Fluid structure interaction of supersonic parachute with material failure

The material damage of parachute may occur in parachutes at high speeds, and the growth of tearing may finally lead to failure of aerospace mission. In order to study the damage mechanism of parachute, a material failure model is proposed to simulate the failure of canopy fabric. The inflation proce...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of aeronautics Vol. 36; no. 10; pp. 90 - 100
Main Authors NIE, Shunchen, YU, Li, LI, Yanjun, SUN, Zhihong, QIU, Bowen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2023
College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
Key Laboratory of Aircraft Environment Control and Life Support,MIIT,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China%College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
Subjects
Online AccessGet full text
ISSN1000-9361
2588-9230
DOI10.1016/j.cja.2023.06.026

Cover

Abstract The material damage of parachute may occur in parachutes at high speeds, and the growth of tearing may finally lead to failure of aerospace mission. In order to study the damage mechanism of parachute, a material failure model is proposed to simulate the failure of canopy fabric. The inflation process of supersonic parachute is studied numerically based on Arbitrary Lagrange Euler (ALE) method. The ALE method with material failure can predict the transient parachute shape with damage propagation as well as the flow characteristics in the parachute inflation process, and the simulated dynamic opening load is consistent with the flight test. The damage propagation mechanism of parachute is then investigated, and the effect of parachute velocity on the damage process is discussed. The results show that the canopy tears apart by the fast flow from the initial damaged area and the damaged canopy shape leads to the asymmetric change of the flow structure. With the increase of Mach number, the canopy tearing speed increases, and the tearing directions become uncertain at high Mach numbers. The dynamic load when damage occurs increases with the Mach number, and is proportional to the dynamic pressure above the critical Mach number.
AbstractList The material damage of parachute may occur in parachutes at high speeds, and the growth of tearing may finally lead to failure of aerospace mission. In order to study the damage mechanism of parachute, a material failure model is proposed to simulate the failure of canopy fabric. The inflation process of supersonic parachute is studied numerically based on Arbitrary Lagrange Euler (ALE) method. The ALE method with material failure can predict the transient parachute shape with damage propagation as well as the flow characteristics in the parachute inflation process, and the simulated dynamic opening load is consistent with the flight test. The damage propagation mechanism of parachute is then investigated, and the effect of parachute velocity on the damage process is discussed. The results show that the canopy tears apart by the fast flow from the initial damaged area and the damaged canopy shape leads to the asymmetric change of the flow structure. With the increase of Mach number, the canopy tearing speed increases, and the tearing directions become uncertain at high Mach numbers. The dynamic load when damage occurs increases with the Mach number, and is proportional to the dynamic pressure above the critical Mach number.
The material damage of parachute may occur in parachutes at high speeds,and the growth of tearing may finally lead to failure of aerospace mission.In order to study the damage mechanism of parachute,a material failure model is proposed to simulate the failure of canopy fab-ric.The inflation process of supersonic parachute is studied numerically based on Arbitrary Lagrange Euler(ALE)method.The ALE method with material failure can predict the transient parachute shape with damage propagation as well as the flow characteristics in the parachute infla-tion process,and the simulated dynamic opening load is consistent with the flight test.The damage propagation mechanism of parachute is then investigated,and the effect of parachute velocity on the damage process is discussed.The results show that the canopy tears apart by the fast flow from the initial damaged area and the damaged canopy shape leads to the asymmetric change of the flow structure.With the increase of Mach number,the canopy tearing speed increases,and the tearing directions become uncertain at high Mach numbers.The dynamic load when damage occurs increases with the Mach number,and is proportional to the dynamic pressure above the critical Mach number.
