Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes?
Geochemical data are typically reported as compositions, in the form of some proportions such as weight percents, parts per million, etc., subject to a constant sum (e.g. 100%, 1,000,000ppm). This latter implies that such data are “closed”; that is, for a composition of D-components, only D−1 compon...
Saved in:
Published in | Journal of geochemical exploration Vol. 141; pp. 1 - 5 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0375-6742 1879-1689 |
DOI | 10.1016/j.gexplo.2014.03.022 |
Cover
Abstract | Geochemical data are typically reported as compositions, in the form of some proportions such as weight percents, parts per million, etc., subject to a constant sum (e.g. 100%, 1,000,000ppm). This latter implies that such data are “closed”; that is, for a composition of D-components, only D−1 components are required. The statistical analysis of compositional data has been a major issue for more than 100years. The problem of spurious correlation, introduced by Karl Pearson in 1897, affects all data measuring parts of some whole, which are by definition, constrained; and such type of measurements are present in all fields of geochemical research. The use of the log-ratio transform was introduced by John Aitchison to overcome these constraints by opening the data into the real number space, within which standard statistical methods can be applied. However, many statisticians and users of statistics in the field of geochemistry are unaware of the problems affecting compositional data, as well as solutions that overcome these problems. A look into the ISI Web of Science and Scopus databases shows that most papers where compositional data are the core of a geochemical research continue to ignore methods to correctly manage constrained data. A key question is how we can demonstrate that the interpretation of the behaviour of chemical species in natural environment and in geochemical processes is improved when the compositional constraint of geochemical data is taken into account through the use of new methods. In order to achieve this aim, this special issue of the Journal of Geochemical Exploration focuses on the correct statistical analysis of compositional data. Applications in exploration, monitoring and environments by considering several geological matrices are presented and discussed illustrating that several paths can be followed to understand how geochemical processes work. |
---|---|
AbstractList | Geochemical data are typically reported as compositions, in the form of some proportions such as weight percents, parts per million, etc., subject to a constant sum (e.g. 100%, 1,000,000 ppm). This latter implies that such data are "closed" that is, for a composition of D-components, only D - 1 components are required. The statistical analysis of compositional data has been a major issue for more than 100 years. The problem of spurious correlation, introduced by Karl Pearson in 1897, affects all data measuring parts of some whole, which are by definition, constrained; and such type of measurements are present in all fields of geochemical research. The use of the log-ratio transform was introduced by John Aitchison to overcome these constraints by opening the data into the real number space, within which standard statistical methods can be applied. However, many statisticians and users of statistics in the field of geochemistry are unaware of the problems affecting compositional data, as well as solutions that overcome these problems. A look into the ISI Web of Science and Scopus databases shows that most papers where compositional data are the core of a geochemical research continue to ignore methods to correctly manage constrained data. A key question is how we can demonstrate that the interpretation of the behaviour of chemical species in natural environment and in geochemical processes is improved when the compositional constraint of geochemical data is taken into account through the use of new methods. In order to achieve this aim, this special issue of the Journal of Geochemical Exploration focuses on the correct statistical analysis of compositional data. Applications in exploration, monitoring and environments by considering several geological matrices are presented and discussed illustrating that several paths can be followed to understand how geochemical processes work. Geochemical data are typically reported as compositions, in the form of some proportions such as weight percents, parts per million, etc., subject to a constant sum (e.g. 100%, 1,000,000ppm). This latter implies that such data are “closed”; that is, for a composition of D-components, only D−1 components are required. The statistical analysis of compositional data has been a major issue for more than 100years. The problem of spurious correlation, introduced by Karl Pearson in 1897, affects all data measuring parts of some whole, which are by definition, constrained; and such type of measurements are present in all fields of geochemical research. The use of the log-ratio transform was introduced by John Aitchison to overcome these constraints by opening the data into the real number space, within which standard statistical methods can be applied. However, many statisticians and users of statistics in the field of geochemistry are unaware of the problems affecting compositional data, as well as solutions that overcome these problems. A look into the ISI Web of Science and Scopus databases shows that most papers where compositional data are the core of a geochemical research continue to ignore methods to correctly manage constrained data. A key question is how we can demonstrate that the interpretation of the behaviour of chemical species in natural environment and in geochemical processes is improved when the compositional constraint of geochemical data is taken into account through the use of new methods. In order to achieve this aim, this special issue of the Journal of Geochemical Exploration focuses on the correct statistical analysis of compositional data. Applications in exploration, monitoring and environments by considering several geological matrices are presented and discussed illustrating that several paths can be followed to understand how geochemical processes work. |
Author | Grunsky, E. Buccianti, A. |
Author_xml | – sequence: 1 givenname: A. surname: Buccianti fullname: Buccianti, A. email: antonella.buccianti@unifi.it organization: Department of Earth Sciences, University of Florence, Italy – sequence: 2 givenname: E. surname: Grunsky fullname: Grunsky, E. organization: Geological Survey of Canada, Ottawa, Ontario K1A 0E8, Canada |
BookMark | eNqFUcFu1DAUtFCR2Bb-gIOPXBLsOLGTHkDVCihSJS5wtmzneeuVN178HOj-PV4tJw709N6TZuZpZq7J1ZIWIOQtZy1nXL7ftzt4OsbUdoz3LRMt67oXZMNHNTVcjtMV2TChhkaqvntFrhH3jDGuerkhcZsOx4ShhLSYSGdTDDV1O2FAGha6g-Qe4RCw5NMtvctAfwPFtc6SKEI9H02hGUyMJ5qcWzPSec1h2dHFlDVXzWNODhABP74mL72JCG_-zhvy4_On79v75uHbl6_bu4fGCdWVRnBl2AjGW9n70XLlvbXDMHk5ejuzubocvZNqGqTlnRwNt7a3k7ecCwPCiRvy7qJbX_9cAYuuBhzEaBZIK2quBjFwIRV_Hio7xvq-F6pCby9QlxNiBq9dKOYcXMkmRM2ZPreh9_rShj63oZnQtY1K7v8hH3M4mHx6jvbhQoMa168AWaMLsDiYQwZX9JzC_wX-ANbpqoc |
CitedBy_id | crossref_primary_10_1007_s00217_017_3022_z crossref_primary_10_3390_molecules26195752 crossref_primary_10_1007_s10661_022_10421_0 crossref_primary_10_1016_j_gexplo_2017_03_013 crossref_primary_10_1016_j_gexplo_2018_01_002 crossref_primary_10_1016_j_gexplo_2023_107327 crossref_primary_10_1144_geochem2016_449 crossref_primary_10_1080_03088839_2021_1972175 crossref_primary_10_1080_10618600_2022_2144330 crossref_primary_10_1016_j_gexplo_2015_11_004 crossref_primary_10_1016_j_gexplo_2016_03_009 crossref_primary_10_1016_j_apgeochem_2020_104798 crossref_primary_10_1016_j_apgeochem_2023_105644 crossref_primary_10_1109_ACCESS_2019_2948800 crossref_primary_10_1007_s10653_023_01537_4 crossref_primary_10_1016_j_gexplo_2022_106983 crossref_primary_10_1016_j_oregeorev_2016_12_024 crossref_primary_10_1144_geochem2019_031 crossref_primary_10_1016_j_gexplo_2021_106923 crossref_primary_10_1016_j_spasta_2024_100843 crossref_primary_10_1007_s11053_018_9423_2 crossref_primary_10_1007_s10661_021_08849_x crossref_primary_10_1016_j_gexplo_2023_107297 crossref_primary_10_1144_geochem2016_453 crossref_primary_10_1144_geochem2016_455 crossref_primary_10_3390_geosciences15010020 crossref_primary_10_1016_j_gexplo_2016_11_013 crossref_primary_10_1016_j_gexplo_2019_05_003 crossref_primary_10_1016_j_jsames_2021_103361 crossref_primary_10_1016_j_apgeochem_2020_104843 crossref_primary_10_1180_clm_2018_26 crossref_primary_10_1016_j_apgeochem_2021_105113 crossref_primary_10_1007_s11053_017_9346_3 crossref_primary_10_1016_j_scitotenv_2021_152383 crossref_primary_10_1007_s12520_024_01965_y crossref_primary_10_1016_j_apgeochem_2020_104574 crossref_primary_10_1016_j_acags_2019_100007 crossref_primary_10_1016_j_apgeochem_2021_105108 crossref_primary_10_1007_s11222_024_10427_3 crossref_primary_10_1007_s11053_019_09586_2 crossref_primary_10_3390_min13111399 crossref_primary_10_1007_s11356_024_33899_2 crossref_primary_10_1016_j_gexplo_2021_106783 crossref_primary_10_1016_j_oregeorev_2019_103115 crossref_primary_10_1016_j_catena_2023_107083 crossref_primary_10_3390_ijerph15102248 crossref_primary_10_1016_j_gexplo_2017_07_014 crossref_primary_10_1109_JSTARS_2020_3011221 crossref_primary_10_1190_geo2021_0365_1 crossref_primary_10_1016_j_gexplo_2022_107012 crossref_primary_10_1111_ejss_12206 crossref_primary_10_3390_app14062597 crossref_primary_10_1016_j_apgeochem_2016_05_008 crossref_primary_10_1007_s12145_023_01184_4 crossref_primary_10_1007_s10653_023_01508_9 crossref_primary_10_1016_j_gexplo_2015_10_006 crossref_primary_10_1038_s41598_019_42238_2 crossref_primary_10_1016_j_jenvman_2016_07_017 crossref_primary_10_1515_pac_2022_0801 crossref_primary_10_3389_esss_2021_10039 crossref_primary_10_3762_bjnano_10_202 crossref_primary_10_1016_j_oregeorev_2020_103875 crossref_primary_10_1007_s11053_019_09467_8 crossref_primary_10_1016_j_gexplo_2014_12_003 crossref_primary_10_1007_s41207_024_00470_x crossref_primary_10_1007_s00477_020_01900_2 crossref_primary_10_1016_j_gexplo_2014_10_010 crossref_primary_10_1016_j_oregeorev_2024_106001 crossref_primary_10_1016_j_envpol_2019_01_122 crossref_primary_10_1515_pac_2019_0906 crossref_primary_10_1016_j_apgeochem_2022_105459 crossref_primary_10_1016_j_gexplo_2024_107473 crossref_primary_10_1016_j_cageo_2020_104455 crossref_primary_10_1002_gea_21968 crossref_primary_10_1016_j_gexplo_2022_107112 crossref_primary_10_1016_j_chemgeo_2023_121915 crossref_primary_10_1186_s12932_019_0065_z crossref_primary_10_1007_s12517_021_09004_z crossref_primary_10_1016_j_scijus_2023_11_003 crossref_primary_10_3390_w15132308 crossref_primary_10_1144_geochem2022_009 crossref_primary_10_1016_j_apgeochem_2024_106146 crossref_primary_10_1016_j_ancene_2025_100464 crossref_primary_10_1016_j_ecss_2015_03_031 crossref_primary_10_1016_j_jafrearsci_2014_09_003 crossref_primary_10_1016_j_jasrep_2024_104493 crossref_primary_10_1016_j_gexplo_2022_107104 crossref_primary_10_1016_j_gexplo_2025_107669 crossref_primary_10_1144_geochem2017_037 crossref_primary_10_1007_s10653_019_00347_x crossref_primary_10_1016_j_gexplo_2024_107425 crossref_primary_10_1289_EHP577 crossref_primary_10_1016_j_scitotenv_2022_159383 crossref_primary_10_2138_am_2023_8976 crossref_primary_10_1016_j_oregeorev_2018_11_026 crossref_primary_10_1016_j_gexplo_2014_07_005 crossref_primary_10_1016_j_measurement_2020_107947 crossref_primary_10_1029_2018GC008154 crossref_primary_10_1016_j_apgeochem_2022_105263 crossref_primary_10_1016_j_oregeorev_2022_104988 crossref_primary_10_1016_j_scitotenv_2025_178704 crossref_primary_10_1016_j_apgeochem_2021_105147 crossref_primary_10_3390_min7110212 crossref_primary_10_1016_j_chemgeo_2024_122481 crossref_primary_10_1016_j_scitotenv_2024_173132 crossref_primary_10_1016_j_scitotenv_2020_143864 crossref_primary_10_1016_j_gexplo_2024_107494 crossref_primary_10_1016_j_talanta_2018_07_049 crossref_primary_10_1111_1755_6724_14404 |
Cites_doi | 10.1007/s11004-005-7376-6 10.1023/A:1023818214614 10.1016/j.gexplo.2013.07.013 10.1016/j.gexplo.2014.02.026 10.1198/016214501753381850 10.1016/j.gexplo.2014.01.030 10.1111/j.2517-6161.1982.tb01195.x 10.1007/s11004-005-7381-9 10.1023/A:1007529726302 10.1016/j.gexplo.2014.02.025 10.1016/j.gexplo.2014.01.014 10.1007/s004770100077 10.1016/j.gexplo.2013.12.008 10.1016/j.gexplo.2013.09.003 10.1016/j.gexplo.2013.11.008 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION 7UA C1K F1W H96 L.G 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.gexplo.2014.03.022 |
DatabaseName | CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics |
EISSN | 1879-1689 |
EndPage | 5 |
ExternalDocumentID | 10_1016_j_gexplo_2014_03_022 S0375674214001162 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KCYFY KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 VH1 WUQ XOL XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7UA ACLOT C1K EFKBS F1W H96 L.G ~HD 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c372t-317a08eafb64f8b17ffbb559f68fbd0d2018fc67956b1268a1bb4b9fb113ae3c3 |
IEDL.DBID | .~1 |
ISSN | 0375-6742 |
IngestDate | Sun Sep 28 03:19:47 EDT 2025 Sun Sep 28 08:23:55 EDT 2025 Tue Jul 01 03:19:28 EDT 2025 Thu Apr 24 23:13:00 EDT 2025 Fri Feb 23 02:27:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Geochemical data Environmental modelling Simplex geometry Log-ratio approach Compositional data analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-317a08eafb64f8b17ffbb559f68fbd0d2018fc67956b1268a1bb4b9fb113ae3c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1620044437 |
PQPubID | 23462 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1753513671 proquest_miscellaneous_1620044437 crossref_citationtrail_10_1016_j_gexplo_2014_03_022 crossref_primary_10_1016_j_gexplo_2014_03_022 elsevier_sciencedirect_doi_10_1016_j_gexplo_2014_03_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2014 2014-06-00 20140601 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: June 2014 |
PublicationDecade | 2010 |
PublicationTitle | Journal of geochemical exploration |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Pawlowsky-Glahn, Buccianti (bb0095) 2011 Aitchison (bb0015) 1997 Egozcue, Pawlowsky-Glahn (bb0060) 2005; 37 Templ, Hron, Filzmoser (bb0105) 2011 Aitchison (bb0010) 1986 (bb0030) 2006 Grunsky, Mueller, Corrigan (bb0075) 2014 Tolosana-Delgado, van den Boogaart (bb0145) 2014 Parent, Parent, Ziadi (bb0085) 2014 Buccianti (bb0035) 2011 Pearson (bb0100) 1897 Zeng, Cheng, Cheng, Zhang (bb0130) 2014 Pawlowsky-Glahn, Egozcue (bb0090) 2001; 15 Connes (bb0045) 1982 Aitchison, Barceló-Vidal, Martín-Fernandez, Pawlowsky-Glahn (bb0020) 2000; 32 Wang, Zhao, Cheng (bb0135) 2014 Buccianti, Pawlowsky-Glahn (bb9000) 2005; 37 Thió-Henestrosa, Daunis-i-Estadella (bb0140) 2011 Palarea-Albaladejo, Martín-Fernández, Buccianti (bb0080) 2014 Buccianti, Nisi, Martín-Fernández, Palarea-Albaladejo (bb0040) 2014 Daunis-i-Estadella, Barceló-Vidal, Buccianti (bb0050) 2006; 264 Aitchison (bb0005) 1982; 44 Billheimer, Guttorp, Fagan (bb0025) 2001; 96 Egozcue, Pawlowsky-Glahn, Mateu-Figueras, Barceló-Vidal (bb0055) 2003; 35 Egozcue, Pawlowsky-Glahn (bb0065) 2006; 264 Engle, Blondes (bb0070) 2014 Aitchison (10.1016/j.gexplo.2014.03.022_bb0005) 1982; 44 Pearson (10.1016/j.gexplo.2014.03.022_bb0100) 1897 Aitchison (10.1016/j.gexplo.2014.03.022_bb0020) 2000; 32 Aitchison (10.1016/j.gexplo.2014.03.022_bb0010) 1986 Templ (10.1016/j.gexplo.2014.03.022_bb0105) 2011 Palarea-Albaladejo (10.1016/j.gexplo.2014.03.022_bb0080) 2014 Zeng (10.1016/j.gexplo.2014.03.022_bb0130) 2014 (10.1016/j.gexplo.2014.03.022_bb0030) 2006 Egozcue (10.1016/j.gexplo.2014.03.022_bb0060) 2005; 37 Aitchison (10.1016/j.gexplo.2014.03.022_bb0015) 1997 Egozcue (10.1016/j.gexplo.2014.03.022_bb0055) 2003; 35 Pawlowsky-Glahn (10.1016/j.gexplo.2014.03.022_bb0090) 2001; 15 Thió-Henestrosa (10.1016/j.gexplo.2014.03.022_bb0140) 2011 Wang (10.1016/j.gexplo.2014.03.022_bb0135) 2014 Pawlowsky-Glahn (10.1016/j.gexplo.2014.03.022_bb0095) 2011 Billheimer (10.1016/j.gexplo.2014.03.022_bb0025) 2001; 96 Grunsky (10.1016/j.gexplo.2014.03.022_bb0075) 2014 Buccianti (10.1016/j.gexplo.2014.03.022_bb0040) 2014 Engle (10.1016/j.gexplo.2014.03.022_bb0070) 2014 Buccianti (10.1016/j.gexplo.2014.03.022_bb0035) 2011 Parent (10.1016/j.gexplo.2014.03.022_bb0085) 2014 Connes (10.1016/j.gexplo.2014.03.022_bb0045) Egozcue (10.1016/j.gexplo.2014.03.022_bb0065) 2006; 264 Tolosana-Delgado (10.1016/j.gexplo.2014.03.022_bb0145) 2014 Buccianti (10.1016/j.gexplo.2014.03.022_bb9000) 2005; 37 Daunis-i-Estadella (10.1016/j.gexplo.2014.03.022_bb0050) 2006; 264 |
References_xml | – year: 2014 ident: bb0130 article-title: A refinement of Lange's plagioclase–liquid hygrometer/thermometer based on quadratic log-contrast models for experiments with mixtures publication-title: J. Geochem. Explor – volume: 15 start-page: 384 year: 2001 end-page: 398 ident: bb0090 article-title: Geometric approach to statistical analysis on the simplex publication-title: Stoch. Env. Res. Risk A. (SERRA) – year: 2014 ident: bb0075 article-title: A study of the lake sediment geochemistry of the Melville Peninsula using multivariate methods: applications for predictive geological mapping publication-title: J. Geochem. Explor – year: 2014 ident: bb0085 article-title: Biogeochemistry of soil inorganic and organic phosphorus: a compositional analysis with balances publication-title: J. Geochem. Explor – year: 2011 ident: bb0095 article-title: Compositional data analysis publication-title: Theory and Application – start-page: 255 year: 2011 end-page: 266 ident: bb0035 article-title: Natural laws governing the distribution of the elements in geochemistry: the role of the log-ratio approach publication-title: Compositional Data Analysis – volume: 264 start-page: 161 year: 2006 end-page: 174 ident: bb0050 article-title: Exploratory compositional data analysis publication-title: Compositional data Analysis in the Geosciences: from theory to practice – year: 2014 ident: bb0040 article-title: Methods to investigate the geochemistry of groundwaters with values for nitrogen compounds below the detection limit publication-title: J. Geochem. Explor – volume: 96 start-page: 1205 year: 2001 end-page: 1214 ident: bb0025 article-title: Statistical interpretation of species composition publication-title: J. Am. Stat. Assoc. – year: 2014 ident: bb0070 article-title: Linking compositional data analysis with thermodynamic geochemical modeling: oilfield brines from the Permian Basin, USA publication-title: J. Geochem. Explor – year: 2014 ident: bb0135 article-title: Mapping of Fe mineralization-associated geochemical signatures using logratio transformed stream sediment geochemical data in eastern Tianshan, China publication-title: J. Geochem. Explor – volume: 32 start-page: 271 year: 2000 end-page: 275 ident: bb0020 article-title: Logratio analysis and compositional distance publication-title: Math. Geol. – volume: 37 start-page: 703 year: 2005 end-page: 727 ident: bb9000 article-title: New perspectives on water chemistry and compositional data analysis publication-title: Mathematical Geology – year: 2014 ident: bb0080 article-title: Compositional methods for estimating elemental concentrations below the limit of detection in practice using R publication-title: J. Geochem. Explor – year: 1986 ident: bb0010 article-title: The statistical analysis of compositional data publication-title: Monographs on Statistics and Applied Probability – volume: 264 start-page: 145 year: 2006 end-page: 159 ident: bb0065 article-title: Simplicial geometry for compositional data publication-title: Compositional data Analysis in the Geosciences: from theory to practice – start-page: 329 year: 2011 end-page: 340 ident: bb0140 article-title: Exploratory analysis using CoDaPack 3D publication-title: Compositional Data Analysis. Theory and Applications – volume: 44 start-page: 139 year: 1982 end-page: 177 ident: bb0005 article-title: The statistical analysis of compositional data (with discussion) publication-title: J. R. Stat. Soc. Ser. B (Statistical Methodology) – start-page: 341 year: 2011 end-page: 355 ident: bb0105 article-title: robCompositions: an R-package for robust statistical analysis of compositional data publication-title: Compositional Data Analysis – volume: 35 start-page: 279 year: 2003 end-page: 300 ident: bb0055 article-title: Isometric logratio transformation for compositional data analysis publication-title: Math. Geol. – start-page: 489 year: 1897 end-page: 502 ident: bb0100 article-title: Mathematical contributions to the theory of evolution publication-title: On a form of spurious correlation which may arise when indices are used in the measurement of organs – year: 2014 ident: bb0145 article-title: Towards compositional geochemical potential mapping publication-title: J. Geochem. Explor – year: 2006 ident: bb0030 article-title: Compositional data analysis in the geosciences publication-title: From theory to Practice – year: 1982 ident: bb0045 article-title: A view of mathematics. Encyclopedia of Life Support Systems (EOLSS), UNESCO chapter – start-page: 3 year: 1997 end-page: 35 ident: bb0015 article-title: The one-hour course in compositional data analysis or compositional data analysis is simple publication-title: Proceedings of IAMG'97 — The III Annual Conference of the International Association for Mathematical Geology – volume: 37 start-page: 795 year: 2005 end-page: 828 ident: bb0060 article-title: Groups of parts and their balances in compositional data analysis publication-title: Math. Geol. – volume: 37 start-page: 703 issue: 7 year: 2005 ident: 10.1016/j.gexplo.2014.03.022_bb9000 article-title: New perspectives on water chemistry and compositional data analysis publication-title: Mathematical Geology doi: 10.1007/s11004-005-7376-6 – year: 1986 ident: 10.1016/j.gexplo.2014.03.022_bb0010 article-title: The statistical analysis of compositional data – start-page: 341 year: 2011 ident: 10.1016/j.gexplo.2014.03.022_bb0105 article-title: robCompositions: an R-package for robust statistical analysis of compositional data – volume: 35 start-page: 279 issue: 3 year: 2003 ident: 10.1016/j.gexplo.2014.03.022_bb0055 article-title: Isometric logratio transformation for compositional data analysis publication-title: Math. Geol. doi: 10.1023/A:1023818214614 – year: 2014 ident: 10.1016/j.gexplo.2014.03.022_bb0075 article-title: A study of the lake sediment geochemistry of the Melville Peninsula using multivariate methods: applications for predictive geological mapping publication-title: J. Geochem. Explor doi: 10.1016/j.gexplo.2013.07.013 – year: 2014 ident: 10.1016/j.gexplo.2014.03.022_bb0145 article-title: Towards compositional geochemical potential mapping publication-title: J. Geochem. Explor doi: 10.1016/j.gexplo.2014.02.026 – volume: 96 start-page: 1205 issue: 456 year: 2001 ident: 10.1016/j.gexplo.2014.03.022_bb0025 article-title: Statistical interpretation of species composition publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214501753381850 – year: 2014 ident: 10.1016/j.gexplo.2014.03.022_bb0085 article-title: Biogeochemistry of soil inorganic and organic phosphorus: a compositional analysis with balances publication-title: J. Geochem. Explor doi: 10.1016/j.gexplo.2014.01.030 – volume: 44 start-page: 139 issue: 2 year: 1982 ident: 10.1016/j.gexplo.2014.03.022_bb0005 article-title: The statistical analysis of compositional data (with discussion) publication-title: J. R. Stat. Soc. Ser. B (Statistical Methodology) doi: 10.1111/j.2517-6161.1982.tb01195.x – volume: 264 start-page: 161 year: 2006 ident: 10.1016/j.gexplo.2014.03.022_bb0050 article-title: Exploratory compositional data analysis – start-page: 489 year: 1897 ident: 10.1016/j.gexplo.2014.03.022_bb0100 article-title: Mathematical contributions to the theory of evolution – start-page: 3 year: 1997 ident: 10.1016/j.gexplo.2014.03.022_bb0015 article-title: The one-hour course in compositional data analysis or compositional data analysis is simple – volume: 37 start-page: 795 issue: 7 year: 2005 ident: 10.1016/j.gexplo.2014.03.022_bb0060 article-title: Groups of parts and their balances in compositional data analysis publication-title: Math. Geol. doi: 10.1007/s11004-005-7381-9 – volume: 32 start-page: 271 issue: 3 year: 2000 ident: 10.1016/j.gexplo.2014.03.022_bb0020 article-title: Logratio analysis and compositional distance publication-title: Math. Geol. doi: 10.1023/A:1007529726302 – year: 2011 ident: 10.1016/j.gexplo.2014.03.022_bb0095 article-title: Compositional data analysis – year: 2014 ident: 10.1016/j.gexplo.2014.03.022_bb0070 article-title: Linking compositional data analysis with thermodynamic geochemical modeling: oilfield brines from the Permian Basin, USA publication-title: J. Geochem. Explor doi: 10.1016/j.gexplo.2014.02.025 – year: 2014 ident: 10.1016/j.gexplo.2014.03.022_bb0040 article-title: Methods to investigate the geochemistry of groundwaters with values for nitrogen compounds below the detection limit publication-title: J. Geochem. Explor doi: 10.1016/j.gexplo.2014.01.014 – start-page: 329 year: 2011 ident: 10.1016/j.gexplo.2014.03.022_bb0140 article-title: Exploratory analysis using CoDaPack 3D – volume: 15 start-page: 384 issue: 5 year: 2001 ident: 10.1016/j.gexplo.2014.03.022_bb0090 article-title: Geometric approach to statistical analysis on the simplex publication-title: Stoch. Env. Res. Risk A. (SERRA) doi: 10.1007/s004770100077 – year: 2014 ident: 10.1016/j.gexplo.2014.03.022_bb0130 article-title: A refinement of Lange's plagioclase–liquid hygrometer/thermometer based on quadratic log-contrast models for experiments with mixtures publication-title: J. Geochem. Explor doi: 10.1016/j.gexplo.2013.12.008 – start-page: 255 year: 2011 ident: 10.1016/j.gexplo.2014.03.022_bb0035 article-title: Natural laws governing the distribution of the elements in geochemistry: the role of the log-ratio approach – ident: 10.1016/j.gexplo.2014.03.022_bb0045 – year: 2014 ident: 10.1016/j.gexplo.2014.03.022_bb0080 article-title: Compositional methods for estimating elemental concentrations below the limit of detection in practice using R publication-title: J. Geochem. Explor doi: 10.1016/j.gexplo.2013.09.003 – year: 2006 ident: 10.1016/j.gexplo.2014.03.022_bb0030 article-title: Compositional data analysis in the geosciences – volume: 264 start-page: 145 year: 2006 ident: 10.1016/j.gexplo.2014.03.022_bb0065 article-title: Simplicial geometry for compositional data – year: 2014 ident: 10.1016/j.gexplo.2014.03.022_bb0135 article-title: Mapping of Fe mineralization-associated geochemical signatures using logratio transformed stream sediment geochemical data in eastern Tianshan, China publication-title: J. Geochem. Explor doi: 10.1016/j.gexplo.2013.11.008 |
SSID | ssj0001746 |
Score | 2.4339743 |
Snippet | Geochemical data are typically reported as compositions, in the form of some proportions such as weight percents, parts per million, etc., subject to a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Compositional data analysis Constants Constraints Data processing Environmental modelling Environmental monitoring Exploration Geochemical data Geochemistry Log-ratio approach Simplex geometry Statistical analysis Statistics |
Title | Compositional data analysis in geochemistry: Are we sure to see what really occurs during natural processes? |
URI | https://dx.doi.org/10.1016/j.gexplo.2014.03.022 https://www.proquest.com/docview/1620044437 https://www.proquest.com/docview/1753513671 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1689 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001746 issn: 0375-6742 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1879-1689 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001746 issn: 0375-6742 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-1689 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001746 issn: 0375-6742 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-1689 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001746 issn: 0375-6742 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1689 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001746 issn: 0375-6742 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7LetGD-MQ3EbzWbdraRC8ioqyKe1HBW0jaybqydBe3i3jxtzvTtL5ABY8pSRom08lM8803jO05JVIprAvwfEgxQFFJYCA0gcsMAPm8ICjB-bqXdu-Sy_uD-xY7bXJhCFZZ235v0ytrXT_p1NLsjAeDzg1Vb00xssMQgW4TyA4T-xfq9P7rB8wDPW5_XykJZJ9ETfpchfHqAwHdCOCVVFSnUfTT8fTNUFenz_kCm6_dRn7iV7bIWlAssblPZILLbEifdg3Bwq4E_eSmphzhg4L3gYpj-epuRzgT8Gfg9H-QlyM-AWw-mJKjDzkcvvBRlk2fJtwnMfKK_RPnHPusApgcr7C787Pb025Q11IIslhGJZpaaUIFxtk0ccoK6Zy1GE24VDmbhzmKQLkslRguWRGlyghrE3vorBCxgTiLV1m7GBWwxrgx1uWhkSI_hCRHh8bGNqS4JccXKJWvs7gRoc5qonGqdzHUDaLsUXvBaxK8DmONgl9nwfuosSfa-KO_bHZHf1EYjWfBHyN3m83UKHS6IDEFjKYTjUpU8efF8pc-GN8dEM-d2Pj3CjbZLLU84myLtcunKWyjb1PanUp5d9jMycVVt_cGfuv8CQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-yPqgPop7ien5EuNeyTdttoi8ioqxf-3IKvoWknejK0l3cLsf99zfTpKIHKvjYNknDJP3NTPObGcZ-OSVyKayLUD_k6KCoLDIQm8gVBoBsXhAU4Hw7zAf32dVD_2GBnbWxMESrDNjvMb1B63CnF6TZm45Gvd9UvTVHzw5dBDpNQBxezPqIyR22eHp5PRi-AjIa3f7IUhLPPkvaCLqG5vUIxHUjjlfWZDtNko801H9Y3SigizW2GixHfuont84WoNpgK2_yCf5gY_q6AwsLmxL7k5uQdYSPKv4IVB_LF3g7xpGA_wFOvwh5PeEzwMsnU3M0I8fjv3xSFPOXGfdxjLxJAIpjTn1gAcxONtn9xfnd2SAK5RSiIpVJjWgrTazAOJtnTlkhnbMWHQqXK2fLuEQRKFfkEj0mK5JcGWFtZo-cFSI1kBbpFutUkwq2GTfGujI2UpRHkJVo09jUxuS6lPgCpcouS1sR6iLkGqeSF2PdksqetRe8JsHrONUo-C6LXntNfa6NL9rLdnX0uz2jUR180fOwXUyNQqczElPBZD7TuI-aFHqp_KQNunh9SnUndr49gwO2NLi7vdE3l8Prn2yZnngC2i7r1C9z2ENTp7b7YSv_AwZn_rQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compositional+data+analysis+in+geochemistry%3A+Are+we+sure+to+see+what+really+occurs+during+natural+processes%3F&rft.jtitle=Journal+of+geochemical+exploration&rft.au=Buccianti%2C+A.&rft.au=Grunsky%2C+E.&rft.date=2014-06-01&rft.issn=0375-6742&rft.volume=141&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1016%2Fj.gexplo.2014.03.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gexplo_2014_03_022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-6742&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-6742&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-6742&client=summon |