An efficient and reliable coarse-to-fine approach for asphalt pavement crack detection

Among the various defects of asphalt pavement distress, much attention has been paid to cracks which often cause significant engineering and economic problems. Crack detection is not an easy task since images of road pavement surface are very difficult to analyze. In this paper, a highly efficient p...

Full description

Saved in:
Bibliographic Details
Published inImage and vision computing Vol. 57; pp. 130 - 146
Main Authors Zhang, Dejin, Li, Qingquan, Chen, Ying, Cao, Min, He, Li, Zhang, Bailing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2017
Subjects
Online AccessGet full text
ISSN0262-8856
1872-8138
DOI10.1016/j.imavis.2016.11.018

Cover

Abstract Among the various defects of asphalt pavement distress, much attention has been paid to cracks which often cause significant engineering and economic problems. Crack detection is not an easy task since images of road pavement surface are very difficult to analyze. In this paper, a highly efficient pavement crack detection system is proposed, which has the following distinguishing features. Firstly, a new description of the cracks is proposed based on the spatially clustered pixels with similar gray levels. Secondly, an adaptive thresholding method is presented for image segmentation by comprehensively taking into account the spatial distribution, intensities and geometric features of cracks. Thirdly, a new concept termed Region of Belief (ROB) is introduced to facilitate the subsequent detection by defining some credibility factors which indicate the reliability that a region could be labeled as a distress region which contains cracks, and an algorithm to extract such ROBs is devised accordingly. Lastly, a novel region growing algorithm is propounded for crack detection, which features starting with an ROB seed, determining the searching scope with a specially devised rule, and searching and merging a ROB with different regions following a similarity criterion which synthetically takes different cues into consideration. Two different types of experiments were conducted. The first one was carried out using 10,000 of our field-captured images which were taken from different road conditions and environments. The second one was completed using a benchmark dataset for a comparison with other recent publications. The evaluation performance is satisfactory for a variety of different cracks. For our own data, the detection accuracy is over 95% and more than 90% of coherent cracks without disconnected fragments have been correctly detected as the integrated ones. For the benchmark data, our detection performance also outperforms previously published results. Currently, our approach has been widely applied in China. •A coarse-to-fine asphalt pavement crack detection approach is developed.•A new description of the cracks is proposed based on the spatially clustered pixels.•An improved adaptive thresholding method is presented for image segmentation.•A new concept Region of Belief (ROB) is introduced to facilitate the detection.•A novel region growing algorithm is propounded for the crack detection.
AbstractList Among the various defects of asphalt pavement distress, much attention has been paid to cracks which often cause significant engineering and economic problems. Crack detection is not an easy task since images of road pavement surface are very difficult to analyze. In this paper, a highly efficient pavement crack detection system is proposed, which has the following distinguishing features. Firstly, a new description of the cracks is proposed based on the spatially clustered pixels with similar gray levels. Secondly, an adaptive thresholding method is presented for image segmentation by comprehensively taking into account the spatial distribution, intensities and geometric features of cracks. Thirdly, a new concept termed Region of Belief (ROB) is introduced to facilitate the subsequent detection by defining some credibility factors which indicate the reliability that a region could be labeled as a distress region which contains cracks, and an algorithm to extract such ROBs is devised accordingly. Lastly, a novel region growing algorithm is propounded for crack detection, which features starting with an ROB seed, determining the searching scope with a specially devised rule, and searching and merging a ROB with different regions following a similarity criterion which synthetically takes different cues into consideration. Two different types of experiments were conducted. The first one was carried out using 10,000 of our field-captured images which were taken from different road conditions and environments. The second one was completed using a benchmark dataset for a comparison with other recent publications. The evaluation performance is satisfactory for a variety of different cracks. For our own data, the detection accuracy is over 95% and more than 90% of coherent cracks without disconnected fragments have been correctly detected as the integrated ones. For the benchmark data, our detection performance also outperforms previously published results. Currently, our approach has been widely applied in China. •A coarse-to-fine asphalt pavement crack detection approach is developed.•A new description of the cracks is proposed based on the spatially clustered pixels.•An improved adaptive thresholding method is presented for image segmentation.•A new concept Region of Belief (ROB) is introduced to facilitate the detection.•A novel region growing algorithm is propounded for the crack detection.
Author Zhang, Bailing
Li, Qingquan
Zhang, Dejin
Cao, Min
He, Li
Chen, Ying
Author_xml – sequence: 1
  givenname: Dejin
  surname: Zhang
  fullname: Zhang, Dejin
  organization: Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China
– sequence: 2
  givenname: Qingquan
  surname: Li
  fullname: Li, Qingquan
  organization: Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China
– sequence: 3
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
  organization: Wuhan Wuda Zoyon Science and Technology Co., Ltd., Wuhan 430223, China
– sequence: 4
  givenname: Min
  surname: Cao
  fullname: Cao, Min
  organization: Wuhan Wuda Zoyon Science and Technology Co., Ltd., Wuhan 430223, China
– sequence: 5
  givenname: Li
  surname: He
  fullname: He, Li
  email: heli.edu@hotmail.com
  organization: School of Electrical & Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
– sequence: 6
  givenname: Bailing
  surname: Zhang
  fullname: Zhang, Bailing
  organization: Department of Computer Science and Software Engineering, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
BookMark eNqFkM1KAzEQx4NUsFbfwENeYNdksx-pB6EUv6DgRfEYZrMTmrrdLEko-DY-i09mlnryoKf5D8xvmPmdk9ngBiTkirOcM15f73K7h4MNeZG6nPOccXlC5lw2RSa5kDMyZ0WdsqzqM3Iewo4x1rBmOSdvq4GiMVZbHCKFoaMeewttj1Q78AGz6DJjB6Qwjt6B3lLjPIUwbqGPdIQD7idSe9DvX58dRtTRuuGCnBroA17-1AV5vb97WT9mm-eHp_Vqk2nRFDGrSsAKgaPktVl2rNFVLauq5k1lUPCylYVoBKCGEoXpRIrQ6bZeJmTJWxQLcnPcq70LwaNR2kaYLogebK84U5MitVNHRWpSpDhXSVGCy1_w6NOY__gPuz1imB47WPQqTPo0dtan71Xn7N8LvgGI0ofD
CitedBy_id crossref_primary_10_1016_j_engappai_2022_105478
crossref_primary_10_1007_s00138_022_01327_5
crossref_primary_10_1002_stc_2974
crossref_primary_10_1016_j_autcon_2019_04_014
crossref_primary_10_1117_1_JEI_33_6_063027
crossref_primary_10_1016_j_measurement_2025_117215
crossref_primary_10_1155_2024_8846470
crossref_primary_10_1177_1475921720948434
crossref_primary_10_1007_s11042_022_14168_1
crossref_primary_10_1016_j_autcon_2020_103484
crossref_primary_10_1177_1729881419852853
crossref_primary_10_1109_TITS_2020_3035663
crossref_primary_10_3390_app9224829
crossref_primary_10_1111_mice_12433
crossref_primary_10_3390_app14114709
crossref_primary_10_3724_SP_J_1089_2022_18891
crossref_primary_10_1109_TGRS_2022_3158660
crossref_primary_10_3390_ijerph17228438
crossref_primary_10_1049_itr2_12497
crossref_primary_10_1109_JSEN_2021_3089718
crossref_primary_10_1177_0361198120907283
crossref_primary_10_1109_TITS_2023_3234330
crossref_primary_10_1111_mice_12947
crossref_primary_10_1177_1748006X221140966
crossref_primary_10_1016_j_engappai_2024_108312
crossref_primary_10_1016_j_jag_2022_102825
crossref_primary_10_1016_j_neucom_2019_01_036
crossref_primary_10_15701_kcgs_2022_28_2_1
crossref_primary_10_1061__ASCE_CP_1943_5487_0000910
crossref_primary_10_1109_ACCESS_2021_3070813
crossref_primary_10_1177_09544070211023628
crossref_primary_10_3390_s18072294
crossref_primary_10_3390_app122111135
crossref_primary_10_1061__ASCE_CP_1943_5487_0000831
crossref_primary_10_1088_1755_1315_189_2_022005
crossref_primary_10_1016_j_tust_2018_04_002
crossref_primary_10_1061__ASCE_CP_1943_5487_0000873
crossref_primary_10_1061_JITSE4_ISENG_2157
crossref_primary_10_1117_1_JEI_26_5_053008
crossref_primary_10_1155_2021_5520515
crossref_primary_10_3390_s21217405
crossref_primary_10_1016_j_jtte_2021_10_001
crossref_primary_10_1109_TITS_2018_2856928
crossref_primary_10_3390_s25010146
crossref_primary_10_1016_j_jag_2022_103172
crossref_primary_10_3390_s20143954
crossref_primary_10_1007_s00530_024_01538_y
crossref_primary_10_1155_2023_3301106
crossref_primary_10_1016_j_conbuildmat_2020_120084
crossref_primary_10_1051_matecconf_202236405020
crossref_primary_10_1080_14680629_2021_1925578
crossref_primary_10_3390_app121910180
crossref_primary_10_1002_stc_2764
crossref_primary_10_1016_j_conbuildmat_2017_09_110
crossref_primary_10_1016_j_measurement_2024_115946
crossref_primary_10_1016_j_autcon_2019_103019
crossref_primary_10_1016_j_conbuildmat_2020_120080
crossref_primary_10_1016_j_autcon_2022_104664
crossref_primary_10_1109_TITS_2021_3134374
crossref_primary_10_1016_j_neucom_2019_08_107
crossref_primary_10_1109_TIM_2018_2803830
crossref_primary_10_2339_politeknik_987132
crossref_primary_10_3390_data3030028
crossref_primary_10_3390_buildings11120579
crossref_primary_10_1080_10298436_2023_2201902
crossref_primary_10_1088_1742_6596_1755_1_012048
crossref_primary_10_1155_2023_2227326
crossref_primary_10_1155_2019_4302805
crossref_primary_10_1016_j_aei_2019_04_004
crossref_primary_10_1016_j_autcon_2018_09_019
crossref_primary_10_1109_ACCESS_2019_2914259
crossref_primary_10_1016_j_conbuildmat_2020_118513
crossref_primary_10_1109_TIM_2020_2973843
crossref_primary_10_3390_s22228932
crossref_primary_10_1109_TIM_2018_2800258
crossref_primary_10_31590_ejosat_844592
crossref_primary_10_1080_10298436_2021_1905808
crossref_primary_10_3390_app14219745
crossref_primary_10_3390_rs15071750
crossref_primary_10_1049_ipr2_12228
crossref_primary_10_1155_2020_7240129
crossref_primary_10_1016_j_autcon_2023_105192
crossref_primary_10_1155_2019_6520620
crossref_primary_10_1155_2021_8858545
crossref_primary_10_1016_j_patcog_2020_107474
crossref_primary_10_1109_TITS_2024_3405477
crossref_primary_10_3390_s20226669
crossref_primary_10_1061_JCCEE5_CPENG_6339
crossref_primary_10_1109_ACCESS_2023_3328243
crossref_primary_10_3390_app14114817
crossref_primary_10_1155_2019_8796743
crossref_primary_10_1016_j_displa_2024_102787
crossref_primary_10_3390_electronics11030501
crossref_primary_10_3390_infrastructures9060090
Cites_doi 10.1109/TIT.1982.1056481
10.1016/j.patrec.2011.11.004
10.1155/2011/989354
10.1364/AO.51.005201
10.1016/j.eswa.2010.08.079
10.1016/j.imavis.2004.02.006
10.1109/21.35351
10.1109/TITS.2012.2208630
10.1109/TITS.2011.2158001
10.1117/1.2177650
10.1109/34.192463
10.1016/j.eswa.2011.01.089
10.1109/83.701170
10.1016/S0031-3203(98)00014-4
10.1109/TSMC.1979.4310076
10.3390/s111009628
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID AAYXX
CITATION
DOI 10.1016/j.imavis.2016.11.018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-8138
EndPage 146
ExternalDocumentID 10_1016_j_imavis_2016_11_018
S0262885616302153
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c372t-54ae5ea1e816f9d07c568556175fe314b82373aeca4e3fd33aeadcb69a1e91be3
IEDL.DBID .~1
ISSN 0262-8856
IngestDate Thu Apr 24 23:12:50 EDT 2025
Wed Oct 01 01:31:37 EDT 2025
Fri Feb 23 02:23:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Image segmentation
Region growing algorithm
Pavement crack detection
Adaptive thresholding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-54ae5ea1e816f9d07c568556175fe314b82373aeca4e3fd33aeadcb69a1e91be3
PageCount 17
ParticipantIDs crossref_citationtrail_10_1016_j_imavis_2016_11_018
crossref_primary_10_1016_j_imavis_2016_11_018
elsevier_sciencedirect_doi_10_1016_j_imavis_2016_11_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationTitle Image and vision computing
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Zhao, Lu, Kuang, Wang, Jiang (bb0120) 2010; 32
Zhang, Wang, Wang, Lin, Xu, Chen (bb0005) 2011; 12
El-Korchi, Wittels (bb0110) 1990; 1260
Bray, Verma, Li, He (bb0070) 2006
Pollard (bb0150) 1982; 28
Liu, Xu, Yang, Niu, Pan (bb0175) 2008
Li, Liu (bb0025) 2008
Gavilan, Balcones, Marcos, Llorca, Sotelo, Parra, Ocana, Aliseda, Yarza, Amirola (bb0075) 2011; 11
Ying, Salari (bb0085) 2009
Robert, Toussaint (bb0165) 1990
Wong, Sahoo (bb0155) 1989; 19
Sonka, Hlavac, Boyle (bb0140) 2014
Sy, Avila, Begot, Bardet (bb0020) 2008
Nejad, Zakeri (bb0100) 2011; 38
Zou, Cao, Li, Mao, Wang (bb0125) 2012; 33
Gonzalez, Woods (bb0180) 2008
Bai, Zhou, Xue (bb0035) 2012; 51
Oliveira, Correia (bb0065) 2013; 14
Hojjatoleslami, Kittler (bb0170) 1998; 7
Oliveira, Correia (bb0030) 2009
Yan, Bo, Xu, He (bb0050) 2007
Elbehiery, Hefnawy, Elewa (bb0040) 2007; 1
McCall, Trivedi (bb0115) 2004
Nejad, Zakeri (bb0095) 2011; 38
Li, Sun, Tan, Ning (bb0010) 2012
Matas, Chum, Urban, Pajdla (bb0135) 2004; 22
Sun, Salari, Chou (bb0015) 2009
Bhabatosh, Kundu, Padmaja (bb0055) 1998; 31
Chambon, Moliard (bb0060) 2011
.
Huang, Xu (bb0130) 2006; 15
Mallat (bb0080) 1989; 11
Otsu (bb0145) 1979; 9
Naoki, Kenji (bb0045) 1998
Eslami, Radha (bb0105) 2006; 2006
Shu, Guo (bb0090) 2010
Gonzalez (10.1016/j.imavis.2016.11.018_bb0180) 2008
Li (10.1016/j.imavis.2016.11.018_bb0025) 2008
Zou (10.1016/j.imavis.2016.11.018_bb0125) 2012; 33
Pollard (10.1016/j.imavis.2016.11.018_bb0150) 1982; 28
Zhang (10.1016/j.imavis.2016.11.018_bb0005) 2011; 12
Nejad (10.1016/j.imavis.2016.11.018_bb0095) 2011; 38
Sun (10.1016/j.imavis.2016.11.018_bb0015) 2009
Yan (10.1016/j.imavis.2016.11.018_bb0050) 2007
Gavilan (10.1016/j.imavis.2016.11.018_bb0075) 2011; 11
Eslami (10.1016/j.imavis.2016.11.018_bb0105) 2006; 2006
Bray (10.1016/j.imavis.2016.11.018_bb0070) 2006
Naoki (10.1016/j.imavis.2016.11.018_bb0045) 1998
Mallat (10.1016/j.imavis.2016.11.018_bb0080) 1989; 11
Chen (10.1016/j.imavis.2016.11.018_bb0120) 2010; 32
Bhabatosh (10.1016/j.imavis.2016.11.018_bb0055) 1998; 31
Ying (10.1016/j.imavis.2016.11.018_bb0085) 2009
10.1016/j.imavis.2016.11.018_bb0185
Matas (10.1016/j.imavis.2016.11.018_bb0135) 2004; 22
Robert (10.1016/j.imavis.2016.11.018_bb0165) 1990
10.1016/j.imavis.2016.11.018_bb0160
El-Korchi (10.1016/j.imavis.2016.11.018_bb0110) 1990; 1260
Nejad (10.1016/j.imavis.2016.11.018_bb0100) 2011; 38
Chambon (10.1016/j.imavis.2016.11.018_bb0060) 2011
Wong (10.1016/j.imavis.2016.11.018_bb0155) 1989; 19
Li (10.1016/j.imavis.2016.11.018_bb0010) 2012
Oliveira (10.1016/j.imavis.2016.11.018_bb0065) 2013; 14
Otsu (10.1016/j.imavis.2016.11.018_bb0145) 1979; 9
Hojjatoleslami (10.1016/j.imavis.2016.11.018_bb0170) 1998; 7
Bai (10.1016/j.imavis.2016.11.018_bb0035) 2012; 51
McCall (10.1016/j.imavis.2016.11.018_bb0115) 2004
Sonka (10.1016/j.imavis.2016.11.018_bb0140) 2014
Oliveira (10.1016/j.imavis.2016.11.018_bb0030) 2009
Elbehiery (10.1016/j.imavis.2016.11.018_bb0040) 2007; 1
Huang (10.1016/j.imavis.2016.11.018_bb0130) 2006; 15
Liu (10.1016/j.imavis.2016.11.018_bb0175) 2008
Sy (10.1016/j.imavis.2016.11.018_bb0020) 2008
Shu (10.1016/j.imavis.2016.11.018_bb0090) 2010
References_xml – start-page: 622
  year: 2009
  end-page: 626
  ident: bb0030
  article-title: Automatic road crack segmentation using entropy and image dynamic thresholding
  publication-title: 17th European Signal Processing Conf. (EUSIPCO09)Glasgow, Scotland
– start-page: 548
  year: 2007
  end-page: 552
  ident: bb0050
  article-title: Pavement crack detection and analysis for high-grade highway
  publication-title: 8th International Conference on Electronic Measurement and Instruments (ICEMI07), Xi’an, China
– volume: 1260
  start-page: 74
  year: 1990
  end-page: 83
  ident: bb0110
  article-title: Visual appearance of surface distress in PCC pavements: I. Crack luminance
  publication-title: Transportation Research Record
– year: 2008
  ident: bb0180
  article-title: Digital Image Processing
– start-page: 792
  year: 2008
  end-page: 796
  ident: bb0025
  article-title: Novel Approach to pavement image segmentation based on neighboring difference histogram method
  publication-title: IEEE Congress on Image and Signal Processing (CISP08), Sanya, China
– volume: 51
  start-page: 5201
  year: 2012
  end-page: 5211
  ident: bb0035
  article-title: Multiple linear feature detection based on multiple-structuring-element center-surround top-hat transform
  publication-title: Appl. Opt.
– volume: 22
  start-page: 761
  year: 2004
  end-page: 767
  ident: bb0135
  article-title: Robust wide baseline stereo from maximally stable extremal region
  publication-title: Image Vis. Comput.
– volume: 7
  start-page: 1079
  year: 1998
  end-page: 1084
  ident: bb0170
  article-title: Region growing: a new approach
  publication-title: IEEE Trans. Image Process.
– volume: 14
  start-page: 155
  year: 2013
  end-page: 168
  ident: bb0065
  article-title: Automatic road crack detection and characterization
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 907
  year: 2006
  end-page: 912
  ident: bb0070
  article-title: A neural network based technique for automatic classification of road cracks
  publication-title: International Joint Conference on Neural Networks, Vancouver, Canada
– volume: 15
  year: 2006
  ident: bb0130
  article-title: Automatic inspection of pavement cracking distress
  publication-title: J. Electron. Imaging
– volume: 19
  start-page: 866
  year: 1989
  end-page: 871
  ident: bb0155
  article-title: A gray-level threshold selection method based on maximum entropy principle
  publication-title: IEEE Trans. Syst. Man Cybern.
– start-page: 533
  year: 2004
  end-page: 537
  ident: bb0115
  article-title: An integrated, robust approach to lane marking detection and lane tracking, 2004 IEEE Intelligent Vehicles Symposium, Parma, Italy
– start-page: 373
  year: 2009
  end-page: 377
  ident: bb0015
  article-title: Automated pavement distress detection using advanced image processing techniques
  publication-title: IEEE International Conference on Electro/Information Technology (EIT’09) Windsor, ON
– year: 2011
  ident: bb0060
  article-title: Automatic road pavement assessment with image processing: review and comparison
  publication-title: Int. J. Geophys.
– year: 2010
  ident: bb0090
  article-title: Algorithm on contourlet domain in detection of road cracks for pavement images
  publication-title: Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science, Hong Kong
– volume: 28
  start-page: 199
  year: 1982
  end-page: 205
  ident: bb0150
  article-title: Quantization and the method of
  publication-title: IEEE Trans. Inf. Theory
– start-page: 1
  year: 1990
  end-page: 19
  ident: bb0165
  article-title: Computational geometry and facility location, Manila, Philippines
– start-page: 3095
  year: 2012
  end-page: 3103
  ident: bb0010
  article-title: An efficient way in image preprocessing for pavement crack images
  publication-title: 12th International Conference of Transportation Professionals (CICTP 2012), Beijing, China
– volume: 38
  start-page: 2857
  year: 2011
  end-page: 2872
  ident: bb0100
  article-title: A comparison of multi-resolution methods for detection and isolation of pavement distress
  publication-title: Expert Syst. Appl.
– start-page: 610
  year: 2008
  end-page: 614
  ident: bb0175
  article-title: Novel approach to pavement cracking automatic detection based on segment extending
  publication-title: IEEE International Symposium on Knowledge Acquisition and Modeling (KAM’08), Wuhan, China
– volume: 38
  start-page: 9442
  year: 2011
  end-page: 9460
  ident: bb0095
  article-title: An optimum feature extraction method based on wavelet-radon transform and dynamic neural network for pavement distress classification
  publication-title: Expert Syst. Appl.
– volume: 12
  start-page: 1624
  year: 2011
  end-page: 1639
  ident: bb0005
  article-title: Data-driven intelligent transportation systems: a survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 11
  start-page: 9628
  year: 2011
  end-page: 9657
  ident: bb0075
  article-title: Adaptive road crack detection system by pavement classification
  publication-title: Sensors
– start-page: 154
  year: 1998
  end-page: 157
  ident: bb0045
  article-title: A crack detection method in road surface images using morphology
  publication-title: LAPR Workshop on Machine Vision (MVA98), Makuhari, Chiba, Japan
– volume: 2006
  start-page: 465
  year: 2006
  end-page: 468
  ident: bb0105
  article-title: Optimal linear combination of denoising schemes for efficient removal of image artifacts
  publication-title: 2006 IEEE International Conference on Multimedia and Expo, Toronto. Canada
– volume: 1
  start-page: 1462
  year: 2007
  end-page: 1466
  ident: bb0040
  article-title: Surface defects detection for ceramic tiles using image processing and morphological techniques
  publication-title: Int. J. Comput. Inf. Syst. Control Eng.
– reference: .
– volume: 11
  start-page: 674
  year: 1989
  end-page: 693
  ident: bb0080
  article-title: A theory for multiresolution signal decomposition: the wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 32
  start-page: 1100
  year: 2010
  end-page: 1104
  ident: bb0120
  article-title: Improved two-dimensional Otsu image segmentation method and fast recursive realization
  publication-title: J. Electron. Inf. Technol.
– start-page: 847
  year: 2008
  end-page: 851
  ident: bb0020
  article-title: Detection of defects in road surface by a vision system
  publication-title: 14th IEEE Mediterranean Electrotechnical Conference (MELECON 2008)
– volume: 33
  start-page: 227
  year: 2012
  end-page: 238
  ident: bb0125
  article-title: Cracktree: automatic crack detection from pavement images
  publication-title: Pattern Recogn. Lett.
– volume: 31
  start-page: 1469
  year: 1998
  end-page: 1478
  ident: bb0055
  article-title: A multi-scale morphologic edge detector
  publication-title: Pattern Recogn.
– year: 2014
  ident: bb0140
  article-title: Image Processing, Analysis, and Machine Vision
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bb0145
  article-title: Threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
– start-page: 7
  year: 2009
  end-page: 9
  ident: bb0085
  article-title: Beamlet transform based technique for pavement image processing and classification
  publication-title: International Conference on Electro/Information Technology (EIT09), Windsor, ON, Canada
– start-page: 7
  year: 2009
  ident: 10.1016/j.imavis.2016.11.018_bb0085
  article-title: Beamlet transform based technique for pavement image processing and classification
– volume: 28
  start-page: 199
  issue: 2
  year: 1982
  ident: 10.1016/j.imavis.2016.11.018_bb0150
  article-title: Quantization and the method of k-means
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1982.1056481
– volume: 33
  start-page: 227
  issue: 3
  year: 2012
  ident: 10.1016/j.imavis.2016.11.018_bb0125
  article-title: Cracktree: automatic crack detection from pavement images
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2011.11.004
– start-page: 907
  year: 2006
  ident: 10.1016/j.imavis.2016.11.018_bb0070
  article-title: A neural network based technique for automatic classification of road cracks
– start-page: 3095
  year: 2012
  ident: 10.1016/j.imavis.2016.11.018_bb0010
  article-title: An efficient way in image preprocessing for pavement crack images
– start-page: 373
  year: 2009
  ident: 10.1016/j.imavis.2016.11.018_bb0015
  article-title: Automated pavement distress detection using advanced image processing techniques
– volume: 32
  start-page: 1100
  issue: 5
  year: 2010
  ident: 10.1016/j.imavis.2016.11.018_bb0120
  article-title: Improved two-dimensional Otsu image segmentation method and fast recursive realization
  publication-title: J. Electron. Inf. Technol.
