Efficient Segmentation of Brain Tumor Using FL-SNM with a Metaheuristic Approach to Optimization
Nowadays, automatic tumor detection from brain images is extremely significant for many diagnostic as well as therapeutic purposes, due to the unpredictable shape and appearance of tumors. In medical image analysis, the automatic segmentation of tumors from brain using magnetic resonance imaging (MR...
Saved in:
| Published in | Journal of medical systems Vol. 43; no. 2; pp. 25 - 14 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.02.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0148-5598 1573-689X 1573-689X |
| DOI | 10.1007/s10916-018-1135-y |
Cover
| Abstract | Nowadays, automatic tumor detection from brain images is extremely significant for many diagnostic as well as therapeutic purposes, due to the unpredictable shape and appearance of tumors. In medical image analysis, the automatic segmentation of tumors from brain using magnetic resonance imaging (MRI) data is the most critical issue. Existing research has some limitations, such as high processing time and lower accuracy, because of the time required for the training process. In this research, a new automatic segmentation process is introduced using machine learning and a swarm intelligence scheme. Here, a fuzzy logic with spiking neuron model (FL-SNM) is proposed for segmenting the brain tumor region in MR images. Initially
,
input images are preprocessed to remove Gaussian and Poisson noise using a modified Kuan filter (MKF). In the MKF, the optimal selection of the minimum MSE of image pixels is achieved using a random search algorithm (RSA), which improves the peak signal-to-noise ratio (PSNR). Then, the image is smoothed using an anisotropic diffusion filter (ADF) to reduce the over-filtering problem. Afterwards, to extract statistical texture features, Fisher’s linear-discriminant analysis (FLDA) is used. Finally, extracted features are transferred to the FL-SNM process and this scheme effectively segments the tumor region. In FL-SNM, the consequent parameters such as weight and bias play an important role in segmenting the region. Therefore, optimizing the weight parameter values using a chicken behavior-based swarm intelligence (CSI) algorithm, is proposed. The proposed (FL-SNM) scheme attained better performance in terms of high accuracy
(
94.87%), sensitivity
(
92.07%), specificity
(
99.34%), precision rate (89.36%), recall rate (88.39%), F-measure (95.06%), G-mean
(
95.63%), and DSC rate (91.2%), compared to existing convolutional neural networks (CNNs) and hierarchical self-organizing maps (HSOMs). |
|---|---|
| AbstractList | Nowadays, automatic tumor detection from brain images is extremely significant for many diagnostic as well as therapeutic purposes, due to the unpredictable shape and appearance of tumors. In medical image analysis, the automatic segmentation of tumors from brain using magnetic resonance imaging (MRI) data is the most critical issue. Existing research has some limitations, such as high processing time and lower accuracy, because of the time required for the training process. In this research, a new automatic segmentation process is introduced using machine learning and a swarm intelligence scheme. Here, a fuzzy logic with spiking neuron model (FL-SNM) is proposed for segmenting the brain tumor region in MR images. Initially, input images are preprocessed to remove Gaussian and Poisson noise using a modified Kuan filter (MKF). In the MKF, the optimal selection of the minimum MSE of image pixels is achieved using a random search algorithm (RSA), which improves the peak signal-to-noise ratio (PSNR). Then, the image is smoothed using an anisotropic diffusion filter (ADF) to reduce the over-filtering problem. Afterwards, to extract statistical texture features, Fisher's linear-discriminant analysis (FLDA) is used. Finally, extracted features are transferred to the FL-SNM process and this scheme effectively segments the tumor region. In FL-SNM, the consequent parameters such as weight and bias play an important role in segmenting the region. Therefore, optimizing the weight parameter values using a chicken behavior-based swarm intelligence (CSI) algorithm, is proposed. The proposed (FL-SNM) scheme attained better performance in terms of high accuracy (94.87%), sensitivity (92.07%), specificity (99.34%), precision rate (89.36%), recall rate (88.39%), F-measure (95.06%), G-mean (95.63%), and DSC rate (91.2%), compared to existing convolutional neural networks (CNNs) and hierarchical self-organizing maps (HSOMs). Nowadays, automatic tumor detection from brain images is extremely significant for many diagnostic as well as therapeutic purposes, due to the unpredictable shape and appearance of tumors. In medical image analysis, the automatic segmentation of tumors from brain using magnetic resonance imaging (MRI) data is the most critical issue. Existing research has some limitations, such as high processing time and lower accuracy, because of the time required for the training process. In this research, a new automatic segmentation process is introduced using machine learning and a swarm intelligence scheme. Here, a fuzzy logic with spiking neuron model (FL-SNM) is proposed for segmenting the brain tumor region in MR images. Initially , input images are preprocessed to remove Gaussian and Poisson noise using a modified Kuan filter (MKF). In the MKF, the optimal selection of the minimum MSE of image pixels is achieved using a random search algorithm (RSA), which improves the peak signal-to-noise ratio (PSNR). Then, the image is smoothed using an anisotropic diffusion filter (ADF) to reduce the over-filtering problem. Afterwards, to extract statistical texture features, Fisher’s linear-discriminant analysis (FLDA) is used. Finally, extracted features are transferred to the FL-SNM process and this scheme effectively segments the tumor region. In FL-SNM, the consequent parameters such as weight and bias play an important role in segmenting the region. Therefore, optimizing the weight parameter values using a chicken behavior-based swarm intelligence (CSI) algorithm, is proposed. The proposed (FL-SNM) scheme attained better performance in terms of high accuracy ( 94.87%), sensitivity ( 92.07%), specificity ( 99.34%), precision rate (89.36%), recall rate (88.39%), F-measure (95.06%), G-mean ( 95.63%), and DSC rate (91.2%), compared to existing convolutional neural networks (CNNs) and hierarchical self-organizing maps (HSOMs). Nowadays, automatic tumor detection from brain images is extremely significant for many diagnostic as well as therapeutic purposes, due to the unpredictable shape and appearance of tumors. In medical image analysis, the automatic segmentation of tumors from brain using magnetic resonance imaging (MRI) data is the most critical issue. Existing research has some limitations, such as high processing time and lower accuracy, because of the time required for the training process. In this research, a new automatic segmentation process is introduced using machine learning and a swarm intelligence scheme. Here, a fuzzy logic with spiking neuron model (FL-SNM) is proposed for segmenting the brain tumor region in MR images. Initially, input images are preprocessed to remove Gaussian and Poisson noise using a modified Kuan filter (MKF). In the MKF, the optimal selection of the minimum MSE of image pixels is achieved using a random search algorithm (RSA), which improves the peak signal-to-noise ratio (PSNR). Then, the image is smoothed using an anisotropic diffusion filter (ADF) to reduce the over-filtering problem. Afterwards, to extract statistical texture features, Fisher's linear-discriminant analysis (FLDA) is used. Finally, extracted features are transferred to the FL-SNM process and this scheme effectively segments the tumor region. In FL-SNM, the consequent parameters such as weight and bias play an important role in segmenting the region. Therefore, optimizing the weight parameter values using a chicken behavior-based swarm intelligence (CSI) algorithm, is proposed. The proposed (FL-SNM) scheme attained better performance in terms of high accuracy (94.87%), sensitivity (92.07%), specificity (99.34%), precision rate (89.36%), recall rate (88.39%), F-measure (95.06%), G-mean (95.63%), and DSC rate (91.2%), compared to existing convolutional neural networks (CNNs) and hierarchical self-organizing maps (HSOMs).Nowadays, automatic tumor detection from brain images is extremely significant for many diagnostic as well as therapeutic purposes, due to the unpredictable shape and appearance of tumors. In medical image analysis, the automatic segmentation of tumors from brain using magnetic resonance imaging (MRI) data is the most critical issue. Existing research has some limitations, such as high processing time and lower accuracy, because of the time required for the training process. In this research, a new automatic segmentation process is introduced using machine learning and a swarm intelligence scheme. Here, a fuzzy logic with spiking neuron model (FL-SNM) is proposed for segmenting the brain tumor region in MR images. Initially, input images are preprocessed to remove Gaussian and Poisson noise using a modified Kuan filter (MKF). In the MKF, the optimal selection of the minimum MSE of image pixels is achieved using a random search algorithm (RSA), which improves the peak signal-to-noise ratio (PSNR). Then, the image is smoothed using an anisotropic diffusion filter (ADF) to reduce the over-filtering problem. Afterwards, to extract statistical texture features, Fisher's linear-discriminant analysis (FLDA) is used. Finally, extracted features are transferred to the FL-SNM process and this scheme effectively segments the tumor region. In FL-SNM, the consequent parameters such as weight and bias play an important role in segmenting the region. Therefore, optimizing the weight parameter values using a chicken behavior-based swarm intelligence (CSI) algorithm, is proposed. The proposed (FL-SNM) scheme attained better performance in terms of high accuracy (94.87%), sensitivity (92.07%), specificity (99.34%), precision rate (89.36%), recall rate (88.39%), F-measure (95.06%), G-mean (95.63%), and DSC rate (91.2%), compared to existing convolutional neural networks (CNNs) and hierarchical self-organizing maps (HSOMs). |
| ArticleNumber | 25 |
| Author | Kumarasamy, Sathiyasekar Natarajan, Aparna |
| Author_xml | – sequence: 1 givenname: Aparna orcidid: 0000-0002-3291-7249 surname: Natarajan fullname: Natarajan, Aparna email: aparnan2101@gmail.com organization: Department of EEE, SRS College of Engineering and Technology – sequence: 2 givenname: Sathiyasekar surname: Kumarasamy fullname: Kumarasamy, Sathiyasekar organization: Department of EEE, S. A. Engineering College |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30604101$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFv1DAUhC1URLeFH8AFWeLCxeU5jh3nWKoWkLb00FbiZhzH3nW1iRfbEdr--npJq0qV4PQu34zmzRyhgzGMFqH3FE4oQPM5UWipIEAloZRxsnuFFpQ3jAjZ_jxAC6C1JJy38hAdpXQHAK0QzRt0yEBATYEu0K9z57zxdsz42q6GcnX2YcTB4S9R-xHfTEOI-Db5cYUvluT6xyX-4_Maa3xps17bKfqUvcGn220M2qxxDvhqm_3g7_86vUWvnd4k--7xHqPbi_Obs29kefX1-9npkhjWVJnwhta6krbrnDau07qtusb1Uoq67V0PvZV9L3RlGIVKgwTeG-CyNRwsA1exY_Rp9i0xfk82ZTX4ZOxmo0cbpqQqKlj5vwZR0I8v0LswxbGk21OVaBvOeKE-PFJTN9hebaMfdNypp-4K0MyAiSGlaJ0yfm4vl-Y2ioLar6TmlVRZSe1XUruipC-UT-b_01SzJhV2XNn4HPrfogeFM6Qt |
| CitedBy_id | crossref_primary_10_1007_s11042_025_20617_4 crossref_primary_10_1111_itor_13164 crossref_primary_10_1007_s11042_024_18315_8 crossref_primary_10_1016_j_eswa_2022_119462 crossref_primary_10_1016_j_bspc_2020_102228 crossref_primary_10_1016_j_patcog_2022_108675 crossref_primary_10_1109_TNNLS_2020_2995800 crossref_primary_10_1016_j_procs_2020_03_221 crossref_primary_10_1007_s11042_023_17215_7 crossref_primary_10_1016_j_knosys_2024_112580 crossref_primary_10_1016_j_asoc_2021_107481 crossref_primary_10_1049_iet_ipr_2019_0312 crossref_primary_10_3390_app14167281 crossref_primary_10_3390_brainsci10020118 crossref_primary_10_1007_s10489_022_03184_1 crossref_primary_10_1007_s11517_024_03097_w crossref_primary_10_1109_ACCESS_2023_3242666 |
| Cites_doi | 10.1109/ISACC.2015.7377345 10.1109/TSMC.1973.4309314 10.1142/S0219691315500393 10.21917/ijivp.2010.0007 10.1109/83.661179 10.1016/S0019-9958(65)90241-X 10.1007/978-3-319-47952-1_19 10.1155/2013/130134 10.1007/978-3-319-11857-4_10 10.1109/TIP.2014.2371244 10.1109/TNN.2007.891635 10.1007/s11063-010-9149-6 10.1109/TST.2014.6961028 10.1016/j.eswa.2014.01.021 10.1109/LSP.2014.2364612 10.1109/TMI.2016.2538465 10.1016/j.eswa.2011.02.012 10.5121/ijfls.2012.240331 10.1017/CBO9780511815706 10.1109/WIECON-ECE.2015.7443979 10.1109/36.103288 10.1109/ICSPCC.2015.7338884 10.1016/j.media.2016.05.004 10.1016/j.mri.2006.09.043 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7RV 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 88C 88E 88I 8AL 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KB0 KR7 L7M LK8 L~C L~D M0N M0S M0T M1P M2P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1007/s10916-018-1135-y |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Nursing & Allied Health Database (ProQuest) Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni) Healthcare Administration Database Medical Database Science Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1573-689X |
| EndPage | 14 |
| ExternalDocumentID | 30604101 10_1007_s10916_018_1135_y |
| Genre | Journal Article |
| GroupedDBID | --- -53 -5D -5G -BR -EM -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 77K 78A 7RV 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AQUVI ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAK LK8 LLZTM M0N M0T M1P M2P M4Y M7P MA- MK0 N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZ9 SZN T13 T16 TEORI TN5 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c372t-5714a28ebbfacfbaa92b7fd88649dfd0de8dd6a2c3102a0805dc0589c50e30f23 |
| IEDL.DBID | AGYKE |
| ISSN | 0148-5598 1573-689X |
| IngestDate | Thu Sep 04 20:18:41 EDT 2025 Tue Oct 07 05:28:35 EDT 2025 Thu Apr 03 07:00:49 EDT 2025 Wed Oct 01 04:08:36 EDT 2025 Thu Apr 24 23:12:50 EDT 2025 Fri Feb 21 02:37:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Fuzzy logic Kuan filter Linear process Discriminant analysis Spiking neuron model Diffusion filter Swarm intelligence Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-5714a28ebbfacfbaa92b7fd88649dfd0de8dd6a2c3102a0805dc0589c50e30f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3291-7249 |
| PMID | 30604101 |
| PQID | 2162697535 |
| PQPubID | 54050 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2163009406 proquest_journals_2162697535 pubmed_primary_30604101 crossref_citationtrail_10_1007_s10916_018_1135_y crossref_primary_10_1007_s10916_018_1135_y springer_journals_10_1007_s10916_018_1135_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-01 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Journal of medical systems |
| PublicationTitleAbbrev | J Med Syst |
| PublicationTitleAlternate | J Med Syst |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Amin, S. A. and Megeed, M.A., Brain tumour diagnosis systems based on artificial neural networks and segmentation using MRI. The 8th International Conference on INFOmatics and systems, 119–124, 2012. SiTDeABhattacharjeeAKBrain MRI segmentation for tumor detection via entropy maximization using Grammatical SwarmInt. J. Wavelets Multiresolution Inf. Process.20151351810.1142/S0219691315500393 GerstnerWKistlerWMSpiking neuron models2002CambridgeCambridge University Press10.1017/CBO9780511815706 ShimabukuroYESmithJAThe least-squares mixing models to generate fraction images derived from remote sensing multispectral dataIEEE Trans on Geoscience and Remote Sensing1991291162010.1109/36.103288 DengYYDaiQDiscriminative clustering and feature selection for brain MRI segmentationIEEE Signal Processing Letters.20152257357710.1109/LSP.2014.2364612 ZadehLAFuzzy setsInf. Control.19658333835310.1016/S0019-9958(65)90241-X DassRPriyanka DeviSImage segmentation techniquesInt J. Electron Commun Technol.2012316670ISSN: 2230-7109 (Online) AcharyaJGadhiyaSRaviyaKSegmentation techniques for image analysis: a reviewInt J ComputSci Manage Res20132412181221 SongTJamshidiMMLeeRRHuangMA Modified Probabilistic Neural Network for Partial Volume Segmentation in Brain MR ImageIEEE Trans. on Neural Networks.20071851424143210.1109/TNN.2007.89163518220190 Elsayad, A.M., Classification of breast cancer database using learning vector quantization neural networks. Saudi Association of Health Informatics, 1–9, 2014; https://www.researchgate.net/publication/242616752 WeickertJAnisotropic Diffusion in Image Processing1998StuttgartBG. Teubner YangMSLinKCRLiuHCLirngJFMagnetic resonance imaging segmentation techniques using batch-type learning vector quantization algorithmsMagn. Reson. Imaging20072526527710.1016/j.mri.2006.09.04317275624Elsevier Ortiz, A., Gorriz, J. M., Ramirez, J. and Salas-Gonzalez, D., Unsupervised Neural Techniques Applied to MR Brain Image Segmentation, Advances in Artificial Neural Systems. Hindawi Publishing Corporation. 457590:7, 2012. 10.1155/2012/457590. ZhangYDongZWuaLWangaSA hybrid method for MRI brain image classificationExpert Syst. Appl.201138100491005310.1016/j.eswa.2011.02.012 MeftahBBenyettouALezorayODebakla ImageMSegmentation with Spiking Neuron Network, CP1019, Intelligent Systems and Automation, 1st Mediterranean conference2008College ParkAmerican Institute of Physics HaralickRMShanmugamKTextural features for image classificationIEEE Transactions on Systems, Man, and Cybernetics.19733661062110.1109/TSMC.1973.4309314 CottetG-HAyyadiMEAVolterra type model for image processingIEEE Trans. Image Process.199872923031:STN:280:DC%2BD1c7hslKmsg%3D%3D10.1109/83.661179 HebbDOThe Organization of Behavior1949New YorkWiley and Sons NaikDShahPA review on image segmentation clustering algorithmsInt J ComputSci Inform Technol20145332893293ISSN: 0975-9646 SeerhaGKKaurRReview on recent image segmentation techniquesInt J. ComputSci Eng (IJCSE)201352109112ISSN: 0975-3397 LiuJLiMWangJWuFLiuTPanYASurvey of MRI-Based Brain Tumour Segmentation MethodsTsinghua Sci. Technol.2014195785951:CAS:528:DC%2BC2cXhtFSqs7%2FI10.1109/TST.2014.6961028 PereiraSPintoAAlvesVSilvaCABrain tumor segmentation using Convolutional Neural Networks in MRI imagesIEEE Trans. Med. Imaging20163551240125110.1109/TMI.2016.253846526960222 Dawngliana, M., Deb, D., Handique, M. and Roy, S., Automatic brain tumour segmentation in mri; hybridized multilevel thresholding and level set. International Symposium on Advanced Computing and Communication, 219–223, 2015. Ramos-LlordénGVegas-Sánchez-Ferrero G, Martin-Fernandez M, Alberola-López C and Aja-Fernández S. Anisotropic diffusion filter with memory based on speckle statistics for ultrasound imagesIEEE Trans. Image Process.201524134535810.1109/TIP.2014.2371244 Meng, X., Liu, Y., Gao, X. and Zhang, H., A new bio-inspired algorithm: chicken swarm optimization. In International Conference in Swarm Intelligence, 86–94. Springer International Publishing, 2014. https://doi.org/10.1007/978-3-319-11857-4_10. El-SayedAEl-DahshanESAMohsenHMRevettKSalemABMComputer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithmExpert Syst. Appl.2014415526554510.1016/j.eswa.2014.01.021 Sharma, M., and Mukharjee, S., Brain tumor segmentation using hybrid genetic algorithm and Artificial Neural Network Fuzzy Inference System (ANFIS). International Journal of Fuzzy Logic Systems (IJFLS) 2(4):31–42, 2012. https://doi.org/10.5121/ijfls.2012.240331. HavaeiMDavyAWarde-FarleyDBiardACourvilleABengioYPalCJodoinP-MLarochelleHBrain tumor segmentation with deep neural networksMed. Image Anal.201735183110.1016/j.media.2016.05.00427310171 Liu, J. and Guo L., A New Brain MRI Image Segmentation Strategy Based on Wavelet Transform and K-means Clustering. IEEE International Conference on Signal Pro-cessing, Communications and Computing (ICSPCC), 1–4, 2015. Zabir, I., Paul, S., Rayhan, M. A., Sarker, T., Fattah, S. A., and Shahnaz, C., Automatic brain tumor detection and segmentation from multi-modal MRI images based on region growing and level set evolution. IEEE International WIE Conference on Electrical and. Comput. Eng.:503–506, 2015. Meftah, B., Lezoray, O., Benyettou, A., Segmentation and Edge Detection Based on Spiking Neural Network Model Neural Process Lett published on august 20, 2010. https://doi.org/10.1007/s11063-010-9149-6. ChristeSAMalathyKKandaswamyAImproved hybrid segmentation of brain MRI tissue and tumor using statistical featuresICTACT J. Image Video Process201011344910.21917/ijivp.2010.0007 HyakinSNeural Networks and Learning Machines, 3rd Edition2011Upper Saddle RiverPearson Prentice Hall LogeswariTKarnanMAn enhanced implementation of brain tumor detection using segmentation based on soft computing, IACSIT'10International Journal of Computer Theory and Engineering20102417938201586-590 HiralalRMenonHPA survey of brain MRI image segmentation methods and the issues involvedAdvances in Intelligent Systems and Computing201653024525910.1007/978-3-319-47952-1_19Springer International Publishing Zhang, Y., Wang, S., Ji, G., and Dong, Z., An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine. Hindawi Publishing Corporation. Sci. World J.:130134, 2013. https://doi.org/10.1155/2013/130134. GK Seerha (1135_CR7) 2013; 5 YY Deng (1135_CR33) 2015; 22 R Dass (1135_CR9) 2012; 3 1135_CR27 S Pereira (1135_CR21) 2016; 35 J Weickert (1135_CR23) 1998 LA Zadeh (1135_CR32) 1965; 8 W Gerstner (1135_CR26) 2002 MS Yang (1135_CR34) 2007; 25 DO Hebb (1135_CR28) 1949 Y Zhang (1135_CR17) 2011; 38 B Meftah (1135_CR29) 2008 RM Haralick (1135_CR36) 1973; 3 1135_CR8 J Liu (1135_CR18) 2014; 19 J Acharya (1135_CR4) 2013; 2 D Naik (1135_CR5) 2014; 5 G Ramos-Llordén (1135_CR24) 2015; 24 T Si (1135_CR12) 2015; 13 G-H Cottet (1135_CR3) 1998; 7 1135_CR16 1135_CR1 1135_CR2 1135_CR19 T Song (1135_CR35) 2007; 18 1135_CR10 S Hyakin (1135_CR15) 2011 YE Shimabukuro (1135_CR25) 1991; 29 1135_CR31 1135_CR30 1135_CR13 T Logeswari (1135_CR20) 2010; 2 M Havaei (1135_CR22) 2017; 35 SA Christe (1135_CR6) 2010; 1 A El-Sayed (1135_CR14) 2014; 41 R Hiralal (1135_CR11) 2016; 530 |
| References_xml | – reference: ZhangYDongZWuaLWangaSA hybrid method for MRI brain image classificationExpert Syst. Appl.201138100491005310.1016/j.eswa.2011.02.012 – reference: HavaeiMDavyAWarde-FarleyDBiardACourvilleABengioYPalCJodoinP-MLarochelleHBrain tumor segmentation with deep neural networksMed. Image Anal.201735183110.1016/j.media.2016.05.00427310171 – reference: ChristeSAMalathyKKandaswamyAImproved hybrid segmentation of brain MRI tissue and tumor using statistical featuresICTACT J. Image Video Process201011344910.21917/ijivp.2010.0007 – reference: ZadehLAFuzzy setsInf. Control.19658333835310.1016/S0019-9958(65)90241-X – reference: ShimabukuroYESmithJAThe least-squares mixing models to generate fraction images derived from remote sensing multispectral dataIEEE Trans on Geoscience and Remote Sensing1991291162010.1109/36.103288 – reference: GerstnerWKistlerWMSpiking neuron models2002CambridgeCambridge University Press10.1017/CBO9780511815706 – reference: CottetG-HAyyadiMEAVolterra type model for image processingIEEE Trans. Image Process.199872923031:STN:280:DC%2BD1c7hslKmsg%3D%3D10.1109/83.661179 – reference: WeickertJAnisotropic Diffusion in Image Processing1998StuttgartBG. Teubner – reference: PereiraSPintoAAlvesVSilvaCABrain tumor segmentation using Convolutional Neural Networks in MRI imagesIEEE Trans. Med. Imaging20163551240125110.1109/TMI.2016.253846526960222 – reference: Zhang, Y., Wang, S., Ji, G., and Dong, Z., An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine. Hindawi Publishing Corporation. Sci. World J.:130134, 2013. https://doi.org/10.1155/2013/130134. – reference: Sharma, M., and Mukharjee, S., Brain tumor segmentation using hybrid genetic algorithm and Artificial Neural Network Fuzzy Inference System (ANFIS). International Journal of Fuzzy Logic Systems (IJFLS) 2(4):31–42, 2012. https://doi.org/10.5121/ijfls.2012.240331. – reference: Ramos-LlordénGVegas-Sánchez-Ferrero G, Martin-Fernandez M, Alberola-López C and Aja-Fernández S. Anisotropic diffusion filter with memory based on speckle statistics for ultrasound imagesIEEE Trans. Image Process.201524134535810.1109/TIP.2014.2371244 – reference: AcharyaJGadhiyaSRaviyaKSegmentation techniques for image analysis: a reviewInt J ComputSci Manage Res20132412181221 – reference: SiTDeABhattacharjeeAKBrain MRI segmentation for tumor detection via entropy maximization using Grammatical SwarmInt. J. Wavelets Multiresolution Inf. Process.20151351810.1142/S0219691315500393 – reference: SongTJamshidiMMLeeRRHuangMA Modified Probabilistic Neural Network for Partial Volume Segmentation in Brain MR ImageIEEE Trans. on Neural Networks.20071851424143210.1109/TNN.2007.89163518220190 – reference: Liu, J. and Guo L., A New Brain MRI Image Segmentation Strategy Based on Wavelet Transform and K-means Clustering. IEEE International Conference on Signal Pro-cessing, Communications and Computing (ICSPCC), 1–4, 2015. – reference: Dawngliana, M., Deb, D., Handique, M. and Roy, S., Automatic brain tumour segmentation in mri; hybridized multilevel thresholding and level set. International Symposium on Advanced Computing and Communication, 219–223, 2015. – reference: DengYYDaiQDiscriminative clustering and feature selection for brain MRI segmentationIEEE Signal Processing Letters.20152257357710.1109/LSP.2014.2364612 – reference: Meng, X., Liu, Y., Gao, X. and Zhang, H., A new bio-inspired algorithm: chicken swarm optimization. In International Conference in Swarm Intelligence, 86–94. Springer International Publishing, 2014. https://doi.org/10.1007/978-3-319-11857-4_10. – reference: HyakinSNeural Networks and Learning Machines, 3rd Edition2011Upper Saddle RiverPearson Prentice Hall – reference: Elsayad, A.M., Classification of breast cancer database using learning vector quantization neural networks. Saudi Association of Health Informatics, 1–9, 2014; https://www.researchgate.net/publication/242616752 – reference: El-SayedAEl-DahshanESAMohsenHMRevettKSalemABMComputer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithmExpert Syst. Appl.2014415526554510.1016/j.eswa.2014.01.021 – reference: LiuJLiMWangJWuFLiuTPanYASurvey of MRI-Based Brain Tumour Segmentation MethodsTsinghua Sci. Technol.2014195785951:CAS:528:DC%2BC2cXhtFSqs7%2FI10.1109/TST.2014.6961028 – reference: MeftahBBenyettouALezorayODebakla ImageMSegmentation with Spiking Neuron Network, CP1019, Intelligent Systems and Automation, 1st Mediterranean conference2008College ParkAmerican Institute of Physics – reference: HaralickRMShanmugamKTextural features for image classificationIEEE Transactions on Systems, Man, and Cybernetics.19733661062110.1109/TSMC.1973.4309314 – reference: Meftah, B., Lezoray, O., Benyettou, A., Segmentation and Edge Detection Based on Spiking Neural Network Model Neural Process Lett published on august 20, 2010. https://doi.org/10.1007/s11063-010-9149-6. – reference: SeerhaGKKaurRReview on recent image segmentation techniquesInt J. ComputSci Eng (IJCSE)201352109112ISSN: 0975-3397 – reference: Amin, S. A. and Megeed, M.A., Brain tumour diagnosis systems based on artificial neural networks and segmentation using MRI. The 8th International Conference on INFOmatics and systems, 119–124, 2012. – reference: LogeswariTKarnanMAn enhanced implementation of brain tumor detection using segmentation based on soft computing, IACSIT'10International Journal of Computer Theory and Engineering20102417938201586-590 – reference: HebbDOThe Organization of Behavior1949New YorkWiley and Sons – reference: Zabir, I., Paul, S., Rayhan, M. A., Sarker, T., Fattah, S. A., and Shahnaz, C., Automatic brain tumor detection and segmentation from multi-modal MRI images based on region growing and level set evolution. IEEE International WIE Conference on Electrical and. Comput. Eng.:503–506, 2015. – reference: YangMSLinKCRLiuHCLirngJFMagnetic resonance imaging segmentation techniques using batch-type learning vector quantization algorithmsMagn. Reson. Imaging20072526527710.1016/j.mri.2006.09.04317275624Elsevier – reference: Ortiz, A., Gorriz, J. M., Ramirez, J. and Salas-Gonzalez, D., Unsupervised Neural Techniques Applied to MR Brain Image Segmentation, Advances in Artificial Neural Systems. Hindawi Publishing Corporation. 457590:7, 2012. 10.1155/2012/457590. – reference: HiralalRMenonHPA survey of brain MRI image segmentation methods and the issues involvedAdvances in Intelligent Systems and Computing201653024525910.1007/978-3-319-47952-1_19Springer International Publishing – reference: NaikDShahPA review on image segmentation clustering algorithmsInt J ComputSci Inform Technol20145332893293ISSN: 0975-9646 – reference: DassRPriyanka DeviSImage segmentation techniquesInt J. Electron Commun Technol.2012316670ISSN: 2230-7109 (Online) – volume-title: Anisotropic Diffusion in Image Processing year: 1998 ident: 1135_CR23 – ident: 1135_CR1 doi: 10.1109/ISACC.2015.7377345 – volume: 3 start-page: 610 issue: 6 year: 1973 ident: 1135_CR36 publication-title: IEEE Transactions on Systems, Man, and Cybernetics. doi: 10.1109/TSMC.1973.4309314 – ident: 1135_CR16 – volume: 13 start-page: 1 issue: 5 year: 2015 ident: 1135_CR12 publication-title: Int. J. Wavelets Multiresolution Inf. Process. doi: 10.1142/S0219691315500393 – volume: 1 start-page: 34 issue: 1 year: 2010 ident: 1135_CR6 publication-title: ICTACT J. Image Video Process doi: 10.21917/ijivp.2010.0007 – volume: 7 start-page: 292 year: 1998 ident: 1135_CR3 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.661179 – volume: 8 start-page: 338 issue: 3 year: 1965 ident: 1135_CR32 publication-title: Inf. Control. doi: 10.1016/S0019-9958(65)90241-X – volume: 530 start-page: 245 year: 2016 ident: 1135_CR11 publication-title: Advances in Intelligent Systems and Computing doi: 10.1007/978-3-319-47952-1_19 – volume: 5 start-page: 109 issue: 2 year: 2013 ident: 1135_CR7 publication-title: Int J. ComputSci Eng (IJCSE) – ident: 1135_CR30 doi: 10.1155/2013/130134 – volume-title: Neural Networks and Learning Machines, 3rd Edition year: 2011 ident: 1135_CR15 – volume-title: Segmentation with Spiking Neuron Network, CP1019, Intelligent Systems and Automation, 1st Mediterranean conference year: 2008 ident: 1135_CR29 – volume: 2 start-page: 1793 issue: 4 year: 2010 ident: 1135_CR20 publication-title: International Journal of Computer Theory and Engineering – volume: 3 start-page: 66 issue: 1 year: 2012 ident: 1135_CR9 publication-title: Int J. Electron Commun Technol. – ident: 1135_CR31 doi: 10.1007/978-3-319-11857-4_10 – ident: 1135_CR13 – volume: 24 start-page: 345 issue: 1 year: 2015 ident: 1135_CR24 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2371244 – volume: 18 start-page: 1424 issue: 5 year: 2007 ident: 1135_CR35 publication-title: IEEE Trans. on Neural Networks. doi: 10.1109/TNN.2007.891635 – ident: 1135_CR27 doi: 10.1007/s11063-010-9149-6 – volume: 19 start-page: 578 year: 2014 ident: 1135_CR18 publication-title: Tsinghua Sci. Technol. doi: 10.1109/TST.2014.6961028 – volume: 41 start-page: 5526 year: 2014 ident: 1135_CR14 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.01.021 – volume: 5 start-page: 3289 issue: 3 year: 2014 ident: 1135_CR5 publication-title: Int J ComputSci Inform Technol – volume: 22 start-page: 573 year: 2015 ident: 1135_CR33 publication-title: IEEE Signal Processing Letters. doi: 10.1109/LSP.2014.2364612 – volume: 2 start-page: 1218 issue: 4 year: 2013 ident: 1135_CR4 publication-title: Int J ComputSci Manage Res – volume: 35 start-page: 1240 issue: 5 year: 2016 ident: 1135_CR21 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2538465 – volume: 38 start-page: 10049 year: 2011 ident: 1135_CR17 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.012 – ident: 1135_CR19 doi: 10.5121/ijfls.2012.240331 – ident: 1135_CR10 – volume-title: Spiking neuron models year: 2002 ident: 1135_CR26 doi: 10.1017/CBO9780511815706 – ident: 1135_CR2 doi: 10.1109/WIECON-ECE.2015.7443979 – volume: 29 start-page: 16 issue: 1 year: 1991 ident: 1135_CR25 publication-title: IEEE Trans on Geoscience and Remote Sensing doi: 10.1109/36.103288 – ident: 1135_CR8 doi: 10.1109/ICSPCC.2015.7338884 – volume: 35 start-page: 18 year: 2017 ident: 1135_CR22 publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.05.004 – volume-title: The Organization of Behavior year: 1949 ident: 1135_CR28 – volume: 25 start-page: 265 year: 2007 ident: 1135_CR34 publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2006.09.043 |
| SSID | ssj0009667 |
| Score | 2.292678 |
| Snippet | Nowadays, automatic tumor detection from brain images is extremely significant for many diagnostic as well as therapeutic purposes, due to the unpredictable... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 25 |
| SubjectTerms | Algorithms Artificial neural networks Brain Brain cancer Brain Neoplasms - diagnostic imaging Brain Neoplasms - pathology Brain research Brain tumors Diagnostic systems Discriminant analysis Feature extraction Firing pattern Fuzzy Logic Health Informatics Health Sciences Heuristic methods Humans Image analysis Image detection Image processing Image Processing, Computer-Assisted - methods Image segmentation Intelligence Learning algorithms Machine Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Medicine Medicine & Public Health Neural networks Neural Networks (Computer) Neuroimaging NMR Noise Nuclear magnetic resonance Optimization Parameters Patient Facing Systems Poultry Search algorithms Self organizing maps Signal-To-Noise Ratio Statistics for Life Sciences Swarm intelligence Therapeutic applications Tumors Wearable Computing Techniques for Smart Health Weight |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED51rYQmTQgK2wIDGYmnIWuOE8fpA0IbalUhWtB-SHsLju2MB5qMkT7sv8cXO63QxJ7jJJbPPn_23fcdwHsjdSpFnFAjGaOp1IaWfGKpyYWRxs0g3bFcF8tsfpV-uRbXA1j2XBhMq-x9YueoTaPxjvyExw56IwtUfLr9TbFqFEZX-xIaKpRWMB87ibEdGHFUxhrC6Gy6_H6-leHNMk-gTnOK0uR9nNOT6RxUckdrd6qKE0Hv_92pHsDPB6HTbkeaPYOnAUqSU2_75zCw9RieLEKwfAx7_kqOeKbRC_gx7eQi3C5DLuzNKpCOatJU5AwLRZDL9aq5I10SAZl9pRfLBcFrWqLIwrbqp117VWdyGnTISduQb87lrAKX8yVczaaXn-c0FFigOpG8pULGqeK5LctK6apUasJLWZk8z9KJqQwzNjcmU1w7DMiVw5bCaCxDqAWzCat4sg_DuqntIZBMciyDxSo8oCjlWjucUZWp0KlgiY4jYP1gFjqoj2MRjF_FVjcZx79w41_g-Bf3ERxvXrn10huPNT7qLVSEVfin2M6ZCN5tHrv1g0ERVdtm3bVJML2SZREceMtu_pagspDzWRF86E29_fh_u_Lq8a68hl0HuiY-8_sIhu3d2r5xwKYt34bZ-hf_N_JF priority: 102 providerName: ProQuest |
| Title | Efficient Segmentation of Brain Tumor Using FL-SNM with a Metaheuristic Approach to Optimization |
| URI | https://link.springer.com/article/10.1007/s10916-018-1135-y https://www.ncbi.nlm.nih.gov/pubmed/30604101 https://www.proquest.com/docview/2162697535 https://www.proquest.com/docview/2163009406 |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-689X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009667 issn: 0148-5598 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-689X dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009667 issn: 0148-5598 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-689X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009667 issn: 0148-5598 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-689X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009667 issn: 0148-5598 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6xTkJIiMGAERiTkXgCeUqcOE4fu6ndBLQg1krlKTi2wyRogrbkYfz1nGOnBQZIe0mk5JI4_vmd7-47gJdaqETwKKZahCFNhNK0YENDdca10NiDVBflOp2lp4vkzZIvfRz3Ze_t3psku5n6l2A3hDKo-qLWE8WcXm3Bdke3NYDt0cmnt-MN126auijpJKOWf7w3Zv7tJb8vR9cw5jX7aLfsTHZg3hfYeZt8PWyb4lD9-IPL8YZ_dB_ueRhKRq7fPIBbptqF21NvaN-Fu247j7gopYfwedxRTeAKRc7Ml5UPWKpIXZIjm2SCzNtVfUE6BwQyeUfPZlNit3iJJFPTyHPTOkZoMvIc5qSpyXucrlY-DvQRLCbj-fEp9ckZqIoFaygXUSJZZoqilKospByyQpQ6y9JkqEsdapNpnUqmED8yibiUa2VTGCoemjgsWfwYBlVdmSdAUsFsCq2wtMqNlCiNGKUsEq4SHsYqCiDs2yhXnrncJtD4lm84l21N5liTua3J_CqAV-tHvjvajv8J7_cNn_sRfJmzCFU9G3XMA3ixvo1jzxpUZGXqtpOJrWtmmAaw5zrM-muxZSXC-S6A133jb17-z6I8vZH0M7iD-G3onMj3YdBctOY5YqSmOIAtsRR4zCYnB3584PloPPvwEa8u2OgngUAKLw |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrQRICJXyCrRgJLiArCaOncehqlrY1ZZuFkS3Um-pYztwYJPSZoX2z_HbOk6cXaGK3nqOk1gzfnzj8fcNwDsdKx6LIKQ69n3KY6VpwVJDdSJ0rHEEqZblmk2i0Sn_cibO1uBvz4Wx1yr7NbFdqHWt7Bn5LgsQelsWqNi_-E1t1SibXe1LaEhXWkHvtRJjjthxbBZ_MIS72jv6jP5-z9hwMP00oq7KAFVhzBoq4oBLlpiiKKUqCylTVsSlTpKIp7rUvjaJ1pFkCoEQkwiwhFa2Fp8Svgn90gof4BawwUOeYvC3cTiYfPu-kv2Noo6wzRNqpdD7vGpH3kNohqE8RnFBKOji353xBty9kaptd8DhJjxy0JUcdGPtMayZagvuZS45vwUPuyNA0jGbnsD5oJWnwF2NnJgfM0dyqkhdkkNbmIJM57P6krSXFshwTE8mGbHHwkSSzDTyp5l3KtLkwOmek6YmX3GJmznu6FM4vRNTP4P1qq7MCyBRzGzZLb-0AZGU2BpxTVlwobjwQxV44PfGzJVTO7dFN37lK51ma_8c7Z9b--cLDz4sX7nopD5ua7zdeyh3s_4qX41RD94uH-N8tUkYWZl63rYJ7XVOP_LgeefZ5d9Cq2SEa6QHH3tXrz7-3668vL0rb-D-aJqN8_HR5PgVPEDAl3a3zrdhvbmcmx0EVU3x2o1cAud3PVmuAUqeMNQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VRaqQEILy0UABI8EFZDVx4jg5IFRoVy3tLkhtpb2lju3AgU1KmxXav8avYyZOdoUqeus5TmLNjMfPnpk3AG-sMomSUcytCkOeKGN5KXLHbSatsmhBpqtyHU_Sg7Pky1RO1-DPUAtDaZWDT-wctW0M3ZHviAihN1WByp2qT4v4tjf6ePGLUwcpirQO7TS8iRy5xW88vl19ONxDXb8VYrR_-vmA9x0GuImVaLlUUaJF5sqy0qYqtc5FqSqbZWmS28qG1mXWploYBEFCI7iS1lAfPiNDF4cVkR6g-7-j4jindEI1VSvC3zT1pdpJxokEfYio-rI9BGV4iMfzWxRLvvh3T7wGdK8Fabu9b_QA7vegle16K3sIa67ehI1xH5bfhHv-8o_5mqZHcL7fEVPgfsZO3PdZX95Us6Zin6glBTudz5pL1qUrsNExP5mMGV0IM83GrtU_3NzzR7PdnvGctQ37is5t1leNPoazWxH0E1ivm9ptAUuVoIZbYUVHIa1xNCKaqkykSWQYmyiAcBBmYXqec2q38bNYMTST_AuUf0HyLxYBvFu-cuFJPm4avD1oqOjX-1Wxss4AXi8f40ql8IuuXTPvxsSUyBmmATz1ml3-LSYOI_SOAbwfVL36-H-n8uzmqbyCDVwixfHh5Og53EWkl_t0821Yby_n7gWiqbZ82Zktg_PbXid_AeY1Lm4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Segmentation+of+Brain+Tumor+Using+FL-SNM+with+a+Metaheuristic+Approach+to+Optimization&rft.jtitle=Journal+of+medical+systems&rft.au=Natarajan%2C+Aparna&rft.au=Kumarasamy%2C+Sathiyasekar&rft.date=2019-02-01&rft.issn=1573-689X&rft.eissn=1573-689X&rft.volume=43&rft.issue=2&rft.spage=25&rft_id=info:doi/10.1007%2Fs10916-018-1135-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon |