Capacitor placement of distribution systems using particle swarm optimization approaches
•Capacitor placement plays an important role in distribution system planning and operation.•The capacitor placement problem is a combinatorial optimization problem.•This paper presents a new capacitor placement method which employs particle swarm optimization. Capacitor placement plays an important...
Saved in:
| Published in | International journal of electrical power & energy systems Vol. 64; pp. 839 - 851 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.01.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0142-0615 1879-3517 |
| DOI | 10.1016/j.ijepes.2014.07.069 |
Cover
| Abstract | •Capacitor placement plays an important role in distribution system planning and operation.•The capacitor placement problem is a combinatorial optimization problem.•This paper presents a new capacitor placement method which employs particle swarm optimization.
Capacitor placement plays an important role in distribution system planning and operation. In distribution systems of electrical energy, banks of capacitors are widely installed to compensate the reactive power, reduce the energy loss in system, voltage profile improvement, and feeder capacity release. The capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. Recently, many approaches have been proposed to solve the capacitor placement problem as a mixed integer programming problem. This paper presents a new capacitor placement method which employs particle swarm optimization (PSO) approaches with operators based on Gaussian and Cauchy probability distribution functions and also in chaotic sequences for a given load pattern of distribution systems. The proposed approaches are demonstrated by two examples of application. Simulation results show that the proposed method can achieve an optimal solution as the exhaustive search can but with much less computational time. |
|---|---|
| AbstractList | Capacitor placement plays an important role in distribution system planning and operation. In distribution systems of electrical energy, banks of capacitors are widely installed to compensate the reactive power, reduce the energy loss in system, voltage profile improvement, and feeder capacity release. The capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. Recently, many approaches have been proposed to solve the capacitor placement problem as a mixed integer programming problem. This paper presents a new capacitor placement method which employs particle swarm optimization (PSO) approaches with operators based on Gaussian and Cauchy probability distribution functions and also in chaotic sequences for a given load pattern of distribution systems. The proposed approaches are demonstrated by two examples of application. Simulation results show that the proposed method can achieve an optimal solution as the exhaustive search can but with much less computational time. •Capacitor placement plays an important role in distribution system planning and operation.•The capacitor placement problem is a combinatorial optimization problem.•This paper presents a new capacitor placement method which employs particle swarm optimization. Capacitor placement plays an important role in distribution system planning and operation. In distribution systems of electrical energy, banks of capacitors are widely installed to compensate the reactive power, reduce the energy loss in system, voltage profile improvement, and feeder capacity release. The capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. Recently, many approaches have been proposed to solve the capacitor placement problem as a mixed integer programming problem. This paper presents a new capacitor placement method which employs particle swarm optimization (PSO) approaches with operators based on Gaussian and Cauchy probability distribution functions and also in chaotic sequences for a given load pattern of distribution systems. The proposed approaches are demonstrated by two examples of application. Simulation results show that the proposed method can achieve an optimal solution as the exhaustive search can but with much less computational time. |
| Author | Lee, Chu-Sheng Ayala, Helon Vicente Hultmann Coelho, Leandro dos Santos |
| Author_xml | – sequence: 1 givenname: Chu-Sheng surname: Lee fullname: Lee, Chu-Sheng organization: Department of Electrical Engineering, National Formosa University, 64, Wen-Hua Road, Huwei, Yunlin 632, Taiwan – sequence: 2 givenname: Helon Vicente Hultmann surname: Ayala fullname: Ayala, Helon Vicente Hultmann organization: Industrial and Systems Engineering Graduate Program (PPGEPS), Pontifical Catholic University of Parana (PUCPR), Imaculada Conceição, 1155, Zip code 80215-901, Curitiba, PR, Brazil – sequence: 3 givenname: Leandro dos Santos surname: Coelho fullname: Coelho, Leandro dos Santos organization: Industrial and Systems Engineering Graduate Program (PPGEPS), Pontifical Catholic University of Parana (PUCPR), Imaculada Conceição, 1155, Zip code 80215-901, Curitiba, PR, Brazil |
| BookMark | eNqNkLtOxDAQRS0EErsLf0CRkibBzssJBRJa8ZKQaECisybOBLxK4uDxguDr8bJUFEA1xdwzjzNnu6MdkbEjwRPBRXmySswKJ6Qk5SJPuEx4We-wmahkHWeFkLtsFhppzEtR7LM50YpzLus8nbHHJUygjbcumnrQOODoI9tFrSHvTLP2xo4RvZPHgaI1mfEpmsB5o3uM6A3cENnJm8F8wFcSpslZ0M9IB2yvg57w8Lsu2MPlxf3yOr69u7pZnt_GOpOpj_OqDadkmWg7aGtRAW-qTsimwDbnXYmQNyi6SsumbBBlV6No0rpGgEKWHNNswY63c8PilzWSV4MhjX0PI9o1KVEWIi8kF_If0TwNhniRhejpNqqdJXLYqeDo60XvwPRKcLUxr1Zqa15tzCsuVTAf4PwHPDkzgHv_CzvbYhh0vRp0irTBUWNrHGqvWmt-H_AJ3y6kbA |
| CitedBy_id | crossref_primary_10_1007_s00202_016_0475_1 crossref_primary_10_1155_2021_8346738 crossref_primary_10_1007_s00521_021_06078_4 crossref_primary_10_1016_j_ijepes_2016_02_025 crossref_primary_10_1049_iet_gtd_2016_0192 crossref_primary_10_1016_j_ijepes_2015_06_003 crossref_primary_10_1049_iet_gtd_2018_5494 crossref_primary_10_1109_TSTE_2015_2512819 crossref_primary_10_1155_2021_2486531 crossref_primary_10_1007_s12667_018_0276_x crossref_primary_10_1016_j_rser_2015_07_004 crossref_primary_10_1515_jisys_2017_0238 crossref_primary_10_1016_j_egyr_2023_01_020 crossref_primary_10_1049_iet_gtd_2015_0799 crossref_primary_10_1016_j_rineng_2022_100870 crossref_primary_10_1016_j_aej_2016_10_002 crossref_primary_10_3390_su12187806 crossref_primary_10_57030_optroleaser_2024430601 crossref_primary_10_1109_ACCESS_2020_3047671 crossref_primary_10_1088_1755_1315_897_1_012016 crossref_primary_10_1080_15325008_2022_2132556 crossref_primary_10_1007_s11771_015_2693_5 crossref_primary_10_1007_s40998_019_00216_4 crossref_primary_10_1016_j_compeleceng_2018_09_012 crossref_primary_10_3390_en11030571 crossref_primary_10_1002_2050_7038_12316 crossref_primary_10_1109_TCSI_2022_3200410 crossref_primary_10_1002_2050_7038_12956 crossref_primary_10_3390_computers8020028 crossref_primary_10_1007_s12293_016_0208_z crossref_primary_10_1109_ACCESS_2020_3009113 crossref_primary_10_1155_2022_3761983 crossref_primary_10_1109_ACCESS_2020_3048438 crossref_primary_10_1007_s00500_021_05757_7 crossref_primary_10_1016_j_compeleceng_2020_106549 crossref_primary_10_1016_j_est_2023_108273 crossref_primary_10_1016_j_epsr_2018_08_006 crossref_primary_10_3390_en17235840 crossref_primary_10_1002_2050_7038_12230 crossref_primary_10_1016_j_epsr_2018_01_013 crossref_primary_10_1049_iet_gtd_2016_0419 crossref_primary_10_1007_s00500_021_06186_2 crossref_primary_10_3390_en13236409 crossref_primary_10_3390_su16114419 crossref_primary_10_3390_en16083532 crossref_primary_10_1016_j_epsr_2016_09_013 crossref_primary_10_1049_tje2_12357 crossref_primary_10_1108_AA_10_2018_0173 crossref_primary_10_3390_en13184914 crossref_primary_10_1016_j_ijepes_2016_04_002 crossref_primary_10_1016_j_aej_2018_01_004 crossref_primary_10_1063_1_5072789 crossref_primary_10_1016_j_sasc_2024_200111 crossref_primary_10_1109_ACCESS_2020_2975714 crossref_primary_10_1007_s00521_021_06172_7 crossref_primary_10_1007_s00521_023_08982_3 crossref_primary_10_1002_2050_7038_12320 |
| Cites_doi | 10.1016/j.ijepes.2013.02.003 10.1007/978-3-642-32894-7_27 10.1016/j.ijepes.2007.08.001 10.1109/61.252679 10.1109/61.53067 10.1109/TPAS.1981.316577 10.1016/j.ijepes.2012.06.014 10.1109/TEVC.2010.2059031 10.1016/j.ijepes.2012.06.059 10.1109/ICSMC.1997.637339 10.1109/ICCIS.2004.1460443 10.1080/0305215X.2013.832237 10.1109/ICNN.1995.488968 10.1109/SIS.2007.367959 10.1109/TSMCB.2006.873185 10.1016/j.aeue.2004.11.003 10.1201/9781420050387 10.1109/59.898095 10.1109/4235.735431 10.1049/ip-gtd:20030561 10.1109/TEVC.2006.880326 10.1109/TPAS.1982.317385 10.1016/j.engappai.2004.04.003 10.1049/ecej:19890024 10.1109/MHS.1995.494215 10.1109/59.336111 10.1016/j.ijepes.2012.07.028 10.1007/BFb0040810 10.1080/019697298125678 10.1016/j.ijepes.2012.05.028 10.1016/j.cor.2011.09.026 10.1109/CEC.2004.1330965 10.1016/j.epsr.2003.12.009 10.1109/CEC.2002.1004478 10.1109/CEC.2001.934375 10.1109/TPWRS.2005.846049 10.1109/CEC.2001.934377 10.1109/20.996256 10.1109/61.19266 10.1109/TPWRS.2005.846064 10.1016/j.ijepes.2012.04.060 10.1016/j.ijepes.2011.09.003 10.1109/CEC.2009.4983361 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd |
| Copyright_xml | – notice: 2014 Elsevier Ltd |
| DBID | AAYXX CITATION 7ST C1K SOI 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1016/j.ijepes.2014.07.069 |
| DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts Environment Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3517 |
| EndPage | 851 |
| ExternalDocumentID | 10_1016_j_ijepes_2014_07_069 S0142061514005134 |
| GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSR SST SSV SSZ T5K VH1 WUQ ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS GROUPED_DOAJ ~HD 7ST C1K SOI 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c372t-48d007331dfad918a0b8f17b5ed40f6ea4be1f8c7b6bee7f9e1b299eaa5760e23 |
| IEDL.DBID | .~1 |
| ISSN | 0142-0615 |
| IngestDate | Thu Oct 02 03:56:39 EDT 2025 Tue Oct 07 09:44:53 EDT 2025 Wed Oct 01 06:30:42 EDT 2025 Thu Apr 24 23:16:11 EDT 2025 Fri Feb 23 02:24:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Capacitor placement Chaos theory Particle swarm optimization Gaussian probability distribution |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-48d007331dfad918a0b8f17b5ed40f6ea4be1f8c7b6bee7f9e1b299eaa5760e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1642615053 |