Author NIE, Shunchen
LI, Yanjun
SUN, Zhihong
YU, Li
QIU, Bowen
AuthorAffiliation College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Key Laboratory of Aircraft Environment Control and Life Support,MIIT,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China%College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
AuthorAffiliation_xml – name: College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Key Laboratory of Aircraft Environment Control and Life Support,MIIT,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China%College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
Author_xml – sequence: 1
  givenname: Shunchen
  surname: NIE
  fullname: NIE, Shunchen
  organization: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
– sequence: 2
  givenname: Li
  orcidid: 0000-0003-1553-2854
  surname: YU
  fullname: YU, Li
  email: yuli_happy@nuaa.edu.cn
  organization: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
– sequence: 3
  givenname: Yanjun
  surname: LI
  fullname: LI, Yanjun
  organization: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
– sequence: 4
  givenname: Zhihong
  surname: SUN
  fullname: SUN, Zhihong
  organization: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
– sequence: 5
  givenname: Bowen
  surname: QIU
  fullname: QIU, Bowen
  organization: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
BookMark eNqNkLtOwzAUhj0UibbwAGzemBJ8yVVMqKJQCYkFZstxTqhD6kS2Q-nb4yhMDBXTkY7-71y-FVqY3gBCN5TElNDsro1VK2NGGI9JFhOWLdCSEkKikmf0Eq2cawnhZU7JEu223ahr7LwdlR8tYG08WKm87g3uG-zGAazrjVZ4kKG_Hz3go_Z7fJAhqGWHG6m7QF6hi0Z2Dq5_6xq9bx_fNs_Ry-vTbvPwEimeMx8lTZnXipZJVlFWsDRLEhVaXFVNnvKKq1wBz4FBKmleEA7ASpUWZVVAyYuM8TVi89zRDPJ0lF0nBqsP0p4EJWISIFoRBIhJgCCZCAICdDtDR2kaaT5E24_WhDPF_vO7EjBlJ0VTMp-TyvbOWWiE0l5OOrwNj57dQf-Q_7nrfmYgGPvSYIVTGoyCWltQXtS9PkP_ABz7l8g
CitedBy_id crossref_primary_10_1063_5_0249139
crossref_primary_10_1007_s42405_024_00716_6
crossref_primary_10_2514_1_J064791
Cites_doi 10.1016/j.cja.2020.02.019
10.2514/6.2005-1607
10.1016/j.compfluid.2005.07.010
10.2514/3.59768
10.1016/j.ast.2022.107596
10.1006/jcph.1997.5698
10.2514/6.2015-2100
10.1109/AERO.2016.7500618
10.2514/6.2011-2592
10.1146/annurev.fluid.37.061903.175743
10.2514/6.2009-2900
10.1177/0954410018760893
10.1016/j.ast.2015.02.014
10.2514/6.2016-3242
10.1016/S0045-7825(00)00208-5
10.1016/0045-7825(86)90056-3
10.1016/S0045-7825(00)00204-8
10.2514/6.1979-451
10.2514/6.2007-2528
10.1016/j.cja.2021.05.006
10.1016/j.jfluidstructs.2010.11.007
10.1016/j.jcp.2005.02.016
10.1016/j.cja.2017.08.016
10.1061/(ASCE)AS.1943-5525.0000606
10.1016/j.asr.2016.03.010
10.1177/0954410017705900
10.1016/j.cja.2014.02.021
10.1007/s11831-012-9070-4
10.1016/j.compfluid.2008.11.002
10.2322/tastj.11.99
10.2514/6.2005-1609
10.1016/j.paerosci.2021.100728
10.1109/AERO.2017.7943854
10.1177/1528083719844605
10.2514/6.2020-0313
ContentType Journal Article
Copyright 2023
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
ADTOC
UNPAY
DOI 10.1016/j.cja.2023.06.026
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 100
ExternalDocumentID 10.1016/j.cja.2023.06.026
hkxb_e202310006
10_1016_j_cja_2023_06_026
S1000936123002121
GroupedDBID --K
-SC
-S~
0R~
0SF
1B1
1~5
29B
2B.
2C0
4.4
457
4G.
5GY
5VR
5VS
5XA
5XD
5XL
6I.
7-5
71M
92H
92I
92R
93N
9D9
9DC
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADMUD
AEKER
AENEX
AEXQZ
AFTJW
AFUIB
AGHFR
AI.
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CAJEC
CAJUS
CCEZO
CEKLB
CHBEP
CS3
CW9
DU5
EBS
EJD
EO9
EP2
EP3
FA0
FDB
FNPLU
GBLVA
GROUPED_DOAJ
HZ~
IPNFZ
IXB
J1W
KQ8
M41
N9A
NCXOZ
O-L
O9-
OK1
OZT
Q--
Q-2
RIG
ROL
SDF
SDG
SES
SSZ
TCJ
TGT
U1G
U5M
VH1
~M3
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
4A8
PSX
ADTOC
UNPAY
ID FETCH-LOGICAL-c372t-4f97dc1946b12825644cf973cbf753b3c7ce37e2e5a17803ee29c589b8e938623
IEDL.DBID UNPAY
ISSN 1000-9361
2588-9230
IngestDate Tue Aug 19 20:07:32 EDT 2025
Thu May 29 03:54:26 EDT 2025
Sat Oct 25 05:32:20 EDT 2025
Thu Apr 24 22:57:14 EDT 2025
Fri Feb 23 02:37:20 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Dynamic loads
Parachute damage
Fluid structure interaction
Arbitrary Lagrange Euler method
Material failure model
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-4f97dc1946b12825644cf973cbf753b3c7ce37e2e5a17803ee29c589b8e938623
ORCID 0000-0003-1553-2854
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.cja.2023.06.026
PageCount 11
ParticipantIDs unpaywall_primary_10_1016_j_cja_2023_06_026
wanfang_journals_hkxb_e202310006
crossref_citationtrail_10_1016_j_cja_2023_06_026
crossref_primary_10_1016_j_cja_2023_06_026
elsevier_sciencedirect_doi_10_1016_j_cja_2023_06_026
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese journal of aeronautics
PublicationTitle_FL Chinese Journal of Aeronautics
PublicationYear 2023
Publisher Elsevier Ltd
College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
Key Laboratory of Aircraft Environment Control and Life Support,MIIT,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China%College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
Publisher_xml – name: Elsevier Ltd
– name: College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
– name: Key Laboratory of Aircraft Environment Control and Life Support,MIIT,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China%College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
References Anbu, Narasimhavaradhan, Vaishnavi (b0035) 2020; 33
Stein, Benney, Kalro (b0160) 2000; 190
Witkowski A, Kandis M, Accorsi M. Mars scout phoenix canopy stress analyses. Reston: AIAA; 2007. Report No.: AIAA-2007-2528.
Knacke (b0015) 1992
Yu, Cheng, Zhan (b0120) 2014; 27
Mullins, Reynolds (b0070) 1971; 8
Sathe, Benney, Charles (b0170) 2007; 36
Sengupta A, Steltzner A, Witkowski A, et al. Findings from the supersonic qualification program of the Mars science laboratory parachute system. Reston: AIAA; 2009. Report No.: AIAA-2020-0313.
Xue, Nakamura (b0155) 2013; 11
Kalro, Tezduyar (b0165) 2000; 190
Tutt B, Charles R. Development of parachute simulation techniques in LS-DYNA. In
Ibos, Lacroix, Chuzet (b0135) 1997; 91
Lingard J, Darley M. Simulation of parachute fluid structure interaction in supersonic flow. Reston: AIAA; 2005. Report No.: AIAA-2005-1607.
Eckstrom CV. Flight test of a 40-foot-nominal-diameter disk-gap-band parachute deployed at a Mach number of 3.31 and a dynamic pressure of 10.6 pounds per square foot. Washington, D.C.: NASA; 1970. Report No.: TMX-1924.
Li, Hesse, Ziegler (b0145) 2005; 208
Clark IG, Manning R, Adler M. Summary of the first high-altitude, supersonic flight dynamics test for the low-density supersonic decelerator project. Reston: AIAA; 2015. Report No.: AIAA-2015-2100.
Xue, Jia, Rong (b0040) 2022; 35
O'Farrell C, Brandeau EJ, Tanner C, et al. Reconstructed parachute system performance during the second LDSD supersonic flight dynamics test. Reston: AIAA; 2016. Report No.: AIAA-2016-3242.
Huang DZ, Avery P, Farhat C, et al. Modeling, simulation and validation of supersonic parachute inflation dynamics during Mars landing. Reston: AIAA; 2020. Report No.: AIAA-2020-0313.
Calkins R. Parachute partial inversions. Reston: AIAA; 1979. Report No.: AIAA-1979-0451.
Mittal, Iaccarino (b0100) 2005; 37
Xue, Koyama, Nakamura (b0105) 2015; 43
Clark I, Adler M. Summary of the second high-altitude, supersonic flight dynamics test for the LDSD project. In
Canonsburg: Ansys; 2010.p.19-25.
Etemadi, Mani, Kamali (b0085) 2020; 234
Boustani, Cadieux, Kenway (b0095) 2022; 126
Cao, Nie, Wu (b0090) 2019; 233
Winslow (b0185) 1997; 135
Gao, Zhang, Tang (b0005) 2016; 57
Kim, Peskin (b0115) 2009; 38
Clark I, Tanner C. A historical summary of the design, development, and analysis of the disk-gap-band parachute. In
Tutt B, Taylor A, Berland JC, et al. The use of LS-DYNA to assess the performance of airborne systems north America candidate ATPS main parachutes. Reston: AIAA; 2005. Report No.: AIAA-2005-1609.
Yang, Yu, Nie (b0125) 2021; 50
Takizawa, Tezduyar (b0175) 2012; 19
Xue, Nishiyama, Nakamura (b0110) 2016; 29
Liu, Herman, Jiun-Shyan (b0130) 1988; 68
Xue, Wen (b0020) 2021; 125
Piscataway: IEEE Press; 2016.p.1–24.
Karagiozis, Kamakoti, Cirak (b0150) 2011; 27
Xue, Nishiyama, Nakamura (b0010) 2018; 31
Piscataway: IEEE Press; 2017.p.1-17.
10.1016/j.cja.2023.06.026_b0050
Gao (10.1016/j.cja.2023.06.026_b0005) 2016; 57
10.1016/j.cja.2023.06.026_b0030
Li (10.1016/j.cja.2023.06.026_b0145) 2005; 208
Boustani (10.1016/j.cja.2023.06.026_b0095) 2022; 126
Sathe (10.1016/j.cja.2023.06.026_b0170) 2007; 36
10.1016/j.cja.2023.06.026_b0190
Karagiozis (10.1016/j.cja.2023.06.026_b0150) 2011; 27
10.1016/j.cja.2023.06.026_b0075
Xue (10.1016/j.cja.2023.06.026_b0040) 2022; 35
10.1016/j.cja.2023.06.026_b0055
Mittal (10.1016/j.cja.2023.06.026_b0100) 2005; 37
Xue (10.1016/j.cja.2023.06.026_b0110) 2016; 29
Stein (10.1016/j.cja.2023.06.026_b0160) 2000; 190
Winslow (10.1016/j.cja.2023.06.026_b0185) 1997; 135
Xue (10.1016/j.cja.2023.06.026_b0105) 2015; 43
Anbu (10.1016/j.cja.2023.06.026_b0035) 2020; 33
Etemadi (10.1016/j.cja.2023.06.026_b0085) 2020; 234
Knacke. (10.1016/j.cja.2023.06.026_b0015) 1992
Cao (10.1016/j.cja.2023.06.026_b0090) 2019; 233
10.1016/j.cja.2023.06.026_b0060
Ibos (10.1016/j.cja.2023.06.026_b0135) 1997; 91
10.1016/j.cja.2023.06.026_b0140
Mullins (10.1016/j.cja.2023.06.026_b0070) 1971; 8
Kim (10.1016/j.cja.2023.06.026_b0115) 2009; 38
10.1016/j.cja.2023.06.026_b0080
Kalro (10.1016/j.cja.2023.06.026_b0165) 2000; 190
10.1016/j.cja.2023.06.026_b0180
10.1016/j.cja.2023.06.026_b0025
Takizawa (10.1016/j.cja.2023.06.026_b0175) 2012; 19
10.1016/j.cja.2023.06.026_b0065
10.1016/j.cja.2023.06.026_b0045
Xue (10.1016/j.cja.2023.06.026_b0010) 2018; 31
Liu (10.1016/j.cja.2023.06.026_b0130) 1988; 68
Xue (10.1016/j.cja.2023.06.026_b0155) 2013; 11
Xue (10.1016/j.cja.2023.06.026_b0020) 2021; 125
Yu (10.1016/j.cja.2023.06.026_b0120) 2014; 27
Yang (10.1016/j.cja.2023.06.026_b0125) 2021; 50
References_xml – volume: 208
  start-page: 289
  year: 2005
  end-page: 314
  ident: b0145
  article-title: An arbitrary Lagrangian Eulerian method for moving-boundary problems and its application to jumping over water
  publication-title: J Comput Phys
– reference: Tutt B, Taylor A, Berland JC, et al. The use of LS-DYNA to assess the performance of airborne systems north America candidate ATPS main parachutes. Reston: AIAA; 2005. Report No.: AIAA-2005-1609.
– volume: 43
  start-page: 63
  year: 2015
  end-page: 70
  ident: b0105
  article-title: Effects of suspension line on flow field around a supersonic parachute
  publication-title: Aerosp Sci Technol
– volume: 234
  start-page: 1050
  year: 2020
  end-page: 1060
  ident: b0085
  article-title: Numerical and experimental investigation of damage effect on a hemispherical parachute performance
  publication-title: Proc Inst Mech Eng Part G J Aerosp Eng
– volume: 37
  start-page: 239
  year: 2005
  end-page: 261
  ident: b0100
  article-title: Immersed boundary methods
  publication-title: Annu Rev Fluid Mech
– reference: Canonsburg: Ansys; 2010.p.19-25.
– reference: Sengupta A, Steltzner A, Witkowski A, et al. Findings from the supersonic qualification program of the Mars science laboratory parachute system. Reston: AIAA; 2009. Report No.: AIAA-2020-0313.
– volume: 135
  start-page: 128
  year: 1997
  end-page: 138
  ident: b0185
  article-title: Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh
  publication-title: J Comput Phys
– volume: 29
  start-page: 601
  year: 2016
  end-page: 610
  ident: b0110
  article-title: Numerical investigation of the effect of capsule half-cone angle on a supersonic parachute system
  publication-title: J Aerosp Eng
– volume: 35
  start-page: 45
  year: 2022
  end-page: 54
  ident: b0040
  article-title: Effect of Martian atmosphere on aerodynamic performance of supersonic parachute two-body systems
  publication-title: Chin J Aeronaut
– volume: 33
  start-page: 1837
  year: 2020
  end-page: 1849
  ident: b0035
  article-title: Aerodynamics of ducted re-entry vehicles
  publication-title: Chin J Aeronaut
– volume: 91
  start-page: 313
  year: 1997
  end-page: 323
  ident: b0135
  article-title: SINPA, a full 3D fluid–structure software for parachute simulation
  publication-title: Am Inst Aeronaut Astronaut
– reference: . Piscataway: IEEE Press; 2017.p.1-17.
– volume: 31
  start-page: 54
  year: 2018
  end-page: 64
  ident: b0010
  article-title: High-speed unsteady flows past two-body configurations
  publication-title: Chin J Aeronaut
– reference: Tutt B, Charles R. Development of parachute simulation techniques in LS-DYNA. In:
– volume: 8
  start-page: 1068
  year: 1971
  end-page: 1073
  ident: b0070
  article-title: Stress analysis of parachutes using finite elements
  publication-title: J Spacecr Rockets
– volume: 11
  start-page: 99
  year: 2013
  end-page: 108
  ident: b0155
  article-title: Numerical simulation of a three-dimensional flexible parachute system under supersonic conditions
  publication-title: Trans Jpn Soc Aeronautical Space Sci Aerospace Technol Japan
– volume: 36
  start-page: 127
  year: 2007
  end-page: 135
  ident: b0170
  article-title: Fluid–structure interaction modeling of complex parachute designs with the space–time finite element techniques
  publication-title: Comput Fluids
– start-page: 2
  year: 1992
  end-page: 18
  ident: b0015
  publication-title: Parachute recovery systems: Design manual
– reference: Witkowski A, Kandis M, Accorsi M. Mars scout phoenix canopy stress analyses. Reston: AIAA; 2007. Report No.: AIAA-2007-2528.
– volume: 190
  start-page: 373
  year: 2000
  end-page: 386
  ident: b0160
  article-title: Parachute fluid–structure interactions: 3-D computation
  publication-title: Comput Methods Appl Mech Eng
– reference: Clark IG, Manning R, Adler M. Summary of the first high-altitude, supersonic flight dynamics test for the low-density supersonic decelerator project. Reston: AIAA; 2015. Report No.: AIAA-2015-2100.
– volume: 126
  year: 2022
  ident: b0095
  article-title: Fluid-structure interaction simulations of the ASPIRE SR01 supersonic parachute flight test
  publication-title: Aerosp Sci Technol
– volume: 57
  start-page: 2259
  year: 2016
  end-page: 2272
  ident: b0005
  article-title: Numerical modelling of Mars supersonic disk-gap-band parachute inflation
  publication-title: Adv Space Res
– volume: 125
  year: 2021
  ident: b0020
  article-title: Review of unsteady aerodynamics of supersonic parachutes
  publication-title: Prog Aerosp Sci
– reference: Lingard J, Darley M. Simulation of parachute fluid structure interaction in supersonic flow. Reston: AIAA; 2005. Report No.: AIAA-2005-1607.
– volume: 27
  start-page: 175
  year: 2011
  end-page: 192
  ident: b0150
  article-title: A computational study of supersonic disk-gap-band parachutes using Large-Eddy Simulation coupled to a structural membrane
  publication-title: J Fluids Struct
– reference: Calkins R. Parachute partial inversions. Reston: AIAA; 1979. Report No.: AIAA-1979-0451.
– volume: 19
  start-page: 125
  year: 2012
  end-page: 169
  ident: b0175
  article-title: Computational methods for parachute fluid-structure interactions
  publication-title: Arch Computat Methods Eng
– volume: 68
  start-page: 259
  year: 1988
  end-page: 310
  ident: b0130
  article-title: Arbitrary Lagrangian-eulerian petrov-Galerkin finite elements for nonlinear continua
  publication-title: Comput Methods Appl Mech Eng
– volume: 190
  start-page: 321
  year: 2000
  end-page: 332
  ident: b0165
  article-title: A parallel 3D computational method for fluid-structure interactions in parachute systems
  publication-title: Comput Methods Appl Mech Eng
– reference: . Piscataway: IEEE Press; 2016.p.1–24.
– volume: 50
  start-page: 812
  year: 2021
  end-page: 829
  ident: b0125
  article-title: Aerodynamic performance of the supersonic parachute with material permeability
  publication-title: J Ind Text
– volume: 27
  start-page: 272
  year: 2014
  end-page: 279
  ident: b0120
  article-title: Study of parachute inflation process using fluid-structure interaction method
  publication-title: Chin J Aeronaut
– reference: Clark I, Tanner C. A historical summary of the design, development, and analysis of the disk-gap-band parachute. In:
– reference: Clark I, Adler M. Summary of the second high-altitude, supersonic flight dynamics test for the LDSD project. In:
– reference: Eckstrom CV. Flight test of a 40-foot-nominal-diameter disk-gap-band parachute deployed at a Mach number of 3.31 and a dynamic pressure of 10.6 pounds per square foot. Washington, D.C.: NASA; 1970. Report No.: TMX-1924.
– volume: 38
  start-page: 1080
  year: 2009
  end-page: 1090
  ident: b0115
  article-title: 3-D Parachute simulation by the immersed boundary method
  publication-title: Comput Fluids
– reference: O'Farrell C, Brandeau EJ, Tanner C, et al. Reconstructed parachute system performance during the second LDSD supersonic flight dynamics test. Reston: AIAA; 2016. Report No.: AIAA-2016-3242.
– reference: Huang DZ, Avery P, Farhat C, et al. Modeling, simulation and validation of supersonic parachute inflation dynamics during Mars landing. Reston: AIAA; 2020. Report No.: AIAA-2020-0313.
