NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction

The availability of cloud computing services has enabled the widespread adoption of the “software as a service” (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-base...

Full description

Saved in:
Bibliographic Details
Published inNeuroinformatics (Totowa, N.J.) Vol. 16; no. 1; pp. 43 - 49
Main Authors Pardoe, Heath R., Kuzniecky, Ruben
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1539-2791
1559-0089
1559-0089
DOI10.1007/s12021-017-9346-9

Cover

Abstract The availability of cloud computing services has enabled the widespread adoption of the “software as a service” (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named “NAPR” (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N  = 2367, age range 6–89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.
AbstractList The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.
The availability of cloud computing services has enabled the widespread adoption of the “software as a service” (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named “NAPR” (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N  = 2367, age range 6–89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.
The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.
The availability of cloud computing services has enabled the widespread adoption of the “software as a service” (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named “NAPR” (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6–89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.
Author Kuzniecky, Ruben
Pardoe, Heath R.
Author_xml – sequence: 1
  givenname: Heath R.
  orcidid: 0000-0002-0123-2167
  surname: Pardoe
  fullname: Pardoe, Heath R.
  email: heath.pardoe@nyumc.org
  organization: Comprehensive Epilepsy Center, New York University School of Medicine
– sequence: 2
  givenname: Ruben
  surname: Kuzniecky
  fullname: Kuzniecky, Ruben
  organization: Comprehensive Epilepsy Center, New York University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29058212$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoMo6q7-AC9S8OIlmu90PLkufoGoiJ5DTBOpto0mLeK_t8sqiKCXmTk878vMvBO02sXOI7RDyQElRB9mygijmFCNgQuFYQVtUikBE1LC6mLmgJkGuoEmOT8TwpQmZB1tMCCyZJRtouPr2e3dUWGLeROHCp_Y7KviLNnWv8f0UoSYims_pGg728e2drYpZk--uE2-ql1fx24LrQXbZL_91afo4ez0fn6Br27OL-ezK-y4Zj3minIqgQUGzFah0uqRaQUWhOAlAAUdgiAyQOkdd1qWzgGVKqhguWJS8CnaX_q-pvg2-Nybts7ON43tfByyoSCFYExrPqJ7v9DnOKRu3G6kgCshNOiR2v2ihsfWV-Y11a1NH-b7NyOgl4BLMefkg3F1bxc398nWjaHELFIwyxTMmIJZpDCWKaK_lN_m_2nYUpNHtnvy6cfSf4o-ATcYlQw
CitedBy_id crossref_primary_10_1016_j_neurobiolaging_2021_10_004
crossref_primary_10_1002_hbm_25253
crossref_primary_10_1002_hbm_25792
crossref_primary_10_1016_j_neuroimage_2019_116226
crossref_primary_10_1007_s12021_020_09468_6
crossref_primary_10_1093_cercor_bhac490
crossref_primary_10_1016_j_neuroimage_2019_05_025
crossref_primary_10_1007_s11042_020_10377_8
crossref_primary_10_1016_j_neuroimage_2024_120881
crossref_primary_10_1007_s00429_023_02686_z
crossref_primary_10_1038_s41598_022_17315_8
crossref_primary_10_1016_j_pnpbp_2024_111062
crossref_primary_10_3389_fninf_2024_1496143
crossref_primary_10_1001_jamanetworkopen_2022_54581
crossref_primary_10_1007_s12021_024_09653_x
crossref_primary_10_3389_frdem_2024_1380015
crossref_primary_10_1007_s11357_023_00924_0
crossref_primary_10_3389_fnagi_2018_00252
crossref_primary_10_1002_hbm_24899
crossref_primary_10_1002_hbm_24588
crossref_primary_10_3389_fnagi_2023_1215957
crossref_primary_10_3390_brainsci12050579
crossref_primary_10_1016_j_biotno_2024_08_001
crossref_primary_10_1093_cercor_bhaa014
Cites_doi 10.1007/s12021-015-9263-8
10.1038/sdata.2014.49
10.1016/j.dcn.2013.02.003
10.1016/j.neuroimage.2016.04.007
10.1016/j.neuroimage.2014.12.006
10.1038/nn.4393
10.1002/hbm.23397
10.1073/pnas.200033797
10.3389/fninf.2011.00013
10.3389/fnagi.2014.00094
10.1212/WNL.0b013e318245d295
10.1016/j.neuroimage.2016.11.005
10.3389/fnins.2012.00152
10.1016/j.neuroimage.2012.08.001
10.1016/j.neurobiolaging.2017.04.006
10.1038/mp.2013.78
10.3389/fninf.2012.00022
10.1162/jocn.2010.21513
10.1016/j.neuroimage.2010.01.005
10.1073/pnas.1506264112
10.1126/science.1194144
10.1016/j.neuroimage.2005.11.042
10.1016/j.neuroimage.2016.05.005
10.1016/j.neuroimage.2014.05.044
10.1093/cercor/bhl066
10.1371/journal.pone.0067346
10.1002/hbm.23180
10.1038/sdata.2016.44
10.1007/s12021-008-9036-8
10.1007/s12021-013-9178-1
10.1093/schbul/sbt142
10.7551/mitpress/3206.001.0001
10.1016/j.neuroimage.2017.07.059
10.1038/mp.2017.62
10.1016/j.neuroimage.2014.12.006.
10.1002/ana.24367
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2017
Neuroinformatics is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC 2017
– notice: Neuroinformatics is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88A
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
DOI 10.1007/s12021-017-9346-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central (NIESG)
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Psychology Database (NIESG)
Biological Science Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1559-0089
EndPage 49
ExternalDocumentID 29058212
10_1007_s12021_017_9346_9
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Finding A Cure for Epilepsy and Seizures (US)
– fundername: Amazon Web Services (US)
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
203
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
53G
5VS
67N
6NX
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LK8
LLZTM
M0L
M1P
M2M
M4Y
M7P
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OVD
P2P
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TEORI
TSG
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z83
Z88
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c372t-36131592f292adfd76b2769a9443899197ff405f98ec3c758cc9156f6fa362543
IEDL.DBID U2A
ISSN 1539-2791
1559-0089
IngestDate Fri Sep 05 10:08:55 EDT 2025
Tue Oct 07 05:30:02 EDT 2025
Thu Apr 03 06:58:57 EDT 2025
Wed Oct 01 05:03:15 EDT 2025
Thu Apr 24 23:11:13 EDT 2025
Fri Feb 21 02:26:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cloud computing
Age prediction
Morphometry
Software as a service
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-36131592f292adfd76b2769a9443899197ff405f98ec3c758cc9156f6fa362543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0123-2167
PMID 29058212
PQID 1993644797
PQPubID 54206
PageCount 7
ParticipantIDs proquest_miscellaneous_1954422773
proquest_journals_1993644797
pubmed_primary_29058212
crossref_citationtrail_10_1007_s12021_017_9346_9
crossref_primary_10_1007_s12021_017_9346_9
springer_journals_10_1007_s12021_017_9346_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180100
2018-1-00
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 1
  year: 2018
  text: 20180100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Totowa
PublicationTitle Neuroinformatics (Totowa, N.J.)
PublicationTitleAbbrev Neuroinform
PublicationTitleAlternate Neuroinformatics
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Im, Lee, Lee, Shin, Kim, Kwon (CR20) 2006; 31
Sowell, Peterson, Kan, Woods, Yoshii, Bansal (CR38) 2007; 17
Reuter, Tisdall, Qureshi, Buckner, Kouwe, van der Fischl (CR34) 2015; 107
Liem, Varoquaux, Kynast, Beyer, Masouleh, Huntenburg (CR25) 2017; 148
Gorgolewski, Alfaro-Almagro, Auer, Bellec, Capot, Chakravarty (CR18) 2017; e1005209
(CR8) 2016
Savalia, Agres, Chan, Feczko, Kennedy, Wig (CR36) 2017; 38
Rodrigue, Kennedy, Devous, Rieck, Hebrank, Diaz-Arrastia (CR35) 2012; 78
Tipping (CR39) 2001; 1
Tustison, Cook, Klein, Song, Das, Duda (CR40) 2014; 99
CR33
Luo, Kennedy, Cohen (CR27) 2009; 7
Chee, Zheng, Goh, Park, Sutton (CR3) 2011; 23
Luders, Cherbuin, Gaser (CR26) 2016; 134
CR30
Zuo, Anderson, Bellec, Birn, Biswal, Blautzik (CR41) 2014; 1
Belsky, Caspi, Houts, Cohen, Corcoran, Danese (CR2) 2015; 112
Halchenko, Hanke (CR19) 2012; 6
Cole, Annus, Wilson, Remtulla, Hong, Fryer (CR4) 2017; 56
Franke, Ristow, Gaser (CR14) 2014; 6
CR6
Alexander-Bloch, Clasen, Stockman, Ronan, Lalonde, Giedd (CR1) 2016; 37
CR5
Dosenbach, Nardos, Cohen, Fair, Power, Church (CR10) 2010; 329
Gorgolewski, Auer, Calhoun, Craddock, Das, Duff (CR17) 2016; 3
CR7
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (CR32) 2011; 12
Gaser, Franke, Kloppel, Koutsouleris, Sauer (CR15) 2013; 8
CR24
Nooner, Colcombe, Tobe, Mennes, Benedict, Moreno (CR29) 2012; 6
Pardoe, Hiess, Kuzniecky (CR31) 2016; 135
Miller, Alfaro-Almagro, Bangerter, Thomas, Yacoub, Xu (CR28) 2016; 19
CR21
Kennedy, Haselgrove, Riehl, Preuss, Buccigrossi (CR22) 2015; 13
Di Martino, Yan, Li, Denio, Castellanos, Alaerts (CR9) 2014; 19
Franke, Luders, May, Wilke, Gaser (CR13) 2012; 63
Gorgolewski, Burns, Madison, Clark, Halchenko, Waskom (CR16) 2011; 5
Fischl, Dale (CR11) 2000; 97
Schrouff, Rosa, Rondina, Marquand, Chu, Ashburner (CR37) 2013; 11
Franke, Ziegler, Klöppel, Gaser (CR12) 2010; 50
Koolschijn, Crone (CR23) 2013; 5
K Gorgolewski (9346_CR16) 2011; 5
F Pedregosa (9346_CR32) 2011; 12
HR Pardoe (9346_CR31) 2016; 135
Y Halchenko (9346_CR19) 2012; 6
XN Zuo (9346_CR41) 2014; 1
MWL Chee (9346_CR3) 2011; 23
PC Koolschijn (9346_CR23) 2013; 5
9346_CR33
NK Savalia (9346_CR36) 2017; 38
K Franke (9346_CR13) 2012; 63
9346_CR30
K Franke (9346_CR14) 2014; 6
KL Miller (9346_CR28) 2016; 19
JH Cole (9346_CR4) 2017; 56
KJ Gorgolewski (9346_CR18) 2017; e1005209
R Core Team (9346_CR8) 2016
E Luders (9346_CR26) 2016; 134
J Schrouff (9346_CR37) 2013; 11
K Im (9346_CR20) 2006; 31
ER Sowell (9346_CR38) 2007; 17
KM Rodrigue (9346_CR35) 2012; 78
9346_CR5
XZ Luo (9346_CR27) 2009; 7
9346_CR7
B Fischl (9346_CR11) 2000; 97
A Alexander-Bloch (9346_CR1) 2016; 37
9346_CR6
NJ Tustison (9346_CR40) 2014; 99
NU Dosenbach (9346_CR10) 2010; 329
9346_CR24
K Nooner (9346_CR29) 2012; 6
C Gaser (9346_CR15) 2013; 8
9346_CR21
DN Kennedy (9346_CR22) 2015; 13
M Reuter (9346_CR34) 2015; 107
DW Belsky (9346_CR2) 2015; 112
A Martino Di (9346_CR9) 2014; 19
KJ Gorgolewski (9346_CR17) 2016; 3
F Liem (9346_CR25) 2017; 148
K Franke (9346_CR12) 2010; 50
ME Tipping (9346_CR39) 2001; 1
References_xml – volume: 13
  start-page: 383
  year: 2015
  end-page: 386
  ident: CR22
  article-title: The three NITRCs: A guide to neuroimaging Neuroinformatics resources
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-015-9263-8
– volume: 1
  year: 2014
  ident: CR41
  article-title: An open science resource for establishing reliability and reproducibility in functional connectomics
  publication-title: Sci Data.
  doi: 10.1038/sdata.2014.49
– volume: 5
  start-page: 106
  year: 2013
  end-page: 118
  ident: CR23
  article-title: Sex differences and structural brain maturation from childhood to early adulthood
  publication-title: Dev Cogn Neurosci
  doi: 10.1016/j.dcn.2013.02.003
– volume: 134
  start-page: 508
  year: 2016
  end-page: 513
  ident: CR26
  article-title: Estimating brain age using high-resolution pattern recognition: Younger brains in long-term meditation practitioners
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.04.007
– ident: CR30
– ident: CR33
– volume: 107
  start-page: 107
  year: 2015
  end-page: 115
  ident: CR34
  article-title: Head motion during {mri} acquisition reduces gray matter volume and thickness estimates
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.006
– ident: CR6
– volume: 19
  start-page: 1523
  year: 2016
  end-page: 1536
  ident: CR28
  article-title: Multimodal population brain imaging in the UK biobank prospective epidemiological study
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4393
– volume: 38
  start-page: 472
  year: 2017
  end-page: 492
  ident: CR36
  article-title: Motion-related artifacts in structural brain images revealed with independent estimates of in-scanner head motion
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23397
– volume: 97
  start-page: 11050
  year: 2000
  end-page: 11055
  ident: CR11
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.200033797
– volume: 5
  year: 2011
  ident: CR16
  article-title: Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python
  publication-title: Frontiers in Neuroinformatics.
  doi: 10.3389/fninf.2011.00013
– volume: 6
  year: 2014
  ident: CR14
  article-title: Gender-specific impact of personal health parameters on individual brain aging in cognitively unimpaired elderly subjects
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2014.00094
– volume: 78
  start-page: 387
  year: 2012
  end-page: 395
  ident: CR35
  article-title: β-amyloid burden in healthy aging: Regional distribution and cognitive consequences
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318245d295
– volume: 148
  start-page: 179
  year: 2017
  end-page: 188
  ident: CR25
  article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.005
– volume: 6
  year: 2012
  ident: CR29
  article-title: The nki-rockland sample: A model for accelerating the pace of discovery science in psychiatry
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2012.00152
– volume: 1
  start-page: 211
  year: 2001
  end-page: 244
  ident: CR39
  article-title: Sparse bayesian learning and the relevance vector machine
  publication-title: J Mach Learn Res
– ident: CR21
– volume: 63
  start-page: 1305
  year: 2012
  end-page: 1312
  ident: CR13
  article-title: Brain maturation: Predicting individual brainage in children and adolescents using structural MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.08.001
– volume: 56
  start-page: 41
  year: 2017
  end-page: 49
  ident: CR4
  article-title: Brain-predicted age in down syndrome is associated with beta amyloid deposition and cognitive decline
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2017.04.006
– volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  ident: CR9
  article-title: The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2013.78
– volume: 6
  year: 2012
  ident: CR19
  article-title: Open is not enough. let’s take the next step: An integrated, community-driven computing platform for neuroscience
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2012.00022
– volume: 23
  start-page: 1065
  year: 2011
  end-page: 1079
  ident: CR3
  article-title: Brain structure in young and old east asians and westerners: Comparisons of structural volume and cortical thickness
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn.2010.21513
– volume: 50
  start-page: 883
  year: 2010
  end-page: 892
  ident: CR12
  article-title: Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: Exploring the influence of various parameters
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.005
– volume: 112
  start-page: E4104
  year: 2015
  end-page: E4110
  ident: CR2
  article-title: Quantification of biological aging in young adults
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1506264112
– year: 2016
  ident: CR8
  publication-title: R: A language and environment for statistical computing
– volume: 329
  start-page: 1358
  year: 2010
  end-page: 1361
  ident: CR10
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
  doi: 10.1126/science.1194144
– volume: 31
  start-page: 31
  year: 2006
  end-page: 38
  ident: CR20
  article-title: Gender difference analysis of cortical thickness in healthy young adults with surface-based methods
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.11.042
– volume: 135
  start-page: 177
  year: 2016
  end-page: 185
  ident: CR31
  article-title: Motion and morphometry in clinical and nonclinical populations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.05.005
– volume: 99
  start-page: 166
  year: 2014
  end-page: 179
  ident: CR40
  article-title: Large-scale evaluation of ants and freesurfer cortical thickness measurements
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.05.044
– volume: 17
  start-page: 1550
  year: 2007
  end-page: 1560
  ident: CR38
  article-title: Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhl066
– volume: e1005209
  start-page: 13
  year: 2017
  ident: CR18
  article-title: BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods
  publication-title: PLoS Comput Biol
– volume: 8
  year: 2013
  ident: CR15
  article-title: BrainAGE in mild cognitive impaired patients: Predicting the conversion to Alzheimer’s disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0067346
– volume: 37
  start-page: 2385
  year: 2016
  end-page: 2397
  ident: CR1
  article-title: Subtle in-scanner motion biases automated measurement of brain anatomy from in vivo mri
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23180
– ident: CR5
– ident: CR7
– volume: 3
  year: 2016
  ident: CR17
  article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.44
– volume: 7
  start-page: 55
  year: 2009
  end-page: 56
  ident: CR27
  article-title: Neuroimaging informatics tools and resources clearinghouse (NITRC) resource announcement
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-008-9036-8
– volume: 11
  start-page: 319
  year: 2013
  end-page: 337
  ident: CR37
  article-title: PRoNTo: Pattern recognition for neuroimaging toolbox
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-013-9178-1
– ident: CR24
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR32
  article-title: Scikit-learn: Machine learning in python
  publication-title: J Mach Learn Res
– volume: 63
  start-page: 1305
  year: 2012
  ident: 9346_CR13
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.08.001
– volume: 11
  start-page: 319
  year: 2013
  ident: 9346_CR37
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-013-9178-1
– volume: 1
  start-page: 211
  year: 2001
  ident: 9346_CR39
  publication-title: J Mach Learn Res
– volume: 37
  start-page: 2385
  year: 2016
  ident: 9346_CR1
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23180
– volume-title: R: A language and environment for statistical computing
  year: 2016
  ident: 9346_CR8
– volume: 6
  year: 2012
  ident: 9346_CR19
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2012.00022
– volume: 112
  start-page: E4104
  year: 2015
  ident: 9346_CR2
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1506264112
– volume: 5
  year: 2011
  ident: 9346_CR16
  publication-title: Frontiers in Neuroinformatics.
  doi: 10.3389/fninf.2011.00013
– volume: 5
  start-page: 106
  year: 2013
  ident: 9346_CR23
  publication-title: Dev Cogn Neurosci
  doi: 10.1016/j.dcn.2013.02.003
– volume: 6
  year: 2012
  ident: 9346_CR29
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2012.00152
– ident: 9346_CR24
  doi: 10.1093/schbul/sbt142
– volume: 6
  year: 2014
  ident: 9346_CR14
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2014.00094
– volume: 134
  start-page: 508
  year: 2016
  ident: 9346_CR26
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.04.007
– volume: 148
  start-page: 179
  year: 2017
  ident: 9346_CR25
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.005
– ident: 9346_CR33
  doi: 10.7551/mitpress/3206.001.0001
– ident: 9346_CR5
  doi: 10.1016/j.neuroimage.2017.07.059
– volume: 97
  start-page: 11050
  year: 2000
  ident: 9346_CR11
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.200033797
– volume: 17
  start-page: 1550
  year: 2007
  ident: 9346_CR38
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhl066
– volume: e1005209
  start-page: 13
  year: 2017
  ident: 9346_CR18
  publication-title: PLoS Comput Biol
– ident: 9346_CR6
  doi: 10.1038/mp.2017.62
– ident: 9346_CR30
– volume: 78
  start-page: 387
  year: 2012
  ident: 9346_CR35
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318245d295
– volume: 23
  start-page: 1065
  year: 2011
  ident: 9346_CR3
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn.2010.21513
– volume: 107
  start-page: 107
  year: 2015
  ident: 9346_CR34
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.006.
– ident: 9346_CR7
  doi: 10.1002/ana.24367
– volume: 31
  start-page: 31
  year: 2006
  ident: 9346_CR20
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.11.042
– volume: 1
  year: 2014
  ident: 9346_CR41
  publication-title: Sci Data.
– volume: 99
  start-page: 166
  year: 2014
  ident: 9346_CR40
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.05.044
– volume: 7
  start-page: 55
  year: 2009
  ident: 9346_CR27
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-008-9036-8
– volume: 135
  start-page: 177
  year: 2016
  ident: 9346_CR31
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.05.005
– volume: 8
  year: 2013
  ident: 9346_CR15
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0067346
– volume: 19
  start-page: 659
  year: 2014
  ident: 9346_CR9
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2013.78
– volume: 50
  start-page: 883
  year: 2010
  ident: 9346_CR12
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.005
– volume: 13
  start-page: 383
  year: 2015
  ident: 9346_CR22
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-015-9263-8
– ident: 9346_CR21
– volume: 19
  start-page: 1523
  year: 2016
  ident: 9346_CR28
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4393
– volume: 3
  year: 2016
  ident: 9346_CR17
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.44
– volume: 12
  start-page: 2825
  year: 2011
  ident: 9346_CR32
  publication-title: J Mach Learn Res
– volume: 329
  start-page: 1358
  year: 2010
  ident: 9346_CR10
  publication-title: Science
  doi: 10.1126/science.1194144
– volume: 38
  start-page: 472
  year: 2017
  ident: 9346_CR36
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23397
– volume: 56
  start-page: 41
  year: 2017
  ident: 9346_CR4
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2017.04.006
SSID ssj0026700
Score 2.2873883
Snippet The availability of cloud computing services has enabled the widespread adoption of the “software as a service” (SaaS) approach for software distribution,...
The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution,...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 43
SubjectTerms Adolescent
Adult
Age
Aged
Aged, 80 and over
Aging - pathology
Aging - physiology
Anatomy
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Brain architecture
Brain mapping
Cerebral Cortex - cytology
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - physiology
Child
Cloud Computing - trends
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer programs
Cortex
Databases, Factual - trends
Forecasting
Humans
Internet
Learning algorithms
Magnetic resonance imaging
Magnetic Resonance Imaging - trends
Medical imaging
Middle Aged
Neuroimaging
Neurology
Neurosciences
Software
Software Original Article
Software services
Young Adult
SummonAdditionalLinks – databaseName: ProQuest Central (NIESG)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5dJLVUofaaEyUtUDldXE8cYZJAQLYoV6WK0QSNwix7G5QJbH7oF_3xlvsrRCcI6TWDOemW88L4AfJXk9pBittC5DqUNBItXUmSxdatESBA4uZltMitML_edyeLkGk74WhtMqe50YFXUzc3xH_psTzch2GzQHt3eSp0ZxdLUfoWG70QrNfmwx9gbWFXfGGsD60clkerZywbqiFBJzlMpg1sc5YzGd4nQF1tqY60Li_5bqGfx8FjqNFmn8Ht51UFKMlrzfgDXffoDNUUtu9M2j-Clicme8Nd-Ew8loerYnrDi-ni0aeUS2qxHjPjFLEHIVsU2HjW8z48ToyovpPcdxmHcf4WJ8cn58KrvhCdLlRs1lTnaaoIoKCpVtQmOKWpkCLWqed44ZmhAIrAUsvcsdeQ3OIflyoQiWbNpQ559g0M5a_wVEXSufZ3ro07TRpvBlnRkCRr4OOZapMwmkPaEq13UW5wEX19VTT2SmbUW0rZi2FSawu3rldtlW47XFWz31q07CHqqn85DAzuoxyQYHPGzrZwteM9RaKWPyBD4vubb6m8KUa4RVAr96Nv7z8Ze28vX1rXyDtwSoyuUVzRYM5vcLv02gZV5_707iX9oO42I
  priority: 102
  providerName: ProQuest
Title NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction
URI https://link.springer.com/article/10.1007/s12021-017-9346-9
https://www.ncbi.nlm.nih.gov/pubmed/29058212
https://www.proquest.com/docview/1993644797
https://www.proquest.com/docview/1954422773
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1559-0089
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026700
  issn: 1539-2791
  databaseCode: AFBBN
  dateStart: 20030301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1559-0089
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026700
  issn: 1539-2791
  databaseCode: AGYKE
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1559-0089
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0026700
  issn: 1539-2791
  databaseCode: U2A
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH8CetllYnxsha4y0sQBZClxnDhvpwXUrtqkqkJU6k6R49hcIEW0PfDf85wmZQiGtFMO_oree_b7Pb8PA3xLyeqhg1FzbULk0iW0pcoi5KkJNGqCwM7U0RbjZDSVv2bxrMnjXrTR7q1Lsj6pn5PdhA8n8KcqRjLhuA2d2FfzIiGeimxjZTV5J7STkQuFYevKfGuKl8roFcJ85R2tlc5wFz42aJFla_Z-gi1b7cF-VpGlfPfITlkdv1lfjO_Dj3E2ufrONLu8na9KfkHqqWTDNvaKEThldSUOXY_2vGHZjWWTB--q8ew5gOlwcH054s37CNxESix5RKqY0IhwAoUuXamSQqgENUr_pDmGqJwjPOYwtSYyZBgYg2SuucRpUluxjA5hp5pX9guwohA2CmVsg6CUKrFpESrCPrZwEaaBUV0IWkLlpike7t-wuM2fyx572uZE29zTNscunG2G3K8rZ7zXuddSP2820SL3sYUE1xTS8iebZhJ_79PQlZ2vfJ9YSiGUirrwec21zWoCA58GLLpw3rLxr8n_9StH_9X7GD4QhErXlzI92Fk-rOxXginLog_baqb60Ml-_vk9oO_FYDy56tfC-gTa1t1X
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gPOiLUfFjEbUm6oOmYbftbXdMiB7I5RC8XAgkvK3dbusL7CHcxfDP-bc57e0eGiJvPG_bbabTmd90vgDeFGT1kGA03NgMufI5Xam6ynhhU4OGILC3MdpilA-P1Nfj3vES_O5yYUJYZScTo6CuJza8kW-EQDPS3Rr1p7OfPHSNCt7VroWGaVsr1JuxxFib2LHnLn-RCXexufuFzvutEIOdw-0hb7sMcCu1mHJJCo10uvAChal9rfNK6BwNqtAYHDPU3hOq8Vg4Ky3Ba2uRjB6fe0PCv6ckrXsHVpRUSMbfytbOaHywMPnaJBgSK8iFxqzzq8bkPRHCI4KWQKlyjv9qxmtw95qrNmrAwQO430JX1p_z2kNYcs0jWO03ZLafXrJ3LAaTxlf6Vfg86o8PPjLDtk8ms5pvka6s2aALBGOElFksC2Li7MAorP_DsfF58BsFXnkMR7dCxiew3Ewa9wxYVQknM9VzaVornbuiyjQBMVd5iUVqdQJpR6jStpXMQ0ONk_KqBnOgbUm0LQNtS0zg_WLK2byMx02D1zvql-2Nviiv-C-B14vPdBeDg8U0bjILY3pKCaG1TODp_NQWfxOYhpxkkcCH7hj_Wvx_W1m7eSuv4O7w8Nt-ub872nsO9wjMFfPnoXVYnp7P3AsCTNPqZcuVDL7f9kX4A9Y5HlM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuCCiPlAJGAg4gq4ntjTNICJaWVUvRaoWotLfUcWwuJdvHrlD_Gr-OsZPsgip66zm2Y43HM994XgAvC7J6SDAabmyGXPmcrlRdZbywqUFDENjbGG0xzvcO1ZfpYLoGv_tcmBBW2cvEKKjrmQ1v5Nsh0Ix0t0a97buwiMnu6MPJKQ8dpIKntW-n0bLIgbv4Rebb-fv9XTrrV0KMPn_f2eNdhwFupRZzLkmZkT4XXqAwta91Xgmdo0EVmoJjhtp7QjQeC2elJWhtLZLB43NvSPAPlKR1b8BNLSWGcEI9XRl7XfoLCRTkQmPWe1Rj2p4IgRFBP6BUOcd_deIloHvJSRt13-gu3OlAKxu2XHYP1lxzHzaGDRnsPy_YaxbDSOP7_AZ8HA8n394xw3aOZ4uafyItWbNRHwLGCCOzWBDExNmBRdjwh2OTs-AxClzyAA6vhYgPYb2ZNe4xsKoSTmZq4NK0Vjp3RZVpgmCu8hKL1OoE0p5Qpe1qmIdWGsflqvpyoG1JtC0DbUtM4M1yyklbwOOqwVs99cvuLp-XK85L4MXyM93C4FoxjZstwpiBUkJoLRN41J7a8m8C05CNLBJ42x_jX4v_byubV2_lOdwi9i-_7o8PnsBtQnFF-y60Bevzs4V7SkhpXj2LLMng6LrvwB_XkRvt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NAPR%3A+a+Cloud-Based+Framework+for+Neuroanatomical+Age+Prediction&rft.jtitle=Neuroinformatics+%28Totowa%2C+N.J.%29&rft.au=Pardoe%2C+Heath+R&rft.au=Kuzniecky%2C+Ruben&rft.date=2018-01-01&rft.issn=1559-0089&rft.eissn=1559-0089&rft.volume=16&rft.issue=1&rft.spage=43&rft_id=info:doi/10.1007%2Fs12021-017-9346-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-2791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-2791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-2791&client=summon