Fluid structure interaction of supersonic parachute with material failure
The material damage of parachute may occur in parachutes at high speeds, and the growth of tearing may finally lead to failure of aerospace mission. In order to study the damage mechanism of parachute, a material failure model is proposed to simulate the failure of canopy fabric. The inflation proce...
        Saved in:
      
    
          | Published in | Chinese journal of aeronautics Vol. 36; no. 10; pp. 90 - 100 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.10.2023
     College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China Key Laboratory of Aircraft Environment Control and Life Support,MIIT,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China%College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1000-9361 2588-9230  | 
| DOI | 10.1016/j.cja.2023.06.026 | 
Cover
| Abstract | The material damage of parachute may occur in parachutes at high speeds, and the growth of tearing may finally lead to failure of aerospace mission. In order to study the damage mechanism of parachute, a material failure model is proposed to simulate the failure of canopy fabric. The inflation process of supersonic parachute is studied numerically based on Arbitrary Lagrange Euler (ALE) method. The ALE method with material failure can predict the transient parachute shape with damage propagation as well as the flow characteristics in the parachute inflation process, and the simulated dynamic opening load is consistent with the flight test. The damage propagation mechanism of parachute is then investigated, and the effect of parachute velocity on the damage process is discussed. The results show that the canopy tears apart by the fast flow from the initial damaged area and the damaged canopy shape leads to the asymmetric change of the flow structure. With the increase of Mach number, the canopy tearing speed increases, and the tearing directions become uncertain at high Mach numbers. The dynamic load when damage occurs increases with the Mach number, and is proportional to the dynamic pressure above the critical Mach number. | 
    
|---|---|
| AbstractList | The material damage of parachute may occur in parachutes at high speeds, and the growth of tearing may finally lead to failure of aerospace mission. In order to study the damage mechanism of parachute, a material failure model is proposed to simulate the failure of canopy fabric. The inflation process of supersonic parachute is studied numerically based on Arbitrary Lagrange Euler (ALE) method. The ALE method with material failure can predict the transient parachute shape with damage propagation as well as the flow characteristics in the parachute inflation process, and the simulated dynamic opening load is consistent with the flight test. The damage propagation mechanism of parachute is then investigated, and the effect of parachute velocity on the damage process is discussed. The results show that the canopy tears apart by the fast flow from the initial damaged area and the damaged canopy shape leads to the asymmetric change of the flow structure. With the increase of Mach number, the canopy tearing speed increases, and the tearing directions become uncertain at high Mach numbers. The dynamic load when damage occurs increases with the Mach number, and is proportional to the dynamic pressure above the critical Mach number. The material damage of parachute may occur in parachutes at high speeds,and the growth of tearing may finally lead to failure of aerospace mission.In order to study the damage mechanism of parachute,a material failure model is proposed to simulate the failure of canopy fab-ric.The inflation process of supersonic parachute is studied numerically based on Arbitrary Lagrange Euler(ALE)method.The ALE method with material failure can predict the transient parachute shape with damage propagation as well as the flow characteristics in the parachute infla-tion process,and the simulated dynamic opening load is consistent with the flight test.The damage propagation mechanism of parachute is then investigated,and the effect of parachute velocity on the damage process is discussed.The results show that the canopy tears apart by the fast flow from the initial damaged area and the damaged canopy shape leads to the asymmetric change of the flow structure.With the increase of Mach number,the canopy tearing speed increases,and the tearing directions become uncertain at high Mach numbers.The dynamic load when damage occurs increases with the Mach number,and is proportional to the dynamic pressure above the critical Mach number.  | 
    
| Author | NIE, Shunchen LI, Yanjun SUN, Zhihong YU, Li QIU, Bowen  | 
    
| AuthorAffiliation | College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Key Laboratory of Aircraft Environment Control and Life Support,MIIT,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China%College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China | 
    
| AuthorAffiliation_xml | – name: College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Key Laboratory of Aircraft Environment Control and Life Support,MIIT,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China%College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China | 
    
| Author_xml | – sequence: 1 givenname: Shunchen surname: NIE fullname: NIE, Shunchen organization: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China – sequence: 2 givenname: Li orcidid: 0000-0003-1553-2854 surname: YU fullname: YU, Li email: yuli_happy@nuaa.edu.cn organization: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China – sequence: 3 givenname: Yanjun surname: LI fullname: LI, Yanjun organization: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China – sequence: 4 givenname: Zhihong surname: SUN fullname: SUN, Zhihong organization: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China – sequence: 5 givenname: Bowen surname: QIU fullname: QIU, Bowen organization: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China  | 
    