| PQPubID | 23462 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1651457017 proquest_miscellaneous_1642615053 crossref_citationtrail_10_1016_j_ijepes_2014_07_069 crossref_primary_10_1016_j_ijepes_2014_07_069 elsevier_sciencedirect_doi_10_1016_j_ijepes_2014_07_069 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2015 2015-01-00 20150101 |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
| PublicationDecade | 2010 |
| PublicationTitle | International journal of electrical power & energy systems |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ul-Hassan, Zafar, Mohsin, Lateef (b0075) 2012; 43 Li, Jiang (b0175) 1998; 29 Krohling RA. Gaussian swarm: a novel particle swarm optimization algorithm. In: Proceedings of the IEEE conference on cybernetics and intelligent systems (CIS), Singapore; 2004. p. 372–6. Laskari EC, Parsopoulos KE, Vrahatis MN. Particle swarm optimization for integer programming. In: Proceedings of the IEEE congress on evolutionary computation, Honolulu, HI, USA; 2002. p. 1582–7. Sundhararajan, Pahwa (b0030) 1994; 9 Tasgetiren, Liang (b0205) 2003; 5 Shi Y, Eberhart RC. Fuzzy adaptive particle swarm optimization. In: Proceedings of the congress on evolutionary computation, vol. 1, Honolulu, Hawaii, USA; 2002. p. 101–6. Shengsong, Min, Zhijian (b0180) 2003; 150 Su CT, Lee CS, Ho CS. Optimal selection of capacitors in distribution systems. In: Proceedings of IEEE power tech conf, Budapest, BPT99-171-42; 1999. Li, Liu, Zhou, Kang, Li (b0255) 2007 Miranda V, Fonseca N. New evolutionary particle swarm algorithm (EPSO) applied to voltage/var control. In: Proceedings of the 14th power systems computation conference, Sevilla, Spain; 2002. Shi Y, Eberhart RC. Parameter selection in particle swarm optimizer. In: Porto VW, Saravan N, Waagen D, Eiben AE, editors, Proceedings of 7th annual conference on evolutionary programming, Berlin: Springer-Verlag; 1998. p. 591–601. Fukuyama Y, Yoshida H. A particle swarm optimization for reactive power and voltage control in electric power systems. In: Proceedings of the IEEE congress on evolutionary computation, Seoul, Korea; 2001. p. 87–93. Yang, Deb (b0235) 2013; 40 Bäck T, Fogel DB, Michalewicz Z, editors. Handbook of evolutionary computation, Bristol, Philadelphia: Institute of Physics Publishing, NY, Oxford: Oxford University Press; 1997. Coelho, Krohling (b0130) 2005; vol. 32 Chakraborty, Ito, Senjyu, Saber (b0115) 2012; 43 Kennedy J, Eberhart RC. Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks IV, Perth, Australia; 1995. p. 1942–8. Kalinli, Karaboga (b0270) 2004; 17 Ivatloo, Rabiee, Soroudi, Ehsan (b0095) 2012; 42 Eslami, Shareef, Mohamed, Khajehzadeh (b0105) 2012; 43 Salama, Chikhani (b0015) 1993; 8 Wang H, Liu Y, Zeng S. A hybrid particle swarm algorithm with Cauchy mutation. In: Proceedings of the IEEE swarm intelligence symposium, Honolulu, HI, USA; 2007. p. 356–60. Zhao, Guo, Cao (b0085) 2005; 20 Krohling, Coelho (b0240) 2006; 36 Yang, Karamanoglu, He (b0230) 2014; 46 Baran, Wu (b0055) 1989; 4 Saber (b0100) 2012; 34 Yang XS. Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation, vol. 7445. Springer Lecture Notes in Computer Science, p. 240–49. Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th international symposium on micro machine and human science, Nagoya, Japan; 1995. p. 39–43. Coelho, Lee (b0090) 2008; 30 Krohling RA, Mendel E. Bare bones particle swarm optimization with Gaussian or Cauchy jumps. In: Proceedings of the IEEE congress on evolutionary computation, Trondheim, Norway; 2009. p. 3285–91. Wang H, Li H, Liu Y, Li C, Zeng S. Opposition-based particle swarm algorithm with Cauchy mutation. In: Proceedings of the IEEE congress on evolutionary computation, Singapore; 2007. p. 4750–6. Kannan, Slochanal, Subbaraj, Padhy (b0110) 2004; 70 Brandstätter, Baumgartner (b0150) 2002; 38 Yang (b0220) 2010 Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of IEEE international conference on evolutionary computation, Washington, DC, USA; 1999. p. 69–73. Goldberg (b0070) 1989 Chellapilla (b0145) 1998; 2 Krohling RA, Hoffmann F, Coelho LS. Co-evolutionary particle swarm optimization for min-max problems using Gaussian distribution. In: Proceedings of the congress on evolutionary computation, Portland, OR, USA; 2004. p. 959–64. Su CT, Lee CS. Modified differential evolution method for capacitor placement of distribution systems. In: Proceedings of IEEE/PES T&D conference Asia and Pacific; 2002. p. 208–13. Yao X, Liu Y. Fast evolutionary programming. In: Proceedings of 5th annual conference on evolutionary programming, San Diego, CA, USA; 1996. p. 451–60. Kalinli, Karaboga (b0275) 2005; 59 Esmin, Lambert-Torres, Souza (b0080) 2005; 20 Grainger, Lee (b0005) 1981; 100 Grainger, Lee (b0010) 1982; 101 Das, Suganthan (b0215) 2011; 15 AlRashidi, El-Hawary (b0125) 2009; 13 Baghzouz, Ertem (b0020) 1990; 5 Singh, Rao (b0025) 2012; 43 Kennedy J, Eberhart RC. A discrete binary version of the particle swarm algorithm. In: Proceedings of international conference on systems, Man, and Cybernetics, Orlando, FL, USA; 1997. p. 4104–8. Su CT, Tsai CC. A new fuzzy reasoning approach to optimum capacitor allocation for primary distribution systems. In: Proceedings IEEE on industrial technology conference, Shanghai, China; 1996. p. 237–41. Yoshida, Fukuyama, Takayama, Nakanishi (b0120) 2000; 15 Taher, Bagherpour (b0050) 2013; 49 Jefferies, Deane, Johnstone (b0170) 1989; 1 Jefferies (10.1016/j.ijepes.2014.07.069_b0170) 1989; 1 Goldberg (10.1016/j.ijepes.2014.07.069_b0070) 1989 Li (10.1016/j.ijepes.2014.07.069_b0175) 1998; 29 Zhao (10.1016/j.ijepes.2014.07.069_b0085) 2005; 20 Taher (10.1016/j.ijepes.2014.07.069_b0050) 2013; 49 Yang (10.1016/j.ijepes.2014.07.069_b0220) 2010 Grainger (10.1016/j.ijepes.2014.07.069_b0010) 1982; 101 Yang (10.1016/j.ijepes.2014.07.069_b0235) 2013; 40 10.1016/j.ijepes.2014.07.069_b0250 Yoshida (10.1016/j.ijepes.2014.07.069_b0120) 2000; 15 Salama (10.1016/j.ijepes.2014.07.069_b0015) 1993; 8 Grainger (10.1016/j.ijepes.2014.07.069_b0005) 1981; 100 Singh (10.1016/j.ijepes.2014.07.069_b0025) 2012; 43 Saber (10.1016/j.ijepes.2014.07.069_b0100) 2012; 34 10.1016/j.ijepes.2014.07.069_b0135 10.1016/j.ijepes.2014.07.069_b0210 Chellapilla (10.1016/j.ijepes.2014.07.069_b0145) 1998; 2 Tasgetiren (10.1016/j.ijepes.2014.07.069_b0205) 2003; 5 10.1016/j.ijepes.2014.07.069_b0040 Kalinli (10.1016/j.ijepes.2014.07.069_b0275) 2005; 59 10.1016/j.ijepes.2014.07.069_b0160 Krohling (10.1016/j.ijepes.2014.07.069_b0240) 2006; 36 Ul-Hassan (10.1016/j.ijepes.2014.07.069_b0075) 2012; 43 Eslami (10.1016/j.ijepes.2014.07.069_b0105) 2012; 43 Das (10.1016/j.ijepes.2014.07.069_b0215) 2011; 15 10.1016/j.ijepes.2014.07.069_b0245 10.1016/j.ijepes.2014.07.069_b0200 10.1016/j.ijepes.2014.07.069_b0045 10.1016/j.ijepes.2014.07.069_b0165 Baghzouz (10.1016/j.ijepes.2014.07.069_b0020) 1990; 5 AlRashidi (10.1016/j.ijepes.2014.07.069_b0125) 2009; 13 Sundhararajan (10.1016/j.ijepes.2014.07.069_b0030) 1994; 9 Li (10.1016/j.ijepes.2014.07.069_b0255) 2007 10.1016/j.ijepes.2014.07.069_b0195 10.1016/j.ijepes.2014.07.069_b0190 Ivatloo (10.1016/j.ijepes.2014.07.069_b0095) 2012; 42 Shengsong (10.1016/j.ijepes.2014.07.069_b0180) 2003; 150 10.1016/j.ijepes.2014.07.069_b0035 10.1016/j.ijepes.2014.07.069_b0155 Baran (10.1016/j.ijepes.2014.07.069_b0055) 1989; 4 Coelho (10.1016/j.ijepes.2014.07.069_b0130) 2005; vol. 32 Chakraborty (10.1016/j.ijepes.2014.07.069_b0115) 2012; 43 Coelho (10.1016/j.ijepes.2014.07.069_b0090) 2008; 30 10.1016/j.ijepes.2014.07.069_b0065 Kannan (10.1016/j.ijepes.2014.07.069_b0110) 2004; 70 10.1016/j.ijepes.2014.07.069_b0185 10.1016/j.ijepes.2014.07.069_b0140 Brandstätter (10.1016/j.ijepes.2014.07.069_b0150) 2002; 38 10.1016/j.ijepes.2014.07.069_b0260 10.1016/j.ijepes.2014.07.069_b0060 Kalinli (10.1016/j.ijepes.2014.07.069_b0270) 2004; 17 Esmin (10.1016/j.ijepes.2014.07.069_b0080) 2005; 20 10.1016/j.ijepes.2014.07.069_b0225 Yang (10.1016/j.ijepes.2014.07.069_b0230) 2014; 46 10.1016/j.ijepes.2014.07.069_b0265 |
| References_xml | – reference: Laskari EC, Parsopoulos KE, Vrahatis MN. Particle swarm optimization for integer programming. In: Proceedings of the IEEE congress on evolutionary computation, Honolulu, HI, USA; 2002. p. 1582–7. – reference: Krohling RA. Gaussian swarm: a novel particle swarm optimization algorithm. In: Proceedings of the IEEE conference on cybernetics and intelligent systems (CIS), Singapore; 2004. p. 372–6. – volume: 49 start-page: 430 year: 2013 end-page: 448 ident: b0050 article-title: A new approach for optimal capacitor placement and sizing in unbalanced distorted distribution systems using hybrid honey bee colony algorithm publication-title: Int J Electr Power Energy Syst – reference: Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th international symposium on micro machine and human science, Nagoya, Japan; 1995. p. 39–43. – volume: 4 start-page: 735 year: 1989 end-page: 743 ident: b0055 article-title: Optimal sizing of capacitors placed on a radial distribution system publication-title: IEEE Trans Power Deliv – reference: Shi Y, Eberhart RC. Fuzzy adaptive particle swarm optimization. In: Proceedings of the congress on evolutionary computation, vol. 1, Honolulu, Hawaii, USA; 2002. p. 101–6. – reference: Wang H, Liu Y, Zeng S. A hybrid particle swarm algorithm with Cauchy mutation. In: Proceedings of the IEEE swarm intelligence symposium, Honolulu, HI, USA; 2007. p. 356–60. – reference: Su CT, Tsai CC. A new fuzzy reasoning approach to optimum capacitor allocation for primary distribution systems. In: Proceedings IEEE on industrial technology conference, Shanghai, China; 1996. p. 237–41. – volume: 59 start-page: 111 year: 2005 end-page: 1117 ident: b0275 article-title: A new method for adaptive IIR filter design based on tabu search algorithm publication-title: Int J Electron Commun – volume: 70 start-page: 203 year: 2004 end-page: 210 ident: b0110 article-title: Application of particle swarm optimization technique and its variants to generation expansion planning problem publication-title: Electric Power Syst Res – volume: 1 start-page: 115 year: 1989 end-page: 123 ident: b0170 article-title: An introduction to chaos publication-title: Electron Commun Eng J – volume: 8 start-page: 1529 year: 1993 end-page: 1535 ident: b0015 article-title: A simplified network approach to the var control problem for radial distribution systems publication-title: IEEE Trans Power Deliv – volume: 40 start-page: 1616 year: 2013 end-page: 1624 ident: b0235 article-title: Multiobjective cuckoo search for design optimization publication-title: Comput Oper Res – reference: Shi Y, Eberhart RC. Parameter selection in particle swarm optimizer. In: Porto VW, Saravan N, Waagen D, Eiben AE, editors, Proceedings of 7th annual conference on evolutionary programming, Berlin: Springer-Verlag; 1998. p. 591–601. – volume: 150 start-page: 543 year: 2003 end-page: 547 ident: b0180 article-title: Hybrid algorithm of chaos optimisation and SLP for optimal power flow problems with multimodal characteristic publication-title: IEE Proc Generation, Transm, Distrib – volume: 29 start-page: 409 year: 1998 end-page: 419 ident: b0175 article-title: Optimizing complex functions by chaos search publication-title: Cybernetics Syst – volume: 9 start-page: 1499 year: 1994 end-page: 1507 ident: b0030 article-title: Optimal selection of capacitors for radial distribution systems using a genetic algorithm publication-title: IEEE Trans Power Syst – volume: 15 start-page: 1232 year: 2000 end-page: 1239 ident: b0120 article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment publication-title: IEEE Trans Power Syst – reference: Wang H, Li H, Liu Y, Li C, Zeng S. Opposition-based particle swarm algorithm with Cauchy mutation. In: Proceedings of the IEEE congress on evolutionary computation, Singapore; 2007. p. 4750–6. – reference: Kennedy J, Eberhart RC. Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks IV, Perth, Australia; 1995. p. 1942–8. – year: 1989 ident: b0070 article-title: Genetic algorithms in search, optimization, and machine learning – volume: 43 start-page: 1467 year: 2012 end-page: 1478 ident: b0105 article-title: An efficient particle swarm optimization technique with chaotic sequence for optimal tuning and placement of PSS in power systems publication-title: Int J Electr Power Energy Syst – year: 2010 ident: b0220 article-title: Engineering optimization: an introduction with metaheuristic applications – reference: Su CT, Lee CS, Ho CS. Optimal selection of capacitors in distribution systems. In: Proceedings of IEEE power tech conf, Budapest, BPT99-171-42; 1999. – reference: Su CT, Lee CS. Modified differential evolution method for capacitor placement of distribution systems. In: Proceedings of IEEE/PES T&D conference Asia and Pacific; 2002. p. 208–13. – reference: Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of IEEE international conference on evolutionary computation, Washington, DC, USA; 1999. p. 69–73. – volume: 43 start-page: 364 year: 2012 end-page: 368 ident: b0075 article-title: Reduction in power transmission loss using fully informed particle swarm optimization publication-title: Int J Electr Power Energy Syst – volume: 20 start-page: 1070 year: 2005 end-page: 1078 ident: b0085 article-title: A multiagent-based particle swarm optimization approach for optimal reactive power dispatch publication-title: IEEE Trans Power Syst – reference: Krohling RA, Mendel E. Bare bones particle swarm optimization with Gaussian or Cauchy jumps. In: Proceedings of the IEEE congress on evolutionary computation, Trondheim, Norway; 2009. p. 3285–91. – volume: 2 start-page: 91 year: 1998 end-page: 96 ident: b0145 article-title: Combining mutation operators in evolutionary programming publication-title: IEEE Trans Evol Comput – reference: Yang XS. Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation, vol. 7445. Springer Lecture Notes in Computer Science, p. 240–49. – volume: 101 start-page: 1236 year: 1982 end-page: 1244 ident: b0010 article-title: Capacity release by shunt capacitor placement on distribution feeders: a new voltage-dependent model publication-title: IEEE Trans Power Apparatus Syst – reference: Miranda V, Fonseca N. New evolutionary particle swarm algorithm (EPSO) applied to voltage/var control. In: Proceedings of the 14th power systems computation conference, Sevilla, Spain; 2002. – volume: 43 start-page: 1072 year: 2012 end-page: 1080 ident: b0115 article-title: Unit commitment strategy of thermal generators by using advanced fuzzy controlled binary particle swarm optimization algorithm publication-title: Int J Electr Power Energy Syst – volume: 17 start-page: 529 year: 2004 end-page: 542 ident: b0270 article-title: Training recurrent neural networks by using parallel tabu search algorithm based on crossover operation publication-title: Eng Appl Artif Intell – volume: 100 start-page: 1105 year: 1981 end-page: 1118 ident: b0005 article-title: Optimum size and location of shunt capacitors for reduction of losses on distribution feeders publication-title: IEEE Trans Power Apparatus Syst – reference: Yao X, Liu Y. Fast evolutionary programming. In: Proceedings of 5th annual conference on evolutionary programming, San Diego, CA, USA; 1996. p. 451–60. – volume: vol. 32 year: 2005 ident: b0130 article-title: Predictive controller tuning using modified particle swarm optimisation based on Cauchy and Gaussian distributions publication-title: Soft computing: methodologies and applications – volume: 30 start-page: 297 year: 2008 end-page: 307 ident: b0090 article-title: Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches publication-title: Int J Electr Power Energy Syst – reference: Krohling RA, Hoffmann F, Coelho LS. Co-evolutionary particle swarm optimization for min-max problems using Gaussian distribution. In: Proceedings of the congress on evolutionary computation, Portland, OR, USA; 2004. p. 959–64. – reference: Bäck T, Fogel DB, Michalewicz Z, editors. Handbook of evolutionary computation, Bristol, Philadelphia: Institute of Physics Publishing, NY, Oxford: Oxford University Press; 1997. – reference: Kennedy J, Eberhart RC. A discrete binary version of the particle swarm algorithm. In: Proceedings of international conference on systems, Man, and Cybernetics, Orlando, FL, USA; 1997. p. 4104–8. – reference: Fukuyama Y, Yoshida H. A particle swarm optimization for reactive power and voltage control in electric power systems. In: Proceedings of the IEEE congress on evolutionary computation, Seoul, Korea; 2001. p. 87–93. – volume: 5 start-page: 650 year: 1990 end-page: 657 ident: b0020 article-title: Shunt capacitor sizing for radial distribution feeders with distorted substation voltages publication-title: IEEE Trans Power Deliv – volume: 42 start-page: 508 year: 2012 end-page: 516 ident: b0095 article-title: Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems publication-title: Int J Electr Power Energy Syst – volume: 36 start-page: 1407 year: 2006 end-page: 1416 ident: b0240 article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems publication-title: IEEE Trans Syst Man Cybern B Cybern – volume: 43 start-page: 1267 year: 2012 end-page: 1275 ident: b0025 article-title: Optimal allocation of capacitors in distribution systems using particle swarm optimization publication-title: Int J Electr Power Energy Syst – volume: 13 start-page: 913 year: 2009 end-page: 918 ident: b0125 article-title: A survey of particle swarm optimization applications in electric power systems publication-title: IEEE Trans Evol Comput – volume: 46 start-page: 1222 year: 2014 end-page: 1237 ident: b0230 article-title: Flower pollination algorithm: a novel approach for multiobjective optimization publication-title: Eng Optim – volume: 20 start-page: 859 year: 2005 end-page: 866 ident: b0080 article-title: A hybrid particle swarm optimization applied to loss power minimization publication-title: IEEE Trans Power Syst – volume: 38 start-page: 997 year: 2002 end-page: 1000 ident: b0150 article-title: Particle swarm optimization – mass-spring systems analogon publication-title: IEEE Trans Magn – volume: 5 start-page: 1 year: 2003 end-page: 20 ident: b0205 article-title: A binary particle swarm optimization algorithm for lot sizing problem publication-title: J Econom Social Res – volume: 34 start-page: 38 year: 2012 end-page: 46 ident: b0100 article-title: Economic dispatch using particle swarm optimization with bacterial foraging effect publication-title: Int J Electr Power Energy Syst – volume: 15 start-page: 4 year: 2011 end-page: 31 ident: b0215 article-title: Differential evolution: a survey of the state-of-the-art publication-title: IEEE Trans Evol Comput – year: 2007 ident: b0255 publication-title: A fast particle swarm optimization algorithm with Cauchy mutation and natural selection strategy – volume: 5 start-page: 1 issue: 2 year: 2003 ident: 10.1016/j.ijepes.2014.07.069_b0205 article-title: A binary particle swarm optimization algorithm for lot sizing problem publication-title: J Econom Social Res – volume: 49 start-page: 430 year: 2013 ident: 10.1016/j.ijepes.2014.07.069_b0050 article-title: A new approach for optimal capacitor placement and sizing in unbalanced distorted distribution systems using hybrid honey bee colony algorithm publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2013.02.003 – ident: 10.1016/j.ijepes.2014.07.069_b0225 doi: 10.1007/978-3-642-32894-7_27 – volume: 30 start-page: 297 issue: 5 year: 2008 ident: 10.1016/j.ijepes.2014.07.069_b0090 article-title: Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2007.08.001 – volume: 8 start-page: 1529 issue: 3 year: 1993 ident: 10.1016/j.ijepes.2014.07.069_b0015 article-title: A simplified network approach to the var control problem for radial distribution systems publication-title: IEEE Trans Power Deliv doi: 10.1109/61.252679 – volume: 5 start-page: 650 issue: 2 year: 1990 ident: 10.1016/j.ijepes.2014.07.069_b0020 article-title: Shunt capacitor sizing for radial distribution feeders with distorted substation voltages publication-title: IEEE Trans Power Deliv doi: 10.1109/61.53067 – volume: 100 start-page: 1105 issue: 3 year: 1981 ident: 10.1016/j.ijepes.2014.07.069_b0005 article-title: Optimum size and location of shunt capacitors for reduction of losses on distribution feeders publication-title: IEEE Trans Power Apparatus Syst doi: 10.1109/TPAS.1981.316577 – volume: 43 start-page: 1072 issue: 1 year: 2012 ident: 10.1016/j.ijepes.2014.07.069_b0115 article-title: Unit commitment strategy of thermal generators by using advanced fuzzy controlled binary particle swarm optimization algorithm publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.06.014 – volume: 15 start-page: 4 issue: 1 year: 2011 ident: 10.1016/j.ijepes.2014.07.069_b0215 article-title: Differential evolution: a survey of the state-of-the-art publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2010.2059031 – volume: 43 start-page: 1267 issue: 1 year: 2012 ident: 10.1016/j.ijepes.2014.07.069_b0025 article-title: Optimal allocation of capacitors in distribution systems using particle swarm optimization publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.06.059 – ident: 10.1016/j.ijepes.2014.07.069_b0185 doi: 10.1109/ICSMC.1997.637339 – ident: 10.1016/j.ijepes.2014.07.069_b0190 – year: 2010 ident: 10.1016/j.ijepes.2014.07.069_b0220 – ident: 10.1016/j.ijepes.2014.07.069_b0135 doi: 10.1109/ICCIS.2004.1460443 – volume: 46 start-page: 1222 issue: 9 year: 2014 ident: 10.1016/j.ijepes.2014.07.069_b0230 article-title: Flower pollination algorithm: a novel approach for multiobjective optimization publication-title: Eng Optim doi: 10.1080/0305215X.2013.832237 – ident: 10.1016/j.ijepes.2014.07.069_b0065 doi: 10.1109/ICNN.1995.488968 – ident: 10.1016/j.ijepes.2014.07.069_b0260 doi: 10.1109/SIS.2007.367959 – volume: 36 start-page: 1407 issue: 6 year: 2006 ident: 10.1016/j.ijepes.2014.07.069_b0240 article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2006.873185 – volume: 59 start-page: 111 issue: 2 year: 2005 ident: 10.1016/j.ijepes.2014.07.069_b0275 article-title: A new method for adaptive IIR filter design based on tabu search algorithm publication-title: Int J Electron Commun doi: 10.1016/j.aeue.2004.11.003 – year: 1989 ident: 10.1016/j.ijepes.2014.07.069_b0070 – ident: 10.1016/j.ijepes.2014.07.069_b0265 doi: 10.1201/9781420050387 – ident: 10.1016/j.ijepes.2014.07.069_b0245 doi: 10.1109/SIS.2007.367959 – ident: 10.1016/j.ijepes.2014.07.069_b0140 – volume: 15 start-page: 1232 issue: 4 year: 2000 ident: 10.1016/j.ijepes.2014.07.069_b0120 article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment publication-title: IEEE Trans Power Syst doi: 10.1109/59.898095 – volume: 2 start-page: 91 issue: 3 year: 1998 ident: 10.1016/j.ijepes.2014.07.069_b0145 article-title: Combining mutation operators in evolutionary programming publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.735431 – volume: 150 start-page: 543 issue: 5 year: 2003 ident: 10.1016/j.ijepes.2014.07.069_b0180 article-title: Hybrid algorithm of chaos optimisation and SLP for optimal power flow problems with multimodal characteristic publication-title: IEE Proc Generation, Transm, Distrib doi: 10.1049/ip-gtd:20030561 – ident: 10.1016/j.ijepes.2014.07.069_b0035 – volume: vol. 32 year: 2005 ident: 10.1016/j.ijepes.2014.07.069_b0130 article-title: Predictive controller tuning using modified particle swarm optimisation based on Cauchy and Gaussian distributions – volume: 13 start-page: 913 issue: 4 year: 2009 ident: 10.1016/j.ijepes.2014.07.069_b0125 article-title: A survey of particle swarm optimization applications in electric power systems publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2006.880326 – volume: 101 start-page: 1236 issue: 5 year: 1982 ident: 10.1016/j.ijepes.2014.07.069_b0010 article-title: Capacity release by shunt capacitor placement on distribution feeders: a new voltage-dependent model publication-title: IEEE Trans Power Apparatus Syst doi: 10.1109/TPAS.1982.317385 – volume: 17 start-page: 529 year: 2004 ident: 10.1016/j.ijepes.2014.07.069_b0270 article-title: Training recurrent neural networks by using parallel tabu search algorithm based on crossover operation publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2004.04.003 – volume: 1 start-page: 115 issue: 3 year: 1989 ident: 10.1016/j.ijepes.2014.07.069_b0170 article-title: An introduction to chaos publication-title: Electron Commun Eng J doi: 10.1049/ecej:19890024 – ident: 10.1016/j.ijepes.2014.07.069_b0060 doi: 10.1109/MHS.1995.494215 – ident: 10.1016/j.ijepes.2014.07.069_b0045 – volume: 9 start-page: 1499 issue: 3 year: 1994 ident: 10.1016/j.ijepes.2014.07.069_b0030 article-title: Optimal selection of capacitors for radial distribution systems using a genetic algorithm publication-title: IEEE Trans Power Syst doi: 10.1109/59.336111 – volume: 43 start-page: 1467 issue: 1 year: 2012 ident: 10.1016/j.ijepes.2014.07.069_b0105 article-title: An efficient particle swarm optimization technique with chaotic sequence for optimal tuning and placement of PSS in power systems publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.07.028 – year: 2007 ident: 10.1016/j.ijepes.2014.07.069_b0255 – ident: 10.1016/j.ijepes.2014.07.069_b0160 doi: 10.1007/BFb0040810 – volume: 29 start-page: 409 issue: 4 year: 1998 ident: 10.1016/j.ijepes.2014.07.069_b0175 article-title: Optimizing complex functions by chaos search publication-title: Cybernetics Syst doi: 10.1080/019697298125678 – ident: 10.1016/j.ijepes.2014.07.069_b0200 – volume: 43 start-page: 364 issue: 1 year: 2012 ident: 10.1016/j.ijepes.2014.07.069_b0075 article-title: Reduction in power transmission loss using fully informed particle swarm optimization publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.05.028 – volume: 40 start-page: 1616 issue: 6 year: 2013 ident: 10.1016/j.ijepes.2014.07.069_b0235 article-title: Multiobjective cuckoo search for design optimization publication-title: Comput Oper Res doi: 10.1016/j.cor.2011.09.026 – ident: 10.1016/j.ijepes.2014.07.069_b0155 doi: 10.1109/CEC.2004.1330965 – volume: 70 start-page: 203 issue: 3 year: 2004 ident: 10.1016/j.ijepes.2014.07.069_b0110 article-title: Application of particle swarm optimization technique and its variants to generation expansion planning problem publication-title: Electric Power Syst Res doi: 10.1016/j.epsr.2003.12.009 – ident: 10.1016/j.ijepes.2014.07.069_b0210 doi: 10.1109/CEC.2002.1004478 – ident: 10.1016/j.ijepes.2014.07.069_b0195 doi: 10.1109/CEC.2001.934375 – volume: 20 start-page: 859 issue: 2 year: 2005 ident: 10.1016/j.ijepes.2014.07.069_b0080 article-title: A hybrid particle swarm optimization applied to loss power minimization publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2005.846049 – ident: 10.1016/j.ijepes.2014.07.069_b0165 doi: 10.1109/CEC.2001.934377 – volume: 38 start-page: 997 issue: 2 year: 2002 ident: 10.1016/j.ijepes.2014.07.069_b0150 article-title: Particle swarm optimization – mass-spring systems analogon publication-title: IEEE Trans Magn doi: 10.1109/20.996256 – volume: 4 start-page: 735 issue: 1 year: 1989 ident: 10.1016/j.ijepes.2014.07.069_b0055 article-title: Optimal sizing of capacitors placed on a radial distribution system publication-title: IEEE Trans Power Deliv doi: 10.1109/61.19266 – volume: 20 start-page: 1070 issue: 2 year: 2005 ident: 10.1016/j.ijepes.2014.07.069_b0085 article-title: A multiagent-based particle swarm optimization approach for optimal reactive power dispatch publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2005.846064 – volume: 42 start-page: 508 issue: 1 year: 2012 ident: 10.1016/j.ijepes.2014.07.069_b0095 article-title: Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.04.060 – volume: 34 start-page: 38 issue: 1 year: 2012 ident: 10.1016/j.ijepes.2014.07.069_b0100 article-title: Economic dispatch using particle swarm optimization with bacterial foraging effect publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2011.09.003 – ident: 10.1016/j.ijepes.2014.07.069_b0040 – ident: 10.1016/j.ijepes.2014.07.069_b0250 doi: 10.1109/CEC.2009.4983361 |
| SSID | ssj0007942 |
| Score | 2.3976023 |
| Snippet | •Capacitor placement plays an important role in distribution system planning and operation.•The capacitor placement problem is a combinatorial optimization... Capacitor placement plays an important role in distribution system planning and operation. In distribution systems of electrical energy, banks of capacitors... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 839 |
| SubjectTerms | Capacitor placement Capacitors Chaos theory Combinatorial analysis Electric potential Energy distribution Gaussian probability distribution Mathematical models Particle swarm optimization Placement Swarm intelligence Voltage |
| Title | Capacitor placement of distribution systems using particle swarm optimization approaches |
| URI | https://dx.doi.org/10.1016/j.ijepes.2014.07.069 https://www.proquest.com/docview/1642615053 https://www.proquest.com/docview/1651457017 |
| Volume | 64 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-3517 dateEnd: 20230930 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1879-3517 dateEnd: 20230930 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: AKRWK dateStart: 19790101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6DXvQgrjhuRPBap03SSXuUQRkV56Qwt5CkLzKDszAL3vztvrSpG-KAt7YkkL68fC_Ll-8RchFDzGxsRSQwmEQiE0mkhWMRWGZibjLOtd8aeOi1u0_irp_2G6RT34XxtMqA_RWml2gdvrSCNVvTwaDlaUmsDMjCexb3mqBCSJ_F4PLtk-aB_sYqGiPzWQzS-vpcyfEaDGEKXrQ7EaWEp6c9_x6efgB1GX1utslWmDbSq6plO6QB412y-UVMcI_0Oxj3LA7QGS2JVn7bj04cLbw0bshqRSvh5jn1dPdnOg1_SuevejaiE4SPUbiXSWuxcZjvk6eb68dONwp5EyLLJVugxYsqF2PhdJEnmY5N5hJpUihE7NqghYHEZVaatgGQLofEYFQCrXHxEQPjB2RtPBnDIaE4-dDMSCis0ELnNhc21y7H54Jxk7gm4bW5lA2i4j63xYuq2WNDVRlZeSOrWCo0cpNEH7WmlajGivKy7gn1zTkU4v6Kmud1xykcN_4wRI9hspwrXCYyL4af8r_KoHOlEkHr6N8tOCYb-JZWuzYnZG0xW8IpzmMW5qx01DOyfnV73-29A4WX9aY |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOQAHxCp2jMQ1NLGdOjmiClTWE0i9WbYzRkV0UVvEjW9nnDhsQiBxixJbcsbjN16e3xByHEPMbGxFJDCYRCITSaSFYxFYZmJuMs613xq4uW1378VlL-01SKe-C-NplQH7K0wv0Tq8aQVrtsb9fsvTklgZkIX3LC7myLxImfQrsJPXD54HOhyreIzMpzFI6_tzJcmr_whj8KrdiSg1PD3v-ef49A2py_BzvkKWw7yRnlZNWyUNGK6RpU9qguuk18HAZ3GETmjJtPL7fnTkaOG1cUNaK1opN0-p57s_0HH4VTp90ZMBHSF-DMLFTFqrjcN0g9yfn911ulFInBBZLtkMTV5UyRgLp4s8yXRsMpdIk0IhYtcGLQwkLrPStA2AdDkkBsMSaI2rjxgY3yTN4WgIW4Ti7EMzI6GwQgud21zYXLscnwvGTeK2Ca_NpWxQFffJLZ5UTR97VJWRlTeyiqVCI2-T6L3WuFLV-KO8rHtCffEOhcD_R82juuMUDhx_GqKHMHqeKlwnMq-Gn_LfyqB3pRJRa-ffLTgkC927m2t1fXF7tUsW8UtabeHskeZs8gz7OKmZmYPSad8AMWH3Ow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capacitor+placement+of+distribution+systems+using+particle+swarm+optimization+approaches&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Lee%2C+Chu-Sheng&rft.au=Ayala%2C+Helon+Vicente+Hultmann&rft.au=Coelho%2C+Leandro+dos+Santos&rft.date=2015-01-01&rft.issn=0142-0615&rft.volume=64&rft.spage=839&rft.epage=851&rft_id=info:doi/10.1016%2Fj.ijepes.2014.07.069&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon |