NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction

The availability of cloud computing services has enabled the widespread adoption of the “software as a service” (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-base...

Full description

Saved in:
Bibliographic Details
Published inNeuroinformatics (Totowa, N.J.) Vol. 16; no. 1; pp. 43 - 49
Main Authors Pardoe, Heath R., Kuzniecky, Ruben
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1539-2791
1559-0089
1559-0089
DOI10.1007/s12021-017-9346-9

Cover

More Information
Summary:The availability of cloud computing services has enabled the widespread adoption of the “software as a service” (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named “NAPR” (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N  = 2367, age range 6–89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1539-2791
1559-0089
1559-0089
DOI:10.1007/s12021-017-9346-9