| BookMark | eNqNkLtOwzAUhj0UibbwAGzemBJ8yVVMqKJQCYkFZstxTqhD6kS2Q-nb4yhMDBXTkY7-71y-FVqY3gBCN5TElNDsro1VK2NGGI9JFhOWLdCSEkKikmf0Eq2cawnhZU7JEu223ahr7LwdlR8tYG08WKm87g3uG-zGAazrjVZ4kKG_Hz3go_Z7fJAhqGWHG6m7QF6hi0Z2Dq5_6xq9bx_fNs_Ry-vTbvPwEimeMx8lTZnXipZJVlFWsDRLEhVaXFVNnvKKq1wBz4FBKmleEA7ASpUWZVVAyYuM8TVi89zRDPJ0lF0nBqsP0p4EJWISIFoRBIhJgCCZCAICdDtDR2kaaT5E24_WhDPF_vO7EjBlJ0VTMp-TyvbOWWiE0l5OOrwNj57dQf-Q_7nrfmYgGPvSYIVTGoyCWltQXtS9PkP_ABz7l8g | 
    
| CitedBy_id | crossref_primary_10_1063_5_0249139 crossref_primary_10_1007_s42405_024_00716_6 crossref_primary_10_2514_1_J064791  | 
    
| Cites_doi | 10.1016/j.cja.2020.02.019 10.2514/6.2005-1607 10.1016/j.compfluid.2005.07.010 10.2514/3.59768 10.1016/j.ast.2022.107596 10.1006/jcph.1997.5698 10.2514/6.2015-2100 10.1109/AERO.2016.7500618 10.2514/6.2011-2592 10.1146/annurev.fluid.37.061903.175743 10.2514/6.2009-2900 10.1177/0954410018760893 10.1016/j.ast.2015.02.014 10.2514/6.2016-3242 10.1016/S0045-7825(00)00208-5 10.1016/0045-7825(86)90056-3 10.1016/S0045-7825(00)00204-8 10.2514/6.1979-451 10.2514/6.2007-2528 10.1016/j.cja.2021.05.006 10.1016/j.jfluidstructs.2010.11.007 10.1016/j.jcp.2005.02.016 10.1016/j.cja.2017.08.016 10.1061/(ASCE)AS.1943-5525.0000606 10.1016/j.asr.2016.03.010 10.1177/0954410017705900 10.1016/j.cja.2014.02.021 10.1007/s11831-012-9070-4 10.1016/j.compfluid.2008.11.002 10.2322/tastj.11.99 10.2514/6.2005-1609 10.1016/j.paerosci.2021.100728 10.1109/AERO.2017.7943854 10.1177/1528083719844605 10.2514/6.2020-0313  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Copyright © Wanfang Data Co. Ltd. All Rights Reserved.  | 
    
| Copyright_xml | – notice: 2023 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.  | 
    
| DBID | 6I. AAFTH AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ ADTOC UNPAY  | 
    
| DOI | 10.1016/j.cja.2023.06.026 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EndPage | 100 | 
    
| ExternalDocumentID | 10.1016/j.cja.2023.06.026 hkxb_e202310006 10_1016_j_cja_2023_06_026 S1000936123002121  | 
    
| GroupedDBID | --K -SC -S~ 0R~ 0SF 1B1 1~5 29B 2B. 2C0 4.4 457 4G. 5GY 5VR 5VS 5XA 5XD 5XL 6I. 7-5 71M 92H 92I 92R 93N 9D9 9DC AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE ADMUD AEKER AENEX AEXQZ AFTJW AFUIB AGHFR AI. AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CAJEC CAJUS CCEZO CEKLB CHBEP CS3 CW9 DU5 EBS EJD EO9 EP2 EP3 FA0 FDB FNPLU GBLVA GROUPED_DOAJ HZ~ IPNFZ IXB J1W KQ8 M41 N9A NCXOZ O-L O9- OK1 OZT Q-- Q-2 RIG ROL SDF SDG SES SSZ TCJ TGT U1G U5M VH1 ~M3 AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION ~HD 4A8 PSX ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c372t-4f97dc1946b12825644cf973cbf753b3c7ce37e2e5a17803ee29c589b8e938623 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1000-9361 2588-9230  | 
    
| IngestDate | Tue Aug 19 20:07:32 EDT 2025 Thu May 29 03:54:26 EDT 2025 Sat Oct 25 05:32:20 EDT 2025 Thu Apr 24 22:57:14 EDT 2025 Fri Feb 23 02:37:20 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Keywords | Dynamic loads Parachute damage Fluid structure interaction Arbitrary Lagrange Euler method Material failure model  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c372t-4f97dc1946b12825644cf973cbf753b3c7ce37e2e5a17803ee29c589b8e938623 | 
    
| ORCID | 0000-0003-1553-2854 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.cja.2023.06.026 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_cja_2023_06_026 wanfang_journals_hkxb_e202310006 crossref_citationtrail_10_1016_j_cja_2023_06_026 crossref_primary_10_1016_j_cja_2023_06_026 elsevier_sciencedirect_doi_10_1016_j_cja_2023_06_026  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-10-01 | 
    
| PublicationDateYYYYMMDD | 2023-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Chinese journal of aeronautics | 
    