– volume: 233
  start-page: 736
  year: 2019
  end-page: 766
  ident: b0090
  article-title: Numerical simulation of parachute inflation: a methodological review
  publication-title: Proc Inst Mech Eng Part G J Aerosp Eng
– volume: 33
  start-page: 1837
  issue: 7
  year: 2020
  ident: 10.1016/j.cja.2023.06.026_b0035
  article-title: Aerodynamics of ducted re-entry vehicles
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2020.02.019
– ident: 10.1016/j.cja.2023.06.026_b0180
  doi: 10.2514/6.2005-1607
– start-page: 2
  year: 1992
  ident: 10.1016/j.cja.2023.06.026_b0015
– volume: 36
  start-page: 127
  issue: 1
  year: 2007
  ident: 10.1016/j.cja.2023.06.026_b0170
  article-title: Fluid–structure interaction modeling of complex parachute designs with the space–time finite element techniques
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2005.07.010
– volume: 8
  start-page: 1068
  issue: 10
  year: 1971
  ident: 10.1016/j.cja.2023.06.026_b0070
  article-title: Stress analysis of parachutes using finite elements
  publication-title: J Spacecr Rockets
  doi: 10.2514/3.59768
– volume: 126:
  year: 2022
  ident: 10.1016/j.cja.2023.06.026_b0095
  article-title: Fluid-structure interaction simulations of the ASPIRE SR01 supersonic parachute flight test
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2022.107596
– volume: 135
  start-page: 128
  issue: 2
  year: 1997
  ident: 10.1016/j.cja.2023.06.026_b0185
  article-title: Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1997.5698
– ident: 10.1016/j.cja.2023.06.026_b0050
  doi: 10.2514/6.2015-2100
– ident: 10.1016/j.cja.2023.06.026_b0060
– ident: 10.1016/j.cja.2023.06.026_b0065
  doi: 10.1109/AERO.2016.7500618
– volume: 91
  start-page: 313
  year: 1997
  ident: 10.1016/j.cja.2023.06.026_b0135
  article-title: SINPA, a full 3D fluid–structure software for parachute simulation
  publication-title: Am Inst Aeronaut Astronaut
– ident: 10.1016/j.cja.2023.06.026_b0080
  doi: 10.2514/6.2011-2592
– volume: 37
  start-page: 239
  year: 2005
  ident: 10.1016/j.cja.2023.06.026_b0100
  article-title: Immersed boundary methods
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fluid.37.061903.175743
– ident: 10.1016/j.cja.2023.06.026_b0030
  doi: 10.2514/6.2009-2900
– volume: 234
  start-page: 1050
  issue: 5
  year: 2020
  ident: 10.1016/j.cja.2023.06.026_b0085
  article-title: Numerical and experimental investigation of damage effect on a hemispherical parachute performance
  publication-title: Proc Inst Mech Eng Part G J Aerosp Eng
  doi: 10.1177/0954410018760893
– volume: 43
  start-page: 63
  year: 2015
  ident: 10.1016/j.cja.2023.06.026_b0105
  article-title: Effects of suspension line on flow field around a supersonic parachute
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2015.02.014
– ident: 10.1016/j.cja.2023.06.026_b0190
  doi: 10.2514/6.2016-3242
– volume: 190
  start-page: 373
  issue: 3–4
  year: 2000
  ident: 10.1016/j.cja.2023.06.026_b0160
  article-title: Parachute fluid–structure interactions: 3-D computation
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(00)00208-5
– volume: 68
  start-page: 259
  issue: 3
  year: 1988
  ident: 10.1016/j.cja.2023.06.026_b0130
  article-title: Arbitrary Lagrangian-eulerian petrov-Galerkin finite elements for nonlinear continua
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(86)90056-3
– volume: 190
  start-page: 321
  issue: 3–4
  year: 2000
  ident: 10.1016/j.cja.2023.06.026_b0165
  article-title: A parallel 3D computational method for fluid-structure interactions in parachute systems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(00)00204-8
– ident: 10.1016/j.cja.2023.06.026_b0055
  doi: 10.2514/6.1979-451
– ident: 10.1016/j.cja.2023.06.026_b0075
  doi: 10.2514/6.2007-2528
– volume: 35
  start-page: 45
  issue: 4
  year: 2022
  ident: 10.1016/j.cja.2023.06.026_b0040
  article-title: Effect of Martian atmosphere on aerodynamic performance of supersonic parachute two-body systems
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2021.05.006
– volume: 27
  start-page: 175
  issue: 2
  year: 2011
  ident: 10.1016/j.cja.2023.06.026_b0150
  article-title: A computational study of supersonic disk-gap-band parachutes using Large-Eddy Simulation coupled to a structural membrane
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2010.11.007
– volume: 208
  start-page: 289
  issue: 1
  year: 2005
  ident: 10.1016/j.cja.2023.06.026_b0145
  article-title: An arbitrary Lagrangian Eulerian method for moving-boundary problems and its application to jumping over water
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2005.02.016
– volume: 31
  start-page: 54
  issue: 1
  year: 2018
  ident: 10.1016/j.cja.2023.06.026_b0010
  article-title: High-speed unsteady flows past two-body configurations
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2017.08.016
– volume: 29
  start-page: 601
  issue: 4
  year: 2016
  ident: 10.1016/j.cja.2023.06.026_b0110
  article-title: Numerical investigation of the effect of capsule half-cone angle on a supersonic parachute system
  publication-title: J Aerosp Eng
  doi: 10.1061/(ASCE)AS.1943-5525.0000606
– volume: 57
  start-page: 2259
  issue: 11
  year: 2016
  ident: 10.1016/j.cja.2023.06.026_b0005
  article-title: Numerical modelling of Mars supersonic disk-gap-band parachute inflation
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2016.03.010
– volume: 233
  start-page: 736
  issue: 2
  year: 2019
  ident: 10.1016/j.cja.2023.06.026_b0090
  article-title: Numerical simulation of parachute inflation: A methodological review
  publication-title: Proc Inst Mech Eng Part G J Aerosp Eng
  doi: 10.1177/0954410017705900
– volume: 27
  start-page: 272
  issue: 2
  year: 2014
  ident: 10.1016/j.cja.2023.06.026_b0120
  article-title: Study of parachute inflation process using fluid-structure interaction method
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2014.02.021
– volume: 19
  start-page: 125
  issue: 1
  year: 2012
  ident: 10.1016/j.cja.2023.06.026_b0175
  article-title: Computational methods for parachute fluid-structure interactions
  publication-title: Arch Computat Methods Eng
  doi: 10.1007/s11831-012-9070-4
– volume: 38
  start-page: 1080
  issue: 6
  year: 2009
  ident: 10.1016/j.cja.2023.06.026_b0115
  article-title: 3-D Parachute simulation by the immersed boundary method
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2008.11.002
– volume: 11
  start-page: 99
  year: 2013
  ident: 10.1016/j.cja.2023.06.026_b0155
  article-title: Numerical simulation of a three-dimensional flexible parachute system under supersonic conditions
  publication-title: Trans Jpn Soc Aeronautical Space Sci Aerospace Technol Japan
  doi: 10.2322/tastj.11.99
– ident: 10.1016/j.cja.2023.06.026_b0140
  doi: 10.2514/6.2005-1609
– volume: 125
  year: 2021
  ident: 10.1016/j.cja.2023.06.026_b0020
  article-title: Review of unsteady aerodynamics of supersonic parachutes
  publication-title: Prog Aerosp Sci
  doi: 10.1016/j.paerosci.2021.100728
– ident: 10.1016/j.cja.2023.06.026_b0045
  doi: 10.1109/AERO.2017.7943854
– volume: 50
  start-page: 812
  issue: 6
  year: 2021
  ident: 10.1016/j.cja.2023.06.026_b0125
  article-title: Aerodynamic performance of the supersonic parachute with material permeability
  publication-title: J Ind Text
  doi: 10.1177/1528083719844605
– ident: 10.1016/j.cja.2023.06.026_b0025
  doi: 10.2514/6.2020-0313
SSID ssj0039710
Score 2.3486946
Snippet The material damage of parachute may occur in parachutes at high speeds, and the growth of tearing may finally lead to failure of aerospace mission. In order...
The material damage of parachute may occur in parachutes at high speeds,and the growth of tearing may finally lead to failure of aerospace mission.In order to...
SourceID unpaywall
wanfang
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 90
SubjectTerms Arbitrary Lagrange Euler method
Dynamic loads
Fluid structure interaction
Material failure model
Parachute damage
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iRT2IT3yTgyelbNs0zfao4qKCXlTYW0imiVaXuugW9d-bSdNlBRHx2JDQMDOdfNPMfEPIIaQ6R5q9yHIduwAF27zklkdGaOBcizJWWI18fZNf3GdXQz6cI2ddLQymVQbf3_p0763DSC9Iszeuqt5t4sNxpA_xPOUYArGsj-0bLoennTd2x21gJIjjCGd3N5s-xwuekHooZZ7CE_kVfj6bFpp6rD7f1WjkS3tqq-qHmVNosEKWA3ykJ-0OV8mcqdfI0gyp4Dq5HIyaqqQtMWzzaigyQry29Qv0xdK3ZuxRdgUUeb_hsZkYir9jqQOv3h6pVRVmq2-Q-8H53dlFFBomRMBEOokyW4gSkiLLdYI1qQ7rgBtioK2LSjQDAYYJkxquEtGPmTFpAbxf6L4pmAtt2CaZr19qs0VoacBBN2EcfFGZErbgiqsSCtAJcG3TbRJ3opIQ2MSxqcVIdmljT9JJV6J0JabOpfk2OZouGbdUGr9Nzjr5y2_2IJ2r_23Z8VRXf3kJDdqU4ct9k4_PH1oanIQmk-_8bx-7ZBGf2qy_PTLvVG72HXqZ6ANvnl-mGuv3
  priority: 102
  providerName: Elsevier
Title Fluid structure interaction of supersonic parachute with material failure
URI https://dx.doi.org/10.1016/j.cja.2023.06.026
https://d.wanfangdata.com.cn/periodical/hkxb-e202310006
https://doi.org/10.1016/j.cja.2023.06.026
UnpaywallVersion publishedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1000-9361
  databaseCode: KQ8
  dateStart: 20020201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0039710
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1000-9361
  databaseCode: KQ8
  dateStart: 20020101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0039710
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1000-9361
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0039710
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  issn: 1000-9361
  databaseCode: IXB
  dateStart: 20020201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0039710
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1000-9361
  databaseCode: AKRWK
  dateStart: 20020201
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0039710
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagHYCBN-ItD0ygoNSO42YEREWRQAxUKpNlX2woVKGijXj8enxJWgECBGMi21HuLvLn3HffEbIHzMQosxc4YUJ_QME2L7ETgZUGhDAyDTVWI19cxmed6LwrupVYNNbCfMrfFzwsuEd5IMYLmU0WT5N6LDzsrpF65_Lq6KbIZoZhkPBCG5UJ73kPWiYZzO_W-GkPmsmzgX591v1-UcKTOZ3dfthtWgslT2tYiBQiyeThMB-ZQ3j7IuH4pxdZJPMV5qRHZZAskSmbLZO5D0qEK6Td6ue9lJZqsvmTpSgj8VQWPdBHR4f5oIDmPaAoFg53-chS_IdLPeItgpg63UOK-yrptE6vT86CqstCAFyyURC5RKbQSKLYNLCQ1QMk8Lc4GOePMoaDBMulZVbohmyG3FqWgGgmpmkT7s9DfI3UssfMrhOaWvB4T1qPeXSkpUuEFjqFBEwDhHFsg4RjuyuoJMixE0Zfjblm98pbSaGVFPLtWLxB9idTBqX-xm-Do7EzVQUgSmCgvDd-m3YwcfxfHkKr0FDV5z5Udw8vRlkchLEYb_5rwS0yi1clQ3Cb1Lyn7Y5HOiOzS6bb3ePdKtLfAfR99vc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_UgPvFtDp6Usn2l2R5VXNbnRYW9hWSaaNelLrpF_fdm0lQURMRrOqFhMp35ppn5Qsg-xCpDmr3AMBXaBAWveckMCzRXwJjiRSixG_nqOuvfpecDNpgiJ20vDJZVet_f-HTnrf1Ix2uzMy7Lzk3k0nGkD3E85TYFmkmZRSfYxTc4bt2xjbeekiAMAxRvjzZdkRcMkXsoThyHJxIs_BycZutqLN9f5WjkensqI6v7L2Got0gWPH6kR80Sl8iUrpbJ_BdWwRVy1hvVZUEbZtj6WVOkhHhuGhjok6Ev9djB7BIoEn_DQz3RFP_HUotenUFSI0ssV18ld73T25N-4G9MCCDh8SRITc4LiPI0UxE2pVqwA3YoAWVsWqIS4KATrmPNZMS7YaJ1nAPr5qqr88TmNskama6eKr1OaKHBYjeuLX6RqeQmZ5LJAnJQETBl4g0StqoS4OnE8VaLkWjrxobCalegdgXWzsXZBjn4nDJuuDR-E05b_YtvBiGsr_9t2uHnXv3lJdTvpvCf7ot4eHxTQqMQmky2-b917JHZ_u3Vpbg8u77YInP4pCkB3CbTdvv1joUyE7XrTPUDnPfvHQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMDAG_GWByZQUGrHcTMiRFWQQAxUgsmyLzYUqrRqG_H49fiStCoIEIyJbEe5u8ifc999R8ghMBOjzF7ghAn9AQXbvMROBFYaEMLINNRYjXx1Hbfa0eWduKvEorEW5lP-vuBhwRPKAzFeyGyyeJbMxcLD7hqZa1_fnN4X2cwwDBJeaKMy4T3vQcskg_ndGj_tQfN51tdvL7rbLUp4Mqezh6ndprlc8rSGhUghkkyeT_KROYH3LxKOf3qRFbJUYU56WgbJKpmx2RpZnFIiXCcXzW7eSWmpJpsPLEUZiUFZ9EB7jg7zfgHNO0BRLBwe85Gl-A-XesRbBDF1uoMU9w3Sbp7fnrWCqstCAFyyURC5RKZQT6LY1LGQ1QMk8Lc4GOePMoaDBMulZVboumyE3FqWgGgkpmET7s9DfJPUsl5mtwhNLXi8J63HPDrS0iVCC51CAqYOwji2TcKx3RVUEuTYCaOrxlyzJ-WtpNBKCvl2LN4mR5Mp_VJ_47fB0diZqgIQJTBQ3hu_TTueOP4vD6FVaKjqcx-qx-dXoywOwliMd_614C5ZwKuSIbhHat7Tdt8jnZE5qGL8Ay_z9fM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluid+structure+interaction+of+supersonic+parachute+with+material+failure&rft.jtitle=Chinese+journal+of+aeronautics&rft.au=NIE%2C+Shunchen&rft.au=YU%2C+Li&rft.au=LI%2C+Yanjun&rft.au=SUN%2C+Zhihong&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=1000-9361&rft_id=info:doi/10.1016%2Fj.cja.2023.06.026&rft.externalDocID=S1000936123002121
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhkxb-e%2Fhkxb-e.jpg