An efficient and reliable coarse-to-fine approach for asphalt pavement crack detection
Among the various defects of asphalt pavement distress, much attention has been paid to cracks which often cause significant engineering and economic problems. Crack detection is not an easy task since images of road pavement surface are very difficult to analyze. In this paper, a highly efficient p...
Saved in:
| Published in | Image and vision computing Vol. 57; pp. 130 - 146 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.01.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0262-8856 1872-8138 |
| DOI | 10.1016/j.imavis.2016.11.018 |
Cover
| Abstract | Among the various defects of asphalt pavement distress, much attention has been paid to cracks which often cause significant engineering and economic problems. Crack detection is not an easy task since images of road pavement surface are very difficult to analyze. In this paper, a highly efficient pavement crack detection system is proposed, which has the following distinguishing features. Firstly, a new description of the cracks is proposed based on the spatially clustered pixels with similar gray levels. Secondly, an adaptive thresholding method is presented for image segmentation by comprehensively taking into account the spatial distribution, intensities and geometric features of cracks. Thirdly, a new concept termed Region of Belief (ROB) is introduced to facilitate the subsequent detection by defining some credibility factors which indicate the reliability that a region could be labeled as a distress region which contains cracks, and an algorithm to extract such ROBs is devised accordingly. Lastly, a novel region growing algorithm is propounded for crack detection, which features starting with an ROB seed, determining the searching scope with a specially devised rule, and searching and merging a ROB with different regions following a similarity criterion which synthetically takes different cues into consideration. Two different types of experiments were conducted. The first one was carried out using 10,000 of our field-captured images which were taken from different road conditions and environments. The second one was completed using a benchmark dataset for a comparison with other recent publications. The evaluation performance is satisfactory for a variety of different cracks. For our own data, the detection accuracy is over 95% and more than 90% of coherent cracks without disconnected fragments have been correctly detected as the integrated ones. For the benchmark data, our detection performance also outperforms previously published results. Currently, our approach has been widely applied in China.
•A coarse-to-fine asphalt pavement crack detection approach is developed.•A new description of the cracks is proposed based on the spatially clustered pixels.•An improved adaptive thresholding method is presented for image segmentation.•A new concept Region of Belief (ROB) is introduced to facilitate the detection.•A novel region growing algorithm is propounded for the crack detection. |
|---|---|
| AbstractList | Among the various defects of asphalt pavement distress, much attention has been paid to cracks which often cause significant engineering and economic problems. Crack detection is not an easy task since images of road pavement surface are very difficult to analyze. In this paper, a highly efficient pavement crack detection system is proposed, which has the following distinguishing features. Firstly, a new description of the cracks is proposed based on the spatially clustered pixels with similar gray levels. Secondly, an adaptive thresholding method is presented for image segmentation by comprehensively taking into account the spatial distribution, intensities and geometric features of cracks. Thirdly, a new concept termed Region of Belief (ROB) is introduced to facilitate the subsequent detection by defining some credibility factors which indicate the reliability that a region could be labeled as a distress region which contains cracks, and an algorithm to extract such ROBs is devised accordingly. Lastly, a novel region growing algorithm is propounded for crack detection, which features starting with an ROB seed, determining the searching scope with a specially devised rule, and searching and merging a ROB with different regions following a similarity criterion which synthetically takes different cues into consideration. Two different types of experiments were conducted. The first one was carried out using 10,000 of our field-captured images which were taken from different road conditions and environments. The second one was completed using a benchmark dataset for a comparison with other recent publications. The evaluation performance is satisfactory for a variety of different cracks. For our own data, the detection accuracy is over 95% and more than 90% of coherent cracks without disconnected fragments have been correctly detected as the integrated ones. For the benchmark data, our detection performance also outperforms previously published results. Currently, our approach has been widely applied in China.
•A coarse-to-fine asphalt pavement crack detection approach is developed.•A new description of the cracks is proposed based on the spatially clustered pixels.•An improved adaptive thresholding method is presented for image segmentation.•A new concept Region of Belief (ROB) is introduced to facilitate the detection.•A novel region growing algorithm is propounded for the crack detection. |
| Author | Zhang, Bailing Li, Qingquan Zhang, Dejin Cao, Min He, Li Chen, Ying |
| Author_xml | – sequence: 1 givenname: Dejin surname: Zhang fullname: Zhang, Dejin organization: Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China – sequence: 2 givenname: Qingquan surname: Li fullname: Li, Qingquan organization: Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China – sequence: 3 givenname: Ying surname: Chen fullname: Chen, Ying organization: Wuhan Wuda Zoyon Science and Technology Co., Ltd., Wuhan 430223, China – sequence: 4 givenname: Min surname: Cao fullname: Cao, Min organization: Wuhan Wuda Zoyon Science and Technology Co., Ltd., Wuhan 430223, China – sequence: 5 givenname: Li surname: He fullname: He, Li email: heli.edu@hotmail.com organization: School of Electrical & Electronic Engineering, Hubei University of Technology, Wuhan 430068, China – sequence: 6 givenname: Bailing surname: Zhang fullname: Zhang, Bailing organization: Department of Computer Science and Software Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China |
| BookMark | eNqFkM1KAzEQx4NUsFbfwENeYNdksx-pB6EUv6DgRfEYZrMTmrrdLEko-DY-i09mlnryoKf5D8xvmPmdk9ngBiTkirOcM15f73K7h4MNeZG6nPOccXlC5lw2RSa5kDMyZ0WdsqzqM3Iewo4x1rBmOSdvq4GiMVZbHCKFoaMeewttj1Q78AGz6DJjB6Qwjt6B3lLjPIUwbqGPdIQD7idSe9DvX58dRtTRuuGCnBroA17-1AV5vb97WT9mm-eHp_Vqk2nRFDGrSsAKgaPktVl2rNFVLauq5k1lUPCylYVoBKCGEoXpRIrQ6bZeJmTJWxQLcnPcq70LwaNR2kaYLogebK84U5MitVNHRWpSpDhXSVGCy1_w6NOY__gPuz1imB47WPQqTPo0dtan71Xn7N8LvgGI0ofD |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2022_105478 crossref_primary_10_1007_s00138_022_01327_5 crossref_primary_10_1002_stc_2974 crossref_primary_10_1016_j_autcon_2019_04_014 crossref_primary_10_1117_1_JEI_33_6_063027 crossref_primary_10_1016_j_measurement_2025_117215 crossref_primary_10_1155_2024_8846470 crossref_primary_10_1177_1475921720948434 crossref_primary_10_1007_s11042_022_14168_1 crossref_primary_10_1016_j_autcon_2020_103484 crossref_primary_10_1177_1729881419852853 crossref_primary_10_1109_TITS_2020_3035663 crossref_primary_10_3390_app9224829 crossref_primary_10_1111_mice_12433 crossref_primary_10_3390_app14114709 crossref_primary_10_3724_SP_J_1089_2022_18891 crossref_primary_10_1109_TGRS_2022_3158660 crossref_primary_10_3390_ijerph17228438 crossref_primary_10_1049_itr2_12497 crossref_primary_10_1109_JSEN_2021_3089718 crossref_primary_10_1177_0361198120907283 crossref_primary_10_1109_TITS_2023_3234330 crossref_primary_10_1111_mice_12947 crossref_primary_10_1177_1748006X221140966 crossref_primary_10_1016_j_engappai_2024_108312 crossref_primary_10_1016_j_jag_2022_102825 crossref_primary_10_1016_j_neucom_2019_01_036 crossref_primary_10_15701_kcgs_2022_28_2_1 crossref_primary_10_1061__ASCE_CP_1943_5487_0000910 crossref_primary_10_1109_ACCESS_2021_3070813 crossref_primary_10_1177_09544070211023628 crossref_primary_10_3390_s18072294 crossref_primary_10_3390_app122111135 crossref_primary_10_1061__ASCE_CP_1943_5487_0000831 crossref_primary_10_1088_1755_1315_189_2_022005 crossref_primary_10_1016_j_tust_2018_04_002 crossref_primary_10_1061__ASCE_CP_1943_5487_0000873 crossref_primary_10_1061_JITSE4_ISENG_2157 crossref_primary_10_1117_1_JEI_26_5_053008 crossref_primary_10_1155_2021_5520515 crossref_primary_10_3390_s21217405 crossref_primary_10_1016_j_jtte_2021_10_001 crossref_primary_10_1109_TITS_2018_2856928 crossref_primary_10_3390_s25010146 crossref_primary_10_1016_j_jag_2022_103172 crossref_primary_10_3390_s20143954 crossref_primary_10_1007_s00530_024_01538_y crossref_primary_10_1155_2023_3301106 crossref_primary_10_1016_j_conbuildmat_2020_120084 crossref_primary_10_1051_matecconf_202236405020 crossref_primary_10_1080_14680629_2021_1925578 crossref_primary_10_3390_app121910180 crossref_primary_10_1002_stc_2764 crossref_primary_10_1016_j_conbuildmat_2017_09_110 crossref_primary_10_1016_j_measurement_2024_115946 crossref_primary_10_1016_j_autcon_2019_103019 crossref_primary_10_1016_j_conbuildmat_2020_120080 crossref_primary_10_1016_j_autcon_2022_104664 crossref_primary_10_1109_TITS_2021_3134374 crossref_primary_10_1016_j_neucom_2019_08_107 crossref_primary_10_1109_TIM_2018_2803830 crossref_primary_10_2339_politeknik_987132 crossref_primary_10_3390_data3030028 crossref_primary_10_3390_buildings11120579 crossref_primary_10_1080_10298436_2023_2201902 crossref_primary_10_1088_1742_6596_1755_1_012048 crossref_primary_10_1155_2023_2227326 crossref_primary_10_1155_2019_4302805 crossref_primary_10_1016_j_aei_2019_04_004 crossref_primary_10_1016_j_autcon_2018_09_019 crossref_primary_10_1109_ACCESS_2019_2914259 crossref_primary_10_1016_j_conbuildmat_2020_118513 crossref_primary_10_1109_TIM_2020_2973843 crossref_primary_10_3390_s22228932 crossref_primary_10_1109_TIM_2018_2800258 crossref_primary_10_31590_ejosat_844592 crossref_primary_10_1080_10298436_2021_1905808 crossref_primary_10_3390_app14219745 crossref_primary_10_3390_rs15071750 crossref_primary_10_1049_ipr2_12228 crossref_primary_10_1155_2020_7240129 crossref_primary_10_1016_j_autcon_2023_105192 crossref_primary_10_1155_2019_6520620 crossref_primary_10_1155_2021_8858545 crossref_primary_10_1016_j_patcog_2020_107474 crossref_primary_10_1109_TITS_2024_3405477 crossref_primary_10_3390_s20226669 crossref_primary_10_1061_JCCEE5_CPENG_6339 crossref_primary_10_1109_ACCESS_2023_3328243 crossref_primary_10_3390_app14114817 crossref_primary_10_1155_2019_8796743 crossref_primary_10_1016_j_displa_2024_102787 crossref_primary_10_3390_electronics11030501 crossref_primary_10_3390_infrastructures9060090 |
| Cites_doi | 10.1109/TIT.1982.1056481 10.1016/j.patrec.2011.11.004 10.1155/2011/989354 10.1364/AO.51.005201 10.1016/j.eswa.2010.08.079 10.1016/j.imavis.2004.02.006 10.1109/21.35351 10.1109/TITS.2012.2208630 10.1109/TITS.2011.2158001 10.1117/1.2177650 10.1109/34.192463 10.1016/j.eswa.2011.01.089 10.1109/83.701170 10.1016/S0031-3203(98)00014-4 10.1109/TSMC.1979.4310076 10.3390/s111009628 |
| ContentType | Journal Article |
| Copyright | 2016 |
| Copyright_xml | – notice: 2016 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.imavis.2016.11.018 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1872-8138 |
| EndPage | 146 |
| ExternalDocumentID | 10_1016_j_imavis_2016_11_018 S0262885616302153 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABOCM ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS UNMZH VOH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c372t-54ae5ea1e816f9d07c568556175fe314b82373aeca4e3fd33aeadcb69a1e91be3 |
| IEDL.DBID | .~1 |
| ISSN | 0262-8856 |
| IngestDate | Thu Apr 24 23:12:50 EDT 2025 Wed Oct 01 01:31:37 EDT 2025 Fri Feb 23 02:23:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Image segmentation Region growing algorithm Pavement crack detection Adaptive thresholding |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-54ae5ea1e816f9d07c568556175fe314b82373aeca4e3fd33aeadcb69a1e91be3 |
| PageCount | 17 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_imavis_2016_11_018 crossref_primary_10_1016_j_imavis_2016_11_018 elsevier_sciencedirect_doi_10_1016_j_imavis_2016_11_018 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2017 2017-01-00 |
| PublicationDateYYYYMMDD | 2017-01-01 |
| PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Image and vision computing |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Chen, Zhao, Lu, Kuang, Wang, Jiang (bb0120) 2010; 32 Zhang, Wang, Wang, Lin, Xu, Chen (bb0005) 2011; 12 El-Korchi, Wittels (bb0110) 1990; 1260 Bray, Verma, Li, He (bb0070) 2006 Pollard (bb0150) 1982; 28 Liu, Xu, Yang, Niu, Pan (bb0175) 2008 Li, Liu (bb0025) 2008 Gavilan, Balcones, Marcos, Llorca, Sotelo, Parra, Ocana, Aliseda, Yarza, Amirola (bb0075) 2011; 11 Ying, Salari (bb0085) 2009 Robert, Toussaint (bb0165) 1990 Wong, Sahoo (bb0155) 1989; 19 Sonka, Hlavac, Boyle (bb0140) 2014 Sy, Avila, Begot, Bardet (bb0020) 2008 Nejad, Zakeri (bb0100) 2011; 38 Zou, Cao, Li, Mao, Wang (bb0125) 2012; 33 Gonzalez, Woods (bb0180) 2008 Bai, Zhou, Xue (bb0035) 2012; 51 Oliveira, Correia (bb0065) 2013; 14 Hojjatoleslami, Kittler (bb0170) 1998; 7 Oliveira, Correia (bb0030) 2009 Yan, Bo, Xu, He (bb0050) 2007 Elbehiery, Hefnawy, Elewa (bb0040) 2007; 1 McCall, Trivedi (bb0115) 2004 Nejad, Zakeri (bb0095) 2011; 38 Li, Sun, Tan, Ning (bb0010) 2012 Matas, Chum, Urban, Pajdla (bb0135) 2004; 22 Sun, Salari, Chou (bb0015) 2009 Bhabatosh, Kundu, Padmaja (bb0055) 1998; 31 Chambon, Moliard (bb0060) 2011 . Huang, Xu (bb0130) 2006; 15 Mallat (bb0080) 1989; 11 Otsu (bb0145) 1979; 9 Naoki, Kenji (bb0045) 1998 Eslami, Radha (bb0105) 2006; 2006 Shu, Guo (bb0090) 2010 Gonzalez (10.1016/j.imavis.2016.11.018_bb0180) 2008 Li (10.1016/j.imavis.2016.11.018_bb0025) 2008 Zou (10.1016/j.imavis.2016.11.018_bb0125) 2012; 33 Pollard (10.1016/j.imavis.2016.11.018_bb0150) 1982; 28 Zhang (10.1016/j.imavis.2016.11.018_bb0005) 2011; 12 Nejad (10.1016/j.imavis.2016.11.018_bb0095) 2011; 38 Sun (10.1016/j.imavis.2016.11.018_bb0015) 2009 Yan (10.1016/j.imavis.2016.11.018_bb0050) 2007 Gavilan (10.1016/j.imavis.2016.11.018_bb0075) 2011; 11 Eslami (10.1016/j.imavis.2016.11.018_bb0105) 2006; 2006 Bray (10.1016/j.imavis.2016.11.018_bb0070) 2006 Naoki (10.1016/j.imavis.2016.11.018_bb0045) 1998 Mallat (10.1016/j.imavis.2016.11.018_bb0080) 1989; 11 Chen (10.1016/j.imavis.2016.11.018_bb0120) 2010; 32 Bhabatosh (10.1016/j.imavis.2016.11.018_bb0055) 1998; 31 Ying (10.1016/j.imavis.2016.11.018_bb0085) 2009 10.1016/j.imavis.2016.11.018_bb0185 Matas (10.1016/j.imavis.2016.11.018_bb0135) 2004; 22 Robert (10.1016/j.imavis.2016.11.018_bb0165) 1990 10.1016/j.imavis.2016.11.018_bb0160 El-Korchi (10.1016/j.imavis.2016.11.018_bb0110) 1990; 1260 Nejad (10.1016/j.imavis.2016.11.018_bb0100) 2011; 38 Chambon (10.1016/j.imavis.2016.11.018_bb0060) 2011 Wong (10.1016/j.imavis.2016.11.018_bb0155) 1989; 19 Li (10.1016/j.imavis.2016.11.018_bb0010) 2012 Oliveira (10.1016/j.imavis.2016.11.018_bb0065) 2013; 14 Otsu (10.1016/j.imavis.2016.11.018_bb0145) 1979; 9 Hojjatoleslami (10.1016/j.imavis.2016.11.018_bb0170) 1998; 7 Bai (10.1016/j.imavis.2016.11.018_bb0035) 2012; 51 McCall (10.1016/j.imavis.2016.11.018_bb0115) 2004 Sonka (10.1016/j.imavis.2016.11.018_bb0140) 2014 Oliveira (10.1016/j.imavis.2016.11.018_bb0030) 2009 Elbehiery (10.1016/j.imavis.2016.11.018_bb0040) 2007; 1 Huang (10.1016/j.imavis.2016.11.018_bb0130) 2006; 15 Liu (10.1016/j.imavis.2016.11.018_bb0175) 2008 Sy (10.1016/j.imavis.2016.11.018_bb0020) 2008 Shu (10.1016/j.imavis.2016.11.018_bb0090) 2010 |
| References_xml | – start-page: 622 year: 2009 end-page: 626 ident: bb0030 article-title: Automatic road crack segmentation using entropy and image dynamic thresholding publication-title: 17th European Signal Processing Conf. (EUSIPCO09)Glasgow, Scotland – start-page: 548 year: 2007 end-page: 552 ident: bb0050 article-title: Pavement crack detection and analysis for high-grade highway publication-title: 8th International Conference on Electronic Measurement and Instruments (ICEMI07), Xi’an, China – volume: 1260 start-page: 74 year: 1990 end-page: 83 ident: bb0110 article-title: Visual appearance of surface distress in PCC pavements: I. Crack luminance publication-title: Transportation Research Record – year: 2008 ident: bb0180 article-title: Digital Image Processing – start-page: 792 year: 2008 end-page: 796 ident: bb0025 article-title: Novel Approach to pavement image segmentation based on neighboring difference histogram method publication-title: IEEE Congress on Image and Signal Processing (CISP08), Sanya, China – volume: 51 start-page: 5201 year: 2012 end-page: 5211 ident: bb0035 article-title: Multiple linear feature detection based on multiple-structuring-element center-surround top-hat transform publication-title: Appl. Opt. – volume: 22 start-page: 761 year: 2004 end-page: 767 ident: bb0135 article-title: Robust wide baseline stereo from maximally stable extremal region publication-title: Image Vis. Comput. – volume: 7 start-page: 1079 year: 1998 end-page: 1084 ident: bb0170 article-title: Region growing: a new approach publication-title: IEEE Trans. Image Process. – volume: 14 start-page: 155 year: 2013 end-page: 168 ident: bb0065 article-title: Automatic road crack detection and characterization publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 907 year: 2006 end-page: 912 ident: bb0070 article-title: A neural network based technique for automatic classification of road cracks publication-title: International Joint Conference on Neural Networks, Vancouver, Canada – volume: 15 year: 2006 ident: bb0130 article-title: Automatic inspection of pavement cracking distress publication-title: J. Electron. Imaging – volume: 19 start-page: 866 year: 1989 end-page: 871 ident: bb0155 article-title: A gray-level threshold selection method based on maximum entropy principle publication-title: IEEE Trans. Syst. Man Cybern. – start-page: 533 year: 2004 end-page: 537 ident: bb0115 article-title: An integrated, robust approach to lane marking detection and lane tracking, 2004 IEEE Intelligent Vehicles Symposium, Parma, Italy – start-page: 373 year: 2009 end-page: 377 ident: bb0015 article-title: Automated pavement distress detection using advanced image processing techniques publication-title: IEEE International Conference on Electro/Information Technology (EIT’09) Windsor, ON – year: 2011 ident: bb0060 article-title: Automatic road pavement assessment with image processing: review and comparison publication-title: Int. J. Geophys. – year: 2010 ident: bb0090 article-title: Algorithm on contourlet domain in detection of road cracks for pavement images publication-title: Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science, Hong Kong – volume: 28 start-page: 199 year: 1982 end-page: 205 ident: bb0150 article-title: Quantization and the method of publication-title: IEEE Trans. Inf. Theory – start-page: 1 year: 1990 end-page: 19 ident: bb0165 article-title: Computational geometry and facility location, Manila, Philippines – start-page: 3095 year: 2012 end-page: 3103 ident: bb0010 article-title: An efficient way in image preprocessing for pavement crack images publication-title: 12th International Conference of Transportation Professionals (CICTP 2012), Beijing, China – volume: 38 start-page: 2857 year: 2011 end-page: 2872 ident: bb0100 article-title: A comparison of multi-resolution methods for detection and isolation of pavement distress publication-title: Expert Syst. Appl. – start-page: 610 year: 2008 end-page: 614 ident: bb0175 article-title: Novel approach to pavement cracking automatic detection based on segment extending publication-title: IEEE International Symposium on Knowledge Acquisition and Modeling (KAM’08), Wuhan, China – volume: 38 start-page: 9442 year: 2011 end-page: 9460 ident: bb0095 article-title: An optimum feature extraction method based on wavelet-radon transform and dynamic neural network for pavement distress classification publication-title: Expert Syst. Appl. – volume: 12 start-page: 1624 year: 2011 end-page: 1639 ident: bb0005 article-title: Data-driven intelligent transportation systems: a survey publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 11 start-page: 9628 year: 2011 end-page: 9657 ident: bb0075 article-title: Adaptive road crack detection system by pavement classification publication-title: Sensors – start-page: 154 year: 1998 end-page: 157 ident: bb0045 article-title: A crack detection method in road surface images using morphology publication-title: LAPR Workshop on Machine Vision (MVA98), Makuhari, Chiba, Japan – volume: 2006 start-page: 465 year: 2006 end-page: 468 ident: bb0105 article-title: Optimal linear combination of denoising schemes for efficient removal of image artifacts publication-title: 2006 IEEE International Conference on Multimedia and Expo, Toronto. Canada – volume: 1 start-page: 1462 year: 2007 end-page: 1466 ident: bb0040 article-title: Surface defects detection for ceramic tiles using image processing and morphological techniques publication-title: Int. J. Comput. Inf. Syst. Control Eng. – reference: . – volume: 11 start-page: 674 year: 1989 end-page: 693 ident: bb0080 article-title: A theory for multiresolution signal decomposition: the wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 32 start-page: 1100 year: 2010 end-page: 1104 ident: bb0120 article-title: Improved two-dimensional Otsu image segmentation method and fast recursive realization publication-title: J. Electron. Inf. Technol. – start-page: 847 year: 2008 end-page: 851 ident: bb0020 article-title: Detection of defects in road surface by a vision system publication-title: 14th IEEE Mediterranean Electrotechnical Conference (MELECON 2008) – volume: 33 start-page: 227 year: 2012 end-page: 238 ident: bb0125 article-title: Cracktree: automatic crack detection from pavement images publication-title: Pattern Recogn. Lett. – volume: 31 start-page: 1469 year: 1998 end-page: 1478 ident: bb0055 article-title: A multi-scale morphologic edge detector publication-title: Pattern Recogn. – year: 2014 ident: bb0140 article-title: Image Processing, Analysis, and Machine Vision – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: bb0145 article-title: Threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. – start-page: 7 year: 2009 end-page: 9 ident: bb0085 article-title: Beamlet transform based technique for pavement image processing and classification publication-title: International Conference on Electro/Information Technology (EIT09), Windsor, ON, Canada – start-page: 7 year: 2009 ident: 10.1016/j.imavis.2016.11.018_bb0085 article-title: Beamlet transform based technique for pavement image processing and classification – volume: 28 start-page: 199 issue: 2 year: 1982 ident: 10.1016/j.imavis.2016.11.018_bb0150 article-title: Quantization and the method of k-means publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1982.1056481 – volume: 33 start-page: 227 issue: 3 year: 2012 ident: 10.1016/j.imavis.2016.11.018_bb0125 article-title: Cracktree: automatic crack detection from pavement images publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2011.11.004 – start-page: 907 year: 2006 ident: 10.1016/j.imavis.2016.11.018_bb0070 article-title: A neural network based technique for automatic classification of road cracks – start-page: 3095 year: 2012 ident: 10.1016/j.imavis.2016.11.018_bb0010 article-title: An efficient way in image preprocessing for pavement crack images – start-page: 373 year: 2009 ident: 10.1016/j.imavis.2016.11.018_bb0015 article-title: Automated pavement distress detection using advanced image processing techniques – volume: 32 start-page: 1100 issue: 5 year: 2010 ident: 10.1016/j.imavis.2016.11.018_bb0120 article-title: Improved two-dimensional Otsu image segmentation method and fast recursive realization publication-title: J. Electron. Inf. Technol. – year: 2011 ident: 10.1016/j.imavis.2016.11.018_bb0060 article-title: Automatic road pavement assessment with image processing: review and comparison publication-title: Int. J. Geophys. doi: 10.1155/2011/989354 – volume: 51 start-page: 5201 issue: 21 year: 2012 ident: 10.1016/j.imavis.2016.11.018_bb0035 article-title: Multiple linear feature detection based on multiple-structuring-element center-surround top-hat transform publication-title: Appl. Opt. doi: 10.1364/AO.51.005201 – start-page: 847 year: 2008 ident: 10.1016/j.imavis.2016.11.018_bb0020 article-title: Detection of defects in road surface by a vision system – year: 2014 ident: 10.1016/j.imavis.2016.11.018_bb0140 – volume: 38 start-page: 2857 issue: 3 year: 2011 ident: 10.1016/j.imavis.2016.11.018_bb0100 article-title: A comparison of multi-resolution methods for detection and isolation of pavement distress publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.08.079 – volume: 22 start-page: 761 issue: 10 year: 2004 ident: 10.1016/j.imavis.2016.11.018_bb0135 article-title: Robust wide baseline stereo from maximally stable extremal region publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2004.02.006 – start-page: 610 year: 2008 ident: 10.1016/j.imavis.2016.11.018_bb0175 article-title: Novel approach to pavement cracking automatic detection based on segment extending – volume: 19 start-page: 866 issue: 4 year: 1989 ident: 10.1016/j.imavis.2016.11.018_bb0155 article-title: A gray-level threshold selection method based on maximum entropy principle publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.35351 – start-page: 548 year: 2007 ident: 10.1016/j.imavis.2016.11.018_bb0050 article-title: Pavement crack detection and analysis for high-grade highway – volume: 14 start-page: 155 issue: 1 year: 2013 ident: 10.1016/j.imavis.2016.11.018_bb0065 article-title: Automatic road crack detection and characterization publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2012.2208630 – volume: 2006 start-page: 465 year: 2006 ident: 10.1016/j.imavis.2016.11.018_bb0105 article-title: Optimal linear combination of denoising schemes for efficient removal of image artifacts – volume: 12 start-page: 1624 issue: 4 year: 2011 ident: 10.1016/j.imavis.2016.11.018_bb0005 article-title: Data-driven intelligent transportation systems: a survey publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2011.2158001 – volume: 15 issue: 1 year: 2006 ident: 10.1016/j.imavis.2016.11.018_bb0130 article-title: Automatic inspection of pavement cracking distress publication-title: J. Electron. Imaging doi: 10.1117/1.2177650 – ident: 10.1016/j.imavis.2016.11.018_bb0185 – volume: 11 start-page: 674 year: 1989 ident: 10.1016/j.imavis.2016.11.018_bb0080 article-title: A theory for multiresolution signal decomposition: the wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.192463 – start-page: 154 year: 1998 ident: 10.1016/j.imavis.2016.11.018_bb0045 article-title: A crack detection method in road surface images using morphology – volume: 38 start-page: 9442 issue: 8 year: 2011 ident: 10.1016/j.imavis.2016.11.018_bb0095 article-title: An optimum feature extraction method based on wavelet-radon transform and dynamic neural network for pavement distress classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.01.089 – ident: 10.1016/j.imavis.2016.11.018_bb0160 – start-page: 1 year: 1990 ident: 10.1016/j.imavis.2016.11.018_bb0165 article-title: Computational geometry and facility location, Manila, Philippines – volume: 1260 start-page: 74 year: 1990 ident: 10.1016/j.imavis.2016.11.018_bb0110 article-title: Visual appearance of surface distress in PCC pavements: I. Crack luminance – volume: 7 start-page: 1079 issue: 7 year: 1998 ident: 10.1016/j.imavis.2016.11.018_bb0170 article-title: Region growing: a new approach publication-title: IEEE Trans. Image Process. doi: 10.1109/83.701170 – volume: 31 start-page: 1469 issue: 10 year: 1998 ident: 10.1016/j.imavis.2016.11.018_bb0055 article-title: A multi-scale morphologic edge detector publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(98)00014-4 – volume: 9 start-page: 62 issue: 1 year: 1979 ident: 10.1016/j.imavis.2016.11.018_bb0145 article-title: Threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – volume: 11 start-page: 9628 issue: 10 year: 2011 ident: 10.1016/j.imavis.2016.11.018_bb0075 article-title: Adaptive road crack detection system by pavement classification publication-title: Sensors doi: 10.3390/s111009628 – start-page: 792 year: 2008 ident: 10.1016/j.imavis.2016.11.018_bb0025 article-title: Novel Approach to pavement image segmentation based on neighboring difference histogram method – year: 2008 ident: 10.1016/j.imavis.2016.11.018_bb0180 – start-page: 533 year: 2004 ident: 10.1016/j.imavis.2016.11.018_bb0115 – year: 2010 ident: 10.1016/j.imavis.2016.11.018_bb0090 article-title: Algorithm on contourlet domain in detection of road cracks for pavement images – start-page: 622 year: 2009 ident: 10.1016/j.imavis.2016.11.018_bb0030 article-title: Automatic road crack segmentation using entropy and image dynamic thresholding – volume: 1 start-page: 1462 issue: 5 year: 2007 ident: 10.1016/j.imavis.2016.11.018_bb0040 article-title: Surface defects detection for ceramic tiles using image processing and morphological techniques publication-title: Int. J. Comput. Inf. Syst. Control Eng. |
| SSID | ssj0007079 |
| Score | 2.559734 |
| Snippet | Among the various defects of asphalt pavement distress, much attention has been paid to cracks which often cause significant engineering and economic problems.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 130 |
| SubjectTerms | Adaptive thresholding Image segmentation Pavement crack detection Region growing algorithm |
| Title | An efficient and reliable coarse-to-fine approach for asphalt pavement crack detection |
| URI | https://dx.doi.org/10.1016/j.imavis.2016.11.018 |
| Volume | 57 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUquMCBpYAom3zgatrEjpMcK0RVQPQCFdwi25lIZUmrEq58C9_ClzGTBYqEQOIWRTOSNbFncd68Yey4B-BrExuRWQ0CvaQRVmPN49kQ05FYKumoULwa6eFYXdwFdy122vTCEKyy9v2VTy-9df2mW1uzO5tMutdYPfhRhPFfSwpcxPipVEhTDE5ev2AexABX3bPgyUfppn2uxHhNnqiVnwBe-oS4PGn0x0_haSHkDDbYWp0r8n61nE3WgrzN1uu8kden8rnNVhdIBbfYbT_nUBJDYDzhJk_5HB4n1CHF3RTLWBDFVGQozxs-cY6JKzfPM_p1zmemZBAvuJsb9_D-lkJRorXybTYenN2cDkU9PkE4GfqFCJSBAIwHkaezOO2FLtARTcMMgwykpyzx1EgDziiQWSrx0aTO6hhVYs-C3GFL-TSHXcat88Mo6wWQpbHCGsaA6hltMZkzJoi06jDZWC1xNbc4jbh4TBoQ2X1S2TohW2PZkaCtO0x8as0qbo0_5MPmgyTf9kiC7v9Xzb1_a-6zFZ8CeXnpcsCWivkLHGIaUtijcp8dseX--eVw9AEDG97J |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYGHIADb8SbHLiGrU2atkeEQAMGF5jYrUpSVxqPbhrlym_ht_DLcPrgISGQuFWVLUVuYvtL7c8ABx1EX-lY88wo5OQlNTeKMI9nQkpHYiGFdUDx8kp1-_J8EAxacNz0wriyytr3Vz699Nb1m3ZtzfZ4OGxfE3rwo4jivxIucIkpmJGBHzoEdvjyWefhKOCqixY6-iTe9M-VRV7DR9fL7yq81KEj83SzP36KT19izukSLNTJIjuq1rMMLcxXYLFOHFl9LJ9WYP4Lq-Aq3B7lDEtmCAooTOcpm-DD0LVIMTsiHIu8GPGM5FlDKM4oc2X6aez-nbOxLinEC2Yn2t6_vaZYlOVa-Rr0T09ujru8np_ArQj9ggdSY4Daw8hTWZx2QhuoyI3DDIMMhSeNI6oRGq2WKLJU0KNOrVExqcSeQbEO0_koxw1gxvphlHUCzNJYEojRKDtaGcrmtA4iJTdBNFZLbE0u7mZcPCRNFdldUtk6cbYm3JGQrTeBf2iNK3KNP-TD5oMk3zZJQv7_V82tf2vuw2z35rKX9M6uLrZhzndRvbyB2YHpYvKMu5STFGav3HPvRTXgXg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+and+reliable+coarse-to-fine+approach+for+asphalt+pavement+crack%C2%A0detection&rft.jtitle=Image+and+vision+computing&rft.au=Zhang%2C+Dejin&rft.au=Li%2C+Qingquan&rft.au=Chen%2C+Ying&rft.au=Cao%2C+Min&rft.date=2017-01-01&rft.pub=Elsevier+B.V&rft.issn=0262-8856&rft.eissn=1872-8138&rft.volume=57&rft.spage=130&rft.epage=146&rft_id=info:doi/10.1016%2Fj.imavis.2016.11.018&rft.externalDocID=S0262885616302153 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon |