NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction
The availability of cloud computing services has enabled the widespread adoption of the “software as a service” (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-base...
        Saved in:
      
    
          | Published in | Neuroinformatics (Totowa, N.J.) Vol. 16; no. 1; pp. 43 - 49 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.01.2018
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1539-2791 1559-0089 1559-0089  | 
| DOI | 10.1007/s12021-017-9346-9 | 
Cover
| Abstract | The availability of cloud computing services has enabled the widespread adoption of the “software as a service” (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named “NAPR” (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total
N
 = 2367, age range 6–89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods. | 
    
|---|---|
| AbstractList | The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods. The availability of cloud computing services has enabled the widespread adoption of the “software as a service” (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named “NAPR” (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6–89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods. The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods. The availability of cloud computing services has enabled the widespread adoption of the “software as a service” (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named “NAPR” (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6–89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.  | 
    
| Author | Kuzniecky, Ruben Pardoe, Heath R.  | 
    
| Author_xml | – sequence: 1 givenname: Heath R. orcidid: 0000-0002-0123-2167 surname: Pardoe fullname: Pardoe, Heath R. email: heath.pardoe@nyumc.org organization: Comprehensive Epilepsy Center, New York University School of Medicine – sequence: 2 givenname: Ruben surname: Kuzniecky fullname: Kuzniecky, Ruben organization: Comprehensive Epilepsy Center, New York University School of Medicine  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29058212$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kU1LxDAQhoMo6q7-AC9S8OIlmu90PLkufoGoiJ5DTBOpto0mLeK_t8sqiKCXmTk878vMvBO02sXOI7RDyQElRB9mygijmFCNgQuFYQVtUikBE1LC6mLmgJkGuoEmOT8TwpQmZB1tMCCyZJRtouPr2e3dUWGLeROHCp_Y7KviLNnWv8f0UoSYims_pGg728e2drYpZk--uE2-ql1fx24LrQXbZL_91afo4ez0fn6Br27OL-ezK-y4Zj3minIqgQUGzFah0uqRaQUWhOAlAAUdgiAyQOkdd1qWzgGVKqhguWJS8CnaX_q-pvg2-Nybts7ON43tfByyoSCFYExrPqJ7v9DnOKRu3G6kgCshNOiR2v2ihsfWV-Y11a1NH-b7NyOgl4BLMefkg3F1bxc398nWjaHELFIwyxTMmIJZpDCWKaK_lN_m_2nYUpNHtnvy6cfSf4o-ATcYlQw | 
    
| CitedBy_id | crossref_primary_10_1016_j_neurobiolaging_2021_10_004 crossref_primary_10_1002_hbm_25253 crossref_primary_10_1002_hbm_25792 crossref_primary_10_1016_j_neuroimage_2019_116226 crossref_primary_10_1007_s12021_020_09468_6 crossref_primary_10_1093_cercor_bhac490 crossref_primary_10_1016_j_neuroimage_2019_05_025 crossref_primary_10_1007_s11042_020_10377_8 crossref_primary_10_1016_j_neuroimage_2024_120881 crossref_primary_10_1007_s00429_023_02686_z crossref_primary_10_1038_s41598_022_17315_8 crossref_primary_10_1016_j_pnpbp_2024_111062 crossref_primary_10_3389_fninf_2024_1496143 crossref_primary_10_1001_jamanetworkopen_2022_54581 crossref_primary_10_1007_s12021_024_09653_x crossref_primary_10_3389_frdem_2024_1380015 crossref_primary_10_1007_s11357_023_00924_0 crossref_primary_10_3389_fnagi_2018_00252 crossref_primary_10_1002_hbm_24899 crossref_primary_10_1002_hbm_24588 crossref_primary_10_3389_fnagi_2023_1215957 crossref_primary_10_3390_brainsci12050579 crossref_primary_10_1016_j_biotno_2024_08_001 crossref_primary_10_1093_cercor_bhaa014  | 
    
| Cites_doi | 10.1007/s12021-015-9263-8 10.1038/sdata.2014.49 10.1016/j.dcn.2013.02.003 10.1016/j.neuroimage.2016.04.007 10.1016/j.neuroimage.2014.12.006 10.1038/nn.4393 10.1002/hbm.23397 10.1073/pnas.200033797 10.3389/fninf.2011.00013 10.3389/fnagi.2014.00094 10.1212/WNL.0b013e318245d295 10.1016/j.neuroimage.2016.11.005 10.3389/fnins.2012.00152 10.1016/j.neuroimage.2012.08.001 10.1016/j.neurobiolaging.2017.04.006 10.1038/mp.2013.78 10.3389/fninf.2012.00022 10.1162/jocn.2010.21513 10.1016/j.neuroimage.2010.01.005 10.1073/pnas.1506264112 10.1126/science.1194144 10.1016/j.neuroimage.2005.11.042 10.1016/j.neuroimage.2016.05.005 10.1016/j.neuroimage.2014.05.044 10.1093/cercor/bhl066 10.1371/journal.pone.0067346 10.1002/hbm.23180 10.1038/sdata.2016.44 10.1007/s12021-008-9036-8 10.1007/s12021-013-9178-1 10.1093/schbul/sbt142 10.7551/mitpress/3206.001.0001 10.1016/j.neuroimage.2017.07.059 10.1038/mp.2017.62 10.1016/j.neuroimage.2014.12.006. 10.1002/ana.24367  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media, LLC 2017 Neuroinformatics is a copyright of Springer, (2017). All Rights Reserved.  | 
    
| Copyright_xml | – notice: Springer Science+Business Media, LLC 2017 – notice: Neuroinformatics is a copyright of Springer, (2017). All Rights Reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88A 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8  | 
    
| DOI | 10.1007/s12021-017-9346-9 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central (NIESG) Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Psychology Database (NIESG) Biological Science Database (Proquest) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology | 
    
| EISSN | 1559-0089 | 
    
| EndPage | 49 | 
    
| ExternalDocumentID | 29058212 10_1007_s12021_017_9346_9  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Finding A Cure for Epilepsy and Seizures (US) – fundername: Amazon Web Services (US)  | 
    
| GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 203 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 53G 5VS 67N 6NX 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZQEC B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMCUK HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV LK8 LLZTM M0L M1P M2M M4Y M7P MA- NPVJJ NQJWS NU0 O9- O9J OVD P2P PF- PQQKQ PROAC PSQYO PSYQQ PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TEORI TSG TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z83 Z88 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8  | 
    
| ID | FETCH-LOGICAL-c372t-36131592f292adfd76b2769a9443899197ff405f98ec3c758cc9156f6fa362543 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1539-2791 1559-0089  | 
    
| IngestDate | Fri Sep 05 10:08:55 EDT 2025 Tue Oct 07 05:30:02 EDT 2025 Thu Apr 03 06:58:57 EDT 2025 Wed Oct 01 05:03:15 EDT 2025 Thu Apr 24 23:11:13 EDT 2025 Fri Feb 21 02:26:54 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Cloud computing Age prediction Morphometry Software as a service  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c372t-36131592f292adfd76b2769a9443899197ff405f98ec3c758cc9156f6fa362543 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-0123-2167 | 
    
| PMID | 29058212 | 
    
| PQID | 1993644797 | 
    
| PQPubID | 54206 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | proquest_miscellaneous_1954422773 proquest_journals_1993644797 pubmed_primary_29058212 crossref_citationtrail_10_1007_s12021_017_9346_9 crossref_primary_10_1007_s12021_017_9346_9 springer_journals_10_1007_s12021_017_9346_9  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20180100 2018-1-00 2018-01-00 20180101  | 
    
| PublicationDateYYYYMMDD | 2018-01-01 | 
    
| PublicationDate_xml | – month: 1 year: 2018 text: 20180100  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: United States – name: Totowa  | 
    
| PublicationTitle | Neuroinformatics (Totowa, N.J.) | 
    
| PublicationTitleAbbrev | Neuroinform | 
    
| PublicationTitleAlternate | Neuroinformatics | 
    
| PublicationYear | 2018 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Im, Lee, Lee, Shin, Kim, Kwon (CR20) 2006; 31 Sowell, Peterson, Kan, Woods, Yoshii, Bansal (CR38) 2007; 17 Reuter, Tisdall, Qureshi, Buckner, Kouwe, van der Fischl (CR34) 2015; 107 Liem, Varoquaux, Kynast, Beyer, Masouleh, Huntenburg (CR25) 2017; 148 Gorgolewski, Alfaro-Almagro, Auer, Bellec, Capot, Chakravarty (CR18) 2017; e1005209 (CR8) 2016 Savalia, Agres, Chan, Feczko, Kennedy, Wig (CR36) 2017; 38 Rodrigue, Kennedy, Devous, Rieck, Hebrank, Diaz-Arrastia (CR35) 2012; 78 Tipping (CR39) 2001; 1 Tustison, Cook, Klein, Song, Das, Duda (CR40) 2014; 99 CR33 Luo, Kennedy, Cohen (CR27) 2009; 7 Chee, Zheng, Goh, Park, Sutton (CR3) 2011; 23 Luders, Cherbuin, Gaser (CR26) 2016; 134 CR30 Zuo, Anderson, Bellec, Birn, Biswal, Blautzik (CR41) 2014; 1 Belsky, Caspi, Houts, Cohen, Corcoran, Danese (CR2) 2015; 112 Halchenko, Hanke (CR19) 2012; 6 Cole, Annus, Wilson, Remtulla, Hong, Fryer (CR4) 2017; 56 Franke, Ristow, Gaser (CR14) 2014; 6 CR6 Alexander-Bloch, Clasen, Stockman, Ronan, Lalonde, Giedd (CR1) 2016; 37 CR5 Dosenbach, Nardos, Cohen, Fair, Power, Church (CR10) 2010; 329 Gorgolewski, Auer, Calhoun, Craddock, Das, Duff (CR17) 2016; 3 CR7 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (CR32) 2011; 12 Gaser, Franke, Kloppel, Koutsouleris, Sauer (CR15) 2013; 8 CR24 Nooner, Colcombe, Tobe, Mennes, Benedict, Moreno (CR29) 2012; 6 Pardoe, Hiess, Kuzniecky (CR31) 2016; 135 Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu (CR28) 2016; 19 CR21 Kennedy, Haselgrove, Riehl, Preuss, Buccigrossi (CR22) 2015; 13 Di Martino, Yan, Li, Denio, Castellanos, Alaerts (CR9) 2014; 19 Franke, Luders, May, Wilke, Gaser (CR13) 2012; 63 Gorgolewski, Burns, Madison, Clark, Halchenko, Waskom (CR16) 2011; 5 Fischl, Dale (CR11) 2000; 97 Schrouff, Rosa, Rondina, Marquand, Chu, Ashburner (CR37) 2013; 11 Franke, Ziegler, Klöppel, Gaser (CR12) 2010; 50 Koolschijn, Crone (CR23) 2013; 5 K Gorgolewski (9346_CR16) 2011; 5 F Pedregosa (9346_CR32) 2011; 12 HR Pardoe (9346_CR31) 2016; 135 Y Halchenko (9346_CR19) 2012; 6 XN Zuo (9346_CR41) 2014; 1 MWL Chee (9346_CR3) 2011; 23 PC Koolschijn (9346_CR23) 2013; 5 9346_CR33 NK Savalia (9346_CR36) 2017; 38 K Franke (9346_CR13) 2012; 63 9346_CR30 K Franke (9346_CR14) 2014; 6 KL Miller (9346_CR28) 2016; 19 JH Cole (9346_CR4) 2017; 56 KJ Gorgolewski (9346_CR18) 2017; e1005209 R Core Team (9346_CR8) 2016 E Luders (9346_CR26) 2016; 134 J Schrouff (9346_CR37) 2013; 11 K Im (9346_CR20) 2006; 31 ER Sowell (9346_CR38) 2007; 17 KM Rodrigue (9346_CR35) 2012; 78 9346_CR5 XZ Luo (9346_CR27) 2009; 7 9346_CR7 B Fischl (9346_CR11) 2000; 97 A Alexander-Bloch (9346_CR1) 2016; 37 9346_CR6 NJ Tustison (9346_CR40) 2014; 99 NU Dosenbach (9346_CR10) 2010; 329 9346_CR24 K Nooner (9346_CR29) 2012; 6 C Gaser (9346_CR15) 2013; 8 9346_CR21 DN Kennedy (9346_CR22) 2015; 13 M Reuter (9346_CR34) 2015; 107 DW Belsky (9346_CR2) 2015; 112 A Martino Di (9346_CR9) 2014; 19 KJ Gorgolewski (9346_CR17) 2016; 3 F Liem (9346_CR25) 2017; 148 K Franke (9346_CR12) 2010; 50 ME Tipping (9346_CR39) 2001; 1  | 
    
| References_xml | – volume: 13 start-page: 383 year: 2015 end-page: 386 ident: CR22 article-title: The three NITRCs: A guide to neuroimaging Neuroinformatics resources publication-title: Neuroinformatics doi: 10.1007/s12021-015-9263-8 – volume: 1 year: 2014 ident: CR41 article-title: An open science resource for establishing reliability and reproducibility in functional connectomics publication-title: Sci Data. doi: 10.1038/sdata.2014.49 – volume: 5 start-page: 106 year: 2013 end-page: 118 ident: CR23 article-title: Sex differences and structural brain maturation from childhood to early adulthood publication-title: Dev Cogn Neurosci doi: 10.1016/j.dcn.2013.02.003 – volume: 134 start-page: 508 year: 2016 end-page: 513 ident: CR26 article-title: Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.04.007 – ident: CR30 – ident: CR33 – volume: 107 start-page: 107 year: 2015 end-page: 115 ident: CR34 article-title: Head motion during {mri} acquisition reduces gray matter volume and thickness estimates publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.12.006 – ident: CR6 – volume: 19 start-page: 1523 year: 2016 end-page: 1536 ident: CR28 article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study publication-title: Nat Neurosci doi: 10.1038/nn.4393 – volume: 38 start-page: 472 year: 2017 end-page: 492 ident: CR36 article-title: Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion publication-title: Hum Brain Mapp doi: 10.1002/hbm.23397 – volume: 97 start-page: 11050 year: 2000 end-page: 11055 ident: CR11 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.200033797 – volume: 5 year: 2011 ident: CR16 article-title: Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python publication-title: Frontiers in Neuroinformatics. doi: 10.3389/fninf.2011.00013 – volume: 6 year: 2014 ident: CR14 article-title: Gender-specific impact of personal health parameters on individual brain aging in cognitively unimpaired elderly subjects publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2014.00094 – volume: 78 start-page: 387 year: 2012 end-page: 395 ident: CR35 article-title: β-amyloid burden in healthy aging: Regional distribution and cognitive consequences publication-title: Neurology doi: 10.1212/WNL.0b013e318245d295 – volume: 148 start-page: 179 year: 2017 end-page: 188 ident: CR25 article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.11.005 – volume: 6 year: 2012 ident: CR29 article-title: The nki-rockland sample: A model for accelerating the pace of discovery science in psychiatry publication-title: Front Neurosci doi: 10.3389/fnins.2012.00152 – volume: 1 start-page: 211 year: 2001 end-page: 244 ident: CR39 article-title: Sparse bayesian learning and the relevance vector machine publication-title: J Mach Learn Res – ident: CR21 – volume: 63 start-page: 1305 year: 2012 end-page: 1312 ident: CR13 article-title: Brain maturation: Predicting individual brainage in children and adolescents using structural MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.08.001 – volume: 56 start-page: 41 year: 2017 end-page: 49 ident: CR4 article-title: Brain-predicted age in down syndrome is associated with beta amyloid deposition and cognitive decline publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2017.04.006 – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: CR9 article-title: The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol Psychiatry doi: 10.1038/mp.2013.78 – volume: 6 year: 2012 ident: CR19 article-title: Open is not enough. let’s take the next step: An integrated, community-driven computing platform for neuroscience publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2012.00022 – volume: 23 start-page: 1065 year: 2011 end-page: 1079 ident: CR3 article-title: Brain structure in young and old east asians and westerners: Comparisons of structural volume and cortical thickness publication-title: J Cogn Neurosci doi: 10.1162/jocn.2010.21513 – volume: 50 start-page: 883 year: 2010 end-page: 892 ident: CR12 article-title: Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: Exploring the influence of various parameters publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.005 – volume: 112 start-page: E4104 year: 2015 end-page: E4110 ident: CR2 article-title: Quantification of biological aging in young adults publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1506264112 – year: 2016 ident: CR8 publication-title: R: A language and environment for statistical computing – volume: 329 start-page: 1358 year: 2010 end-page: 1361 ident: CR10 article-title: Prediction of individual brain maturity using fMRI publication-title: Science doi: 10.1126/science.1194144 – volume: 31 start-page: 31 year: 2006 end-page: 38 ident: CR20 article-title: Gender difference analysis of cortical thickness in healthy young adults with surface-based methods publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.11.042 – volume: 135 start-page: 177 year: 2016 end-page: 185 ident: CR31 article-title: Motion and morphometry in clinical and nonclinical populations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.05.005 – volume: 99 start-page: 166 year: 2014 end-page: 179 ident: CR40 article-title: Large-scale evaluation of ants and freesurfer cortical thickness measurements publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.05.044 – volume: 17 start-page: 1550 year: 2007 end-page: 1560 ident: CR38 article-title: Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age publication-title: Cereb Cortex doi: 10.1093/cercor/bhl066 – volume: e1005209 start-page: 13 year: 2017 ident: CR18 article-title: BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods publication-title: PLoS Comput Biol – volume: 8 year: 2013 ident: CR15 article-title: BrainAGE in mild cognitive impaired patients: Predicting the conversion to Alzheimer’s disease publication-title: PLoS One doi: 10.1371/journal.pone.0067346 – volume: 37 start-page: 2385 year: 2016 end-page: 2397 ident: CR1 article-title: Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo mri publication-title: Hum Brain Mapp doi: 10.1002/hbm.23180 – ident: CR5 – ident: CR7 – volume: 3 year: 2016 ident: CR17 article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments publication-title: Sci Data doi: 10.1038/sdata.2016.44 – volume: 7 start-page: 55 year: 2009 end-page: 56 ident: CR27 article-title: Neuroimaging informatics tools and resources clearinghouse (NITRC) resource announcement publication-title: Neuroinformatics doi: 10.1007/s12021-008-9036-8 – volume: 11 start-page: 319 year: 2013 end-page: 337 ident: CR37 article-title: PRoNTo: Pattern recognition for neuroimaging toolbox publication-title: Neuroinformatics doi: 10.1007/s12021-013-9178-1 – ident: CR24 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR32 article-title: Scikit-learn: Machine learning in python publication-title: J Mach Learn Res – volume: 63 start-page: 1305 year: 2012 ident: 9346_CR13 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.08.001 – volume: 11 start-page: 319 year: 2013 ident: 9346_CR37 publication-title: Neuroinformatics doi: 10.1007/s12021-013-9178-1 – volume: 1 start-page: 211 year: 2001 ident: 9346_CR39 publication-title: J Mach Learn Res – volume: 37 start-page: 2385 year: 2016 ident: 9346_CR1 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23180 – volume-title: R: A language and environment for statistical computing year: 2016 ident: 9346_CR8 – volume: 6 year: 2012 ident: 9346_CR19 publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2012.00022 – volume: 112 start-page: E4104 year: 2015 ident: 9346_CR2 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1506264112 – volume: 5 year: 2011 ident: 9346_CR16 publication-title: Frontiers in Neuroinformatics. doi: 10.3389/fninf.2011.00013 – volume: 5 start-page: 106 year: 2013 ident: 9346_CR23 publication-title: Dev Cogn Neurosci doi: 10.1016/j.dcn.2013.02.003 – volume: 6 year: 2012 ident: 9346_CR29 publication-title: Front Neurosci doi: 10.3389/fnins.2012.00152 – ident: 9346_CR24 doi: 10.1093/schbul/sbt142 – volume: 6 year: 2014 ident: 9346_CR14 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2014.00094 – volume: 134 start-page: 508 year: 2016 ident: 9346_CR26 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.04.007 – volume: 148 start-page: 179 year: 2017 ident: 9346_CR25 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.11.005 – ident: 9346_CR33 doi: 10.7551/mitpress/3206.001.0001 – ident: 9346_CR5 doi: 10.1016/j.neuroimage.2017.07.059 – volume: 97 start-page: 11050 year: 2000 ident: 9346_CR11 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.200033797 – volume: 17 start-page: 1550 year: 2007 ident: 9346_CR38 publication-title: Cereb Cortex doi: 10.1093/cercor/bhl066 – volume: e1005209 start-page: 13 year: 2017 ident: 9346_CR18 publication-title: PLoS Comput Biol – ident: 9346_CR6 doi: 10.1038/mp.2017.62 – ident: 9346_CR30 – volume: 78 start-page: 387 year: 2012 ident: 9346_CR35 publication-title: Neurology doi: 10.1212/WNL.0b013e318245d295 – volume: 23 start-page: 1065 year: 2011 ident: 9346_CR3 publication-title: J Cogn Neurosci doi: 10.1162/jocn.2010.21513 – volume: 107 start-page: 107 year: 2015 ident: 9346_CR34 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.12.006. – ident: 9346_CR7 doi: 10.1002/ana.24367 – volume: 31 start-page: 31 year: 2006 ident: 9346_CR20 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.11.042 – volume: 1 year: 2014 ident: 9346_CR41 publication-title: Sci Data. – volume: 99 start-page: 166 year: 2014 ident: 9346_CR40 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.05.044 – volume: 7 start-page: 55 year: 2009 ident: 9346_CR27 publication-title: Neuroinformatics doi: 10.1007/s12021-008-9036-8 – volume: 135 start-page: 177 year: 2016 ident: 9346_CR31 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.05.005 – volume: 8 year: 2013 ident: 9346_CR15 publication-title: PLoS One doi: 10.1371/journal.pone.0067346 – volume: 19 start-page: 659 year: 2014 ident: 9346_CR9 publication-title: Mol Psychiatry doi: 10.1038/mp.2013.78 – volume: 50 start-page: 883 year: 2010 ident: 9346_CR12 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.005 – volume: 13 start-page: 383 year: 2015 ident: 9346_CR22 publication-title: Neuroinformatics doi: 10.1007/s12021-015-9263-8 – ident: 9346_CR21 – volume: 19 start-page: 1523 year: 2016 ident: 9346_CR28 publication-title: Nat Neurosci doi: 10.1038/nn.4393 – volume: 3 year: 2016 ident: 9346_CR17 publication-title: Sci Data doi: 10.1038/sdata.2016.44 – volume: 12 start-page: 2825 year: 2011 ident: 9346_CR32 publication-title: J Mach Learn Res – volume: 329 start-page: 1358 year: 2010 ident: 9346_CR10 publication-title: Science doi: 10.1126/science.1194144 – volume: 38 start-page: 472 year: 2017 ident: 9346_CR36 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23397 – volume: 56 start-page: 41 year: 2017 ident: 9346_CR4 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2017.04.006  | 
    
| SSID | ssj0026700 | 
    
| Score | 2.2873883 | 
    
| Snippet | The availability of cloud computing services has enabled the widespread adoption of the “software as a service” (SaaS) approach for software distribution,... The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution,...  | 
    
| SourceID | proquest pubmed crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 43 | 
    
| SubjectTerms | Adolescent Adult Age Aged Aged, 80 and over Aging - pathology Aging - physiology Anatomy Bioinformatics Biomedical and Life Sciences Biomedicine Brain architecture Brain mapping Cerebral Cortex - cytology Cerebral Cortex - diagnostic imaging Cerebral Cortex - physiology Child Cloud Computing - trends Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer programs Cortex Databases, Factual - trends Forecasting Humans Internet Learning algorithms Magnetic resonance imaging Magnetic Resonance Imaging - trends Medical imaging Middle Aged Neuroimaging Neurology Neurosciences Software Software Original Article Software services Young Adult  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central (NIESG) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5dJLVUofaaEyUtUDldXE8cYZJAQLYoV6WK0QSNwix7G5QJbH7oF_3xlvsrRCcI6TWDOemW88L4AfJXk9pBittC5DqUNBItXUmSxdatESBA4uZltMitML_edyeLkGk74WhtMqe50YFXUzc3xH_psTzch2GzQHt3eSp0ZxdLUfoWG70QrNfmwx9gbWFXfGGsD60clkerZywbqiFBJzlMpg1sc5YzGd4nQF1tqY60Li_5bqGfx8FjqNFmn8Ht51UFKMlrzfgDXffoDNUUtu9M2j-Clicme8Nd-Ew8loerYnrDi-ni0aeUS2qxHjPjFLEHIVsU2HjW8z48ToyovpPcdxmHcf4WJ8cn58KrvhCdLlRs1lTnaaoIoKCpVtQmOKWpkCLWqed44ZmhAIrAUsvcsdeQ3OIflyoQiWbNpQ559g0M5a_wVEXSufZ3ro07TRpvBlnRkCRr4OOZapMwmkPaEq13UW5wEX19VTT2SmbUW0rZi2FSawu3rldtlW47XFWz31q07CHqqn85DAzuoxyQYHPGzrZwteM9RaKWPyBD4vubb6m8KUa4RVAr96Nv7z8Ze28vX1rXyDtwSoyuUVzRYM5vcLv02gZV5_707iX9oO42I priority: 102 providerName: ProQuest  | 
    
| Title | NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction | 
    
| URI | https://link.springer.com/article/10.1007/s12021-017-9346-9 https://www.ncbi.nlm.nih.gov/pubmed/29058212 https://www.proquest.com/docview/1993644797 https://www.proquest.com/docview/1954422773  | 
    
| Volume | 16 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1559-0089 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026700 issn: 1539-2791 databaseCode: AFBBN dateStart: 20030301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1559-0089 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026700 issn: 1539-2791 databaseCode: AGYKE dateStart: 20030101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1559-0089 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0026700 issn: 1539-2791 databaseCode: U2A dateStart: 20030301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8CetllYnxsha4y0sQBZClxnDhvpwXUrtqkqkJU6k6R49hcIEW0PfDf85wmZQiGtFMO_oree_b7Pb8PA3xLyeqhg1FzbULk0iW0pcoi5KkJNGqCwM7U0RbjZDSVv2bxrMnjXrTR7q1Lsj6pn5PdhA8n8KcqRjLhuA2d2FfzIiGeimxjZTV5J7STkQuFYevKfGuKl8roFcJ85R2tlc5wFz42aJFla_Z-gi1b7cF-VpGlfPfITlkdv1lfjO_Dj3E2ufrONLu8na9KfkHqqWTDNvaKEThldSUOXY_2vGHZjWWTB--q8ew5gOlwcH054s37CNxESix5RKqY0IhwAoUuXamSQqgENUr_pDmGqJwjPOYwtSYyZBgYg2SuucRpUluxjA5hp5pX9guwohA2CmVsg6CUKrFpESrCPrZwEaaBUV0IWkLlpike7t-wuM2fyx572uZE29zTNscunG2G3K8rZ7zXuddSP2820SL3sYUE1xTS8iebZhJ_79PQlZ2vfJ9YSiGUirrwec21zWoCA58GLLpw3rLxr8n_9StH_9X7GD4QhErXlzI92Fk-rOxXginLog_baqb60Ml-_vk9oO_FYDy56tfC-gTa1t1X | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gPOiLUfFjEbUm6oOmYbftbXdMiB7I5RC8XAgkvK3dbusL7CHcxfDP-bc57e0eGiJvPG_bbabTmd90vgDeFGT1kGA03NgMufI5Xam6ynhhU4OGILC3MdpilA-P1Nfj3vES_O5yYUJYZScTo6CuJza8kW-EQDPS3Rr1p7OfPHSNCt7VroWGaVsr1JuxxFib2LHnLn-RCXexufuFzvutEIOdw-0hb7sMcCu1mHJJCo10uvAChal9rfNK6BwNqtAYHDPU3hOq8Vg4Ky3Ba2uRjB6fe0PCv6ckrXsHVpRUSMbfytbOaHywMPnaJBgSK8iFxqzzq8bkPRHCI4KWQKlyjv9qxmtw95qrNmrAwQO430JX1p_z2kNYcs0jWO03ZLafXrJ3LAaTxlf6Vfg86o8PPjLDtk8ms5pvka6s2aALBGOElFksC2Li7MAorP_DsfF58BsFXnkMR7dCxiew3Ewa9wxYVQknM9VzaVornbuiyjQBMVd5iUVqdQJpR6jStpXMQ0ONk_KqBnOgbUm0LQNtS0zg_WLK2byMx02D1zvql-2Nviiv-C-B14vPdBeDg8U0bjILY3pKCaG1TODp_NQWfxOYhpxkkcCH7hj_Wvx_W1m7eSuv4O7w8Nt-ub872nsO9wjMFfPnoXVYnp7P3AsCTNPqZcuVDL7f9kX4A9Y5HlM | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuCCiPlAJGAg4gq4ntjTNICJaWVUvRaoWotLfUcWwuJdvHrlD_Gr-OsZPsgip66zm2Y43HM994XgAvC7J6SDAabmyGXPmcrlRdZbywqUFDENjbGG0xzvcO1ZfpYLoGv_tcmBBW2cvEKKjrmQ1v5Nsh0Ix0t0a97buwiMnu6MPJKQ8dpIKntW-n0bLIgbv4Rebb-fv9XTrrV0KMPn_f2eNdhwFupRZzLkmZkT4XXqAwta91Xgmdo0EVmoJjhtp7QjQeC2elJWhtLZLB43NvSPAPlKR1b8BNLSWGcEI9XRl7XfoLCRTkQmPWe1Rj2p4IgRFBP6BUOcd_deIloHvJSRt13-gu3OlAKxu2XHYP1lxzHzaGDRnsPy_YaxbDSOP7_AZ8HA8n394xw3aOZ4uafyItWbNRHwLGCCOzWBDExNmBRdjwh2OTs-AxClzyAA6vhYgPYb2ZNe4xsKoSTmZq4NK0Vjp3RZVpgmCu8hKL1OoE0p5Qpe1qmIdWGsflqvpyoG1JtC0DbUtM4M1yyklbwOOqwVs99cvuLp-XK85L4MXyM93C4FoxjZstwpiBUkJoLRN41J7a8m8C05CNLBJ42x_jX4v_byubV2_lOdwi9i-_7o8PnsBtQnFF-y60Bevzs4V7SkhpXj2LLMng6LrvwB_XkRvt | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAPR%3A+a+Cloud-Based+Framework+for+Neuroanatomical+Age+Prediction&rft.jtitle=Neuroinformatics+%28Totowa%2C+N.J.%29&rft.au=Pardoe%2C+Heath+R&rft.au=Kuzniecky%2C+Ruben&rft.date=2018-01-01&rft.issn=1559-0089&rft.eissn=1559-0089&rft.volume=16&rft.issue=1&rft.spage=43&rft_id=info:doi/10.1007%2Fs12021-017-9346-9&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-2791&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-2791&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-2791&client=summon |