Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes?

Geochemical data are typically reported as compositions, in the form of some proportions such as weight percents, parts per million, etc., subject to a constant sum (e.g. 100%, 1,000,000ppm). This latter implies that such data are “closed”; that is, for a composition of D-components, only D−1 compon...

Full description

Saved in:
Bibliographic Details
Published inJournal of geochemical exploration Vol. 141; pp. 1 - 5
Main Authors Buccianti, A., Grunsky, E.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2014
Subjects
Online AccessGet full text
ISSN0375-6742
1879-1689
DOI10.1016/j.gexplo.2014.03.022

Cover

Abstract Geochemical data are typically reported as compositions, in the form of some proportions such as weight percents, parts per million, etc., subject to a constant sum (e.g. 100%, 1,000,000ppm). This latter implies that such data are “closed”; that is, for a composition of D-components, only D−1 components are required. The statistical analysis of compositional data has been a major issue for more than 100years. The problem of spurious correlation, introduced by Karl Pearson in 1897, affects all data measuring parts of some whole, which are by definition, constrained; and such type of measurements are present in all fields of geochemical research. The use of the log-ratio transform was introduced by John Aitchison to overcome these constraints by opening the data into the real number space, within which standard statistical methods can be applied. However, many statisticians and users of statistics in the field of geochemistry are unaware of the problems affecting compositional data, as well as solutions that overcome these problems. A look into the ISI Web of Science and Scopus databases shows that most papers where compositional data are the core of a geochemical research continue to ignore methods to correctly manage constrained data. A key question is how we can demonstrate that the interpretation of the behaviour of chemical species in natural environment and in geochemical processes is improved when the compositional constraint of geochemical data is taken into account through the use of new methods. In order to achieve this aim, this special issue of the Journal of Geochemical Exploration focuses on the correct statistical analysis of compositional data. Applications in exploration, monitoring and environments by considering several geological matrices are presented and discussed illustrating that several paths can be followed to understand how geochemical processes work.
AbstractList Geochemical data are typically reported as compositions, in the form of some proportions such as weight percents, parts per million, etc., subject to a constant sum (e.g. 100%, 1,000,000 ppm). This latter implies that such data are "closed" that is, for a composition of D-components, only D - 1 components are required. The statistical analysis of compositional data has been a major issue for more than 100 years. The problem of spurious correlation, introduced by Karl Pearson in 1897, affects all data measuring parts of some whole, which are by definition, constrained; and such type of measurements are present in all fields of geochemical research. The use of the log-ratio transform was introduced by John Aitchison to overcome these constraints by opening the data into the real number space, within which standard statistical methods can be applied. However, many statisticians and users of statistics in the field of geochemistry are unaware of the problems affecting compositional data, as well as solutions that overcome these problems. A look into the ISI Web of Science and Scopus databases shows that most papers where compositional data are the core of a geochemical research continue to ignore methods to correctly manage constrained data. A key question is how we can demonstrate that the interpretation of the behaviour of chemical species in natural environment and in geochemical processes is improved when the compositional constraint of geochemical data is taken into account through the use of new methods. In order to achieve this aim, this special issue of the Journal of Geochemical Exploration focuses on the correct statistical analysis of compositional data. Applications in exploration, monitoring and environments by considering several geological matrices are presented and discussed illustrating that several paths can be followed to understand how geochemical processes work.
Geochemical data are typically reported as compositions, in the form of some proportions such as weight percents, parts per million, etc., subject to a constant sum (e.g. 100%, 1,000,000ppm). This latter implies that such data are “closed”; that is, for a composition of D-components, only D−1 components are required. The statistical analysis of compositional data has been a major issue for more than 100years. The problem of spurious correlation, introduced by Karl Pearson in 1897, affects all data measuring parts of some whole, which are by definition, constrained; and such type of measurements are present in all fields of geochemical research. The use of the log-ratio transform was introduced by John Aitchison to overcome these constraints by opening the data into the real number space, within which standard statistical methods can be applied. However, many statisticians and users of statistics in the field of geochemistry are unaware of the problems affecting compositional data, as well as solutions that overcome these problems. A look into the ISI Web of Science and Scopus databases shows that most papers where compositional data are the core of a geochemical research continue to ignore methods to correctly manage constrained data. A key question is how we can demonstrate that the interpretation of the behaviour of chemical species in natural environment and in geochemical processes is improved when the compositional constraint of geochemical data is taken into account through the use of new methods. In order to achieve this aim, this special issue of the Journal of Geochemical Exploration focuses on the correct statistical analysis of compositional data. Applications in exploration, monitoring and environments by considering several geological matrices are presented and discussed illustrating that several paths can be followed to understand how geochemical processes work.