– year: 2011
  ident: 10.1016/j.imavis.2016.11.018_bb0060
  article-title: Automatic road pavement assessment with image processing: review and comparison
  publication-title: Int. J. Geophys.
  doi: 10.1155/2011/989354
– volume: 51
  start-page: 5201
  issue: 21
  year: 2012
  ident: 10.1016/j.imavis.2016.11.018_bb0035
  article-title: Multiple linear feature detection based on multiple-structuring-element center-surround top-hat transform
  publication-title: Appl. Opt.
  doi: 10.1364/AO.51.005201
– start-page: 847
  year: 2008
  ident: 10.1016/j.imavis.2016.11.018_bb0020
  article-title: Detection of defects in road surface by a vision system
– year: 2014
  ident: 10.1016/j.imavis.2016.11.018_bb0140
– volume: 38
  start-page: 2857
  issue: 3
  year: 2011
  ident: 10.1016/j.imavis.2016.11.018_bb0100
  article-title: A comparison of multi-resolution methods for detection and isolation of pavement distress
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.08.079
– volume: 22
  start-page: 761
  issue: 10
  year: 2004
  ident: 10.1016/j.imavis.2016.11.018_bb0135
  article-title: Robust wide baseline stereo from maximally stable extremal region
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2004.02.006
– start-page: 610
  year: 2008
  ident: 10.1016/j.imavis.2016.11.018_bb0175
  article-title: Novel approach to pavement cracking automatic detection based on segment extending
– volume: 19
  start-page: 866
  issue: 4
  year: 1989
  ident: 10.1016/j.imavis.2016.11.018_bb0155
  article-title: A gray-level threshold selection method based on maximum entropy principle
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.35351
– start-page: 548
  year: 2007
  ident: 10.1016/j.imavis.2016.11.018_bb0050
  article-title: Pavement crack detection and analysis for high-grade highway
– volume: 14
  start-page: 155
  issue: 1
  year: 2013
  ident: 10.1016/j.imavis.2016.11.018_bb0065
  article-title: Automatic road crack detection and characterization
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2012.2208630
– volume: 2006
  start-page: 465
  year: 2006
  ident: 10.1016/j.imavis.2016.11.018_bb0105
  article-title: Optimal linear combination of denoising schemes for efficient removal of image artifacts
– volume: 12
  start-page: 1624
  issue: 4
  year: 2011
  ident: 10.1016/j.imavis.2016.11.018_bb0005
  article-title: Data-driven intelligent transportation systems: a survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2011.2158001
– volume: 15
  issue: 1
  year: 2006
  ident: 10.1016/j.imavis.2016.11.018_bb0130
  article-title: Automatic inspection of pavement cracking distress
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.2177650
– ident: 10.1016/j.imavis.2016.11.018_bb0185
– volume: 11
  start-page: 674
  year: 1989
  ident: 10.1016/j.imavis.2016.11.018_bb0080
  article-title: A theory for multiresolution signal decomposition: the wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.192463
– start-page: 154
  year: 1998
  ident: 10.1016/j.imavis.2016.11.018_bb0045
  article-title: A crack detection method in road surface images using morphology
– volume: 38
  start-page: 9442
  issue: 8
  year: 2011
  ident: 10.1016/j.imavis.2016.11.018_bb0095
  article-title: An optimum feature extraction method based on wavelet-radon transform and dynamic neural network for pavement distress classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.01.089
– ident: 10.1016/j.imavis.2016.11.018_bb0160
– start-page: 1
  year: 1990
  ident: 10.1016/j.imavis.2016.11.018_bb0165
  article-title: Computational geometry and facility location, Manila, Philippines
– volume: 1260
  start-page: 74
  year: 1990
  ident: 10.1016/j.imavis.2016.11.018_bb0110
  article-title: Visual appearance of surface distress in PCC pavements: I. Crack luminance
– volume: 7
  start-page: 1079
  issue: 7
  year: 1998
  ident: 10.1016/j.imavis.2016.11.018_bb0170
  article-title: Region growing: a new approach
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.701170
– volume: 31
  start-page: 1469
  issue: 10
  year: 1998
  ident: 10.1016/j.imavis.2016.11.018_bb0055
  article-title: A multi-scale morphologic edge detector
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(98)00014-4
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.imavis.2016.11.018_bb0145
  article-title: Threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– volume: 11
  start-page: 9628
  issue: 10
  year: 2011
  ident: 10.1016/j.imavis.2016.11.018_bb0075
  article-title: Adaptive road crack detection system by pavement classification
  publication-title: Sensors
  doi: 10.3390/s111009628
– start-page: 792
  year: 2008
  ident: 10.1016/j.imavis.2016.11.018_bb0025
  article-title: Novel Approach to pavement image segmentation based on neighboring difference histogram method
– year: 2008
  ident: 10.1016/j.imavis.2016.11.018_bb0180
– start-page: 533
  year: 2004
  ident: 10.1016/j.imavis.2016.11.018_bb0115
– year: 2010
  ident: 10.1016/j.imavis.2016.11.018_bb0090
  article-title: Algorithm on contourlet domain in detection of road cracks for pavement images
– start-page: 622
  year: 2009
  ident: 10.1016/j.imavis.2016.11.018_bb0030
  article-title: Automatic road crack segmentation using entropy and image dynamic thresholding
– volume: 1
  start-page: 1462
  issue: 5
  year: 2007
  ident: 10.1016/j.imavis.2016.11.018_bb0040
  article-title: Surface defects detection for ceramic tiles using image processing and morphological techniques
  publication-title: Int. J. Comput. Inf. Syst. Control Eng.
SSID ssj0007079
Score 2.559734
Snippet Among the various defects of asphalt pavement distress, much attention has been paid to cracks which often cause significant engineering and economic problems....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 130
SubjectTerms Adaptive thresholding
Image segmentation
Pavement crack detection
Region growing algorithm
Title An efficient and reliable coarse-to-fine approach for asphalt pavement crack detection
URI https://dx.doi.org/10.1016/j.imavis.2016.11.018
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUquMCBpYAom3zgatrEjpMcK0RVQPQCFdwi25lIZUmrEq58C9_ClzGTBYqEQOIWRTOSNbFncd68Yey4B-BrExuRWQ0CvaQRVmPN49kQ05FYKumoULwa6eFYXdwFdy122vTCEKyy9v2VTy-9df2mW1uzO5tMutdYPfhRhPFfSwpcxPipVEhTDE5ev2AexABX3bPgyUfppn2uxHhNnqiVnwBe-oS4PGn0x0_haSHkDDbYWp0r8n61nE3WgrzN1uu8kden8rnNVhdIBbfYbT_nUBJDYDzhJk_5HB4n1CHF3RTLWBDFVGQozxs-cY6JKzfPM_p1zmemZBAvuJsb9_D-lkJRorXybTYenN2cDkU9PkE4GfqFCJSBAIwHkaezOO2FLtARTcMMgwykpyzx1EgDziiQWSrx0aTO6hhVYs-C3GFL-TSHXcat88Mo6wWQpbHCGsaA6hltMZkzJoi06jDZWC1xNbc4jbh4TBoQ2X1S2TohW2PZkaCtO0x8as0qbo0_5MPmgyTf9kiC7v9Xzb1_a-6zFZ8CeXnpcsCWivkLHGIaUtijcp8dseX--eVw9AEDG97J
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYGHIADb8SbHLiGrU2atkeEQAMGF5jYrUpSVxqPbhrlym_ht_DLcPrgISGQuFWVLUVuYvtL7c8ABx1EX-lY88wo5OQlNTeKMI9nQkpHYiGFdUDx8kp1-_J8EAxacNz0wriyytr3Vz699Nb1m3ZtzfZ4OGxfE3rwo4jivxIucIkpmJGBHzoEdvjyWefhKOCqixY6-iTe9M-VRV7DR9fL7yq81KEj83SzP36KT19izukSLNTJIjuq1rMMLcxXYLFOHFl9LJ9WYP4Lq-Aq3B7lDEtmCAooTOcpm-DD0LVIMTsiHIu8GPGM5FlDKM4oc2X6aez-nbOxLinEC2Yn2t6_vaZYlOVa-Rr0T09ujru8np_ArQj9ggdSY4Daw8hTWZx2QhuoyI3DDIMMhSeNI6oRGq2WKLJU0KNOrVExqcSeQbEO0_koxw1gxvphlHUCzNJYEojRKDtaGcrmtA4iJTdBNFZLbE0u7mZcPCRNFdldUtk6cbYm3JGQrTeBf2iNK3KNP-TD5oMk3zZJQv7_V82tf2vuw2z35rKX9M6uLrZhzndRvbyB2YHpYvKMu5STFGav3HPvRTXgXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+and+reliable+coarse-to-fine+approach+for+asphalt+pavement+crack%C2%A0detection&rft.jtitle=Image+and+vision+computing&rft.au=Zhang%2C+Dejin&rft.au=Li%2C+Qingquan&rft.au=Chen%2C+Ying&rft.au=Cao%2C+Min&rft.date=2017-01-01&rft.pub=Elsevier+B.V&rft.issn=0262-8856&rft.eissn=1872-8138&rft.volume=57&rft.spage=130&rft.epage=146&rft_id=info:doi/10.1016%2Fj.imavis.2016.11.018&rft.externalDocID=S0262885616302153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon