_3233361 crossref_primary_10_3233_JIFS_212455 crossref_primary_10_3233_JIFS_230564 crossref_primary_10_1109_JIOT_2024_3463011 crossref_primary_10_1002_dac_6016 crossref_primary_10_1007_s12083_024_01846_0 crossref_primary_10_1088_2631_8695_adb37b |
| Cites_doi | 10.1109/HICSS.2000.926982 10.1109/GLOCOM.2009.5425895 10.1016/j.engappai.2014.04.009 10.1016/j.comcom.2008.05.038 10.1007/s10207-014-0241-1 10.1145/1402958.1402983 10.1109/GLOCOM.2016.7841588 10.1145/2979779.2979840 10.1016/j.adhoc.2019.102024 10.1109/TMC.2004.41 10.1016/j.comcom.2007.10.020 10.1016/S1007-0214(11)70075-X 10.1109/JSEN.2012.2225423 10.1016/j.comcom.2009.11.008 10.1016/j.ieri.2014.09.063 10.1145/1452335.1452339 10.1109/ICNN.1995.488968 10.1109/BWCCA.2013.34 10.1145/1364654.1364656 10.1109/CCDC.2013.6561655 10.1016/j.advengsoft.2013.12.007 10.1016/j.swevo.2013.04.002i |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11277-020-07882-2 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Journalism & Communications Engineering |
| EISSN | 1572-834X |
| EndPage | 559 |
| ExternalDocumentID | 10_1007_s11277_020_07882_2 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FD6 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c372t-6d8e9ec1aea106395431ea6ad6ebe7fa4700df727a7c1db17cfbc1eb9a65f29b3 |
| IEDL.DBID | AGYKE |
| ISSN | 0929-6212 |
| IngestDate | Thu Sep 25 00:45:16 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 Wed Oct 01 03:57:37 EDT 2025 Fri Feb 21 02:49:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Wireless sensor network Dynamic deterministic finite automata Routing Grey wolf optimization Clustering Particle swarm optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-6d8e9ec1aea106395431ea6ad6ebe7fa4700df727a7c1db17cfbc1eb9a65f29b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2496305733 |
| PQPubID | 2043826 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2496305733 crossref_primary_10_1007_s11277_020_07882_2 crossref_citationtrail_10_1007_s11277_020_07882_2 springer_journals_10_1007_s11277_020_07882_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Wireless personal communications |
| PublicationTitleAbbrev | Wireless Pers Commun |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Sumathi, S., & Prithi, S. (2017). A survey on recent DFA compression techniques for deep packet inspection in network intrusion detection system. Journal of Electrical Engineering,17(3). Furtado, H., & Trobec, R. (2011). Applications of wireless sensors in medicine. In Proceedings of the 34th international convention (pp. 257–261). YeMLiC, G Chen, J Wu,An energy efficient clustering scheme in wireless sensor networksAd Hoc & Sensor Wireless Networks2007399119 ZhuY-HWuW-DPanJTangY-PAn energy-efficient data gathering algorithm to prolong lifetime of wireless sensor networksComputer Communications201033563964710.1016/j.comcom.2009.11.008 Depedri, A., Zanella, A., & Verdone, R. (2003). An energy efficient protocol for wireless sensor networks. In Proceedings of AINS (pp. 1–6). Fan, X., & Song, Y. (2007). Improvement on LEACH protocol of wireless sensor network. In Proceeding of the international conference on sensor technologies and applications (pp. 260–264). Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of IEEE international conference on system sciences Jan. 7, 2000 (p. 10). Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the 1995 IEEE international conference on neural network. WangSSChenZPA link-aware clustering mechanism for energy-efficient routing in wireless sensor networksIEEE Sensors Journal201313272873610.1109/JSEN.2012.2225423 KuilaPJanaPKEnergy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approachEngineering Applications of Artificial Intelligence20143312714010.1016/j.engappai.2014.04.009 Snort: Light weight intrusion detection for networks. Columbia, MD: Sourcefire, Inc. http://www.snort.org/. Manikandan, A., & Rajarajachozhan, C. (2017). Artificial bee colony for socially aware networking. Journal of Chemical and Pharmaceutical Sciences, Special Issue (2), 299–301. LowCPFangCNgJMAngYHEfficient load-balancing clustering algorithms for wireless sensor networksComputer Communications20083175075910.1016/j.comcom.2007.10.020 AtaulBClustering strategies for improving the lifetime of two-tired sensor networksComputer Communications2008313451345910.1016/j.comcom.2008.05.038 Bro: A system for detecting network intruders in real time. Berkeley, CA: Lawrence Berkeley National Laboratory. http://www.bro-ids.org. Han, L. (2011). LEACH-HIR: An energy efficient routing algorithm for Heterogenous WSN. In IEEE international conference on intelligent computing and intelligent systems (ICIS) (Vol. 2, pp. 507–511). KuilaPGuptaSKJanaPKA novel evolutionary approach for load balanced clustering problem for wireless sensor networksSwarm and Evolutionary Computation201310.1016/j.swevo.2013.04.002i Li, X., Gang, W., Zongqi, L., & Yanyan, Z. (2013). An energy-efficient routing protocol based on particle swarm clustering algorithm and inter-cluster routing algorithm for WSN. In 2013 25th Chinese control and decision conference (CCDC) (pp. 4029–4033). Ficara, D., Giordano, S., Procissi, G., Vitucci, F., Antichi, G., & Pietro, A. D. (2008). An improved DFA for fast regular expression matching. In Proceedings of the ACM SIGCOMM computer communication review, 2008 (No. 38, Issue 5, pp. 29–40). PrithiSSumathiSLD2FA-PSO: A novel learning dynamic deterministic finite automata with PSO algorithm for secured energy efficient routing in wireless sensor networkAd Hoc Networks20209710202410.1016/j.adhoc.2019.102024 Singh, S., & Kushwah, R. S. (2016). Energy efficient approach for intrusion detection system for WSN by applying optimal clustering and genetic algorithm. In Proceedings of the international conference on advances in information communication technology and computing- AICTC’16. Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. In Proceedings of international workshop sensor and actor network protocols and applications, Boston, MA (pp. 251–261). RahmanMNMatinEfficient algorithm for prolonging network lifetime of wireless sensor networkTsinghua Science and Technology201116656156810.1016/S1007-0214(11)70075-X Riecker, M., Biedermann, S., Bansarkhani, R. E., & Hollick, M. (2014). Lightweight energy consumption-based intrusion detection system for wireless sensor networks, special issue paper. Berlin: Springer. https://doi.org/10.1007/s10207-014-0241-1. YounisKOFahmySHEED: a hybrid, energy-efficient distributed clustering approach for ad hoc sensor networksMobile Computing, IEEE Transactions on20043436637910.1109/TMC.2004.41 YeZMohamadianHAdaptive clustering based dynamic routing of wireless sensor networks via generalized ant colony optimizationIERI Procedia20141021010.1016/j.ieri.2014.09.063 William, J., & Eatherton, W. (2005). An encoded version of reg-ex database from Cisco systems provided for research purposes. Becchi, M., & Crowley, P. (2007). A hybrid finite automaton for practical deep packet inspection. In Proceedings of the ACM conference on emerging networking experiments and technologies. MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdvances in Engineering Software201469466110.1016/j.advengsoft.2013.12.007 Mainetti, L., Patrono, L., & Vilei, A. (2011). Evolution of wireless sensor networks towards the internet of things: A survey. In International conference on software, telecommunications and computer networks (SoftCOM) (pp. 1–6). Wang, N., Zhou, Y., & Xiang, W. (2016). An energy efficient clustering protocol for lifetime maximization in wireless sensor networks. In Proceedings of the IEEE conference on global communications (GLOBECO) Dec. 4–8 (pp. 1–6) Yi, G., Guiling, S., Weixiang, L., & Yong, P. (2009). Recluster-LEACH: A recluster control algorithm based on density for wireless sensor network. In: 2nd international conference on power electronics and intelligent transportation system (Vol. 3, pp. 198–202). Smith, R., Estan, C., Jha, S., & Kong, S. (2008). Deflating the big bang: Fast and scalable deep packet inspection with extended finite automata. In Proceedings of the ACM SIGCOMM 2008 conference on applications, technologies, architectures, and protocols for computer communications (pp. 207–218). Antichi, G., Di Pietro, A., Ficara, D., Giordano, S., Procissi, G., & Vitucci, F. (2009). Second-order differential encoding of deterministic finite automata. In Proceedings of the 28th IEEE conference on global telecommunications (pp. 2838–2843). Mahmood, D., Javaid, N., Mahmood, S., Qureshi, S., Memon, A. M., & Zaman, T. (2013). MODLEACH: A variant of LEACH for WSNs. In BWCCA ‘13 proceedings of the 2013 eighth international conference on broadband and wireless computing, communication and applications. 7882_CR19 7882_CR2 7882_CR1 7882_CR16 P Kuila (7882_CR28) 2013 S Prithi (7882_CR32) 2020; 97 7882_CR36 7882_CR13 7882_CR35 7882_CR12 7882_CR34 KO Younis (7882_CR6) 2004; 3 7882_CR11 CP Low (7882_CR29) 2008; 31 7882_CR10 P Kuila (7882_CR18) 2014; 33 SS Wang (7882_CR4) 2013; 13 7882_CR27 7882_CR26 7882_CR25 7882_CR24 P Kuila (7882_CR31) 2014; 33 7882_CR23 7882_CR22 S Mirjalili (7882_CR33) 2014; 69 7882_CR21 7882_CR20 MN Rahman (7882_CR15) 2011; 16 7882_CR3 7882_CR5 Z Ye (7882_CR17) 2014; 10 7882_CR8 Y-H Zhu (7882_CR14) 2010; 33 B Ataul (7882_CR30) 2008; 31 M Ye (7882_CR7) 2007; 3 7882_CR9 |
| References_xml | – reference: Furtado, H., & Trobec, R. (2011). Applications of wireless sensors in medicine. In Proceedings of the 34th international convention (pp. 257–261). – reference: KuilaPJanaPKEnergy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approachEngineering Applications of Artificial Intelligence20143312714010.1016/j.engappai.2014.04.009 – reference: KuilaPGuptaSKJanaPKA novel evolutionary approach for load balanced clustering problem for wireless sensor networksSwarm and Evolutionary Computation201310.1016/j.swevo.2013.04.002i – reference: Becchi, M., & Crowley, P. (2007). A hybrid finite automaton for practical deep packet inspection. In Proceedings of the ACM conference on emerging networking experiments and technologies. – reference: YeMLiC, G Chen, J Wu,An energy efficient clustering scheme in wireless sensor networksAd Hoc & Sensor Wireless Networks2007399119 – reference: LowCPFangCNgJMAngYHEfficient load-balancing clustering algorithms for wireless sensor networksComputer Communications20083175075910.1016/j.comcom.2007.10.020 – reference: AtaulBClustering strategies for improving the lifetime of two-tired sensor networksComputer Communications2008313451345910.1016/j.comcom.2008.05.038 – reference: Riecker, M., Biedermann, S., Bansarkhani, R. E., & Hollick, M. (2014). Lightweight energy consumption-based intrusion detection system for wireless sensor networks, special issue paper. Berlin: Springer. https://doi.org/10.1007/s10207-014-0241-1. – reference: Sumathi, S., & Prithi, S. (2017). A survey on recent DFA compression techniques for deep packet inspection in network intrusion detection system. Journal of Electrical Engineering,17(3). – reference: Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. In Proceedings of international workshop sensor and actor network protocols and applications, Boston, MA (pp. 251–261). – reference: Antichi, G., Di Pietro, A., Ficara, D., Giordano, S., Procissi, G., & Vitucci, F. (2009). Second-order differential encoding of deterministic finite automata. In Proceedings of the 28th IEEE conference on global telecommunications (pp. 2838–2843). – reference: Mainetti, L., Patrono, L., & Vilei, A. (2011). Evolution of wireless sensor networks towards the internet of things: A survey. In International conference on software, telecommunications and computer networks (SoftCOM) (pp. 1–6). – reference: WangSSChenZPA link-aware clustering mechanism for energy-efficient routing in wireless sensor networksIEEE Sensors Journal201313272873610.1109/JSEN.2012.2225423 – reference: PrithiSSumathiSLD2FA-PSO: A novel learning dynamic deterministic finite automata with PSO algorithm for secured energy efficient routing in wireless sensor networkAd Hoc Networks20209710202410.1016/j.adhoc.2019.102024 – reference: Snort: Light weight intrusion detection for networks. Columbia, MD: Sourcefire, Inc. http://www.snort.org/. – reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizerAdvances in Engineering Software201469466110.1016/j.advengsoft.2013.12.007 – reference: Depedri, A., Zanella, A., & Verdone, R. (2003). An energy efficient protocol for wireless sensor networks. In Proceedings of AINS (pp. 1–6). – reference: Han, L. (2011). LEACH-HIR: An energy efficient routing algorithm for Heterogenous WSN. In IEEE international conference on intelligent computing and intelligent systems (ICIS) (Vol. 2, pp. 507–511). – reference: YounisKOFahmySHEED: a hybrid, energy-efficient distributed clustering approach for ad hoc sensor networksMobile Computing, IEEE Transactions on20043436637910.1109/TMC.2004.41 – reference: Singh, S., & Kushwah, R. S. (2016). Energy efficient approach for intrusion detection system for WSN by applying optimal clustering and genetic algorithm. In Proceedings of the international conference on advances in information communication technology and computing- AICTC’16. – reference: William, J., & Eatherton, W. (2005). An encoded version of reg-ex database from Cisco systems provided for research purposes. – reference: Li, X., Gang, W., Zongqi, L., & Yanyan, Z. (2013). An energy-efficient routing protocol based on particle swarm clustering algorithm and inter-cluster routing algorithm for WSN. In 2013 25th Chinese control and decision conference (CCDC) (pp. 4029–4033). – reference: Fan, X., & Song, Y. (2007). Improvement on LEACH protocol of wireless sensor network. In Proceeding of the international conference on sensor technologies and applications (pp. 260–264). – reference: Yi, G., Guiling, S., Weixiang, L., & Yong, P. (2009). Recluster-LEACH: A recluster control algorithm based on density for wireless sensor network. In: 2nd international conference on power electronics and intelligent transportation system (Vol. 3, pp. 198–202). – reference: Smith, R., Estan, C., Jha, S., & Kong, S. (2008). Deflating the big bang: Fast and scalable deep packet inspection with extended finite automata. In Proceedings of the ACM SIGCOMM 2008 conference on applications, technologies, architectures, and protocols for computer communications (pp. 207–218). – reference: Manikandan, A., & Rajarajachozhan, C. (2017). Artificial bee colony for socially aware networking. Journal of Chemical and Pharmaceutical Sciences, Special Issue (2), 299–301. – reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the 1995 IEEE international conference on neural network. – reference: Wang, N., Zhou, Y., & Xiang, W. (2016). An energy efficient clustering protocol for lifetime maximization in wireless sensor networks. In Proceedings of the IEEE conference on global communications (GLOBECO) Dec. 4–8 (pp. 1–6) – reference: RahmanMNMatinEfficient algorithm for prolonging network lifetime of wireless sensor networkTsinghua Science and Technology201116656156810.1016/S1007-0214(11)70075-X – reference: Mahmood, D., Javaid, N., Mahmood, S., Qureshi, S., Memon, A. M., & Zaman, T. (2013). MODLEACH: A variant of LEACH for WSNs. In BWCCA ‘13 proceedings of the 2013 eighth international conference on broadband and wireless computing, communication and applications. – reference: ZhuY-HWuW-DPanJTangY-PAn energy-efficient data gathering algorithm to prolong lifetime of wireless sensor networksComputer Communications201033563964710.1016/j.comcom.2009.11.008 – reference: Bro: A system for detecting network intruders in real time. Berkeley, CA: Lawrence Berkeley National Laboratory. http://www.bro-ids.org. – reference: Ficara, D., Giordano, S., Procissi, G., Vitucci, F., Antichi, G., & Pietro, A. D. (2008). An improved DFA for fast regular expression matching. In Proceedings of the ACM SIGCOMM computer communication review, 2008 (No. 38, Issue 5, pp. 29–40). – reference: Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of IEEE international conference on system sciences Jan. 7, 2000 (p. 10). – reference: YeZMohamadianHAdaptive clustering based dynamic routing of wireless sensor networks via generalized ant colony optimizationIERI Procedia20141021010.1016/j.ieri.2014.09.063 – ident: 7882_CR5 doi: 10.1109/HICSS.2000.926982 – ident: 7882_CR26 doi: 10.1109/GLOCOM.2009.5425895 – volume: 33 start-page: 127 year: 2014 ident: 7882_CR31 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2014.04.009 – ident: 7882_CR11 – volume: 31 start-page: 3451 year: 2008 ident: 7882_CR30 publication-title: Computer Communications doi: 10.1016/j.comcom.2008.05.038 – ident: 7882_CR36 doi: 10.1007/s10207-014-0241-1 – volume: 33 start-page: 127 year: 2014 ident: 7882_CR18 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2014.04.009 – ident: 7882_CR21 – ident: 7882_CR25 doi: 10.1145/1402958.1402983 – ident: 7882_CR8 – ident: 7882_CR23 – ident: 7882_CR3 doi: 10.1109/GLOCOM.2016.7841588 – ident: 7882_CR35 doi: 10.1145/2979779.2979840 – volume: 97 start-page: 102024 year: 2020 ident: 7882_CR32 publication-title: Ad Hoc Networks doi: 10.1016/j.adhoc.2019.102024 – volume: 3 start-page: 366 issue: 4 year: 2004 ident: 7882_CR6 publication-title: Mobile Computing, IEEE Transactions on doi: 10.1109/TMC.2004.41 – volume: 3 start-page: 99 year: 2007 ident: 7882_CR7 publication-title: Ad Hoc & Sensor Wireless Networks – ident: 7882_CR2 – ident: 7882_CR1 – ident: 7882_CR27 – volume: 31 start-page: 750 year: 2008 ident: 7882_CR29 publication-title: Computer Communications doi: 10.1016/j.comcom.2007.10.020 – volume: 16 start-page: 561 issue: 6 year: 2011 ident: 7882_CR15 publication-title: Tsinghua Science and Technology doi: 10.1016/S1007-0214(11)70075-X – volume: 13 start-page: 728 issue: 2 year: 2013 ident: 7882_CR4 publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2012.2225423 – volume: 33 start-page: 639 issue: 5 year: 2010 ident: 7882_CR14 publication-title: Computer Communications doi: 10.1016/j.comcom.2009.11.008 – volume: 10 start-page: 2 year: 2014 ident: 7882_CR17 publication-title: IERI Procedia doi: 10.1016/j.ieri.2014.09.063 – ident: 7882_CR24 doi: 10.1145/1452335.1452339 – ident: 7882_CR12 – ident: 7882_CR34 doi: 10.1109/ICNN.1995.488968 – ident: 7882_CR10 – ident: 7882_CR13 doi: 10.1109/BWCCA.2013.34 – ident: 7882_CR9 – ident: 7882_CR19 doi: 10.1145/1364654.1364656 – ident: 7882_CR16 doi: 10.1109/CCDC.2013.6561655 – ident: 7882_CR22 – volume: 69 start-page: 46 year: 2014 ident: 7882_CR33 publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – ident: 7882_CR20 – year: 2013 ident: 7882_CR28 publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2013.04.002i |
| SSID | ssj0010092 |
| Score | 2.38895 |
| Snippet | The main objective in wireless sensor networks is to exploit efficiently the sensor nodes and to prolong the lifetime of the network. The discussion of energy... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 545 |
| SubjectTerms | Algorithms Communications Engineering Computer Communication Networks Energy Energy utilization Engineering Networks Nodes Particle swarm optimization Sensors Signal,Image and Speech Processing Wireless networks Wireless sensor networks |
| Title | Automata Based Hybrid PSO–GWO Algorithm for Secured Energy Efficient Optimal Routing in Wireless Sensor Network |
| URI | https://link.springer.com/article/10.1007/s11277-020-07882-2 https://www.proquest.com/docview/2496305733 |
| Volume | 117 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1572-834X dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0010092 issn: 0929-6212 databaseCode: ADMLS dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-834X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010092 issn: 0929-6212 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-834X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010092 issn: 0929-6212 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-834X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010092 issn: 0929-6212 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BucCBHVEolQ-ICwQ1aZbmmKIuAtEiQQWcIm-BijYFkh7gxD_wh3wJYzehgACJc8aOY09mnj0zzwC7kScRhDrSoL46rUInazD0M4bLIorwXJi-ptg47bjtnn185VxlRWFJnu2ehyS1pZ4Wu5kq3Ki2O-jWEBei4Z3TfFsFmAta1yeNj-iBIhLSHHsqtQNtc1Ys83MvXx3SFGV-C4xqf9Ncgl4-0kmayd3hOGWH_PkbieN_P2UZFjMASoKJxqzAjIxXYeETLeEqbGdC_WRI9siXEpJkDR6CcTpCnEtJHT2gIO0nVfRFzs67by-vrcsuCQY3o8d-ejskCIiJPtBHsYYuMiQNTVmBno500VgNcSQqJwlfS_oxUam4AzS92ChOsG1nkqO-Dr1m4-KobWQXNxi86lmp4Yqa9CU3qaSmgkCq3l5SlwoXVcaLqO1VKiJC5EQ9bgpmejxi3JTMp64TWT6rbkAhHsVyE4jDK9SmlcihrGpT4dc4swX3FQmOqHlCFMHMVy_kGau5ulxjEE75mNVkhzjZoZ7s0CrC_keb-wmnx5_SpVwpwuz_TkLctLpVzSVZhIN8jaePf-9t63_i2zBvqSQanfRWgkL6OJY7iIJSVkalb9brnXKm_GWY7VnBO47GAJs |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YPKgHo6gRQd2D8aJN6JseqwFReZgIkVuzryoJFKXl4M3_4D_0lzi7tFSMmnju7Lbp1858uzPzLUInoSuAhNpCI57crYIgq1GIM5pDQwL0nOuekthod5xm37oZ2IO0KSzOqt2zlKTy1Hmzmy7TjXK5A2ENeCE43lUpYCUV8_uGv8gdSBkhpbAnCzvAM6etMj_PsRyOco75LS2qok1jC22mNBH7c1y30YqIimjji3hgEZVTo2E8xqd4qdEj3kEv_iyZABsl-ALiFMfNV9mahe_uux9v71cPXeyPHifTYfI0xkBbsdp2B7O6agXEdSUsAfEId8GljOFJZOUQ3BYPIywLZkfgIGFQFMPYzrySfBf1G_XeZVNLj1fQmOkaiebwmvAE04kguiQqsiteEIdwB4B1Q2K51SoPgd8Ql-mc6i4LKdMF9Yhjh4ZHzT1UiCaR2EfYZlVikWpoE2pahHs1Ri3OPClVw2su5yWkZ285YKn2uDwCYxTkqskSmQCQCRQygVFCZ4sxz3PljT-tKxl4QfoXxgEsLR1TKT6W0HkGaH7599kO_md-jNaavXYraF13bsto3ZBlL6pMrYIKyXQmDoG3JPRIfaafHVLkDw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsJAFJ0YTYwujKJGBHUWxo020NIHXaKC-AISJbJr5lUlgYK0LNz5D_6hX-KdaUvBqInrzkybudN7z8y95wxCx74jAIRaQiOuPK2CIKtRiDOaTX0C8JzrrpLYuG_Zza5507N6cyx-Ve2epiRjToNUaQqi0pj7pYz4psvUo9z6QIgDjAhOeMWUQgmwortGbZZHkJJCSm1PFnmAl05oMz-PsRiaMrz5LUWqIk9jE20kkBHXYhtvoSUR5ND6nJBgDhWSRv1wiE_wAukj3EavtWk0AmRK8DnELI6bb5KmhTsP7c_3j6unNq4NnkeTfvQyxABhsTqCh2Z1RQvEdSUyAXOD2-BehvAlsooIXov7AZbFswNwltApCKFvK64q30HdRv3xoqklVy1orOIYkWbzqnAF04kgugQtkiEviE24DUZ2fGI65TL3AesQh-mc6g7zKdMFdYlt-YZLK7toORgFYg9hi5WJScq-RWjFJNytMmpy5krZGl51OM8jPZ1ljyU65PI6jIGXKShLy3hgGU9ZxjPy6HTWZxyrcPzZupgaz0v-yNCDbaZdUeqPeXSWGjR7_Pto-_9rfoRWO5cN7-66dVtAa4asgFEVa0W0HE2m4gAgTEQP1Sr9Aj6i6Es |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automata+Based+Hybrid+PSO%E2%80%93GWO+Algorithm+for+Secured+Energy+Efficient+Optimal+Routing+in+Wireless+Sensor+Network&rft.jtitle=Wireless+personal+communications&rft.au=Prithi%2C+S&rft.au=Sumathi%2C+S&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0929-6212&rft.eissn=1572-834X&rft.volume=117&rft.issue=2&rft.spage=545&rft.epage=559&rft_id=info:doi/10.1007%2Fs11277-020-07882-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-6212&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-6212&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-6212&client=summon |