Author Grunsky, E.
Buccianti, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Buccianti
  fullname: Buccianti, A.
  email: antonella.buccianti@unifi.it
  organization: Department of Earth Sciences, University of Florence, Italy
– sequence: 2
  givenname: E.
  surname: Grunsky
  fullname: Grunsky, E.
  organization: Geological Survey of Canada, Ottawa, Ontario K1A 0E8, Canada
BookMark eNqFUcFu1DAUtFCR2Bb-gIOPXBLsOLGTHkDVCihSJS5wtmzneeuVN178HOj-PV4tJw709N6TZuZpZq7J1ZIWIOQtZy1nXL7ftzt4OsbUdoz3LRMt67oXZMNHNTVcjtMV2TChhkaqvntFrhH3jDGuerkhcZsOx4ShhLSYSGdTDDV1O2FAGha6g-Qe4RCw5NMtvctAfwPFtc6SKEI9H02hGUyMJ5qcWzPSec1h2dHFlDVXzWNODhABP74mL72JCG_-zhvy4_On79v75uHbl6_bu4fGCdWVRnBl2AjGW9n70XLlvbXDMHk5ejuzubocvZNqGqTlnRwNt7a3k7ecCwPCiRvy7qJbX_9cAYuuBhzEaBZIK2quBjFwIRV_Hio7xvq-F6pCby9QlxNiBq9dKOYcXMkmRM2ZPreh9_rShj63oZnQtY1K7v8hH3M4mHx6jvbhQoMa168AWaMLsDiYQwZX9JzC_wX-ANbpqoc
CitedBy_id crossref_primary_10_1007_s00217_017_3022_z
crossref_primary_10_3390_molecules26195752
crossref_primary_10_1007_s10661_022_10421_0
crossref_primary_10_1016_j_gexplo_2017_03_013
crossref_primary_10_1016_j_gexplo_2018_01_002
crossref_primary_10_1016_j_gexplo_2023_107327
crossref_primary_10_1144_geochem2016_449
crossref_primary_10_1080_03088839_2021_1972175
crossref_primary_10_1080_10618600_2022_2144330
crossref_primary_10_1016_j_gexplo_2015_11_004
crossref_primary_10_1016_j_gexplo_2016_03_009
crossref_primary_10_1016_j_apgeochem_2020_104798
crossref_primary_10_1016_j_apgeochem_2023_105644
crossref_primary_10_1109_ACCESS_2019_2948800
crossref_primary_10_1007_s10653_023_01537_4
crossref_primary_10_1016_j_gexplo_2022_106983
crossref_primary_10_1016_j_oregeorev_2016_12_024
crossref_primary_10_1144_geochem2019_031
crossref_primary_10_1016_j_gexplo_2021_106923
crossref_primary_10_1016_j_spasta_2024_100843
crossref_primary_10_1007_s11053_018_9423_2
crossref_primary_10_1007_s10661_021_08849_x
crossref_primary_10_1016_j_gexplo_2023_107297
crossref_primary_10_1144_geochem2016_453
crossref_primary_10_1144_geochem2016_455
crossref_primary_10_3390_geosciences15010020
crossref_primary_10_1016_j_gexplo_2016_11_013
crossref_primary_10_1016_j_gexplo_2019_05_003
crossref_primary_10_1016_j_jsames_2021_103361
crossref_primary_10_1016_j_apgeochem_2020_104843
crossref_primary_10_1180_clm_2018_26
crossref_primary_10_1016_j_apgeochem_2021_105113
crossref_primary_10_1007_s11053_017_9346_3
crossref_primary_10_1016_j_scitotenv_2021_152383
crossref_primary_10_1007_s12520_024_01965_y
crossref_primary_10_1016_j_apgeochem_2020_104574
crossref_primary_10_1016_j_acags_2019_100007
crossref_primary_10_1016_j_apgeochem_2021_105108
crossref_primary_10_1007_s11222_024_10427_3
crossref_primary_10_1007_s11053_019_09586_2
crossref_primary_10_3390_min13111399
crossref_primary_10_1007_s11356_024_33899_2
crossref_primary_10_1016_j_gexplo_2021_106783
crossref_primary_10_1016_j_oregeorev_2019_103115
crossref_primary_10_1016_j_catena_2023_107083
crossref_primary_10_3390_ijerph15102248
crossref_primary_10_1016_j_gexplo_2017_07_014
crossref_primary_10_1109_JSTARS_2020_3011221
crossref_primary_10_1190_geo2021_0365_1
crossref_primary_10_1016_j_gexplo_2022_107012
crossref_primary_10_1111_ejss_12206
crossref_primary_10_3390_app14062597
crossref_primary_10_1016_j_apgeochem_2016_05_008
crossref_primary_10_1007_s12145_023_01184_4
crossref_primary_10_1007_s10653_023_01508_9
crossref_primary_10_1016_j_gexplo_2015_10_006
crossref_primary_10_1038_s41598_019_42238_2
crossref_primary_10_1016_j_jenvman_2016_07_017
crossref_primary_10_1515_pac_2022_0801
crossref_primary_10_3389_esss_2021_10039
crossref_primary_10_3762_bjnano_10_202
crossref_primary_10_1016_j_oregeorev_2020_103875
crossref_primary_10_1007_s11053_019_09467_8
crossref_primary_10_1016_j_gexplo_2014_12_003
crossref_primary_10_1007_s41207_024_00470_x
crossref_primary_10_1007_s00477_020_01900_2
crossref_primary_10_1016_j_gexplo_2014_10_010
crossref_primary_10_1016_j_oregeorev_2024_106001
crossref_primary_10_1016_j_envpol_2019_01_122
crossref_primary_10_1515_pac_2019_0906
crossref_primary_10_1016_j_apgeochem_2022_105459
crossref_primary_10_1016_j_gexplo_2024_107473
crossref_primary_10_1016_j_cageo_2020_104455
crossref_primary_10_1002_gea_21968
crossref_primary_10_1016_j_gexplo_2022_107112
crossref_primary_10_1016_j_chemgeo_2023_121915
crossref_primary_10_1186_s12932_019_0065_z
crossref_primary_10_1007_s12517_021_09004_z
crossref_primary_10_1016_j_scijus_2023_11_003
crossref_primary_10_3390_w15132308
crossref_primary_10_1144_geochem2022_009
crossref_primary_10_1016_j_apgeochem_2024_106146
crossref_primary_10_1016_j_ancene_2025_100464
crossref_primary_10_1016_j_ecss_2015_03_031
crossref_primary_10_1016_j_jafrearsci_2014_09_003
crossref_primary_10_1016_j_jasrep_2024_104493
crossref_primary_10_1016_j_gexplo_2022_107104
crossref_primary_10_1016_j_gexplo_2025_107669
crossref_primary_10_1144_geochem2017_037
crossref_primary_10_1007_s10653_019_00347_x
crossref_primary_10_1016_j_gexplo_2024_107425
crossref_primary_10_1289_EHP577
crossref_primary_10_1016_j_scitotenv_2022_159383
crossref_primary_10_2138_am_2023_8976
crossref_primary_10_1016_j_oregeorev_2018_11_026
crossref_primary_10_1016_j_gexplo_2014_07_005
crossref_primary_10_1016_j_measurement_2020_107947
crossref_primary_10_1029_2018GC008154
crossref_primary_10_1016_j_apgeochem_2022_105263
crossref_primary_10_1016_j_oregeorev_2022_104988
crossref_primary_10_1016_j_scitotenv_2025_178704
crossref_primary_10_1016_j_apgeochem_2021_105147
crossref_primary_10_3390_min7110212
crossref_primary_10_1016_j_chemgeo_2024_122481
crossref_primary_10_1016_j_scitotenv_2024_173132
crossref_primary_10_1016_j_scitotenv_2020_143864
crossref_primary_10_1016_j_gexplo_2024_107494
crossref_primary_10_1016_j_talanta_2018_07_049
crossref_primary_10_1111_1755_6724_14404
Cites_doi 10.1007/s11004-005-7376-6
10.1023/A:1023818214614
10.1016/j.gexplo.2013.07.013
10.1016/j.gexplo.2014.02.026
10.1198/016214501753381850
10.1016/j.gexplo.2014.01.030
10.1111/j.2517-6161.1982.tb01195.x
10.1007/s11004-005-7381-9
10.1023/A:1007529726302
10.1016/j.gexplo.2014.02.025
10.1016/j.gexplo.2014.01.014
10.1007/s004770100077
10.1016/j.gexplo.2013.12.008
10.1016/j.gexplo.2013.09.003
10.1016/j.gexplo.2013.11.008
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.gexplo.2014.03.022
DatabaseName CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1879-1689
EndPage 5
ExternalDocumentID 10_1016_j_gexplo_2014_03_022
S0375674214001162
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
VH1
WUQ
XOL
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7UA
ACLOT
C1K
EFKBS
F1W
H96
L.G
~HD
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c372t-317a08eafb64f8b17ffbb559f68fbd0d2018fc67956b1268a1bb4b9fb113ae3c3
IEDL.DBID .~1
ISSN 0375-6742
IngestDate Sun Sep 28 03:19:47 EDT 2025
Sun Sep 28 08:23:55 EDT 2025
Tue Jul 01 03:19:28 EDT 2025
Thu Apr 24 23:13:00 EDT 2025
Fri Feb 23 02:27:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Geochemical data
Environmental modelling
Simplex geometry
Log-ratio approach
Compositional data analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-317a08eafb64f8b17ffbb559f68fbd0d2018fc67956b1268a1bb4b9fb113ae3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1620044437
PQPubID 23462
PageCount 5
ParticipantIDs proquest_miscellaneous_1753513671
proquest_miscellaneous_1620044437
crossref_citationtrail_10_1016_j_gexplo_2014_03_022
crossref_primary_10_1016_j_gexplo_2014_03_022
elsevier_sciencedirect_doi_10_1016_j_gexplo_2014_03_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2014
2014-06-00
20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationTitle Journal of geochemical exploration
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pawlowsky-Glahn, Buccianti (bb0095) 2011
Aitchison (bb0015) 1997
Egozcue, Pawlowsky-Glahn (bb0060) 2005; 37
Templ, Hron, Filzmoser (bb0105) 2011
Aitchison (bb0010) 1986
(bb0030) 2006
Grunsky, Mueller, Corrigan (bb0075) 2014
Tolosana-Delgado, van den Boogaart (bb0145) 2014
Parent, Parent, Ziadi (bb0085) 2014
Buccianti (bb0035) 2011
Pearson (bb0100) 1897
Zeng, Cheng, Cheng, Zhang (bb0130) 2014
Pawlowsky-Glahn, Egozcue (bb0090) 2001; 15
Connes (bb0045) 1982
Aitchison, Barceló-Vidal, Martín-Fernandez, Pawlowsky-Glahn (bb0020) 2000; 32
Wang, Zhao, Cheng (bb0135) 2014
Buccianti, Pawlowsky-Glahn (bb9000) 2005; 37
Thió-Henestrosa, Daunis-i-Estadella (bb0140) 2011
Palarea-Albaladejo, Martín-Fernández, Buccianti (bb0080) 2014
Buccianti, Nisi, Martín-Fernández, Palarea-Albaladejo (bb0040) 2014
Daunis-i-Estadella, Barceló-Vidal, Buccianti (bb0050) 2006; 264
Aitchison (bb0005) 1982; 44
Billheimer, Guttorp, Fagan (bb0025) 2001; 96
Egozcue, Pawlowsky-Glahn, Mateu-Figueras, Barceló-Vidal (bb0055) 2003; 35
Egozcue, Pawlowsky-Glahn (bb0065) 2006; 264
Engle, Blondes (bb0070) 2014
Aitchison (10.1016/j.gexplo.2014.03.022_bb0005) 1982; 44
Pearson (10.1016/j.gexplo.2014.03.022_bb0100) 1897
Aitchison (10.1016/j.gexplo.2014.03.022_bb0020) 2000; 32
Aitchison (10.1016/j.gexplo.2014.03.022_bb0010) 1986
Templ (10.1016/j.gexplo.2014.03.022_bb0105) 2011
Palarea-Albaladejo (10.1016/j.gexplo.2014.03.022_bb0080) 2014
Zeng (10.1016/j.gexplo.2014.03.022_bb0130) 2014
(10.1016/j.gexplo.2014.03.022_bb0030) 2006
Egozcue (10.1016/j.gexplo.2014.03.022_bb0060) 2005; 37
Aitchison (10.1016/j.gexplo.2014.03.022_bb0015) 1997
Egozcue (10.1016/j.gexplo.2014.03.022_bb0055) 2003; 35
Pawlowsky-Glahn (10.1016/j.gexplo.2014.03.022_bb0090) 2001; 15
Thió-Henestrosa (10.1016/j.gexplo.2014.03.022_bb0140) 2011
Wang (10.1016/j.gexplo.2014.03.022_bb0135) 2014
Pawlowsky-Glahn (10.1016/j.gexplo.2014.03.022_bb0095) 2011
Billheimer (10.1016/j.gexplo.2014.03.022_bb0025) 2001; 96
Grunsky (10.1016/j.gexplo.2014.03.022_bb0075) 2014
Buccianti (10.1016/j.gexplo.2014.03.022_bb0040) 2014
Engle (10.1016/j.gexplo.2014.03.022_bb0070) 2014
Buccianti (10.1016/j.gexplo.2014.03.022_bb0035) 2011
Parent (10.1016/j.gexplo.2014.03.022_bb0085) 2014
Connes (10.1016/j.gexplo.2014.03.022_bb0045)
Egozcue (10.1016/j.gexplo.2014.03.022_bb0065) 2006; 264
Tolosana-Delgado (10.1016/j.gexplo.2014.03.022_bb0145) 2014
Buccianti (10.1016/j.gexplo.2014.03.022_bb9000) 2005; 37
Daunis-i-Estadella (10.1016/j.gexplo.2014.03.022_bb0050) 2006; 264
References_xml – year: 2014
  ident: bb0130
  article-title: A refinement of Lange's plagioclase–liquid hygrometer/thermometer based on quadratic log-contrast models for experiments with mixtures
  publication-title: J. Geochem. Explor
– volume: 15
  start-page: 384
  year: 2001
  end-page: 398
  ident: bb0090
  article-title: Geometric approach to statistical analysis on the simplex
  publication-title: Stoch. Env. Res. Risk A. (SERRA)
– year: 2014
  ident: bb0075
  article-title: A study of the lake sediment geochemistry of the Melville Peninsula using multivariate methods: applications for predictive geological mapping
  publication-title: J. Geochem. Explor
– year: 2014
  ident: bb0085
  article-title: Biogeochemistry of soil inorganic and organic phosphorus: a compositional analysis with balances
  publication-title: J. Geochem. Explor
– year: 2011
  ident: bb0095
  article-title: Compositional data analysis
  publication-title: Theory and Application
– start-page: 255
  year: 2011
  end-page: 266
  ident: bb0035
  article-title: Natural laws governing the distribution of the elements in geochemistry: the role of the log-ratio approach
  publication-title: Compositional Data Analysis
– volume: 264
  start-page: 161
  year: 2006
  end-page: 174
  ident: bb0050
  article-title: Exploratory compositional data analysis
  publication-title: Compositional data Analysis in the Geosciences: from theory to practice
– year: 2014
  ident: bb0040
  article-title: Methods to investigate the geochemistry of groundwaters with values for nitrogen compounds below the detection limit
  publication-title: J. Geochem. Explor
– volume: 96
  start-page: 1205
  year: 2001
  end-page: 1214
  ident: bb0025
  article-title: Statistical interpretation of species composition
  publication-title: J. Am. Stat. Assoc.
– year: 2014
  ident: bb0070
  article-title: Linking compositional data analysis with thermodynamic geochemical modeling: oilfield brines from the Permian Basin, USA
  publication-title: J. Geochem. Explor
– year: 2014
  ident: bb0135
  article-title: Mapping of Fe mineralization-associated geochemical signatures using logratio transformed stream sediment geochemical data in eastern Tianshan, China
  publication-title: J. Geochem. Explor
– volume: 32
  start-page: 271
  year: 2000
  end-page: 275
  ident: bb0020
  article-title: Logratio analysis and compositional distance
  publication-title: Math. Geol.
– volume: 37
  start-page: 703
  year: 2005
  end-page: 727
  ident: bb9000
  article-title: New perspectives on water chemistry and compositional data analysis
  publication-title: Mathematical Geology
– year: 2014
  ident: bb0080
  article-title: Compositional methods for estimating elemental concentrations below the limit of detection in practice using R
  publication-title: J. Geochem. Explor
– year: 1986
  ident: bb0010
  article-title: The statistical analysis of compositional data
  publication-title: Monographs on Statistics and Applied Probability
– volume: 264
  start-page: 145
  year: 2006
  end-page: 159
  ident: bb0065
  article-title: Simplicial geometry for compositional data
  publication-title: Compositional data Analysis in the Geosciences: from theory to practice
– start-page: 329
  year: 2011
  end-page: 340
  ident: bb0140
  article-title: Exploratory analysis using CoDaPack 3D
  publication-title: Compositional Data Analysis. Theory and Applications
– volume: 44
  start-page: 139
  year: 1982
  end-page: 177
  ident: bb0005
  article-title: The statistical analysis of compositional data (with discussion)
  publication-title: J. R. Stat. Soc. Ser. B (Statistical Methodology)
– start-page: 341
  year: 2011
  end-page: 355
  ident: bb0105
  article-title: robCompositions: an R-package for robust statistical analysis of compositional data
  publication-title: Compositional Data Analysis
– volume: 35
  start-page: 279
  year: 2003
  end-page: 300
  ident: bb0055
  article-title: Isometric logratio transformation for compositional data analysis
  publication-title: Math. Geol.
– start-page: 489
  year: 1897
  end-page: 502
  ident: bb0100
  article-title: Mathematical contributions to the theory of evolution
  publication-title: On a form of spurious correlation which may arise when indices are used in the measurement of organs
– year: 2014
  ident: bb0145
  article-title: Towards compositional geochemical potential mapping
  publication-title: J. Geochem. Explor
– year: 2006
  ident: bb0030
  article-title: Compositional data analysis in the geosciences
  publication-title: From theory to Practice
– year: 1982
  ident: bb0045
  article-title: A view of mathematics. Encyclopedia of Life Support Systems (EOLSS), UNESCO chapter
– start-page: 3
  year: 1997
  end-page: 35
  ident: bb0015
  article-title: The one-hour course in compositional data analysis or compositional data analysis is simple
  publication-title: Proceedings of IAMG'97 — The III Annual Conference of the International Association for Mathematical Geology
– volume: 37
  start-page: 795
  year: 2005
  end-page: 828
  ident: bb0060
  article-title: Groups of parts and their balances in compositional data analysis
  publication-title: Math. Geol.
– volume: 37
  start-page: 703
  issue: 7
  year: 2005
  ident: 10.1016/j.gexplo.2014.03.022_bb9000
  article-title: New perspectives on water chemistry and compositional data analysis
  publication-title: Mathematical Geology
  doi: 10.1007/s11004-005-7376-6
– year: 1986
  ident: 10.1016/j.gexplo.2014.03.022_bb0010
  article-title: The statistical analysis of compositional data
– start-page: 341
  year: 2011
  ident: 10.1016/j.gexplo.2014.03.022_bb0105
  article-title: robCompositions: an R-package for robust statistical analysis of compositional data
– volume: 35
  start-page: 279
  issue: 3
  year: 2003
  ident: 10.1016/j.gexplo.2014.03.022_bb0055
  article-title: Isometric logratio transformation for compositional data analysis
  publication-title: Math. Geol.
  doi: 10.1023/A:1023818214614
– year: 2014
  ident: 10.1016/j.gexplo.2014.03.022_bb0075
  article-title: A study of the lake sediment geochemistry of the Melville Peninsula using multivariate methods: applications for predictive geological mapping
  publication-title: J. Geochem. Explor
  doi: 10.1016/j.gexplo.2013.07.013
– year: 2014
  ident: 10.1016/j.gexplo.2014.03.022_bb0145
  article-title: Towards compositional geochemical potential mapping
  publication-title: J. Geochem. Explor
  doi: 10.1016/j.gexplo.2014.02.026
– volume: 96
  start-page: 1205
  issue: 456
  year: 2001
  ident: 10.1016/j.gexplo.2014.03.022_bb0025
  article-title: Statistical interpretation of species composition
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214501753381850
– year: 2014
  ident: 10.1016/j.gexplo.2014.03.022_bb0085
  article-title: Biogeochemistry of soil inorganic and organic phosphorus: a compositional analysis with balances
  publication-title: J. Geochem. Explor
  doi: 10.1016/j.gexplo.2014.01.030
– volume: 44
  start-page: 139
  issue: 2
  year: 1982
  ident: 10.1016/j.gexplo.2014.03.022_bb0005
  article-title: The statistical analysis of compositional data (with discussion)
  publication-title: J. R. Stat. Soc. Ser. B (Statistical Methodology)
  doi: 10.1111/j.2517-6161.1982.tb01195.x
– volume: 264
  start-page: 161
  year: 2006
  ident: 10.1016/j.gexplo.2014.03.022_bb0050
  article-title: Exploratory compositional data analysis
– start-page: 489
  year: 1897
  ident: 10.1016/j.gexplo.2014.03.022_bb0100
  article-title: Mathematical contributions to the theory of evolution
– start-page: 3
  year: 1997
  ident: 10.1016/j.gexplo.2014.03.022_bb0015
  article-title: The one-hour course in compositional data analysis or compositional data analysis is simple
– volume: 37
  start-page: 795
  issue: 7
  year: 2005
  ident: 10.1016/j.gexplo.2014.03.022_bb0060
  article-title: Groups of parts and their balances in compositional data analysis
  publication-title: Math. Geol.
  doi: 10.1007/s11004-005-7381-9
– volume: 32
  start-page: 271
  issue: 3
  year: 2000
  ident: 10.1016/j.gexplo.2014.03.022_bb0020
  article-title: Logratio analysis and compositional distance
  publication-title: Math. Geol.
  doi: 10.1023/A:1007529726302
– year: 2011
  ident: 10.1016/j.gexplo.2014.03.022_bb0095
  article-title: Compositional data analysis
– year: 2014
  ident: 10.1016/j.gexplo.2014.03.022_bb0070
  article-title: Linking compositional data analysis with thermodynamic geochemical modeling: oilfield brines from the Permian Basin, USA
  publication-title: J. Geochem. Explor
  doi: 10.1016/j.gexplo.2014.02.025
– year: 2014
  ident: 10.1016/j.gexplo.2014.03.022_bb0040
  article-title: Methods to investigate the geochemistry of groundwaters with values for nitrogen compounds below the detection limit
  publication-title: J. Geochem. Explor
  doi: 10.1016/j.gexplo.2014.01.014
– start-page: 329
  year: 2011
  ident: 10.1016/j.gexplo.2014.03.022_bb0140
  article-title: Exploratory analysis using CoDaPack 3D
– volume: 15
  start-page: 384
  issue: 5
  year: 2001
  ident: 10.1016/j.gexplo.2014.03.022_bb0090
  article-title: Geometric approach to statistical analysis on the simplex
  publication-title: Stoch. Env. Res. Risk A. (SERRA)
  doi: 10.1007/s004770100077
– year: 2014
  ident: 10.1016/j.gexplo.2014.03.022_bb0130
  article-title: A refinement of Lange's plagioclase–liquid hygrometer/thermometer based on quadratic log-contrast models for experiments with mixtures
  publication-title: J. Geochem. Explor
  doi: 10.1016/j.gexplo.2013.12.008
– start-page: 255
  year: 2011
  ident: 10.1016/j.gexplo.2014.03.022_bb0035
  article-title: Natural laws governing the distribution of the elements in geochemistry: the role of the log-ratio approach
– ident: 10.1016/j.gexplo.2014.03.022_bb0045
– year: 2014
  ident: 10.1016/j.gexplo.2014.03.022_bb0080
  article-title: Compositional methods for estimating elemental concentrations below the limit of detection in practice using R
  publication-title: J. Geochem. Explor
  doi: 10.1016/j.gexplo.2013.09.003
– year: 2006
  ident: 10.1016/j.gexplo.2014.03.022_bb0030
  article-title: Compositional data analysis in the geosciences
– volume: 264
  start-page: 145
  year: 2006
  ident: 10.1016/j.gexplo.2014.03.022_bb0065
  article-title: Simplicial geometry for compositional data
– year: 2014
  ident: 10.1016/j.gexplo.2014.03.022_bb0135
  article-title: Mapping of Fe mineralization-associated geochemical signatures using logratio transformed stream sediment geochemical data in eastern Tianshan, China
  publication-title: J. Geochem. Explor
  doi: 10.1016/j.gexplo.2013.11.008
SSID ssj0001746
Score 2.4339743
Snippet Geochemical data are typically reported as compositions, in the form of some proportions such as weight percents, parts per million, etc., subject to a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Compositional data analysis
Constants
Constraints
Data processing
Environmental modelling
Environmental monitoring
Exploration
Geochemical data
Geochemistry
Log-ratio approach
Simplex geometry
Statistical analysis
Statistics
Title Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes?
URI https://dx.doi.org/10.1016/j.gexplo.2014.03.022
https://www.proquest.com/docview/1620044437
https://www.proquest.com/docview/1753513671
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1689
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001746
  issn: 0375-6742
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-1689
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001746
  issn: 0375-6742
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1689
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001746
  issn: 0375-6742
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-1689
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001746
  issn: 0375-6742
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1689
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001746
  issn: 0375-6742
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7LetGD-MQ3EbzWbdraRC8ioqyKe1HBW0jaybqydBe3i3jxtzvTtL5ABY8pSRom08lM8803jO05JVIprAvwfEgxQFFJYCA0gcsMAPm8ICjB-bqXdu-Sy_uD-xY7bXJhCFZZ235v0ytrXT_p1NLsjAeDzg1Vb00xssMQgW4TyA4T-xfq9P7rB8wDPW5_XykJZJ9ETfpchfHqAwHdCOCVVFSnUfTT8fTNUFenz_kCm6_dRn7iV7bIWlAssblPZILLbEifdg3Bwq4E_eSmphzhg4L3gYpj-epuRzgT8Gfg9H-QlyM-AWw-mJKjDzkcvvBRlk2fJtwnMfKK_RPnHPusApgcr7C787Pb025Q11IIslhGJZpaaUIFxtk0ccoK6Zy1GE24VDmbhzmKQLkslRguWRGlyghrE3vorBCxgTiLV1m7GBWwxrgx1uWhkSI_hCRHh8bGNqS4JccXKJWvs7gRoc5qonGqdzHUDaLsUXvBaxK8DmONgl9nwfuosSfa-KO_bHZHf1EYjWfBHyN3m83UKHS6IDEFjKYTjUpU8efF8pc-GN8dEM-d2Pj3CjbZLLU84myLtcunKWyjb1PanUp5d9jMycVVt_cGfuv8CQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-yPqgPop7ien5EuNeyTdttoi8ioqxf-3IKvoWknejK0l3cLsf99zfTpKIHKvjYNknDJP3NTPObGcZ-OSVyKayLUD_k6KCoLDIQm8gVBoBsXhAU4Hw7zAf32dVD_2GBnbWxMESrDNjvMb1B63CnF6TZm45Gvd9UvTVHzw5dBDpNQBxezPqIyR22eHp5PRi-AjIa3f7IUhLPPkvaCLqG5vUIxHUjjlfWZDtNko801H9Y3SigizW2GixHfuont84WoNpgK2_yCf5gY_q6AwsLmxL7k5uQdYSPKv4IVB_LF3g7xpGA_wFOvwh5PeEzwMsnU3M0I8fjv3xSFPOXGfdxjLxJAIpjTn1gAcxONtn9xfnd2SAK5RSiIpVJjWgrTazAOJtnTlkhnbMWHQqXK2fLuEQRKFfkEj0mK5JcGWFtZo-cFSI1kBbpFutUkwq2GTfGujI2UpRHkJVo09jUxuS6lPgCpcouS1sR6iLkGqeSF2PdksqetRe8JsHrONUo-C6LXntNfa6NL9rLdnX0uz2jUR180fOwXUyNQqczElPBZD7TuI-aFHqp_KQNunh9SnUndr49gwO2NLi7vdE3l8Prn2yZnngC2i7r1C9z2ENTp7b7YSv_AwZn_rQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compositional+data+analysis+in+geochemistry%3A+Are+we+sure+to+see+what+really+occurs+during+natural+processes%3F&rft.jtitle=Journal+of+geochemical+exploration&rft.au=Buccianti%2C+A.&rft.au=Grunsky%2C+E.&rft.date=2014-06-01&rft.issn=0375-6742&rft.volume=141&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1016%2Fj.gexplo.2014.03.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gexplo_2014_03_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-6742&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-6742&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-6742&client=summon