| PublicationTitle_FL | Chinese Journal of Aeronautics | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China Key Laboratory of Aircraft Environment Control and Life Support,MIIT,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China%College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China – name: Key Laboratory of Aircraft Environment Control and Life Support,MIIT,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China%College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China  | 
    
| References | Anbu, Narasimhavaradhan, Vaishnavi (b0035) 2020; 33 Stein, Benney, Kalro (b0160) 2000; 190 Witkowski A, Kandis M, Accorsi M. Mars scout phoenix canopy stress analyses. Reston: AIAA; 2007. Report No.: AIAA-2007-2528. Knacke (b0015) 1992 Yu, Cheng, Zhan (b0120) 2014; 27 Mullins, Reynolds (b0070) 1971; 8 Sathe, Benney, Charles (b0170) 2007; 36 Sengupta A, Steltzner A, Witkowski A, et al. Findings from the supersonic qualification program of the Mars science laboratory parachute system. Reston: AIAA; 2009. Report No.: AIAA-2020-0313. Xue, Nakamura (b0155) 2013; 11 Kalro, Tezduyar (b0165) 2000; 190 Tutt B, Charles R. Development of parachute simulation techniques in LS-DYNA. In Ibos, Lacroix, Chuzet (b0135) 1997; 91 Lingard J, Darley M. Simulation of parachute fluid structure interaction in supersonic flow. Reston: AIAA; 2005. Report No.: AIAA-2005-1607. Eckstrom CV. Flight test of a 40-foot-nominal-diameter disk-gap-band parachute deployed at a Mach number of 3.31 and a dynamic pressure of 10.6 pounds per square foot. Washington, D.C.: NASA; 1970. Report No.: TMX-1924. Li, Hesse, Ziegler (b0145) 2005; 208 Clark IG, Manning R, Adler M. Summary of the first high-altitude, supersonic flight dynamics test for the low-density supersonic decelerator project. Reston: AIAA; 2015. Report No.: AIAA-2015-2100. Xue, Jia, Rong (b0040) 2022; 35 O'Farrell C, Brandeau EJ, Tanner C, et al. Reconstructed parachute system performance during the second LDSD supersonic flight dynamics test. Reston: AIAA; 2016. Report No.: AIAA-2016-3242. Huang DZ, Avery P, Farhat C, et al. Modeling, simulation and validation of supersonic parachute inflation dynamics during Mars landing. Reston: AIAA; 2020. Report No.: AIAA-2020-0313. Calkins R. Parachute partial inversions. Reston: AIAA; 1979. Report No.: AIAA-1979-0451. Mittal, Iaccarino (b0100) 2005; 37 Xue, Koyama, Nakamura (b0105) 2015; 43 Clark I, Adler M. Summary of the second high-altitude, supersonic flight dynamics test for the LDSD project. In Canonsburg: Ansys; 2010.p.19-25. Etemadi, Mani, Kamali (b0085) 2020; 234 Boustani, Cadieux, Kenway (b0095) 2022; 126 Cao, Nie, Wu (b0090) 2019; 233 Winslow (b0185) 1997; 135 Gao, Zhang, Tang (b0005) 2016; 57 Kim, Peskin (b0115) 2009; 38 Clark I, Tanner C. A historical summary of the design, development, and analysis of the disk-gap-band parachute. In Tutt B, Taylor A, Berland JC, et al. The use of LS-DYNA to assess the performance of airborne systems north America candidate ATPS main parachutes. Reston: AIAA; 2005. Report No.: AIAA-2005-1609. Yang, Yu, Nie (b0125) 2021; 50 Takizawa, Tezduyar (b0175) 2012; 19 Xue, Nishiyama, Nakamura (b0110) 2016; 29 Liu, Herman, Jiun-Shyan (b0130) 1988; 68 Xue, Wen (b0020) 2021; 125 Piscataway: IEEE Press; 2016.p.1–24. Karagiozis, Kamakoti, Cirak (b0150) 2011; 27 Xue, Nishiyama, Nakamura (b0010) 2018; 31 Piscataway: IEEE Press; 2017.p.1-17. 10.1016/j.cja.2023.06.026_b0050 Gao (10.1016/j.cja.2023.06.026_b0005) 2016; 57 10.1016/j.cja.2023.06.026_b0030 Li (10.1016/j.cja.2023.06.026_b0145) 2005; 208 Boustani (10.1016/j.cja.2023.06.026_b0095) 2022; 126 Sathe (10.1016/j.cja.2023.06.026_b0170) 2007; 36 10.1016/j.cja.2023.06.026_b0190 Karagiozis (10.1016/j.cja.2023.06.026_b0150) 2011; 27 10.1016/j.cja.2023.06.026_b0075 Xue (10.1016/j.cja.2023.06.026_b0040) 2022; 35 10.1016/j.cja.2023.06.026_b0055 Mittal (10.1016/j.cja.2023.06.026_b0100) 2005; 37 Xue (10.1016/j.cja.2023.06.026_b0110) 2016; 29 Stein (10.1016/j.cja.2023.06.026_b0160) 2000; 190 Winslow (10.1016/j.cja.2023.06.026_b0185) 1997; 135 Xue (10.1016/j.cja.2023.06.026_b0105) 2015; 43 Anbu (10.1016/j.cja.2023.06.026_b0035) 2020; 33 Etemadi (10.1016/j.cja.2023.06.026_b0085) 2020; 234 Knacke. (10.1016/j.cja.2023.06.026_b0015) 1992 Cao (10.1016/j.cja.2023.06.026_b0090) 2019; 233 10.1016/j.cja.2023.06.026_b0060 Ibos (10.1016/j.cja.2023.06.026_b0135) 1997; 91 10.1016/j.cja.2023.06.026_b0140 Mullins (10.1016/j.cja.2023.06.026_b0070) 1971; 8 Kim (10.1016/j.cja.2023.06.026_b0115) 2009; 38 10.1016/j.cja.2023.06.026_b0080 Kalro (10.1016/j.cja.2023.06.026_b0165) 2000; 190 10.1016/j.cja.2023.06.026_b0180 10.1016/j.cja.2023.06.026_b0025 Takizawa (10.1016/j.cja.2023.06.026_b0175) 2012; 19 10.1016/j.cja.2023.06.026_b0065 10.1016/j.cja.2023.06.026_b0045 Xue (10.1016/j.cja.2023.06.026_b0010) 2018; 31 Liu (10.1016/j.cja.2023.06.026_b0130) 1988; 68 Xue (10.1016/j.cja.2023.06.026_b0155) 2013; 11 Xue (10.1016/j.cja.2023.06.026_b0020) 2021; 125 Yu (10.1016/j.cja.2023.06.026_b0120) 2014; 27 Yang (10.1016/j.cja.2023.06.026_b0125) 2021; 50  | 
    
| References_xml | – volume: 208 start-page: 289 year: 2005 end-page: 314 ident: b0145 article-title: An arbitrary Lagrangian Eulerian method for moving-boundary problems and its application to jumping over water publication-title: J Comput Phys – reference: Tutt B, Taylor A, Berland JC, et al. The use of LS-DYNA to assess the performance of airborne systems north America candidate ATPS main parachutes. Reston: AIAA; 2005. Report No.: AIAA-2005-1609. – volume: 43 start-page: 63 year: 2015 end-page: 70 ident: b0105 article-title: Effects of suspension line on flow field around a supersonic parachute publication-title: Aerosp Sci Technol – volume: 234 start-page: 1050 year: 2020 end-page: 1060 ident: b0085 article-title: Numerical and experimental investigation of damage effect on a hemispherical parachute performance publication-title: Proc Inst Mech Eng Part G J Aerosp Eng – volume: 37 start-page: 239 year: 2005 end-page: 261 ident: b0100 article-title: Immersed boundary methods publication-title: Annu Rev Fluid Mech – reference: Canonsburg: Ansys; 2010.p.19-25. – reference: Sengupta A, Steltzner A, Witkowski A, et al. Findings from the supersonic qualification program of the Mars science laboratory parachute system. Reston: AIAA; 2009. Report No.: AIAA-2020-0313. – volume: 135 start-page: 128 year: 1997 end-page: 138 ident: b0185 article-title: Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh publication-title: J Comput Phys – volume: 29 start-page: 601 year: 2016 end-page: 610 ident: b0110 article-title: Numerical investigation of the effect of capsule half-cone angle on a supersonic parachute system publication-title: J Aerosp Eng – volume: 35 start-page: 45 year: 2022 end-page: 54 ident: b0040 article-title: Effect of Martian atmosphere on aerodynamic performance of supersonic parachute two-body systems publication-title: Chin J Aeronaut – volume: 33 start-page: 1837 year: 2020 end-page: 1849 ident: b0035 article-title: Aerodynamics of ducted re-entry vehicles publication-title: Chin J Aeronaut – volume: 91 start-page: 313 year: 1997 end-page: 323 ident: b0135 article-title: SINPA, a full 3D fluid–structure software for parachute simulation publication-title: Am Inst Aeronaut Astronaut – reference: . Piscataway: IEEE Press; 2017.p.1-17. – volume: 31 start-page: 54 year: 2018 end-page: 64 ident: b0010 article-title: High-speed unsteady flows past two-body configurations publication-title: Chin J Aeronaut – reference: Tutt B, Charles R. Development of parachute simulation techniques in LS-DYNA. In: – volume: 8 start-page: 1068 year: 1971 end-page: 1073 ident: b0070 article-title: Stress analysis of parachutes using finite elements publication-title: J Spacecr Rockets – volume: 11 start-page: 99 year: 2013 end-page: 108 ident: b0155 article-title: Numerical simulation of a three-dimensional flexible parachute system under supersonic conditions publication-title: Trans Jpn Soc Aeronautical Space Sci Aerospace Technol Japan – volume: 36 start-page: 127 year: 2007 end-page: 135 ident: b0170 article-title: Fluid–structure interaction modeling of complex parachute designs with the space–time finite element techniques publication-title: Comput Fluids – start-page: 2 year: 1992 end-page: 18 ident: b0015 publication-title: Parachute recovery systems: Design manual – reference: Witkowski A, Kandis M, Accorsi M. Mars scout phoenix canopy stress analyses. Reston: AIAA; 2007. Report No.: AIAA-2007-2528. – volume: 190 start-page: 373 year: 2000 end-page: 386 ident: b0160 article-title: Parachute fluid–structure interactions: 3-D computation publication-title: Comput Methods Appl Mech Eng – reference: Clark IG, Manning R, Adler M. Summary of the first high-altitude, supersonic flight dynamics test for the low-density supersonic decelerator project. Reston: AIAA; 2015. Report No.: AIAA-2015-2100. – volume: 126 year: 2022 ident: b0095 article-title: Fluid-structure interaction simulations of the ASPIRE SR01 supersonic parachute flight test publication-title: Aerosp Sci Technol – volume: 57 start-page: 2259 year: 2016 end-page: 2272 ident: b0005 article-title: Numerical modelling of Mars supersonic disk-gap-band parachute inflation publication-title: Adv Space Res – volume: 125 year: 2021 ident: b0020 article-title: Review of unsteady aerodynamics of supersonic parachutes publication-title: Prog Aerosp Sci – reference: Lingard J, Darley M. Simulation of parachute fluid structure interaction in supersonic flow. Reston: AIAA; 2005. Report No.: AIAA-2005-1607. – volume: 27 start-page: 175 year: 2011 end-page: 192 ident: b0150 article-title: A computational study of supersonic disk-gap-band parachutes using Large-Eddy Simulation coupled to a structural membrane publication-title: J Fluids Struct – reference: Calkins R. Parachute partial inversions. Reston: AIAA; 1979. Report No.: AIAA-1979-0451. – volume: 19 start-page: 125 year: 2012 end-page: 169 ident: b0175 article-title: Computational methods for parachute fluid-structure interactions publication-title: Arch Computat Methods Eng – volume: 68 start-page: 259 year: 1988 end-page: 310 ident: b0130 article-title: Arbitrary Lagrangian-eulerian petrov-Galerkin finite elements for nonlinear continua publication-title: Comput Methods Appl Mech Eng – volume: 190 start-page: 321 year: 2000 end-page: 332 ident: b0165 article-title: A parallel 3D computational method for fluid-structure interactions in parachute systems publication-title: Comput Methods Appl Mech Eng – reference: . Piscataway: IEEE Press; 2016.p.1–24. – volume: 50 start-page: 812 year: 2021 end-page: 829 ident: b0125 article-title: Aerodynamic performance of the supersonic parachute with material permeability publication-title: J Ind Text – volume: 27 start-page: 272 year: 2014 end-page: 279 ident: b0120 article-title: Study of parachute inflation process using fluid-structure interaction method publication-title: Chin J Aeronaut – reference: Clark I, Tanner C. A historical summary of the design, development, and analysis of the disk-gap-band parachute. In: – reference: Clark I, Adler M. Summary of the second high-altitude, supersonic flight dynamics test for the LDSD project. In: – reference: Eckstrom CV. Flight test of a 40-foot-nominal-diameter disk-gap-band parachute deployed at a Mach number of 3.31 and a dynamic pressure of 10.6 pounds per square foot. Washington, D.C.: NASA; 1970. Report No.: TMX-1924. – volume: 38 start-page: 1080 year: 2009 end-page: 1090 ident: b0115 article-title: 3-D Parachute simulation by the immersed boundary method publication-title: Comput Fluids – reference: O'Farrell C, Brandeau EJ, Tanner C, et al. Reconstructed parachute system performance during the second LDSD supersonic flight dynamics test. Reston: AIAA; 2016. Report No.: AIAA-2016-3242. – reference: Huang DZ, Avery P, Farhat C, et al. Modeling, simulation and validation of supersonic parachute inflation dynamics during Mars landing. Reston: AIAA; 2020. Report No.: AIAA-2020-0313. – volume: 233 start-page: 736 year: 2019 end-page: 766 ident: b0090 article-title: Numerical simulation of parachute inflation: a methodological review publication-title: Proc Inst Mech Eng Part G J Aerosp Eng – volume: 33 start-page: 1837 issue: 7 year: 2020 ident: 10.1016/j.cja.2023.06.026_b0035 article-title: Aerodynamics of ducted re-entry vehicles publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2020.02.019 – ident: 10.1016/j.cja.2023.06.026_b0180 doi: 10.2514/6.2005-1607 – start-page: 2 year: 1992 ident: 10.1016/j.cja.2023.06.026_b0015 – volume: 36 start-page: 127 issue: 1 year: 2007 ident: 10.1016/j.cja.2023.06.026_b0170 article-title: Fluid–structure interaction modeling of complex parachute designs with the space–time finite element techniques publication-title: Comput Fluids doi: 10.1016/j.compfluid.2005.07.010 – volume: 8 start-page: 1068 issue: 10 year: 1971 ident: 10.1016/j.cja.2023.06.026_b0070 article-title: Stress analysis of parachutes using finite elements publication-title: J Spacecr Rockets doi: 10.2514/3.59768 – volume: 126: year: 2022 ident: 10.1016/j.cja.2023.06.026_b0095 article-title: Fluid-structure interaction simulations of the ASPIRE SR01 supersonic parachute flight test publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2022.107596 – volume: 135 start-page: 128 issue: 2 year: 1997 ident: 10.1016/j.cja.2023.06.026_b0185 article-title: Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh publication-title: J Comput Phys doi: 10.1006/jcph.1997.5698 – ident: 10.1016/j.cja.2023.06.026_b0050 doi: 10.2514/6.2015-2100 – ident: 10.1016/j.cja.2023.06.026_b0060 – ident: 10.1016/j.cja.2023.06.026_b0065 doi: 10.1109/AERO.2016.7500618 – volume: 91 start-page: 313 year: 1997 ident: 10.1016/j.cja.2023.06.026_b0135 article-title: SINPA, a full 3D fluid–structure software for parachute simulation publication-title: Am Inst Aeronaut Astronaut – ident: 10.1016/j.cja.2023.06.026_b0080 doi: 10.2514/6.2011-2592 – volume: 37 start-page: 239 year: 2005 ident: 10.1016/j.cja.2023.06.026_b0100 article-title: Immersed boundary methods publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev.fluid.37.061903.175743 – ident: 10.1016/j.cja.2023.06.026_b0030 doi: 10.2514/6.2009-2900 – volume: 234 start-page: 1050 issue: 5 year: 2020 ident: 10.1016/j.cja.2023.06.026_b0085 article-title: Numerical and experimental investigation of damage effect on a hemispherical parachute performance publication-title: Proc Inst Mech Eng Part G J Aerosp Eng doi: 10.1177/0954410018760893 – volume: 43 start-page: 63 year: 2015 ident: 10.1016/j.cja.2023.06.026_b0105 article-title: Effects of suspension line on flow field around a supersonic parachute publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2015.02.014 – ident: 10.1016/j.cja.2023.06.026_b0190 doi: 10.2514/6.2016-3242 – volume: 190 start-page: 373 issue: 3–4 year: 2000 ident: 10.1016/j.cja.2023.06.026_b0160 article-title: Parachute fluid–structure interactions: 3-D computation publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(00)00208-5 – volume: 68 start-page: 259 issue: 3 year: 1988 ident: 10.1016/j.cja.2023.06.026_b0130 article-title: Arbitrary Lagrangian-eulerian petrov-Galerkin finite elements for nonlinear continua publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(86)90056-3 – volume: 190 start-page: 321 issue: 3–4 year: 2000 ident: 10.1016/j.cja.2023.06.026_b0165 article-title: A parallel 3D computational method for fluid-structure interactions in parachute systems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(00)00204-8 – ident: 10.1016/j.cja.2023.06.026_b0055 doi: 10.2514/6.1979-451 – ident: 10.1016/j.cja.2023.06.026_b0075 doi: 10.2514/6.2007-2528 – volume: 35 start-page: 45 issue: 4 year: 2022 ident: 10.1016/j.cja.2023.06.026_b0040 article-title: Effect of Martian atmosphere on aerodynamic performance of supersonic parachute two-body systems publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2021.05.006 – volume: 27 start-page: 175 issue: 2 year: 2011 ident: 10.1016/j.cja.2023.06.026_b0150 article-title: A computational study of supersonic disk-gap-band parachutes using Large-Eddy Simulation coupled to a structural membrane publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2010.11.007 – volume: 208 start-page: 289 issue: 1 year: 2005 ident: 10.1016/j.cja.2023.06.026_b0145 article-title: An arbitrary Lagrangian Eulerian method for moving-boundary problems and its application to jumping over water publication-title: J Comput Phys doi: 10.1016/j.jcp.2005.02.016 – volume: 31 start-page: 54 issue: 1 year: 2018 ident: 10.1016/j.cja.2023.06.026_b0010 article-title: High-speed unsteady flows past two-body configurations publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2017.08.016 – volume: 29 start-page: 601 issue: 4 year: 2016 ident: 10.1016/j.cja.2023.06.026_b0110 article-title: Numerical investigation of the effect of capsule half-cone angle on a supersonic parachute system publication-title: J Aerosp Eng doi: 10.1061/(ASCE)AS.1943-5525.0000606 – volume: 57 start-page: 2259 issue: 11 year: 2016 ident: 10.1016/j.cja.2023.06.026_b0005 article-title: Numerical modelling of Mars supersonic disk-gap-band parachute inflation publication-title: Adv Space Res doi: 10.1016/j.asr.2016.03.010 – volume: 233 start-page: 736 issue: 2 year: 2019 ident: 10.1016/j.cja.2023.06.026_b0090 article-title: Numerical simulation of parachute inflation: A methodological review publication-title: Proc Inst Mech Eng Part G J Aerosp Eng doi: 10.1177/0954410017705900 – volume: 27 start-page: 272 issue: 2 year: 2014 ident: 10.1016/j.cja.2023.06.026_b0120 article-title: Study of parachute inflation process using fluid-structure interaction method publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2014.02.021 – volume: 19 start-page: 125 issue: 1 year: 2012 ident: 10.1016/j.cja.2023.06.026_b0175 article-title: Computational methods for parachute fluid-structure interactions publication-title: Arch Computat Methods Eng doi: 10.1007/s11831-012-9070-4 – volume: 38 start-page: 1080 issue: 6 year: 2009 ident: 10.1016/j.cja.2023.06.026_b0115 article-title: 3-D Parachute simulation by the immersed boundary method publication-title: Comput Fluids doi: 10.1016/j.compfluid.2008.11.002 – volume: 11 start-page: 99 year: 2013 ident: 10.1016/j.cja.2023.06.026_b0155 article-title: Numerical simulation of a three-dimensional flexible parachute system under supersonic conditions publication-title: Trans Jpn Soc Aeronautical Space Sci Aerospace Technol Japan doi: 10.2322/tastj.11.99 – ident: 10.1016/j.cja.2023.06.026_b0140 doi: 10.2514/6.2005-1609 – volume: 125 year: 2021 ident: 10.1016/j.cja.2023.06.026_b0020 article-title: Review of unsteady aerodynamics of supersonic parachutes publication-title: Prog Aerosp Sci doi: 10.1016/j.paerosci.2021.100728 – ident: 10.1016/j.cja.2023.06.026_b0045 doi: 10.1109/AERO.2017.7943854 – volume: 50 start-page: 812 issue: 6 year: 2021 ident: 10.1016/j.cja.2023.06.026_b0125 article-title: Aerodynamic performance of the supersonic parachute with material permeability publication-title: J Ind Text doi: 10.1177/1528083719844605 – ident: 10.1016/j.cja.2023.06.026_b0025 doi: 10.2514/6.2020-0313  | 
    
| SSID | ssj0039710 | 
    
| Score | 2.3486946 | 
    
| Snippet | The material damage of parachute may occur in parachutes at high speeds, and the growth of tearing may finally lead to failure of aerospace mission. In order... The material damage of parachute may occur in parachutes at high speeds,and the growth of tearing may finally lead to failure of aerospace mission.In order to...  | 
    
| SourceID | unpaywall wanfang crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 90 | 
    
| SubjectTerms | Arbitrary Lagrange Euler method Dynamic loads Fluid structure interaction Material failure model Parachute damage  | 
    
| SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iRT2IT3yTgyelbNs0zfao4qKCXlTYW0imiVaXuugW9d-bSdNlBRHx2JDQMDOdfNPMfEPIIaQ6R5q9yHIduwAF27zklkdGaOBcizJWWI18fZNf3GdXQz6cI2ddLQymVQbf3_p0763DSC9Iszeuqt5t4sNxpA_xPOUYArGsj-0bLoennTd2x21gJIjjCGd3N5s-xwuekHooZZ7CE_kVfj6bFpp6rD7f1WjkS3tqq-qHmVNosEKWA3ykJ-0OV8mcqdfI0gyp4Dq5HIyaqqQtMWzzaigyQry29Qv0xdK3ZuxRdgUUeb_hsZkYir9jqQOv3h6pVRVmq2-Q-8H53dlFFBomRMBEOokyW4gSkiLLdYI1qQ7rgBtioK2LSjQDAYYJkxquEtGPmTFpAbxf6L4pmAtt2CaZr19qs0VoacBBN2EcfFGZErbgiqsSCtAJcG3TbRJ3opIQ2MSxqcVIdmljT9JJV6J0JabOpfk2OZouGbdUGr9Nzjr5y2_2IJ2r_23Z8VRXf3kJDdqU4ct9k4_PH1oanIQmk-_8bx-7ZBGf2qy_PTLvVG72HXqZ6ANvnl-mGuv3 priority: 102 providerName: Elsevier  | 
    
| Title | Fluid structure interaction of supersonic parachute with material failure | 
    
| URI | https://dx.doi.org/10.1016/j.cja.2023.06.026 https://d.wanfangdata.com.cn/periodical/hkxb-e202310006 https://doi.org/10.1016/j.cja.2023.06.026  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 36 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library issn: 1000-9361 databaseCode: KQ8 dateStart: 20020201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssj0039710 providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library issn: 1000-9361 databaseCode: KQ8 dateStart: 20020101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssj0039710 providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1000-9361 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0039710 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal issn: 1000-9361 databaseCode: IXB dateStart: 20020201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0039710 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1000-9361 databaseCode: AKRWK dateStart: 20020201 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0039710 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagHYCBN-ItD0ygoNSO42YEREWRQAxUKpNlX2woVKGijXj8enxJWgECBGMi21HuLvLn3HffEbIHzMQosxc4YUJ_QME2L7ETgZUGhDAyDTVWI19cxmed6LwrupVYNNbCfMrfFzwsuEd5IMYLmU0WT5N6LDzsrpF65_Lq6KbIZoZhkPBCG5UJ73kPWiYZzO_W-GkPmsmzgX591v1-UcKTOZ3dfthtWgslT2tYiBQiyeThMB-ZQ3j7IuH4pxdZJPMV5qRHZZAskSmbLZO5D0qEK6Td6ue9lJZqsvmTpSgj8VQWPdBHR4f5oIDmPaAoFg53-chS_IdLPeItgpg63UOK-yrptE6vT86CqstCAFyyURC5RKbQSKLYNLCQ1QMk8Lc4GOePMoaDBMulZVbohmyG3FqWgGgmpmkT7s9DfI3UssfMrhOaWvB4T1qPeXSkpUuEFjqFBEwDhHFsg4RjuyuoJMixE0Zfjblm98pbSaGVFPLtWLxB9idTBqX-xm-Do7EzVQUgSmCgvDd-m3YwcfxfHkKr0FDV5z5Udw8vRlkchLEYb_5rwS0yi1clQ3Cb1Lyn7Y5HOiOzS6bb3ePdKtLfAfR99vc | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_UgPvFtDp6Usn2l2R5VXNbnRYW9hWSaaNelLrpF_fdm0lQURMRrOqFhMp35ppn5Qsg-xCpDmr3AMBXaBAWveckMCzRXwJjiRSixG_nqOuvfpecDNpgiJ20vDJZVet_f-HTnrf1Ix2uzMy7Lzk3k0nGkD3E85TYFmkmZRSfYxTc4bt2xjbeekiAMAxRvjzZdkRcMkXsoThyHJxIs_BycZutqLN9f5WjkensqI6v7L2Got0gWPH6kR80Sl8iUrpbJ_BdWwRVy1hvVZUEbZtj6WVOkhHhuGhjok6Ev9djB7BIoEn_DQz3RFP_HUotenUFSI0ssV18ld73T25N-4G9MCCDh8SRITc4LiPI0UxE2pVqwA3YoAWVsWqIS4KATrmPNZMS7YaJ1nAPr5qqr88TmNskama6eKr1OaKHBYjeuLX6RqeQmZ5LJAnJQETBl4g0StqoS4OnE8VaLkWjrxobCalegdgXWzsXZBjn4nDJuuDR-E05b_YtvBiGsr_9t2uHnXv3lJdTvpvCf7ot4eHxTQqMQmky2-b917JHZ_u3Vpbg8u77YInP4pCkB3CbTdvv1joUyE7XrTPUDnPfvHQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMDAG_GWByZQUGrHcTMiRFWQQAxUgsmyLzYUqrRqG_H49fiStCoIEIyJbEe5u8ifc999R8ghMBOjzF7ghAn9AQXbvMROBFYaEMLINNRYjXx1Hbfa0eWduKvEorEW5lP-vuBhwRPKAzFeyGyyeJbMxcLD7hqZa1_fnN4X2cwwDBJeaKMy4T3vQcskg_ndGj_tQfN51tdvL7rbLUp4Mqezh6ndprlc8rSGhUghkkyeT_KROYH3LxKOf3qRFbJUYU56WgbJKpmx2RpZnFIiXCcXzW7eSWmpJpsPLEUZiUFZ9EB7jg7zfgHNO0BRLBwe85Gl-A-XesRbBDF1uoMU9w3Sbp7fnrWCqstCAFyyURC5RKZQT6LY1LGQ1QMk8Lc4GOePMoaDBMulZVboumyE3FqWgGgkpmET7s9DfJPUsl5mtwhNLXi8J63HPDrS0iVCC51CAqYOwji2TcKx3RVUEuTYCaOrxlyzJ-WtpNBKCvl2LN4mR5Mp_VJ_47fB0diZqgIQJTBQ3hu_TTueOP4vD6FVaKjqcx-qx-dXoywOwliMd_614C5ZwKuSIbhHat7Tdt8jnZE5qGL8Ay_z9fM | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluid+structure+interaction+of+supersonic+parachute+with+material+failure&rft.jtitle=Chinese+journal+of+aeronautics&rft.au=NIE%2C+Shunchen&rft.au=YU%2C+Li&rft.au=LI%2C+Yanjun&rft.au=SUN%2C+Zhihong&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=1000-9361&rft_id=info:doi/10.1016%2Fj.cja.2023.06.026&rft.externalDocID=S1000936123002121 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhkxb-e%2Fhkxb-e.jpg |