Efficient Segmentation of Brain Tumor Using FL-SNM with a Metaheuristic Approach to Optimization

Nowadays, automatic tumor detection from brain images is extremely significant for many diagnostic as well as therapeutic purposes, due to the unpredictable shape and appearance of tumors. In medical image analysis, the automatic segmentation of tumors from brain using magnetic resonance imaging (MR...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical systems Vol. 43; no. 2; pp. 25 - 14
Main Authors Natarajan, Aparna, Kumarasamy, Sathiyasekar
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0148-5598
1573-689X
1573-689X
DOI10.1007/s10916-018-1135-y

Cover

Abstract Nowadays, automatic tumor detection from brain images is extremely significant for many diagnostic as well as therapeutic purposes, due to the unpredictable shape and appearance of tumors. In medical image analysis, the automatic segmentation of tumors from brain using magnetic resonance imaging (MRI) data is the most critical issue. Existing research has some limitations, such as high processing time and lower accuracy, because of the time required for the training process. In this research, a new automatic segmentation process is introduced using machine learning and a swarm intelligence scheme. Here, a fuzzy logic with spiking neuron model (FL-SNM) is proposed for segmenting the brain tumor region in MR images. Initially , input images are preprocessed to remove Gaussian and Poisson noise using a modified Kuan filter (MKF). In the MKF, the optimal selection of the minimum MSE of image pixels is achieved using a random search algorithm (RSA), which improves the peak signal-to-noise ratio (PSNR). Then, the image is smoothed using an anisotropic diffusion filter (ADF) to reduce the over-filtering problem. Afterwards, to extract statistical texture features, Fisher’s linear-discriminant analysis (FLDA) is used. Finally, extracted features are transferred to the FL-SNM process and this scheme effectively segments the tumor region. In FL-SNM, the consequent parameters such as weight and bias play an important role in segmenting the region. Therefore, optimizing the weight parameter values using a chicken behavior-based swarm intelligence (CSI) algorithm, is proposed. The proposed (FL-SNM) scheme attained better performance in terms of high accuracy ( 94.87%), sensitivity ( 92.07%), specificity ( 99.34%), precision rate (89.36%), recall rate (88.39%), F-measure (95.06%), G-mean ( 95.63%), and DSC rate (91.2%), compared to existing convolutional neural networks (CNNs) and hierarchical self-organizing maps (HSOMs).
AbstractList Nowadays, automatic tumor detection from brain images is extremely significant for many diagnostic as well as therapeutic purposes, due to the unpredictable shape and appearance of tumors. In medical image analysis, the automatic segmentation of tumors from brain using magnetic resonance imaging (MRI) data is the most critical issue. Existing research has some limitations, such as high processing time and lower accuracy, because of the time required for the training process. In this research, a new automatic segmentation process is introduced using machine learning and a swarm intelligence scheme. Here, a fuzzy logic with spiking neuron model (FL-SNM) is proposed for segmenting the brain tumor region in MR images. Initially, input images are preprocessed to remove Gaussian and Poisson noise using a modified Kuan filter (MKF). In the MKF, the optimal selection of the minimum MSE of image pixels is achieved using a random search algorithm (RSA), which improves the peak signal-to-noise ratio (PSNR). Then, the image is smoothed using an anisotropic diffusion filter (ADF) to reduce the over-filtering problem. Afterwards, to extract statistical texture features, Fisher's linear-discriminant analysis (FLDA) is used. Finally, extracted features are transferred to the FL-SNM process and this scheme effectively segments the tumor region. In FL-SNM, the consequent parameters such as weight and bias play an important role in segmenting the region. Therefore, optimizing the weight parameter values using a chicken behavior-based swarm intelligence (CSI) algorithm, is proposed. The proposed (FL-SNM) scheme attained better performance in terms of high accuracy (94.87%), sensitivity (92.07%), specificity (99.34%), precision rate (89.36%), recall rate (88.39%), F-measure (95.06%), G-mean (95.63%), and DSC rate (91.2%), compared to existing convolutional neural networks (CNNs) and hierarchical self-organizing maps (HSOMs).
Nowadays, automatic tumor detection from brain images is extremely significant for many diagnostic as well as therapeutic purposes, due to the unpredictable shape and appearance of tumors. In medical image analysis, the automatic segmentation of tumors from brain using magnetic resonance imaging (MRI) data is the most critical issue. Existing research has some limitations, such as high processing time and lower accuracy, because of the time required for the training process. In this research, a new automatic segmentation process is introduced using machine learning and a swarm intelligence scheme. Here, a fuzzy logic with spiking neuron model (FL-SNM) is proposed for segmenting the brain tumor region in MR images. Initially , input images are preprocessed to remove Gaussian and Poisson noise using a modified Kuan filter (MKF). In the MKF, the optimal selection of the minimum MSE of image pixels is achieved using a random search algorithm (RSA), which improves the peak signal-to-noise ratio (PSNR). Then, the image is smoothed using an anisotropic diffusion filter (ADF) to reduce the over-filtering problem. Afterwards, to extract statistical texture features, Fisher’s linear-discriminant analysis (FLDA) is used. Finally, extracted features are transferred to the FL-SNM process and this scheme effectively segments the tumor region. In FL-SNM, the consequent parameters such as weight and bias play an important role in segmenting the region. Therefore, optimizing the weight parameter values using a chicken behavior-based swarm intelligence (CSI) algorithm, is proposed. The proposed (FL-SNM) scheme attained better performance in terms of high accuracy ( 94.87%), sensitivity ( 92.07%), specificity ( 99.34%), precision rate (89.36%), recall rate (88.39%), F-measure (95.06%), G-mean ( 95.63%), and DSC rate (91.2%), compared to existing convolutional neural networks (CNNs) and hierarchical self-organizing maps (HSOMs).
Nowadays, automatic tumor detection from brain images is extremely significant for many diagnostic as well as therapeutic purposes, due to the unpredictable shape and appearance of tumors. In medical image analysis, the automatic segmentation of tumors from brain using magnetic resonance imaging (MRI) data is the most critical issue. Existing research has some limitations, such as high processing time and lower accuracy, because of the time required for the training process. In this research, a new automatic segmentation process is introduced using machine learning and a swarm intelligence scheme. Here, a fuzzy logic with spiking neuron model (FL-SNM) is proposed for segmenting the brain tumor region in MR images. Initially, input images are preprocessed to remove Gaussian and Poisson noise using a modified Kuan filter (MKF). In the MKF, the optimal selection of the minimum MSE of image pixels is achieved using a random search algorithm (RSA), which improves the peak signal-to-noise ratio (PSNR). Then, the image is smoothed using an anisotropic diffusion filter (ADF) to reduce the over-filtering problem. Afterwards, to extract statistical texture features, Fisher's linear-discriminant analysis (FLDA) is used. Finally, extracted features are transferred to the FL-SNM process and this scheme effectively segments the tumor region. In FL-SNM, the consequent parameters such as weight and bias play an important role in segmenting the region. Therefore, optimizing the weight parameter values using a chicken behavior-based swarm intelligence (CSI) algorithm, is proposed. The proposed (FL-SNM) scheme attained better performance in terms of high accuracy (94.87%), sensitivity (92.07%), specificity (99.34%), precision rate (89.36%), recall rate (88.39%), F-measure (95.06%), G-mean (95.63%), and DSC rate (91.2%), compared to existing convolutional neural networks (CNNs) and hierarchical self-organizing maps (HSOMs).Nowadays, automatic tumor detection from brain images is extremely significant for many diagnostic as well as therapeutic purposes, due to the unpredictable shape and appearance of tumors. In medical image analysis, the automatic segmentation of tumors from brain using magnetic resonance imaging (MRI) data is the most critical issue. Existing research has some limitations, such as high processing time and lower accuracy, because of the time required for the training process. In this research, a new automatic segmentation process is introduced using machine learning and a swarm intelligence scheme. Here, a fuzzy logic with spiking neuron model (FL-SNM) is proposed for segmenting the brain tumor region in MR images. Initially, input images are preprocessed to remove Gaussian and Poisson noise using a modified Kuan filter (MKF). In the MKF, the optimal selection of the minimum MSE of image pixels is achieved using a random search algorithm (RSA), which improves the peak signal-to-noise ratio (PSNR). Then, the image is smoothed using an anisotropic diffusion filter (ADF) to reduce the over-filtering problem. Afterwards, to extract statistical texture features, Fisher's linear-discriminant analysis (FLDA) is used. Finally, extracted features are transferred to the FL-SNM process and this scheme effectively segments the tumor region. In FL-SNM, the consequent parameters such as weight and bias play an important role in segmenting the region. Therefore, optimizing the weight parameter values using a chicken behavior-based swarm intelligence (CSI) algorithm, is proposed. The proposed (FL-SNM) scheme attained better performance in terms of high accuracy (94.87%), sensitivity (92.07%), specificity (99.34%), precision rate (89.36%), recall rate (88.39%), F-measure (95.06%), G-mean (95.63%), and DSC rate (91.2%), compared to existing convolutional neural networks (CNNs) and hierarchical self-organizing maps (HSOMs).
ArticleNumber 25
Author Kumarasamy, Sathiyasekar
Natarajan, Aparna
Author_xml – sequence: 1
  givenname: Aparna
  orcidid: 0000-0002-3291-7249
  surname: Natarajan
  fullname: Natarajan, Aparna
  email: aparnan2101@gmail.com
  organization: Department of EEE, SRS College of Engineering and Technology
– sequence: 2
  givenname: Sathiyasekar
  surname: Kumarasamy
  fullname: Kumarasamy, Sathiyasekar
  organization: Department of EEE, S. A. Engineering College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30604101$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAUhC1URLeFH8AFWeLCxeU5jh3nWKoWkLb00FbiZhzH3nW1iRfbEdr--npJq0qV4PQu34zmzRyhgzGMFqH3FE4oQPM5UWipIEAloZRxsnuFFpQ3jAjZ_jxAC6C1JJy38hAdpXQHAK0QzRt0yEBATYEu0K9z57zxdsz42q6GcnX2YcTB4S9R-xHfTEOI-Db5cYUvluT6xyX-4_Maa3xps17bKfqUvcGn220M2qxxDvhqm_3g7_86vUWvnd4k--7xHqPbi_Obs29kefX1-9npkhjWVJnwhta6krbrnDau07qtusb1Uoq67V0PvZV9L3RlGIVKgwTeG-CyNRwsA1exY_Rp9i0xfk82ZTX4ZOxmo0cbpqQqKlj5vwZR0I8v0LswxbGk21OVaBvOeKE-PFJTN9hebaMfdNypp-4K0MyAiSGlaJ0yfm4vl-Y2ioLar6TmlVRZSe1XUruipC-UT-b_01SzJhV2XNn4HPrfogeFM6Qt
CitedBy_id crossref_primary_10_1007_s11042_025_20617_4
crossref_primary_10_1111_itor_13164
crossref_primary_10_1007_s11042_024_18315_8
crossref_primary_10_1016_j_eswa_2022_119462
crossref_primary_10_1016_j_bspc_2020_102228
crossref_primary_10_1016_j_patcog_2022_108675
crossref_primary_10_1109_TNNLS_2020_2995800
crossref_primary_10_1016_j_procs_2020_03_221
crossref_primary_10_1007_s11042_023_17215_7
crossref_primary_10_1016_j_knosys_2024_112580
crossref_primary_10_1016_j_asoc_2021_107481
crossref_primary_10_1049_iet_ipr_2019_0312
crossref_primary_10_3390_app14167281
crossref_primary_10_3390_brainsci10020118
crossref_primary_10_1007_s10489_022_03184_1
crossref_primary_10_1007_s11517_024_03097_w
crossref_primary_10_1109_ACCESS_2023_3242666
Cites_doi 10.1109/ISACC.2015.7377345
10.1109/TSMC.1973.4309314
10.1142/S0219691315500393
10.21917/ijivp.2010.0007
10.1109/83.661179
10.1016/S0019-9958(65)90241-X
10.1007/978-3-319-47952-1_19
10.1155/2013/130134
10.1007/978-3-319-11857-4_10
10.1109/TIP.2014.2371244
10.1109/TNN.2007.891635
10.1007/s11063-010-9149-6
10.1109/TST.2014.6961028
10.1016/j.eswa.2014.01.021
10.1109/LSP.2014.2364612
10.1109/TMI.2016.2538465
10.1016/j.eswa.2011.02.012
10.5121/ijfls.2012.240331
10.1017/CBO9780511815706
10.1109/WIECON-ECE.2015.7443979
10.1109/36.103288
10.1109/ICSPCC.2015.7338884
10.1016/j.media.2016.05.004
10.1016/j.mri.2006.09.043
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s10916-018-1135-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database (ProQuest)
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
Healthcare Administration Database
Medical Database
Science Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
EndPage 14
ExternalDocumentID 30604101
10_1007_s10916_018_1135_y
Genre Journal Article
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c372t-5714a28ebbfacfbaa92b7fd88649dfd0de8dd6a2c3102a0805dc0589c50e30f23
IEDL.DBID AGYKE
ISSN 0148-5598
1573-689X
IngestDate Thu Sep 04 20:18:41 EDT 2025
Tue Oct 07 05:28:35 EDT 2025
Thu Apr 03 07:00:49 EDT 2025
Wed Oct 01 04:08:36 EDT 2025
Thu Apr 24 23:12:50 EDT 2025
Fri Feb 21 02:37:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fuzzy logic
Kuan filter
Linear process
Discriminant analysis
Spiking neuron model
Diffusion filter
Swarm intelligence
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-5714a28ebbfacfbaa92b7fd88649dfd0de8dd6a2c3102a0805dc0589c50e30f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3291-7249
PMID 30604101
PQID 2162697535
PQPubID 54050
PageCount 14
ParticipantIDs proquest_miscellaneous_2163009406
proquest_journals_2162697535
pubmed_primary_30604101
crossref_citationtrail_10_1007_s10916_018_1135_y
crossref_primary_10_1007_s10916_018_1135_y
springer_journals_10_1007_s10916_018_1135_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Amin, S. A. and Megeed, M.A., Brain tumour diagnosis systems based on artificial neural networks and segmentation using MRI. The 8th International Conference on INFOmatics and systems, 119–124, 2012.
SiTDeABhattacharjeeAKBrain MRI segmentation for tumor detection via entropy maximization using Grammatical SwarmInt. J. Wavelets Multiresolution Inf. Process.20151351810.1142/S0219691315500393
GerstnerWKistlerWMSpiking neuron models2002CambridgeCambridge University Press10.1017/CBO9780511815706
ShimabukuroYESmithJAThe least-squares mixing models to generate fraction images derived from remote sensing multispectral dataIEEE Trans on Geoscience and Remote Sensing1991291162010.1109/36.103288
DengYYDaiQDiscriminative clustering and feature selection for brain MRI segmentationIEEE Signal Processing Letters.20152257357710.1109/LSP.2014.2364612
ZadehLAFuzzy setsInf. Control.19658333835310.1016/S0019-9958(65)90241-X
DassRPriyanka DeviSImage segmentation techniquesInt J. Electron Commun Technol.2012316670ISSN: 2230-7109 (Online)
AcharyaJGadhiyaSRaviyaKSegmentation techniques for image analysis: a reviewInt J ComputSci Manage Res20132412181221
SongTJamshidiMMLeeRRHuangMA Modified Probabilistic Neural Network for Partial Volume Segmentation in Brain MR ImageIEEE Trans. on Neural Networks.20071851424143210.1109/TNN.2007.89163518220190
Elsayad, A.M., Classification of breast cancer database using learning vector quantization neural networks. Saudi Association of Health Informatics, 1–9, 2014; https://www.researchgate.net/publication/242616752
WeickertJAnisotropic Diffusion in Image Processing1998StuttgartBG. Teubner
YangMSLinKCRLiuHCLirngJFMagnetic resonance imaging segmentation techniques using batch-type learning vector quantization algorithmsMagn. Reson. Imaging20072526527710.1016/j.mri.2006.09.04317275624Elsevier
Ortiz, A., Gorriz, J. M., Ramirez, J. and Salas-Gonzalez, D., Unsupervised Neural Techniques Applied to MR Brain Image Segmentation, Advances in Artificial Neural Systems. Hindawi Publishing Corporation. 457590:7, 2012. 10.1155/2012/457590.
ZhangYDongZWuaLWangaSA hybrid method for MRI brain image classificationExpert Syst. Appl.201138100491005310.1016/j.eswa.2011.02.012
MeftahBBenyettouALezorayODebakla ImageMSegmentation with Spiking Neuron Network, CP1019, Intelligent Systems and Automation, 1st Mediterranean conference2008College ParkAmerican Institute of Physics
HaralickRMShanmugamKTextural features for image classificationIEEE Transactions on Systems, Man, and Cybernetics.19733661062110.1109/TSMC.1973.4309314
CottetG-HAyyadiMEAVolterra type model for image processingIEEE Trans. Image Process.199872923031:STN:280:DC%2BD1c7hslKmsg%3D%3D10.1109/83.661179
HebbDOThe Organization of Behavior1949New YorkWiley and Sons
NaikDShahPA review on image segmentation clustering algorithmsInt J ComputSci Inform Technol20145332893293ISSN: 0975-9646
SeerhaGKKaurRReview on recent image segmentation techniquesInt J. ComputSci Eng (IJCSE)201352109112ISSN: 0975-3397
LiuJLiMWangJWuFLiuTPanYASurvey of MRI-Based Brain Tumour Segmentation MethodsTsinghua Sci. Technol.2014195785951:CAS:528:DC%2BC2cXhtFSqs7%2FI10.1109/TST.2014.6961028
PereiraSPintoAAlvesVSilvaCABrain tumor segmentation using Convolutional Neural Networks in MRI imagesIEEE Trans. Med. Imaging20163551240125110.1109/TMI.2016.253846526960222
Dawngliana, M., Deb, D., Handique, M. and Roy, S., Automatic brain tumour segmentation in mri; hybridized multilevel thresholding and level set. International Symposium on Advanced Computing and Communication, 219–223, 2015.
Ramos-LlordénGVegas-Sánchez-Ferrero G, Martin-Fernandez M, Alberola-López C and Aja-Fernández S. Anisotropic diffusion filter with memory based on speckle statistics for ultrasound imagesIEEE Trans. Image Process.201524134535810.1109/TIP.2014.2371244
Meng, X., Liu, Y., Gao, X. and Zhang, H., A new bio-inspired algorithm: chicken swarm optimization. In International Conference in Swarm Intelligence, 86–94. Springer International Publishing, 2014. https://doi.org/10.1007/978-3-319-11857-4_10.
El-SayedAEl-DahshanESAMohsenHMRevettKSalemABMComputer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithmExpert Syst. Appl.2014415526554510.1016/j.eswa.2014.01.021
Sharma, M., and Mukharjee, S., Brain tumor segmentation using hybrid genetic algorithm and Artificial Neural Network Fuzzy Inference System (ANFIS). International Journal of Fuzzy Logic Systems (IJFLS) 2(4):31–42, 2012. https://doi.org/10.5121/ijfls.2012.240331.
HavaeiMDavyAWarde-FarleyDBiardACourvilleABengioYPalCJodoinP-MLarochelleHBrain tumor segmentation with deep neural networksMed. Image Anal.201735183110.1016/j.media.2016.05.00427310171
Liu, J. and Guo L., A New Brain MRI Image Segmentation Strategy Based on Wavelet Transform and K-means Clustering. IEEE International Conference on Signal Pro-cessing, Communications and Computing (ICSPCC), 1–4, 2015.
Zabir, I., Paul, S., Rayhan, M. A., Sarker, T., Fattah, S. A., and Shahnaz, C., Automatic brain tumor detection and segmentation from multi-modal MRI images based on region growing and level set evolution. IEEE International WIE Conference on Electrical and. Comput. Eng.:503–506, 2015.
Meftah, B., Lezoray, O., Benyettou, A., Segmentation and Edge Detection Based on Spiking Neural Network Model Neural Process Lett published on august 20, 2010. https://doi.org/10.1007/s11063-010-9149-6.
ChristeSAMalathyKKandaswamyAImproved hybrid segmentation of brain MRI tissue and tumor using statistical featuresICTACT J. Image Video Process201011344910.21917/ijivp.2010.0007
HyakinSNeural Networks and Learning Machines, 3rd Edition2011Upper Saddle RiverPearson Prentice Hall
LogeswariTKarnanMAn enhanced implementation of brain tumor detection using segmentation based on soft computing, IACSIT'10International Journal of Computer Theory and Engineering20102417938201586-590
HiralalRMenonHPA survey of brain MRI image segmentation methods and the issues involvedAdvances in Intelligent Systems and Computing201653024525910.1007/978-3-319-47952-1_19Springer International Publishing
Zhang, Y., Wang, S., Ji, G., and Dong, Z., An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine. Hindawi Publishing Corporation. Sci. World J.:130134, 2013. https://doi.org/10.1155/2013/130134.
GK Seerha (1135_CR7) 2013; 5
YY Deng (1135_CR33) 2015; 22
R Dass (1135_CR9) 2012; 3
1135_CR27
S Pereira (1135_CR21) 2016; 35
J Weickert (1135_CR23) 1998
LA Zadeh (1135_CR32) 1965; 8
W Gerstner (1135_CR26) 2002
MS Yang (1135_CR34) 2007; 25
DO Hebb (1135_CR28) 1949
Y Zhang (1135_CR17) 2011; 38
B Meftah (1135_CR29) 2008
RM Haralick (1135_CR36) 1973; 3
1135_CR8
J Liu (1135_CR18) 2014; 19
J Acharya (1135_CR4) 2013; 2
D Naik (1135_CR5) 2014; 5
G Ramos-Llordén (1135_CR24) 2015; 24
T Si (1135_CR12) 2015; 13
G-H Cottet (1135_CR3) 1998; 7
1135_CR16
1135_CR1
1135_CR2
1135_CR19
T Song (1135_CR35) 2007; 18
1135_CR10
S Hyakin (1135_CR15) 2011
YE Shimabukuro (1135_CR25) 1991; 29
1135_CR31
1135_CR30
1135_CR13
T Logeswari (1135_CR20) 2010; 2
M Havaei (1135_CR22) 2017; 35
SA Christe (1135_CR6) 2010; 1
A El-Sayed (1135_CR14) 2014; 41
R Hiralal (1135_CR11) 2016; 530
References_xml – reference: ZhangYDongZWuaLWangaSA hybrid method for MRI brain image classificationExpert Syst. Appl.201138100491005310.1016/j.eswa.2011.02.012
– reference: HavaeiMDavyAWarde-FarleyDBiardACourvilleABengioYPalCJodoinP-MLarochelleHBrain tumor segmentation with deep neural networksMed. Image Anal.201735183110.1016/j.media.2016.05.00427310171
– reference: ChristeSAMalathyKKandaswamyAImproved hybrid segmentation of brain MRI tissue and tumor using statistical featuresICTACT J. Image Video Process201011344910.21917/ijivp.2010.0007
– reference: ZadehLAFuzzy setsInf. Control.19658333835310.1016/S0019-9958(65)90241-X
– reference: ShimabukuroYESmithJAThe least-squares mixing models to generate fraction images derived from remote sensing multispectral dataIEEE Trans on Geoscience and Remote Sensing1991291162010.1109/36.103288
– reference: GerstnerWKistlerWMSpiking neuron models2002CambridgeCambridge University Press10.1017/CBO9780511815706
– reference: CottetG-HAyyadiMEAVolterra type model for image processingIEEE Trans. Image Process.199872923031:STN:280:DC%2BD1c7hslKmsg%3D%3D10.1109/83.661179
– reference: WeickertJAnisotropic Diffusion in Image Processing1998StuttgartBG. Teubner
– reference: PereiraSPintoAAlvesVSilvaCABrain tumor segmentation using Convolutional Neural Networks in MRI imagesIEEE Trans. Med. Imaging20163551240125110.1109/TMI.2016.253846526960222
– reference: Zhang, Y., Wang, S., Ji, G., and Dong, Z., An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine. Hindawi Publishing Corporation. Sci. World J.:130134, 2013. https://doi.org/10.1155/2013/130134.
– reference: Sharma, M., and Mukharjee, S., Brain tumor segmentation using hybrid genetic algorithm and Artificial Neural Network Fuzzy Inference System (ANFIS). International Journal of Fuzzy Logic Systems (IJFLS) 2(4):31–42, 2012. https://doi.org/10.5121/ijfls.2012.240331.
– reference: Ramos-LlordénGVegas-Sánchez-Ferrero G, Martin-Fernandez M, Alberola-López C and Aja-Fernández S. Anisotropic diffusion filter with memory based on speckle statistics for ultrasound imagesIEEE Trans. Image Process.201524134535810.1109/TIP.2014.2371244
– reference: AcharyaJGadhiyaSRaviyaKSegmentation techniques for image analysis: a reviewInt J ComputSci Manage Res20132412181221
– reference: SiTDeABhattacharjeeAKBrain MRI segmentation for tumor detection via entropy maximization using Grammatical SwarmInt. J. Wavelets Multiresolution Inf. Process.20151351810.1142/S0219691315500393
– reference: SongTJamshidiMMLeeRRHuangMA Modified Probabilistic Neural Network for Partial Volume Segmentation in Brain MR ImageIEEE Trans. on Neural Networks.20071851424143210.1109/TNN.2007.89163518220190
– reference: Liu, J. and Guo L., A New Brain MRI Image Segmentation Strategy Based on Wavelet Transform and K-means Clustering. IEEE International Conference on Signal Pro-cessing, Communications and Computing (ICSPCC), 1–4, 2015.
– reference: Dawngliana, M., Deb, D., Handique, M. and Roy, S., Automatic brain tumour segmentation in mri; hybridized multilevel thresholding and level set. International Symposium on Advanced Computing and Communication, 219–223, 2015.
– reference: DengYYDaiQDiscriminative clustering and feature selection for brain MRI segmentationIEEE Signal Processing Letters.20152257357710.1109/LSP.2014.2364612
– reference: Meng, X., Liu, Y., Gao, X. and Zhang, H., A new bio-inspired algorithm: chicken swarm optimization. In International Conference in Swarm Intelligence, 86–94. Springer International Publishing, 2014. https://doi.org/10.1007/978-3-319-11857-4_10.
– reference: HyakinSNeural Networks and Learning Machines, 3rd Edition2011Upper Saddle RiverPearson Prentice Hall
– reference: Elsayad, A.M., Classification of breast cancer database using learning vector quantization neural networks. Saudi Association of Health Informatics, 1–9, 2014; https://www.researchgate.net/publication/242616752
– reference: El-SayedAEl-DahshanESAMohsenHMRevettKSalemABMComputer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithmExpert Syst. Appl.2014415526554510.1016/j.eswa.2014.01.021
– reference: LiuJLiMWangJWuFLiuTPanYASurvey of MRI-Based Brain Tumour Segmentation MethodsTsinghua Sci. Technol.2014195785951:CAS:528:DC%2BC2cXhtFSqs7%2FI10.1109/TST.2014.6961028
– reference: MeftahBBenyettouALezorayODebakla ImageMSegmentation with Spiking Neuron Network, CP1019, Intelligent Systems and Automation, 1st Mediterranean conference2008College ParkAmerican Institute of Physics
– reference: HaralickRMShanmugamKTextural features for image classificationIEEE Transactions on Systems, Man, and Cybernetics.19733661062110.1109/TSMC.1973.4309314
– reference: Meftah, B., Lezoray, O., Benyettou, A., Segmentation and Edge Detection Based on Spiking Neural Network Model Neural Process Lett published on august 20, 2010. https://doi.org/10.1007/s11063-010-9149-6.
– reference: SeerhaGKKaurRReview on recent image segmentation techniquesInt J. ComputSci Eng (IJCSE)201352109112ISSN: 0975-3397
– reference: Amin, S. A. and Megeed, M.A., Brain tumour diagnosis systems based on artificial neural networks and segmentation using MRI. The 8th International Conference on INFOmatics and systems, 119–124, 2012.
– reference: LogeswariTKarnanMAn enhanced implementation of brain tumor detection using segmentation based on soft computing, IACSIT'10International Journal of Computer Theory and Engineering20102417938201586-590
– reference: HebbDOThe Organization of Behavior1949New YorkWiley and Sons
– reference: Zabir, I., Paul, S., Rayhan, M. A., Sarker, T., Fattah, S. A., and Shahnaz, C., Automatic brain tumor detection and segmentation from multi-modal MRI images based on region growing and level set evolution. IEEE International WIE Conference on Electrical and. Comput. Eng.:503–506, 2015.
– reference: YangMSLinKCRLiuHCLirngJFMagnetic resonance imaging segmentation techniques using batch-type learning vector quantization algorithmsMagn. Reson. Imaging20072526527710.1016/j.mri.2006.09.04317275624Elsevier
– reference: Ortiz, A., Gorriz, J. M., Ramirez, J. and Salas-Gonzalez, D., Unsupervised Neural Techniques Applied to MR Brain Image Segmentation, Advances in Artificial Neural Systems. Hindawi Publishing Corporation. 457590:7, 2012. 10.1155/2012/457590.
– reference: HiralalRMenonHPA survey of brain MRI image segmentation methods and the issues involvedAdvances in Intelligent Systems and Computing201653024525910.1007/978-3-319-47952-1_19Springer International Publishing
– reference: NaikDShahPA review on image segmentation clustering algorithmsInt J ComputSci Inform Technol20145332893293ISSN: 0975-9646
– reference: DassRPriyanka DeviSImage segmentation techniquesInt J. Electron Commun Technol.2012316670ISSN: 2230-7109 (Online)
– volume-title: Anisotropic Diffusion in Image Processing
  year: 1998
  ident: 1135_CR23
– ident: 1135_CR1
  doi: 10.1109/ISACC.2015.7377345
– volume: 3
  start-page: 610
  issue: 6
  year: 1973
  ident: 1135_CR36
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics.
  doi: 10.1109/TSMC.1973.4309314
– ident: 1135_CR16
– volume: 13
  start-page: 1
  issue: 5
  year: 2015
  ident: 1135_CR12
  publication-title: Int. J. Wavelets Multiresolution Inf. Process.
  doi: 10.1142/S0219691315500393
– volume: 1
  start-page: 34
  issue: 1
  year: 2010
  ident: 1135_CR6
  publication-title: ICTACT J. Image Video Process
  doi: 10.21917/ijivp.2010.0007
– volume: 7
  start-page: 292
  year: 1998
  ident: 1135_CR3
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.661179
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  ident: 1135_CR32
  publication-title: Inf. Control.
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 530
  start-page: 245
  year: 2016
  ident: 1135_CR11
  publication-title: Advances in Intelligent Systems and Computing
  doi: 10.1007/978-3-319-47952-1_19
– volume: 5
  start-page: 109
  issue: 2
  year: 2013
  ident: 1135_CR7
  publication-title: Int J. ComputSci Eng (IJCSE)
– ident: 1135_CR30
  doi: 10.1155/2013/130134
– volume-title: Neural Networks and Learning Machines, 3rd Edition
  year: 2011
  ident: 1135_CR15
– volume-title: Segmentation with Spiking Neuron Network, CP1019, Intelligent Systems and Automation, 1st Mediterranean conference
  year: 2008
  ident: 1135_CR29
– volume: 2
  start-page: 1793
  issue: 4
  year: 2010
  ident: 1135_CR20
  publication-title: International Journal of Computer Theory and Engineering
– volume: 3
  start-page: 66
  issue: 1
  year: 2012
  ident: 1135_CR9
  publication-title: Int J. Electron Commun Technol.
– ident: 1135_CR31
  doi: 10.1007/978-3-319-11857-4_10
– ident: 1135_CR13
– volume: 24
  start-page: 345
  issue: 1
  year: 2015
  ident: 1135_CR24
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2371244
– volume: 18
  start-page: 1424
  issue: 5
  year: 2007
  ident: 1135_CR35
  publication-title: IEEE Trans. on Neural Networks.
  doi: 10.1109/TNN.2007.891635
– ident: 1135_CR27
  doi: 10.1007/s11063-010-9149-6
– volume: 19
  start-page: 578
  year: 2014
  ident: 1135_CR18
  publication-title: Tsinghua Sci. Technol.
  doi: 10.1109/TST.2014.6961028
– volume: 41
  start-page: 5526
  year: 2014
  ident: 1135_CR14
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.01.021
– volume: 5
  start-page: 3289
  issue: 3
  year: 2014
  ident: 1135_CR5
  publication-title: Int J ComputSci Inform Technol
– volume: 22
  start-page: 573
  year: 2015
  ident: 1135_CR33
  publication-title: IEEE Signal Processing Letters.
  doi: 10.1109/LSP.2014.2364612
– volume: 2
  start-page: 1218
  issue: 4
  year: 2013
  ident: 1135_CR4
  publication-title: Int J ComputSci Manage Res
– volume: 35
  start-page: 1240
  issue: 5
  year: 2016
  ident: 1135_CR21
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2538465
– volume: 38
  start-page: 10049
  year: 2011
  ident: 1135_CR17
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.012
– ident: 1135_CR19
  doi: 10.5121/ijfls.2012.240331
– ident: 1135_CR10
– volume-title: Spiking neuron models
  year: 2002
  ident: 1135_CR26
  doi: 10.1017/CBO9780511815706
– ident: 1135_CR2
  doi: 10.1109/WIECON-ECE.2015.7443979
– volume: 29
  start-page: 16
  issue: 1
  year: 1991
  ident: 1135_CR25
  publication-title: IEEE Trans on Geoscience and Remote Sensing
  doi: 10.1109/36.103288
– ident: 1135_CR8
  doi: 10.1109/ICSPCC.2015.7338884
– volume: 35
  start-page: 18
  year: 2017
  ident: 1135_CR22
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.05.004
– volume-title: The Organization of Behavior
  year: 1949
  ident: 1135_CR28
– volume: 25
  start-page: 265
  year: 2007
  ident: 1135_CR34
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2006.09.043
SSID ssj0009667
Score 2.292678
Snippet Nowadays, automatic tumor detection from brain images is extremely significant for many diagnostic as well as therapeutic purposes, due to the unpredictable...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 25
SubjectTerms Algorithms
Artificial neural networks
Brain
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - pathology
Brain research
Brain tumors
Diagnostic systems
Discriminant analysis
Feature extraction
Firing pattern
Fuzzy Logic
Health Informatics
Health Sciences
Heuristic methods
Humans
Image analysis
Image detection
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Intelligence
Learning algorithms
Machine Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Medicine
Medicine & Public Health
Neural networks
Neural Networks (Computer)
Neuroimaging
NMR
Noise
Nuclear magnetic resonance
Optimization
Parameters
Patient Facing Systems
Poultry
Search algorithms
Self organizing maps
Signal-To-Noise Ratio
Statistics for Life Sciences
Swarm intelligence
Therapeutic applications
Tumors
Wearable Computing Techniques for Smart Health
Weight
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED51rYQmTQgK2wIDGYmnIWuOE8fpA0IbalUhWtB-SHsLju2MB5qMkT7sv8cXO63QxJ7jJJbPPn_23fcdwHsjdSpFnFAjGaOp1IaWfGKpyYWRxs0g3bFcF8tsfpV-uRbXA1j2XBhMq-x9YueoTaPxjvyExw56IwtUfLr9TbFqFEZX-xIaKpRWMB87ibEdGHFUxhrC6Gy6_H6-leHNMk-gTnOK0uR9nNOT6RxUckdrd6qKE0Hv_92pHsDPB6HTbkeaPYOnAUqSU2_75zCw9RieLEKwfAx7_kqOeKbRC_gx7eQi3C5DLuzNKpCOatJU5AwLRZDL9aq5I10SAZl9pRfLBcFrWqLIwrbqp117VWdyGnTISduQb87lrAKX8yVczaaXn-c0FFigOpG8pULGqeK5LctK6apUasJLWZk8z9KJqQwzNjcmU1w7DMiVw5bCaCxDqAWzCat4sg_DuqntIZBMciyDxSo8oCjlWjucUZWp0KlgiY4jYP1gFjqoj2MRjF_FVjcZx79w41_g-Bf3ERxvXrn10huPNT7qLVSEVfin2M6ZCN5tHrv1g0ERVdtm3bVJML2SZREceMtu_pagspDzWRF86E29_fh_u_Lq8a68hl0HuiY-8_sIhu3d2r5xwKYt34bZ-hf_N_JF
  priority: 102
  providerName: ProQuest
Title Efficient Segmentation of Brain Tumor Using FL-SNM with a Metaheuristic Approach to Optimization
URI https://link.springer.com/article/10.1007/s10916-018-1135-y
https://www.ncbi.nlm.nih.gov/pubmed/30604101
https://www.proquest.com/docview/2162697535
https://www.proquest.com/docview/2163009406
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6xTkJIiMGAERiTkXgCeUqcOE4fu6ndBLQg1krlKTi2wyRogrbkYfz1nGOnBQZIe0mk5JI4_vmd7-47gJdaqETwKKZahCFNhNK0YENDdca10NiDVBflOp2lp4vkzZIvfRz3Ze_t3psku5n6l2A3hDKo-qLWE8WcXm3Bdke3NYDt0cmnt-MN126auijpJKOWf7w3Zv7tJb8vR9cw5jX7aLfsTHZg3hfYeZt8PWyb4lD9-IPL8YZ_dB_ueRhKRq7fPIBbptqF21NvaN-Fu247j7gopYfwedxRTeAKRc7Ml5UPWKpIXZIjm2SCzNtVfUE6BwQyeUfPZlNit3iJJFPTyHPTOkZoMvIc5qSpyXucrlY-DvQRLCbj-fEp9ckZqIoFaygXUSJZZoqilKospByyQpQ6y9JkqEsdapNpnUqmED8yibiUa2VTGCoemjgsWfwYBlVdmSdAUsFsCq2wtMqNlCiNGKUsEq4SHsYqCiDs2yhXnrncJtD4lm84l21N5liTua3J_CqAV-tHvjvajv8J7_cNn_sRfJmzCFU9G3XMA3ixvo1jzxpUZGXqtpOJrWtmmAaw5zrM-muxZSXC-S6A133jb17-z6I8vZH0M7iD-G3onMj3YdBctOY5YqSmOIAtsRR4zCYnB3584PloPPvwEa8u2OgngUAKLw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrQRICJXyCrRgJLiArCaOncehqlrY1ZZuFkS3Um-pYztwYJPSZoX2z_HbOk6cXaGK3nqOk1gzfnzj8fcNwDsdKx6LIKQ69n3KY6VpwVJDdSJ0rHEEqZblmk2i0Sn_cibO1uBvz4Wx1yr7NbFdqHWt7Bn5LgsQelsWqNi_-E1t1SibXe1LaEhXWkHvtRJjjthxbBZ_MIS72jv6jP5-z9hwMP00oq7KAFVhzBoq4oBLlpiiKKUqCylTVsSlTpKIp7rUvjaJ1pFkCoEQkwiwhFa2Fp8Svgn90gof4BawwUOeYvC3cTiYfPu-kv2Noo6wzRNqpdD7vGpH3kNohqE8RnFBKOji353xBty9kaptd8DhJjxy0JUcdGPtMayZagvuZS45vwUPuyNA0jGbnsD5oJWnwF2NnJgfM0dyqkhdkkNbmIJM57P6krSXFshwTE8mGbHHwkSSzDTyp5l3KtLkwOmek6YmX3GJmznu6FM4vRNTP4P1qq7MCyBRzGzZLb-0AZGU2BpxTVlwobjwQxV44PfGzJVTO7dFN37lK51ma_8c7Z9b--cLDz4sX7nopD5ua7zdeyh3s_4qX41RD94uH-N8tUkYWZl63rYJ7XVOP_LgeefZ5d9Cq2SEa6QHH3tXrz7-3668vL0rb-D-aJqN8_HR5PgVPEDAl3a3zrdhvbmcmx0EVU3x2o1cAud3PVmuAUqeMNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VRaqQEILy0UABI8EFZDVx4jg5IFRoVy3tLkhtpb2lju3AgU1KmxXav8avYyZOdoUqeus5TmLNjMfPnpk3AG-sMomSUcytCkOeKGN5KXLHbSatsmhBpqtyHU_Sg7Pky1RO1-DPUAtDaZWDT-wctW0M3ZHviAihN1WByp2qT4v4tjf6ePGLUwcpirQO7TS8iRy5xW88vl19ONxDXb8VYrR_-vmA9x0GuImVaLlUUaJF5sqy0qYqtc5FqSqbZWmS28qG1mXWploYBEFCI7iS1lAfPiNDF4cVkR6g-7-j4jindEI1VSvC3zT1pdpJxokEfYio-rI9BGV4iMfzWxRLvvh3T7wGdK8Fabu9b_QA7vegle16K3sIa67ehI1xH5bfhHv-8o_5mqZHcL7fEVPgfsZO3PdZX95Us6Zin6glBTudz5pL1qUrsNExP5mMGV0IM83GrtU_3NzzR7PdnvGctQ37is5t1leNPoazWxH0E1ivm9ptAUuVoIZbYUVHIa1xNCKaqkykSWQYmyiAcBBmYXqec2q38bNYMTST_AuUf0HyLxYBvFu-cuFJPm4avD1oqOjX-1Wxss4AXi8f40ql8IuuXTPvxsSUyBmmATz1ml3-LSYOI_SOAbwfVL36-H-n8uzmqbyCDVwixfHh5Og53EWkl_t0821Yby_n7gWiqbZ82Zktg_PbXid_AeY1Lm4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Segmentation+of+Brain+Tumor+Using+FL-SNM+with+a+Metaheuristic+Approach+to+Optimization&rft.jtitle=Journal+of+medical+systems&rft.au=Natarajan%2C+Aparna&rft.au=Kumarasamy%2C+Sathiyasekar&rft.date=2019-02-01&rft.issn=1573-689X&rft.eissn=1573-689X&rft.volume=43&rft.issue=2&rft.spage=25&rft_id=info:doi/10.1007%2Fs10916-018-1135-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon