Capacitor placement of distribution systems using particle swarm optimization approaches

•Capacitor placement plays an important role in distribution system planning and operation.•The capacitor placement problem is a combinatorial optimization problem.•This paper presents a new capacitor placement method which employs particle swarm optimization. Capacitor placement plays an important...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of electrical power & energy systems Vol. 64; pp. 839 - 851
Main Authors Lee, Chu-Sheng, Ayala, Helon Vicente Hultmann, Coelho, Leandro dos Santos
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2015
Subjects
Online AccessGet full text
ISSN0142-0615
1879-3517
DOI10.1016/j.ijepes.2014.07.069

Cover

Abstract •Capacitor placement plays an important role in distribution system planning and operation.•The capacitor placement problem is a combinatorial optimization problem.•This paper presents a new capacitor placement method which employs particle swarm optimization. Capacitor placement plays an important role in distribution system planning and operation. In distribution systems of electrical energy, banks of capacitors are widely installed to compensate the reactive power, reduce the energy loss in system, voltage profile improvement, and feeder capacity release. The capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. Recently, many approaches have been proposed to solve the capacitor placement problem as a mixed integer programming problem. This paper presents a new capacitor placement method which employs particle swarm optimization (PSO) approaches with operators based on Gaussian and Cauchy probability distribution functions and also in chaotic sequences for a given load pattern of distribution systems. The proposed approaches are demonstrated by two examples of application. Simulation results show that the proposed method can achieve an optimal solution as the exhaustive search can but with much less computational time.
AbstractList Capacitor placement plays an important role in distribution system planning and operation. In distribution systems of electrical energy, banks of capacitors are widely installed to compensate the reactive power, reduce the energy loss in system, voltage profile improvement, and feeder capacity release. The capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. Recently, many approaches have been proposed to solve the capacitor placement problem as a mixed integer programming problem. This paper presents a new capacitor placement method which employs particle swarm optimization (PSO) approaches with operators based on Gaussian and Cauchy probability distribution functions and also in chaotic sequences for a given load pattern of distribution systems. The proposed approaches are demonstrated by two examples of application. Simulation results show that the proposed method can achieve an optimal solution as the exhaustive search can but with much less computational time.
•Capacitor placement plays an important role in distribution system planning and operation.•The capacitor placement problem is a combinatorial optimization problem.•This paper presents a new capacitor placement method which employs particle swarm optimization. Capacitor placement plays an important role in distribution system planning and operation. In distribution systems of electrical energy, banks of capacitors are widely installed to compensate the reactive power, reduce the energy loss in system, voltage profile improvement, and feeder capacity release. The capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. Recently, many approaches have been proposed to solve the capacitor placement problem as a mixed integer programming problem. This paper presents a new capacitor placement method which employs particle swarm optimization (PSO) approaches with operators based on Gaussian and Cauchy probability distribution functions and also in chaotic sequences for a given load pattern of distribution systems. The proposed approaches are demonstrated by two examples of application. Simulation results show that the proposed method can achieve an optimal solution as the exhaustive search can but with much less computational time.
Author Lee, Chu-Sheng
Ayala, Helon Vicente Hultmann
Coelho, Leandro dos Santos
Author_xml – sequence: 1
  givenname: Chu-Sheng
  surname: Lee
  fullname: Lee, Chu-Sheng
  organization: Department of Electrical Engineering, National Formosa University, 64, Wen-Hua Road, Huwei, Yunlin 632, Taiwan
– sequence: 2
  givenname: Helon Vicente Hultmann
  surname: Ayala
  fullname: Ayala, Helon Vicente Hultmann
  organization: Industrial and Systems Engineering Graduate Program (PPGEPS), Pontifical Catholic University of Parana (PUCPR), Imaculada Conceição, 1155, Zip code 80215-901, Curitiba, PR, Brazil
– sequence: 3
  givenname: Leandro dos Santos
  surname: Coelho
  fullname: Coelho, Leandro dos Santos
  organization: Industrial and Systems Engineering Graduate Program (PPGEPS), Pontifical Catholic University of Parana (PUCPR), Imaculada Conceição, 1155, Zip code 80215-901, Curitiba, PR, Brazil
BookMark eNqNkLtOxDAQRS0EErsLf0CRkibBzssJBRJa8ZKQaECisybOBLxK4uDxguDr8bJUFEA1xdwzjzNnu6MdkbEjwRPBRXmySswKJ6Qk5SJPuEx4We-wmahkHWeFkLtsFhppzEtR7LM50YpzLus8nbHHJUygjbcumnrQOODoI9tFrSHvTLP2xo4RvZPHgaI1mfEpmsB5o3uM6A3cENnJm8F8wFcSpslZ0M9IB2yvg57w8Lsu2MPlxf3yOr69u7pZnt_GOpOpj_OqDadkmWg7aGtRAW-qTsimwDbnXYmQNyi6SsumbBBlV6No0rpGgEKWHNNswY63c8PilzWSV4MhjX0PI9o1KVEWIi8kF_If0TwNhniRhejpNqqdJXLYqeDo60XvwPRKcLUxr1Zqa15tzCsuVTAf4PwHPDkzgHv_CzvbYhh0vRp0irTBUWNrHGqvWmt-H_AJ3y6kbA
CitedBy_id crossref_primary_10_1007_s00202_016_0475_1
crossref_primary_10_1155_2021_8346738
crossref_primary_10_1007_s00521_021_06078_4
crossref_primary_10_1016_j_ijepes_2016_02_025
crossref_primary_10_1049_iet_gtd_2016_0192
crossref_primary_10_1016_j_ijepes_2015_06_003
crossref_primary_10_1049_iet_gtd_2018_5494
crossref_primary_10_1109_TSTE_2015_2512819
crossref_primary_10_1155_2021_2486531
crossref_primary_10_1007_s12667_018_0276_x
crossref_primary_10_1016_j_rser_2015_07_004
crossref_primary_10_1515_jisys_2017_0238
crossref_primary_10_1016_j_egyr_2023_01_020
crossref_primary_10_1049_iet_gtd_2015_0799
crossref_primary_10_1016_j_rineng_2022_100870
crossref_primary_10_1016_j_aej_2016_10_002
crossref_primary_10_3390_su12187806
crossref_primary_10_57030_optroleaser_2024430601
crossref_primary_10_1109_ACCESS_2020_3047671
crossref_primary_10_1088_1755_1315_897_1_012016
crossref_primary_10_1080_15325008_2022_2132556
crossref_primary_10_1007_s11771_015_2693_5
crossref_primary_10_1007_s40998_019_00216_4
crossref_primary_10_1016_j_compeleceng_2018_09_012
crossref_primary_10_3390_en11030571
crossref_primary_10_1002_2050_7038_12316
crossref_primary_10_1109_TCSI_2022_3200410
crossref_primary_10_1002_2050_7038_12956
crossref_primary_10_3390_computers8020028
crossref_primary_10_1007_s12293_016_0208_z
crossref_primary_10_1109_ACCESS_2020_3009113
crossref_primary_10_1155_2022_3761983
crossref_primary_10_1109_ACCESS_2020_3048438
crossref_primary_10_1007_s00500_021_05757_7
crossref_primary_10_1016_j_compeleceng_2020_106549
crossref_primary_10_1016_j_est_2023_108273
crossref_primary_10_1016_j_epsr_2018_08_006
crossref_primary_10_3390_en17235840
crossref_primary_10_1002_2050_7038_12230
crossref_primary_10_1016_j_epsr_2018_01_013
crossref_primary_10_1049_iet_gtd_2016_0419
crossref_primary_10_1007_s00500_021_06186_2
crossref_primary_10_3390_en13236409
crossref_primary_10_3390_su16114419
crossref_primary_10_3390_en16083532
crossref_primary_10_1016_j_epsr_2016_09_013
crossref_primary_10_1049_tje2_12357
crossref_primary_10_1108_AA_10_2018_0173
crossref_primary_10_3390_en13184914
crossref_primary_10_1016_j_ijepes_2016_04_002
crossref_primary_10_1016_j_aej_2018_01_004
crossref_primary_10_1063_1_5072789
crossref_primary_10_1016_j_sasc_2024_200111
crossref_primary_10_1109_ACCESS_2020_2975714
crossref_primary_10_1007_s00521_021_06172_7
crossref_primary_10_1007_s00521_023_08982_3
crossref_primary_10_1002_2050_7038_12320
Cites_doi 10.1016/j.ijepes.2013.02.003
10.1007/978-3-642-32894-7_27
10.1016/j.ijepes.2007.08.001
10.1109/61.252679
10.1109/61.53067
10.1109/TPAS.1981.316577
10.1016/j.ijepes.2012.06.014
10.1109/TEVC.2010.2059031
10.1016/j.ijepes.2012.06.059
10.1109/ICSMC.1997.637339
10.1109/ICCIS.2004.1460443
10.1080/0305215X.2013.832237
10.1109/ICNN.1995.488968
10.1109/SIS.2007.367959
10.1109/TSMCB.2006.873185
10.1016/j.aeue.2004.11.003
10.1201/9781420050387
10.1109/59.898095
10.1109/4235.735431
10.1049/ip-gtd:20030561
10.1109/TEVC.2006.880326
10.1109/TPAS.1982.317385
10.1016/j.engappai.2004.04.003
10.1049/ecej:19890024
10.1109/MHS.1995.494215
10.1109/59.336111
10.1016/j.ijepes.2012.07.028
10.1007/BFb0040810
10.1080/019697298125678
10.1016/j.ijepes.2012.05.028
10.1016/j.cor.2011.09.026
10.1109/CEC.2004.1330965
10.1016/j.epsr.2003.12.009
10.1109/CEC.2002.1004478
10.1109/CEC.2001.934375
10.1109/TPWRS.2005.846049
10.1109/CEC.2001.934377
10.1109/20.996256
10.1109/61.19266
10.1109/TPWRS.2005.846064
10.1016/j.ijepes.2012.04.060
10.1016/j.ijepes.2011.09.003
10.1109/CEC.2009.4983361
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7ST
C1K
SOI
7SP
8FD
FR3
KR7
L7M
DOI 10.1016/j.ijepes.2014.07.069
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts
Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3517
EndPage 851
ExternalDocumentID 10_1016_j_ijepes_2014_07_069
S0142061514005134
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
GROUPED_DOAJ
~HD
7ST
C1K
SOI
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c372t-48d007331dfad918a0b8f17b5ed40f6ea4be1f8c7b6bee7f9e1b299eaa5760e23
IEDL.DBID .~1
ISSN 0142-0615
IngestDate Thu Oct 02 03:56:39 EDT 2025
Tue Oct 07 09:44:53 EDT 2025
Wed Oct 01 06:30:42 EDT 2025
Thu Apr 24 23:16:11 EDT 2025
Fri Feb 23 02:24:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Capacitor placement
Chaos theory
Particle swarm optimization
Gaussian probability distribution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-48d007331dfad918a0b8f17b5ed40f6ea4be1f8c7b6bee7f9e1b299eaa5760e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1642615053
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_1651457017
proquest_miscellaneous_1642615053
crossref_citationtrail_10_1016_j_ijepes_2014_07_069
crossref_primary_10_1016_j_ijepes_2014_07_069
elsevier_sciencedirect_doi_10_1016_j_ijepes_2014_07_069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ul-Hassan, Zafar, Mohsin, Lateef (b0075) 2012; 43
Li, Jiang (b0175) 1998; 29
Krohling RA. Gaussian swarm: a novel particle swarm optimization algorithm. In: Proceedings of the IEEE conference on cybernetics and intelligent systems (CIS), Singapore; 2004. p. 372–6.
Laskari EC, Parsopoulos KE, Vrahatis MN. Particle swarm optimization for integer programming. In: Proceedings of the IEEE congress on evolutionary computation, Honolulu, HI, USA; 2002. p. 1582–7.
Sundhararajan, Pahwa (b0030) 1994; 9
Tasgetiren, Liang (b0205) 2003; 5
Shi Y, Eberhart RC. Fuzzy adaptive particle swarm optimization. In: Proceedings of the congress on evolutionary computation, vol. 1, Honolulu, Hawaii, USA; 2002. p. 101–6.
Shengsong, Min, Zhijian (b0180) 2003; 150
Su CT, Lee CS, Ho CS. Optimal selection of capacitors in distribution systems. In: Proceedings of IEEE power tech conf, Budapest, BPT99-171-42; 1999.
Li, Liu, Zhou, Kang, Li (b0255) 2007
Miranda V, Fonseca N. New evolutionary particle swarm algorithm (EPSO) applied to voltage/var control. In: Proceedings of the 14th power systems computation conference, Sevilla, Spain; 2002.
Shi Y, Eberhart RC. Parameter selection in particle swarm optimizer. In: Porto VW, Saravan N, Waagen D, Eiben AE, editors, Proceedings of 7th annual conference on evolutionary programming, Berlin: Springer-Verlag; 1998. p. 591–601.
Fukuyama Y, Yoshida H. A particle swarm optimization for reactive power and voltage control in electric power systems. In: Proceedings of the IEEE congress on evolutionary computation, Seoul, Korea; 2001. p. 87–93.
Yang, Deb (b0235) 2013; 40
Bäck T, Fogel DB, Michalewicz Z, editors. Handbook of evolutionary computation, Bristol, Philadelphia: Institute of Physics Publishing, NY, Oxford: Oxford University Press; 1997.
Coelho, Krohling (b0130) 2005; vol. 32
Chakraborty, Ito, Senjyu, Saber (b0115) 2012; 43
Kennedy J, Eberhart RC. Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks IV, Perth, Australia; 1995. p. 1942–8.
Kalinli, Karaboga (b0270) 2004; 17
Ivatloo, Rabiee, Soroudi, Ehsan (b0095) 2012; 42
Eslami, Shareef, Mohamed, Khajehzadeh (b0105) 2012; 43
Salama, Chikhani (b0015) 1993; 8
Wang H, Liu Y, Zeng S. A hybrid particle swarm algorithm with Cauchy mutation. In: Proceedings of the IEEE swarm intelligence symposium, Honolulu, HI, USA; 2007. p. 356–60.
Zhao, Guo, Cao (b0085) 2005; 20
Krohling, Coelho (b0240) 2006; 36
Yang, Karamanoglu, He (b0230) 2014; 46
Baran, Wu (b0055) 1989; 4
Saber (b0100) 2012; 34
Yang XS. Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation, vol. 7445. Springer Lecture Notes in Computer Science, p. 240–49.
Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th international symposium on micro machine and human science, Nagoya, Japan; 1995. p. 39–43.
Coelho, Lee (b0090) 2008; 30
Krohling RA, Mendel E. Bare bones particle swarm optimization with Gaussian or Cauchy jumps. In: Proceedings of the IEEE congress on evolutionary computation, Trondheim, Norway; 2009. p. 3285–91.
Wang H, Li H, Liu Y, Li C, Zeng S. Opposition-based particle swarm algorithm with Cauchy mutation. In: Proceedings of the IEEE congress on evolutionary computation, Singapore; 2007. p. 4750–6.
Kannan, Slochanal, Subbaraj, Padhy (b0110) 2004; 70
Brandstätter, Baumgartner (b0150) 2002; 38
Yang (b0220) 2010
Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of IEEE international conference on evolutionary computation, Washington, DC, USA; 1999. p. 69–73.
Goldberg (b0070) 1989
Chellapilla (b0145) 1998; 2
Krohling RA, Hoffmann F, Coelho LS. Co-evolutionary particle swarm optimization for min-max problems using Gaussian distribution. In: Proceedings of the congress on evolutionary computation, Portland, OR, USA; 2004. p. 959–64.
Su CT, Lee CS. Modified differential evolution method for capacitor placement of distribution systems. In: Proceedings of IEEE/PES T&D conference Asia and Pacific; 2002. p. 208–13.
Yao X, Liu Y. Fast evolutionary programming. In: Proceedings of 5th annual conference on evolutionary programming, San Diego, CA, USA; 1996. p. 451–60.
Kalinli, Karaboga (b0275) 2005; 59
Esmin, Lambert-Torres, Souza (b0080) 2005; 20
Grainger, Lee (b0005) 1981; 100
Grainger, Lee (b0010) 1982; 101
Das, Suganthan (b0215) 2011; 15
AlRashidi, El-Hawary (b0125) 2009; 13
Baghzouz, Ertem (b0020) 1990; 5
Singh, Rao (b0025) 2012; 43
Kennedy J, Eberhart RC. A discrete binary version of the particle swarm algorithm. In: Proceedings of international conference on systems, Man, and Cybernetics, Orlando, FL, USA; 1997. p. 4104–8.
Su CT, Tsai CC. A new fuzzy reasoning approach to optimum capacitor allocation for primary distribution systems. In: Proceedings IEEE on industrial technology conference, Shanghai, China; 1996. p. 237–41.
Yoshida, Fukuyama, Takayama, Nakanishi (b0120) 2000; 15
Taher, Bagherpour (b0050) 2013; 49
Jefferies, Deane, Johnstone (b0170) 1989; 1
Jefferies (10.1016/j.ijepes.2014.07.069_b0170) 1989; 1
Goldberg (10.1016/j.ijepes.2014.07.069_b0070) 1989
Li (10.1016/j.ijepes.2014.07.069_b0175) 1998; 29
Zhao (10.1016/j.ijepes.2014.07.069_b0085) 2005; 20
Taher (10.1016/j.ijepes.2014.07.069_b0050) 2013; 49
Yang (10.1016/j.ijepes.2014.07.069_b0220) 2010
Grainger (10.1016/j.ijepes.2014.07.069_b0010) 1982; 101
Yang (10.1016/j.ijepes.2014.07.069_b0235) 2013; 40
10.1016/j.ijepes.2014.07.069_b0250
Yoshida (10.1016/j.ijepes.2014.07.069_b0120) 2000; 15
Salama (10.1016/j.ijepes.2014.07.069_b0015) 1993; 8
Grainger (10.1016/j.ijepes.2014.07.069_b0005) 1981; 100
Singh (10.1016/j.ijepes.2014.07.069_b0025) 2012; 43
Saber (10.1016/j.ijepes.2014.07.069_b0100) 2012; 34
10.1016/j.ijepes.2014.07.069_b0135
10.1016/j.ijepes.2014.07.069_b0210
Chellapilla (10.1016/j.ijepes.2014.07.069_b0145) 1998; 2
Tasgetiren (10.1016/j.ijepes.2014.07.069_b0205) 2003; 5
10.1016/j.ijepes.2014.07.069_b0040
Kalinli (10.1016/j.ijepes.2014.07.069_b0275) 2005; 59
10.1016/j.ijepes.2014.07.069_b0160
Krohling (10.1016/j.ijepes.2014.07.069_b0240) 2006; 36
Ul-Hassan (10.1016/j.ijepes.2014.07.069_b0075) 2012; 43
Eslami (10.1016/j.ijepes.2014.07.069_b0105) 2012; 43
Das (10.1016/j.ijepes.2014.07.069_b0215) 2011; 15
10.1016/j.ijepes.2014.07.069_b0245
10.1016/j.ijepes.2014.07.069_b0200
10.1016/j.ijepes.2014.07.069_b0045
10.1016/j.ijepes.2014.07.069_b0165
Baghzouz (10.1016/j.ijepes.2014.07.069_b0020) 1990; 5
AlRashidi (10.1016/j.ijepes.2014.07.069_b0125) 2009; 13
Sundhararajan (10.1016/j.ijepes.2014.07.069_b0030) 1994; 9
Li (10.1016/j.ijepes.2014.07.069_b0255) 2007
10.1016/j.ijepes.2014.07.069_b0195
10.1016/j.ijepes.2014.07.069_b0190
Ivatloo (10.1016/j.ijepes.2014.07.069_b0095) 2012; 42
Shengsong (10.1016/j.ijepes.2014.07.069_b0180) 2003; 150
10.1016/j.ijepes.2014.07.069_b0035
10.1016/j.ijepes.2014.07.069_b0155
Baran (10.1016/j.ijepes.2014.07.069_b0055) 1989; 4
Coelho (10.1016/j.ijepes.2014.07.069_b0130) 2005; vol. 32
Chakraborty (10.1016/j.ijepes.2014.07.069_b0115) 2012; 43
Coelho (10.1016/j.ijepes.2014.07.069_b0090) 2008; 30
10.1016/j.ijepes.2014.07.069_b0065
Kannan (10.1016/j.ijepes.2014.07.069_b0110) 2004; 70
10.1016/j.ijepes.2014.07.069_b0185
10.1016/j.ijepes.2014.07.069_b0140
Brandstätter (10.1016/j.ijepes.2014.07.069_b0150) 2002; 38
10.1016/j.ijepes.2014.07.069_b0260
10.1016/j.ijepes.2014.07.069_b0060
Kalinli (10.1016/j.ijepes.2014.07.069_b0270) 2004; 17
Esmin (10.1016/j.ijepes.2014.07.069_b0080) 2005; 20
10.1016/j.ijepes.2014.07.069_b0225
Yang (10.1016/j.ijepes.2014.07.069_b0230) 2014; 46
10.1016/j.ijepes.2014.07.069_b0265
References_xml – reference: Laskari EC, Parsopoulos KE, Vrahatis MN. Particle swarm optimization for integer programming. In: Proceedings of the IEEE congress on evolutionary computation, Honolulu, HI, USA; 2002. p. 1582–7.
– reference: Krohling RA. Gaussian swarm: a novel particle swarm optimization algorithm. In: Proceedings of the IEEE conference on cybernetics and intelligent systems (CIS), Singapore; 2004. p. 372–6.
– volume: 49
  start-page: 430
  year: 2013
  end-page: 448
  ident: b0050
  article-title: A new approach for optimal capacitor placement and sizing in unbalanced distorted distribution systems using hybrid honey bee colony algorithm
  publication-title: Int J Electr Power Energy Syst
– reference: Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th international symposium on micro machine and human science, Nagoya, Japan; 1995. p. 39–43.
– volume: 4
  start-page: 735
  year: 1989
  end-page: 743
  ident: b0055
  article-title: Optimal sizing of capacitors placed on a radial distribution system
  publication-title: IEEE Trans Power Deliv
– reference: Shi Y, Eberhart RC. Fuzzy adaptive particle swarm optimization. In: Proceedings of the congress on evolutionary computation, vol. 1, Honolulu, Hawaii, USA; 2002. p. 101–6.
– reference: Wang H, Liu Y, Zeng S. A hybrid particle swarm algorithm with Cauchy mutation. In: Proceedings of the IEEE swarm intelligence symposium, Honolulu, HI, USA; 2007. p. 356–60.
– reference: Su CT, Tsai CC. A new fuzzy reasoning approach to optimum capacitor allocation for primary distribution systems. In: Proceedings IEEE on industrial technology conference, Shanghai, China; 1996. p. 237–41.
– volume: 59
  start-page: 111
  year: 2005
  end-page: 1117
  ident: b0275
  article-title: A new method for adaptive IIR filter design based on tabu search algorithm
  publication-title: Int J Electron Commun
– volume: 70
  start-page: 203
  year: 2004
  end-page: 210
  ident: b0110
  article-title: Application of particle swarm optimization technique and its variants to generation expansion planning problem
  publication-title: Electric Power Syst Res
– volume: 1
  start-page: 115
  year: 1989
  end-page: 123
  ident: b0170
  article-title: An introduction to chaos
  publication-title: Electron Commun Eng J
– volume: 8
  start-page: 1529
  year: 1993
  end-page: 1535
  ident: b0015
  article-title: A simplified network approach to the var control problem for radial distribution systems
  publication-title: IEEE Trans Power Deliv
– volume: 40
  start-page: 1616
  year: 2013
  end-page: 1624
  ident: b0235
  article-title: Multiobjective cuckoo search for design optimization
  publication-title: Comput Oper Res
– reference: Shi Y, Eberhart RC. Parameter selection in particle swarm optimizer. In: Porto VW, Saravan N, Waagen D, Eiben AE, editors, Proceedings of 7th annual conference on evolutionary programming, Berlin: Springer-Verlag; 1998. p. 591–601.
– volume: 150
  start-page: 543
  year: 2003
  end-page: 547
  ident: b0180
  article-title: Hybrid algorithm of chaos optimisation and SLP for optimal power flow problems with multimodal characteristic
  publication-title: IEE Proc Generation, Transm, Distrib
– volume: 29
  start-page: 409
  year: 1998
  end-page: 419
  ident: b0175
  article-title: Optimizing complex functions by chaos search
  publication-title: Cybernetics Syst
– volume: 9
  start-page: 1499
  year: 1994
  end-page: 1507
  ident: b0030
  article-title: Optimal selection of capacitors for radial distribution systems using a genetic algorithm
  publication-title: IEEE Trans Power Syst
– volume: 15
  start-page: 1232
  year: 2000
  end-page: 1239
  ident: b0120
  article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment
  publication-title: IEEE Trans Power Syst
– reference: Wang H, Li H, Liu Y, Li C, Zeng S. Opposition-based particle swarm algorithm with Cauchy mutation. In: Proceedings of the IEEE congress on evolutionary computation, Singapore; 2007. p. 4750–6.
– reference: Kennedy J, Eberhart RC. Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks IV, Perth, Australia; 1995. p. 1942–8.
– year: 1989
  ident: b0070
  article-title: Genetic algorithms in search, optimization, and machine learning
– volume: 43
  start-page: 1467
  year: 2012
  end-page: 1478
  ident: b0105
  article-title: An efficient particle swarm optimization technique with chaotic sequence for optimal tuning and placement of PSS in power systems
  publication-title: Int J Electr Power Energy Syst
– year: 2010
  ident: b0220
  article-title: Engineering optimization: an introduction with metaheuristic applications
– reference: Su CT, Lee CS, Ho CS. Optimal selection of capacitors in distribution systems. In: Proceedings of IEEE power tech conf, Budapest, BPT99-171-42; 1999.
– reference: Su CT, Lee CS. Modified differential evolution method for capacitor placement of distribution systems. In: Proceedings of IEEE/PES T&D conference Asia and Pacific; 2002. p. 208–13.
– reference: Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of IEEE international conference on evolutionary computation, Washington, DC, USA; 1999. p. 69–73.
– volume: 43
  start-page: 364
  year: 2012
  end-page: 368
  ident: b0075
  article-title: Reduction in power transmission loss using fully informed particle swarm optimization
  publication-title: Int J Electr Power Energy Syst
– volume: 20
  start-page: 1070
  year: 2005
  end-page: 1078
  ident: b0085
  article-title: A multiagent-based particle swarm optimization approach for optimal reactive power dispatch
  publication-title: IEEE Trans Power Syst
– reference: Krohling RA, Mendel E. Bare bones particle swarm optimization with Gaussian or Cauchy jumps. In: Proceedings of the IEEE congress on evolutionary computation, Trondheim, Norway; 2009. p. 3285–91.
– volume: 2
  start-page: 91
  year: 1998
  end-page: 96
  ident: b0145
  article-title: Combining mutation operators in evolutionary programming
  publication-title: IEEE Trans Evol Comput
– reference: Yang XS. Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation, vol. 7445. Springer Lecture Notes in Computer Science, p. 240–49.
– volume: 101
  start-page: 1236
  year: 1982
  end-page: 1244
  ident: b0010
  article-title: Capacity release by shunt capacitor placement on distribution feeders: a new voltage-dependent model
  publication-title: IEEE Trans Power Apparatus Syst
– reference: Miranda V, Fonseca N. New evolutionary particle swarm algorithm (EPSO) applied to voltage/var control. In: Proceedings of the 14th power systems computation conference, Sevilla, Spain; 2002.
– volume: 43
  start-page: 1072
  year: 2012
  end-page: 1080
  ident: b0115
  article-title: Unit commitment strategy of thermal generators by using advanced fuzzy controlled binary particle swarm optimization algorithm
  publication-title: Int J Electr Power Energy Syst
– volume: 17
  start-page: 529
  year: 2004
  end-page: 542
  ident: b0270
  article-title: Training recurrent neural networks by using parallel tabu search algorithm based on crossover operation
  publication-title: Eng Appl Artif Intell
– volume: 100
  start-page: 1105
  year: 1981
  end-page: 1118
  ident: b0005
  article-title: Optimum size and location of shunt capacitors for reduction of losses on distribution feeders
  publication-title: IEEE Trans Power Apparatus Syst
– reference: Yao X, Liu Y. Fast evolutionary programming. In: Proceedings of 5th annual conference on evolutionary programming, San Diego, CA, USA; 1996. p. 451–60.
– volume: vol. 32
  year: 2005
  ident: b0130
  article-title: Predictive controller tuning using modified particle swarm optimisation based on Cauchy and Gaussian distributions
  publication-title: Soft computing: methodologies and applications
– volume: 30
  start-page: 297
  year: 2008
  end-page: 307
  ident: b0090
  article-title: Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches
  publication-title: Int J Electr Power Energy Syst
– reference: Krohling RA, Hoffmann F, Coelho LS. Co-evolutionary particle swarm optimization for min-max problems using Gaussian distribution. In: Proceedings of the congress on evolutionary computation, Portland, OR, USA; 2004. p. 959–64.
– reference: Bäck T, Fogel DB, Michalewicz Z, editors. Handbook of evolutionary computation, Bristol, Philadelphia: Institute of Physics Publishing, NY, Oxford: Oxford University Press; 1997.
– reference: Kennedy J, Eberhart RC. A discrete binary version of the particle swarm algorithm. In: Proceedings of international conference on systems, Man, and Cybernetics, Orlando, FL, USA; 1997. p. 4104–8.
– reference: Fukuyama Y, Yoshida H. A particle swarm optimization for reactive power and voltage control in electric power systems. In: Proceedings of the IEEE congress on evolutionary computation, Seoul, Korea; 2001. p. 87–93.
– volume: 5
  start-page: 650
  year: 1990
  end-page: 657
  ident: b0020
  article-title: Shunt capacitor sizing for radial distribution feeders with distorted substation voltages
  publication-title: IEEE Trans Power Deliv
– volume: 42
  start-page: 508
  year: 2012
  end-page: 516
  ident: b0095
  article-title: Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems
  publication-title: Int J Electr Power Energy Syst
– volume: 36
  start-page: 1407
  year: 2006
  end-page: 1416
  ident: b0240
  article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems
  publication-title: IEEE Trans Syst Man Cybern B Cybern
– volume: 43
  start-page: 1267
  year: 2012
  end-page: 1275
  ident: b0025
  article-title: Optimal allocation of capacitors in distribution systems using particle swarm optimization
  publication-title: Int J Electr Power Energy Syst
– volume: 13
  start-page: 913
  year: 2009
  end-page: 918
  ident: b0125
  article-title: A survey of particle swarm optimization applications in electric power systems
  publication-title: IEEE Trans Evol Comput
– volume: 46
  start-page: 1222
  year: 2014
  end-page: 1237
  ident: b0230
  article-title: Flower pollination algorithm: a novel approach for multiobjective optimization
  publication-title: Eng Optim
– volume: 20
  start-page: 859
  year: 2005
  end-page: 866
  ident: b0080
  article-title: A hybrid particle swarm optimization applied to loss power minimization
  publication-title: IEEE Trans Power Syst
– volume: 38
  start-page: 997
  year: 2002
  end-page: 1000
  ident: b0150
  article-title: Particle swarm optimization – mass-spring systems analogon
  publication-title: IEEE Trans Magn
– volume: 5
  start-page: 1
  year: 2003
  end-page: 20
  ident: b0205
  article-title: A binary particle swarm optimization algorithm for lot sizing problem
  publication-title: J Econom Social Res
– volume: 34
  start-page: 38
  year: 2012
  end-page: 46
  ident: b0100
  article-title: Economic dispatch using particle swarm optimization with bacterial foraging effect
  publication-title: Int J Electr Power Energy Syst
– volume: 15
  start-page: 4
  year: 2011
  end-page: 31
  ident: b0215
  article-title: Differential evolution: a survey of the state-of-the-art
  publication-title: IEEE Trans Evol Comput
– year: 2007
  ident: b0255
  publication-title: A fast particle swarm optimization algorithm with Cauchy mutation and natural selection strategy
– volume: 5
  start-page: 1
  issue: 2
  year: 2003
  ident: 10.1016/j.ijepes.2014.07.069_b0205
  article-title: A binary particle swarm optimization algorithm for lot sizing problem
  publication-title: J Econom Social Res
– volume: 49
  start-page: 430
  year: 2013
  ident: 10.1016/j.ijepes.2014.07.069_b0050
  article-title: A new approach for optimal capacitor placement and sizing in unbalanced distorted distribution systems using hybrid honey bee colony algorithm
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.02.003
– ident: 10.1016/j.ijepes.2014.07.069_b0225
  doi: 10.1007/978-3-642-32894-7_27
– volume: 30
  start-page: 297
  issue: 5
  year: 2008
  ident: 10.1016/j.ijepes.2014.07.069_b0090
  article-title: Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2007.08.001
– volume: 8
  start-page: 1529
  issue: 3
  year: 1993
  ident: 10.1016/j.ijepes.2014.07.069_b0015
  article-title: A simplified network approach to the var control problem for radial distribution systems
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/61.252679
– volume: 5
  start-page: 650
  issue: 2
  year: 1990
  ident: 10.1016/j.ijepes.2014.07.069_b0020
  article-title: Shunt capacitor sizing for radial distribution feeders with distorted substation voltages
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/61.53067
– volume: 100
  start-page: 1105
  issue: 3
  year: 1981
  ident: 10.1016/j.ijepes.2014.07.069_b0005
  article-title: Optimum size and location of shunt capacitors for reduction of losses on distribution feeders
  publication-title: IEEE Trans Power Apparatus Syst
  doi: 10.1109/TPAS.1981.316577
– volume: 43
  start-page: 1072
  issue: 1
  year: 2012
  ident: 10.1016/j.ijepes.2014.07.069_b0115
  article-title: Unit commitment strategy of thermal generators by using advanced fuzzy controlled binary particle swarm optimization algorithm
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.06.014
– volume: 15
  start-page: 4
  issue: 1
  year: 2011
  ident: 10.1016/j.ijepes.2014.07.069_b0215
  article-title: Differential evolution: a survey of the state-of-the-art
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2010.2059031
– volume: 43
  start-page: 1267
  issue: 1
  year: 2012
  ident: 10.1016/j.ijepes.2014.07.069_b0025
  article-title: Optimal allocation of capacitors in distribution systems using particle swarm optimization
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.06.059
– ident: 10.1016/j.ijepes.2014.07.069_b0185
  doi: 10.1109/ICSMC.1997.637339
– ident: 10.1016/j.ijepes.2014.07.069_b0190
– year: 2010
  ident: 10.1016/j.ijepes.2014.07.069_b0220
– ident: 10.1016/j.ijepes.2014.07.069_b0135
  doi: 10.1109/ICCIS.2004.1460443
– volume: 46
  start-page: 1222
  issue: 9
  year: 2014
  ident: 10.1016/j.ijepes.2014.07.069_b0230
  article-title: Flower pollination algorithm: a novel approach for multiobjective optimization
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2013.832237
– ident: 10.1016/j.ijepes.2014.07.069_b0065
  doi: 10.1109/ICNN.1995.488968
– ident: 10.1016/j.ijepes.2014.07.069_b0260
  doi: 10.1109/SIS.2007.367959
– volume: 36
  start-page: 1407
  issue: 6
  year: 2006
  ident: 10.1016/j.ijepes.2014.07.069_b0240
  article-title: Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2006.873185
– volume: 59
  start-page: 111
  issue: 2
  year: 2005
  ident: 10.1016/j.ijepes.2014.07.069_b0275
  article-title: A new method for adaptive IIR filter design based on tabu search algorithm
  publication-title: Int J Electron Commun
  doi: 10.1016/j.aeue.2004.11.003
– year: 1989
  ident: 10.1016/j.ijepes.2014.07.069_b0070
– ident: 10.1016/j.ijepes.2014.07.069_b0265
  doi: 10.1201/9781420050387
– ident: 10.1016/j.ijepes.2014.07.069_b0245
  doi: 10.1109/SIS.2007.367959
– ident: 10.1016/j.ijepes.2014.07.069_b0140
– volume: 15
  start-page: 1232
  issue: 4
  year: 2000
  ident: 10.1016/j.ijepes.2014.07.069_b0120
  article-title: A particle swarm optimization for reactive power and voltage control considering voltage security assessment
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.898095
– volume: 2
  start-page: 91
  issue: 3
  year: 1998
  ident: 10.1016/j.ijepes.2014.07.069_b0145
  article-title: Combining mutation operators in evolutionary programming
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.735431
– volume: 150
  start-page: 543
  issue: 5
  year: 2003
  ident: 10.1016/j.ijepes.2014.07.069_b0180
  article-title: Hybrid algorithm of chaos optimisation and SLP for optimal power flow problems with multimodal characteristic
  publication-title: IEE Proc Generation, Transm, Distrib
  doi: 10.1049/ip-gtd:20030561
– ident: 10.1016/j.ijepes.2014.07.069_b0035
– volume: vol. 32
  year: 2005
  ident: 10.1016/j.ijepes.2014.07.069_b0130
  article-title: Predictive controller tuning using modified particle swarm optimisation based on Cauchy and Gaussian distributions
– volume: 13
  start-page: 913
  issue: 4
  year: 2009
  ident: 10.1016/j.ijepes.2014.07.069_b0125
  article-title: A survey of particle swarm optimization applications in electric power systems
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2006.880326
– volume: 101
  start-page: 1236
  issue: 5
  year: 1982
  ident: 10.1016/j.ijepes.2014.07.069_b0010
  article-title: Capacity release by shunt capacitor placement on distribution feeders: a new voltage-dependent model
  publication-title: IEEE Trans Power Apparatus Syst
  doi: 10.1109/TPAS.1982.317385
– volume: 17
  start-page: 529
  year: 2004
  ident: 10.1016/j.ijepes.2014.07.069_b0270
  article-title: Training recurrent neural networks by using parallel tabu search algorithm based on crossover operation
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2004.04.003
– volume: 1
  start-page: 115
  issue: 3
  year: 1989
  ident: 10.1016/j.ijepes.2014.07.069_b0170
  article-title: An introduction to chaos
  publication-title: Electron Commun Eng J
  doi: 10.1049/ecej:19890024
– ident: 10.1016/j.ijepes.2014.07.069_b0060
  doi: 10.1109/MHS.1995.494215
– ident: 10.1016/j.ijepes.2014.07.069_b0045
– volume: 9
  start-page: 1499
  issue: 3
  year: 1994
  ident: 10.1016/j.ijepes.2014.07.069_b0030
  article-title: Optimal selection of capacitors for radial distribution systems using a genetic algorithm
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.336111
– volume: 43
  start-page: 1467
  issue: 1
  year: 2012
  ident: 10.1016/j.ijepes.2014.07.069_b0105
  article-title: An efficient particle swarm optimization technique with chaotic sequence for optimal tuning and placement of PSS in power systems
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.07.028
– year: 2007
  ident: 10.1016/j.ijepes.2014.07.069_b0255
– ident: 10.1016/j.ijepes.2014.07.069_b0160
  doi: 10.1007/BFb0040810
– volume: 29
  start-page: 409
  issue: 4
  year: 1998
  ident: 10.1016/j.ijepes.2014.07.069_b0175
  article-title: Optimizing complex functions by chaos search
  publication-title: Cybernetics Syst
  doi: 10.1080/019697298125678
– ident: 10.1016/j.ijepes.2014.07.069_b0200
– volume: 43
  start-page: 364
  issue: 1
  year: 2012
  ident: 10.1016/j.ijepes.2014.07.069_b0075
  article-title: Reduction in power transmission loss using fully informed particle swarm optimization
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.05.028
– volume: 40
  start-page: 1616
  issue: 6
  year: 2013
  ident: 10.1016/j.ijepes.2014.07.069_b0235
  article-title: Multiobjective cuckoo search for design optimization
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2011.09.026
– ident: 10.1016/j.ijepes.2014.07.069_b0155
  doi: 10.1109/CEC.2004.1330965
– volume: 70
  start-page: 203
  issue: 3
  year: 2004
  ident: 10.1016/j.ijepes.2014.07.069_b0110
  article-title: Application of particle swarm optimization technique and its variants to generation expansion planning problem
  publication-title: Electric Power Syst Res
  doi: 10.1016/j.epsr.2003.12.009
– ident: 10.1016/j.ijepes.2014.07.069_b0210
  doi: 10.1109/CEC.2002.1004478
– ident: 10.1016/j.ijepes.2014.07.069_b0195
  doi: 10.1109/CEC.2001.934375
– volume: 20
  start-page: 859
  issue: 2
  year: 2005
  ident: 10.1016/j.ijepes.2014.07.069_b0080
  article-title: A hybrid particle swarm optimization applied to loss power minimization
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2005.846049
– ident: 10.1016/j.ijepes.2014.07.069_b0165
  doi: 10.1109/CEC.2001.934377
– volume: 38
  start-page: 997
  issue: 2
  year: 2002
  ident: 10.1016/j.ijepes.2014.07.069_b0150
  article-title: Particle swarm optimization – mass-spring systems analogon
  publication-title: IEEE Trans Magn
  doi: 10.1109/20.996256
– volume: 4
  start-page: 735
  issue: 1
  year: 1989
  ident: 10.1016/j.ijepes.2014.07.069_b0055
  article-title: Optimal sizing of capacitors placed on a radial distribution system
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/61.19266
– volume: 20
  start-page: 1070
  issue: 2
  year: 2005
  ident: 10.1016/j.ijepes.2014.07.069_b0085
  article-title: A multiagent-based particle swarm optimization approach for optimal reactive power dispatch
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2005.846064
– volume: 42
  start-page: 508
  issue: 1
  year: 2012
  ident: 10.1016/j.ijepes.2014.07.069_b0095
  article-title: Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.04.060
– volume: 34
  start-page: 38
  issue: 1
  year: 2012
  ident: 10.1016/j.ijepes.2014.07.069_b0100
  article-title: Economic dispatch using particle swarm optimization with bacterial foraging effect
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2011.09.003
– ident: 10.1016/j.ijepes.2014.07.069_b0040
– ident: 10.1016/j.ijepes.2014.07.069_b0250
  doi: 10.1109/CEC.2009.4983361
SSID ssj0007942
Score 2.3976023
Snippet •Capacitor placement plays an important role in distribution system planning and operation.•The capacitor placement problem is a combinatorial optimization...
Capacitor placement plays an important role in distribution system planning and operation. In distribution systems of electrical energy, banks of capacitors...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 839
SubjectTerms Capacitor placement
Capacitors
Chaos theory
Combinatorial analysis
Electric potential
Energy distribution
Gaussian probability distribution
Mathematical models
Particle swarm optimization
Placement
Swarm intelligence
Voltage
Title Capacitor placement of distribution systems using particle swarm optimization approaches
URI https://dx.doi.org/10.1016/j.ijepes.2014.07.069
https://www.proquest.com/docview/1642615053
https://www.proquest.com/docview/1651457017
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 20230930
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 20230930
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: AKRWK
  dateStart: 19790101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6DXvQgrjhuRPBap03SSXuUQRkV56Qwt5CkLzKDszAL3vztvrSpG-KAt7YkkL68fC_Ll-8RchFDzGxsRSQwmEQiE0mkhWMRWGZibjLOtd8aeOi1u0_irp_2G6RT34XxtMqA_RWml2gdvrSCNVvTwaDlaUmsDMjCexb3mqBCSJ_F4PLtk-aB_sYqGiPzWQzS-vpcyfEaDGEKXrQ7EaWEp6c9_x6efgB1GX1utslWmDbSq6plO6QB412y-UVMcI_0Oxj3LA7QGS2JVn7bj04cLbw0bshqRSvh5jn1dPdnOg1_SuevejaiE4SPUbiXSWuxcZjvk6eb68dONwp5EyLLJVugxYsqF2PhdJEnmY5N5hJpUihE7NqghYHEZVaatgGQLofEYFQCrXHxEQPjB2RtPBnDIaE4-dDMSCis0ELnNhc21y7H54Jxk7gm4bW5lA2i4j63xYuq2WNDVRlZeSOrWCo0cpNEH7WmlajGivKy7gn1zTkU4v6Kmud1xykcN_4wRI9hspwrXCYyL4af8r_KoHOlEkHr6N8tOCYb-JZWuzYnZG0xW8IpzmMW5qx01DOyfnV73-29A4WX9aY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOQAHxCp2jMQ1NLGdOjmiClTWE0i9WbYzRkV0UVvEjW9nnDhsQiBxixJbcsbjN16e3xByHEPMbGxFJDCYRCITSaSFYxFYZmJuMs613xq4uW1378VlL-01SKe-C-NplQH7K0wv0Tq8aQVrtsb9fsvTklgZkIX3LC7myLxImfQrsJPXD54HOhyreIzMpzFI6_tzJcmr_whj8KrdiSg1PD3v-ef49A2py_BzvkKWw7yRnlZNWyUNGK6RpU9qguuk18HAZ3GETmjJtPL7fnTkaOG1cUNaK1opN0-p57s_0HH4VTp90ZMBHSF-DMLFTFqrjcN0g9yfn911ulFInBBZLtkMTV5UyRgLp4s8yXRsMpdIk0IhYtcGLQwkLrPStA2AdDkkBsMSaI2rjxgY3yTN4WgIW4Ti7EMzI6GwQgud21zYXLscnwvGTeK2Ca_NpWxQFffJLZ5UTR97VJWRlTeyiqVCI2-T6L3WuFLV-KO8rHtCffEOhcD_R82juuMUDhx_GqKHMHqeKlwnMq-Gn_LfyqB3pRJRa-ffLTgkC927m2t1fXF7tUsW8UtabeHskeZs8gz7OKmZmYPSad8AMWH3Ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capacitor+placement+of+distribution+systems+using+particle+swarm+optimization+approaches&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Lee%2C+Chu-Sheng&rft.au=Ayala%2C+Helon+Vicente+Hultmann&rft.au=Coelho%2C+Leandro+dos+Santos&rft.date=2015-01-01&rft.issn=0142-0615&rft.volume=64&rft.spage=839&rft.epage=851&rft_id=info:doi/10.1016%2Fj.ijepes.2014.07.069&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon