Factors affecting the voxel-based analysis of diffusion tensor imaging

Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which is a highly reproducible and user-independent tech- nique, has been used to analyze DTI data in a number of studies. Fractional anisotropy (...

Full description

Saved in:
Bibliographic Details
Published inChinese science bulletin Vol. 59; no. 31; pp. 4077 - 4085
Main Authors Wang, Jianli, Nie, Binbin, Zhu, Haitao, Liu, Hua, Wang, Jingjuan, Duan, Shaofeng, Shan, Baoci
Format Journal Article
LanguageEnglish
Published Heidelberg Springer-Verlag 01.11.2014
Science China Press
Subjects
Online AccessGet full text
ISSN1001-6538
1861-9541
DOI10.1007/s11434-014-0551-8

Cover

Abstract Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which is a highly reproducible and user-independent tech- nique, has been used to analyze DTI data in a number of studies. Fractional anisotropy (FA), which is derived from DTI, is the most frequently used parameter. The parameter setting during the DTI data preprocessing might affect the FA analysis results. However, there is no reliable evidence on how the parameters affect the results of FA analysis. This study sought to quantitatively investigate the factors that might affect the voxel-based analysis of FA; these include the interpolation during spatial normalization, smoothing kernel and statistical threshold. Because it is difficult to obtain the true information of the lesion in the patients, we simulated lesions on the healthy FA maps. The DTI data were obtained from 20 healthy subjects. The FA maps were calculated using DTIStudio. We randomly divided these FA maps into two groups. One was used as a model patient group, and the other was used as a normal control group. Simulated lesions were added to the model patient group by decreasing the FA intensities in a specified region by 5 %- 50 %. The model patient group and the normal control groupwere compared by two-sample t test statistic analysis voxel- by-voxel to detect the simulated lesions. We evaluated these factors by comparing the difference between the detected lesion through VBA and the simulated lesion. The result showed that the space normalization of FA image should use the trilinear interpolation, and the smoothing kernel should be 2-3 times the voxel size of spatially normalized FA image. For lesions with small intensity change, FWE correction must be cautiously used. This study provided an important reference to the analysis of FA with VBA method.
AbstractList Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which is a highly reproducible and user-independent tech- nique, has been used to analyze DTI data in a number of studies. Fractional anisotropy (FA), which is derived from DTI, is the most frequently used parameter. The parameter setting during the DTI data preprocessing might affect the FA analysis results. However, there is no reliable evidence on how the parameters affect the results of FA analysis. This study sought to quantitatively investigate the factors that might affect the voxel-based analysis of FA; these include the interpolation during spatial normalization, smoothing kernel and statistical threshold. Because it is difficult to obtain the true information of the lesion in the patients, we simulated lesions on the healthy FA maps. The DTI data were obtained from 20 healthy subjects. The FA maps were calculated using DTIStudio. We randomly divided these FA maps into two groups. One was used as a model patient group, and the other was used as a normal control group. Simulated lesions were added to the model patient group by decreasing the FA intensities in a specified region by 5 %- 50 %. The model patient group and the normal control groupwere compared by two-sample t test statistic analysis voxel- by-voxel to detect the simulated lesions. We evaluated these factors by comparing the difference between the detected lesion through VBA and the simulated lesion. The result showed that the space normalization of FA image should use the trilinear interpolation, and the smoothing kernel should be 2-3 times the voxel size of spatially normalized FA image. For lesions with small intensity change, FWE correction must be cautiously used. This study provided an important reference to the analysis of FA with VBA method.
Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which is a highly reproducible and user-independent technique, has been used to analyze DTI data in a number of studies. Fractional anisotropy (FA), which is derived from DTI, is the most frequently used parameter. The parameter setting during the DTI data preprocessing might affect the FA analysis results. However, there is no reliable evidence on how the parameters affect the results of FA analysis. This study sought to quantitatively investigate the factors that might affect the voxel-based analysis of FA; these include the interpolation during spatial normalization, smoothing kernel and statistical threshold. Because it is difficult to obtain the true information of the lesion in the patients, we simulated lesions on the healthy FA maps. The DTI data were obtained from 20 healthy subjects. The FA maps were calculated using DTIStudio. We randomly divided these FA maps into two groups. One was used as a model patient group, and the other was used as a normal control group. Simulated lesions were added to the model patient group by decreasing the FA intensities in a specified region by 5 %–50 %. The model patient group and the normal control group were compared by two-sample t test statistic analysis voxel-by-voxel to detect the simulated lesions. We evaluated these factors by comparing the difference between the detected lesion through VBA and the simulated lesion. The result showed that the space normalization of FA image should use the trilinear interpolation, and the smoothing kernel should be 2–3 times the voxel size of spatially normalized FA image. For lesions with small intensity change, FWE correction must be cautiously used. This study provided an important reference to the analysis of FA with VBA method.
Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which is a highly reproducible and user-independent technique, has been used to analyze DTI data in a number of studies. Fractional anisotropy (FA), which is derived from DTI, is the most frequently used parameter. The parameter setting during the DTI data preprocessing might affect the FA analysis results. However, there is no reliable evidence on how the parameters affect the results of FA analysis. This study sought to quantitatively investigate the factors that might affect the voxel-based analysis of FA; these include the interpolation during spatial normalization, smoothing kernel and statistical threshold. Because it is difficult to obtain the true information of the lesion in the patients, we simulated lesions on the healthy FA maps. The DTI data were obtained from 20 healthy subjects. The FA maps were calculated using DTIStudio. We randomly divided these FA maps into two groups. One was used as a model patient group, and the other was used as a normal control group. Simulated lesions were added to the model patient group by decreasing the FA intensities in a specified region by 5 %–50 %. The model patient group and the normal control group were compared by two-sample t test statistic analysis voxel-by-voxel to detect the simulated lesions. We evaluated these factors by comparing the difference between the detected lesion through VBA and the simulated lesion. The result showed that the space normalization of FA image should use the trilinear interpolation, and the smoothing kernel should be 2–3 times the voxel size of spatially normalized FA image. For lesions with small intensity change, FWE correction must be cautiously used. This study provided an important reference to the analysis of FA with VBA method.
Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which is a highly reproducible and user-independent technique, has been used to analyze DTI data in a number of studies. Fractional anisotropy (FA), which is derived from DTI, is the most frequently used parameter. The parameter setting during the DTI data preprocessing might affect the FA analysis results. However, there is no reliable evidence on how the parameters affect the results of FA analysis. This study sought to quantitatively investigate the factors that might affect the voxel-based analysis of FA; these include the interpolation during spatial normalization, smoothing kernel and statistical threshold. Because it is difficult to obtain the true information of the lesion in the patients, we simulated lesions on the healthy FA maps. The DTI data were obtained from 20 healthy subjects. The FA maps were calculated using DTIStudio. We randomly divided these FA maps into two groups. One was used as a model patient group, and the other was used as a normal control group. Simulated lesions were added to the model patient group by decreasing the FA intensities in a specified region by 5 %–50 %. The model patient group and the normal control group were compared by two-sample t test statistic analysis voxel-by-voxel to detect the simulated lesions. We evaluated these factors by comparing the difference between the detected lesion through VBA and the simulated lesion. The result showed that the space normalization of FA image should use the trilinear interpolation, and the smoothing kernel should be 2–3 times the voxel size of spatially normalized FA image. For lesions with small intensity change, FWE correction must be cautiously used. This study provided an important reference to the analysis of FA with VBA method.
Author Liu, Hua
Wang, Jingjuan
Duan, Shaofeng
Wang, Jianli
Shan, Baoci
Nie, Binbin
Zhu, Haitao
AuthorAffiliation Key Laboratory of Nuclear Radiation and Nuclear EnergyTechnology, Institute of High Energy Physics, Chinese Academyof Sciences, Beijing 100049, China Beijing Engineering Research Center of RadiographicTechniques and Equipment, Beijing 100049, China
Author_xml – sequence: 1
  fullname: Wang, Jianli
– sequence: 2
  fullname: Nie, Binbin
– sequence: 3
  fullname: Zhu, Haitao
– sequence: 4
  fullname: Liu, Hua
– sequence: 5
  fullname: Wang, Jingjuan
– sequence: 6
  fullname: Duan, Shaofeng
– sequence: 7
  fullname: Shan, Baoci
BookMark eNp9kMFuFSEUhompiW31AVw5ceVmKgdmgFmaxqtNmrjQrsmBC1OaKbScuca-vdxM48JFFwRI_u_kP98ZO8klB8beA78AzvVnAhjk0HNoZxyhN6_YKRgF_TQOcNLenEOvRmnesDOiu_aToMUp2-3Qr6VShzEGv6Y8d-tt6H6XP2HpHVLYd5hxeaJEXYndPsV4oFRyt4ZMpXbpHucGvWWvIy4U3j3f5-xm9_XX5ff--se3q8sv172XWqy9MDwGPbl9QNRiUkaAizCBQ2_QaOOUc3oYYATlpyidkrhHoSfg6ITzgzxnn7a5D7U8HgKt9j6RD8uCOZQDWVBKKs6NnFpUb1FfC1EN0fq04tq6rxXTYoHbozm7mbPNnD2as6aR8B_5UNue9elFRmwMtWyeQ7V35VCbOXoR-rBBEYvFuSayNz8Fh5FzrrRQx8TH5yq3Jc-PbfK_LkqJUY9D2_UvMoiW7Q
CitedBy_id crossref_primary_10_1007_s12264_018_0240_8
Cites_doi 10.1002/hbm.20563
10.1176/appi.ajp.161.7.1293
10.1016/S0730-725X(99)00029-6
10.1016/j.neuroimage.2006.09.025
10.1016/j.mri.2008.09.004
10.1097/01.chi.0000246064.93200.e8
10.1002/hbm.20713
10.1016/j.neurobiolaging.2006.09.003
10.1016/j.neuroimage.2008.10.026
10.1093/cercor/bhh055
10.1016/S0197-4580(01)00318-9
10.1002/ajmg.b.10035
10.1016/j.cmpb.2005.08.004
10.1002/nbm.907
10.1016/j.neuroimage.2004.11.018
10.1002/jmri.22017
10.1002/mrm.22924
10.1016/j.pscychresns.2009.07.007
10.1093/brain/124.3.627
10.1093/brain/awh041
10.1016/j.neuroimage.2008.02.023
10.1093/brain/124.3.617
10.1191/0962280203sm341ra
10.1016/j.nic.2005.11.004
10.1002/jmri.21231
10.1016/j.neuroimage.2005.02.013
10.1016/j.schres.2009.10.002
10.1016/j.ejrad.2009.07.032
10.1111/j.1469-8137.1912.tb05611.x
10.1007/s12031-007-0029-0
10.1016/j.neuroimage.2007.02.027
10.1016/j.neures.2011.09.006
10.1016/j.schres.2006.09.032
10.1006/jmrb.1994.1037
10.1016/j.neuroimage.2004.04.036
10.1093/cercor/bhp280
ContentType Journal Article
Copyright Science China Press and Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2014
DBID 2RA
92L
CQIGP
~WA
FBQ
AAYXX
CITATION
7S9
L.6
DOI 10.1007/s11434-014-0551-8
DatabaseName CQVIP
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
Physics
DocumentTitleAlternate Factors affecting the voxel-based analysis of diffusion tensor imaging
EISSN 1861-9541
EndPage 4085
ExternalDocumentID 10_1007_s11434_014_0551_8
US201500067268
662575408
GroupedDBID -Y2
-~X
.86
0R~
1N0
29B
2B.
2C.
2RA
2VQ
4.4
40D
40G
5GY
67Z
6J9
6NX
8UJ
92E
92I
92L
92Q
93N
AARTL
ABJOX
ABMNI
ABTMW
ACCUX
ACGFO
ACGFS
ACOMO
ADHIR
AEGNC
AEOHA
AFGCZ
AGQMX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
BA0
BGNMA
CAG
COF
CQIGP
CS3
CW9
DU5
EBS
EJD
ESBYG
F5P
GX1
HF~
HZ~
IHE
I~X
I~Z
KOV
KQ8
M4Y
M~E
NB0
NU0
O9-
OK1
RNS
RPX
RSV
S1Z
S27
SCL
SDH
SHS
SOJ
T13
TCJ
TN5
U2A
UG4
W48
WK8
~02
~WA
ABPTK
FBQ
AAHBH
ABJNI
CJPJV
H13
AAYXX
CITATION
7S9
L.6
ID FETCH-LOGICAL-c372t-280fe79bdeaa7296821bf191bac8a878b6bb7441516c9f3b63ada27910ab2bc43
IEDL.DBID 40G
ISSN 1001-6538
IngestDate Fri Jul 11 06:13:49 EDT 2025
Tue Jul 01 00:48:27 EDT 2025
Thu Apr 24 23:00:18 EDT 2025
Fri Feb 21 02:34:23 EST 2025
Tue Nov 07 23:10:21 EST 2023
Wed Feb 14 10:38:56 EST 2024
IsPeerReviewed false
IsScholarly false
Issue 31
Keywords Fractional anisotropy
Jaccard similarity
Voxel-based analysis
Statistical parametric mapping
Diffusion tensor imaging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-280fe79bdeaa7296821bf191bac8a878b6bb7441516c9f3b63ada27910ab2bc43
Notes Diffusion tensor imaging ; Statistical parametric mapping ; Jaccard similarity ; Fractional anisotropy ; Voxel-based analysis
11-1785/N
Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which is a highly reproducible and user-independent tech- nique, has been used to analyze DTI data in a number of studies. Fractional anisotropy (FA), which is derived from DTI, is the most frequently used parameter. The parameter setting during the DTI data preprocessing might affect the FA analysis results. However, there is no reliable evidence on how the parameters affect the results of FA analysis. This study sought to quantitatively investigate the factors that might affect the voxel-based analysis of FA; these include the interpolation during spatial normalization, smoothing kernel and statistical threshold. Because it is difficult to obtain the true information of the lesion in the patients, we simulated lesions on the healthy FA maps. The DTI data were obtained from 20 healthy subjects. The FA maps were calculated using DTIStudio. We randomly divided these FA maps into two groups. One was used as a model patient group, and the other was used as a normal control group. Simulated lesions were added to the model patient group by decreasing the FA intensities in a specified region by 5 %- 50 %. The model patient group and the normal control groupwere compared by two-sample t test statistic analysis voxel- by-voxel to detect the simulated lesions. We evaluated these factors by comparing the difference between the detected lesion through VBA and the simulated lesion. The result showed that the space normalization of FA image should use the trilinear interpolation, and the smoothing kernel should be 2-3 times the voxel size of spatially normalized FA image. For lesions with small intensity change, FWE correction must be cautiously used. This study provided an important reference to the analysis of FA with VBA method.
http://dx.doi.org/10.1007/s11434-014-0551-8
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1663600839
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_1663600839
crossref_citationtrail_10_1007_s11434_014_0551_8
crossref_primary_10_1007_s11434_014_0551_8
springer_journals_10_1007_s11434_014_0551_8
fao_agris_US201500067268
chongqing_primary_662575408
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Chinese science bulletin
PublicationTitleAbbrev Chin. Sci. Bull
PublicationTitleAlternate Chinese Science Bulletin
PublicationYear 2014
Publisher Springer-Verlag
Science China Press
Publisher_xml – name: Springer-Verlag
– name: Science China Press
References Basser, Mattiello, Le (CR1) 1994; 103
Büchel, Raedler, Sommer (CR32) 2004; 14
Roosendaal, Geurts, Vrenken (CR12) 2009; 44
Taylor, MacFall, Payne (CR19) 2004; 161
Takao, Abe, Yamasue (CR21) 2010; 31
Jiang, van Zijl, Kim (CR35) 2006; 81
Damoiseaux, Smith, Witter (CR16) 2009; 30
Qiu, Tan, Zhou (CR5) 2008; 41
Moriya, Kakeda, Abe (CR20) 2010; 116
Firbank, Blamire, Krishnan (CR17) 2007; 36
Assaf, Pasternak (CR11) 2008; 34
Simon, Ding, Bish (CR28) 2005; 25
Cascio, Gerig, Piven (CR10) 2007; 46
Abe, Yamada, Masutani (CR14) 2004; 17
Tournier, Mori, Leemans (CR2) 2011; 65
Jones, Symms, Cercignani (CR27) 2005; 26
Chao, Chou, Yang (CR33) 2009; 27
Nichols, Hayasaka (CR37) 2003; 12
Barnea-Goraly, Eliez, Hedeus (CR31) 2003; 118
Rugg-Gunn, Eriksson, Symms (CR29) 2001; 124
Hiltunen, Seppä, Hari (CR34) 2011; 71
CR6
Abe, Yamasue, Aoki (CR8) 2008; 29
Abe, Yamasue, Kasai (CR18) 2010; 181
Jaccard (CR36) 1912; 11
Johansen-Berg, Behrens (CR3) 2009
Mukherjee, McKinstry (CR9) 2006; 16
Papadakis, Xing, Houston (CR4) 1999; 17
Sach, Winkler, Glauche (CR15) 2004; 127
White, Kendi, Lehéricy (CR24) 2007; 90
Park, Westin, Kubicki (CR26) 2004; 23
Sage, Peeters, Görner (CR22) 2007; 34
Bodini, Khaleeli, Cercignani (CR13) 2009; 30
Eriksson, Rugg-Gunn, Symms (CR30) 2001; 124
Abe, Aoki, Hayashi (CR7) 2002; 23
Rose, Andrew, Chalk (CR23) 2008; 27
Zhang, Yu, Zhang (CR25) 2011; 77
551_CR6
H Jiang (551_CR35) 2006; 81
NG Papadakis (551_CR4) 1999; 17
F Rugg-Gunn (551_CR29) 2001; 124
TC Chao (551_CR33) 2009; 27
J Hiltunen (551_CR34) 2011; 71
T White (551_CR24) 2007; 90
JS Damoiseaux (551_CR16) 2009; 30
MJ Firbank (551_CR17) 2007; 36
H Takao (551_CR21) 2010; 31
JD Tournier (551_CR2) 2011; 65
N Barnea-Goraly (551_CR31) 2003; 118
O Abe (551_CR8) 2008; 29
S Roosendaal (551_CR12) 2009; 44
CJ Cascio (551_CR10) 2007; 46
O Abe (551_CR7) 2002; 23
O Abe (551_CR14) 2004; 17
CA Sage (551_CR22) 2007; 34
P Jaccard (551_CR36) 1912; 11
D Jones (551_CR27) 2005; 26
Y Assaf (551_CR11) 2008; 34
C Büchel (551_CR32) 2004; 14
J Moriya (551_CR20) 2010; 116
O Abe (551_CR18) 2010; 181
M Sach (551_CR15) 2004; 127
WD Taylor (551_CR19) 2004; 161
K Zhang (551_CR25) 2011; 77
H Johansen-Berg (551_CR3) 2009
D Qiu (551_CR5) 2008; 41
SE Rose (551_CR23) 2008; 27
T Nichols (551_CR37) 2003; 12
HJ Park (551_CR26) 2004; 23
PJ Basser (551_CR1) 1994; 103
S Eriksson (551_CR30) 2001; 124
B Bodini (551_CR13) 2009; 30
TJ Simon (551_CR28) 2005; 25
P Mukherjee (551_CR9) 2006; 16
References_xml – volume: 30
  start-page: 1051
  year: 2009
  end-page: 1059
  ident: CR16
  article-title: White matter tract integrity in aging and Alzheimer’s disease
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20563
– volume: 161
  start-page: 1293
  year: 2004
  end-page: 1296
  ident: CR19
  article-title: Late-life depression and microstructural abnormalities in dorsolateral prefrontal cortex white matter
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.161.7.1293
– volume: 17
  start-page: 881
  year: 1999
  end-page: 892
  ident: CR4
  article-title: A study of rotationally invariant and symmetric indices of diffusion anisotropy
  publication-title: Magn Reson Imaging
  doi: 10.1016/S0730-725X(99)00029-6
– volume: 34
  start-page: 486
  year: 2007
  end-page: 499
  ident: CR22
  article-title: Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.09.025
– volume: 27
  start-page: 681
  year: 2009
  end-page: 690
  ident: CR33
  article-title: Effects of interpolation methods in spatial normalization of diffusion tensor imaging data on group comparison of fractional anisotropy
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2008.09.004
– volume: 46
  start-page: 213
  year: 2007
  end-page: 223
  ident: CR10
  article-title: Diffusion tensor imaging: application to the study of the developing brain
  publication-title: J Am Acad Child Adolesc Psychiatry
  doi: 10.1097/01.chi.0000246064.93200.e8
– ident: CR6
– volume: 30
  start-page: 2852
  year: 2009
  end-page: 2861
  ident: CR13
  article-title: Exploring the relationship between white matter and gray matter damage in early primary progressive multiple sclerosis: an study with TBSS and VBM
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20713
– volume: 29
  start-page: 102
  year: 2008
  end-page: 116
  ident: CR8
  article-title: Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2006.09.003
– volume: 44
  start-page: 1397
  year: 2009
  end-page: 1403
  ident: CR12
  article-title: Regional DTI differences in multiple sclerosis patients
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.026
– volume: 14
  start-page: 945
  year: 2004
  end-page: 951
  ident: CR32
  article-title: White matter asymmetry in the human brain: a diffusion tensor MRI study
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhh055
– volume: 23
  start-page: 433
  year: 2002
  end-page: 441
  ident: CR7
  article-title: Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis
  publication-title: Neurobiol Aging
  doi: 10.1016/S0197-4580(01)00318-9
– volume: 118
  start-page: 81
  year: 2003
  end-page: 88
  ident: CR31
  article-title: White matter tract alterations in fragile X syndrome: preliminary evidence from diffusion tensor imaging
  publication-title: Am J Med Genet Part B Neuropsychiatric Genet
  doi: 10.1002/ajmg.b.10035
– volume: 81
  start-page: 106
  year: 2006
  end-page: 116
  ident: CR35
  article-title: DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2005.08.004
– volume: 17
  start-page: 411
  year: 2004
  end-page: 416
  ident: CR14
  article-title: Amyotrophic lateral sclerosis: diffusion tensor tractography and voxel-based analysis
  publication-title: NMR Biomed
  doi: 10.1002/nbm.907
– volume: 25
  start-page: 169
  year: 2005
  end-page: 180
  ident: CR28
  article-title: Volumetric, connective, and morphologic changes in the brains of children with chromosome 22q11. 2 deletion syndrome: an integrative study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.11.018
– volume: 31
  start-page: 221
  year: 2010
  end-page: 226
  ident: CR21
  article-title: Cerebral asymmetry in patients with schizophrenia: a voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) study
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.22017
– volume: 65
  start-page: 1532
  year: 2011
  end-page: 1556
  ident: CR2
  article-title: Diffusion tensor imaging and beyond
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22924
– volume: 181
  start-page: 64
  year: 2010
  end-page: 70
  ident: CR18
  article-title: Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression
  publication-title: Psychiatry Res
  doi: 10.1016/j.pscychresns.2009.07.007
– volume: 124
  start-page: 627
  year: 2001
  end-page: 636
  ident: CR29
  article-title: Diffusion tensor imaging of cryptogenic and acquired partial epilepsies
  publication-title: Brain
  doi: 10.1093/brain/124.3.627
– volume: 127
  start-page: 340
  year: 2004
  end-page: 350
  ident: CR15
  article-title: Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis
  publication-title: Brain
  doi: 10.1093/brain/awh041
– volume: 41
  start-page: 223
  year: 2008
  end-page: 232
  ident: CR5
  article-title: Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.02.023
– volume: 124
  start-page: 617
  year: 2001
  end-page: 626
  ident: CR30
  article-title: Diffusion tensor imaging in patients with epilepsy and malformations of cortical development
  publication-title: Brain
  doi: 10.1093/brain/124.3.617
– volume: 12
  start-page: 419
  year: 2003
  end-page: 446
  ident: CR37
  article-title: Controlling the familywise error rate in functional neuroimaging: a comparative review
  publication-title: Stat Methods Med Res
  doi: 10.1191/0962280203sm341ra
– volume: 16
  start-page: 19
  year: 2006
  ident: CR9
  article-title: Diffusion tensor imaging and tractography of human brain development
  publication-title: NeuroImage Clin N Am
  doi: 10.1016/j.nic.2005.11.004
– year: 2009
  ident: CR3
  publication-title: Diffusion MRI: from quantitative measurement to in vivo neuroanatomy
– volume: 27
  start-page: 20
  year: 2008
  end-page: 26
  ident: CR23
  article-title: Gray and white matter changes in Alzheimer’s disease: a diffusion tensor imaging study
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21231
– volume: 26
  start-page: 546
  year: 2005
  end-page: 554
  ident: CR27
  article-title: The effect of filter size on VBM analyses of DT-MRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.02.013
– volume: 116
  start-page: 196
  year: 2010
  end-page: 203
  ident: CR20
  article-title: Gray and white matter volumetric and diffusion tensor imaging (DTI) analyses in the early stage of first-episode schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2009.10.002
– volume: 77
  start-page: 269
  year: 2011
  end-page: 273
  ident: CR25
  article-title: Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson’s disease
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2009.07.032
– volume: 11
  start-page: 37
  year: 1912
  end-page: 50
  ident: CR36
  article-title: The distribution of the flora in the alpine zone
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– volume: 34
  start-page: 51
  year: 2008
  end-page: 61
  ident: CR11
  article-title: Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review
  publication-title: J Mol Neurosci
  doi: 10.1007/s12031-007-0029-0
– volume: 36
  start-page: 1
  year: 2007
  end-page: 7
  ident: CR17
  article-title: Atrophy is associated with posterior cingulate white matter disruption in dementia with Lewy bodies and Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.027
– volume: 71
  start-page: 377
  year: 2011
  end-page: 386
  ident: CR34
  article-title: Evaluation of voxel-based group-level analysis of diffusion tensor images using simulated brain lesions
  publication-title: Neurosci Res
  doi: 10.1016/j.neures.2011.09.006
– volume: 90
  start-page: 302
  year: 2007
  end-page: 307
  ident: CR24
  article-title: Disruption of hippocampal connectivity in children and adolescents with schizophrenia: a voxel-based diffusion tensor imaging study
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2006.09.032
– volume: 103
  start-page: 247
  year: 1994
  end-page: 254
  ident: CR1
  article-title: Estimation of the effective self-diffusion tensor from the NMR spin echo
  publication-title: J Magn Reson Ser B
  doi: 10.1006/jmrb.1994.1037
– volume: 23
  start-page: 213
  year: 2004
  ident: CR26
  article-title: White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.04.036
– volume: 116
  start-page: 196
  year: 2010
  ident: 551_CR20
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2009.10.002
– volume: 71
  start-page: 377
  year: 2011
  ident: 551_CR34
  publication-title: Neurosci Res
  doi: 10.1016/j.neures.2011.09.006
– volume: 17
  start-page: 881
  year: 1999
  ident: 551_CR4
  publication-title: Magn Reson Imaging
  doi: 10.1016/S0730-725X(99)00029-6
– volume: 30
  start-page: 1051
  year: 2009
  ident: 551_CR16
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20563
– ident: 551_CR6
  doi: 10.1093/cercor/bhp280
– volume: 27
  start-page: 20
  year: 2008
  ident: 551_CR23
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21231
– volume: 29
  start-page: 102
  year: 2008
  ident: 551_CR8
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2006.09.003
– volume: 30
  start-page: 2852
  year: 2009
  ident: 551_CR13
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20713
– volume: 41
  start-page: 223
  year: 2008
  ident: 551_CR5
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.02.023
– volume: 181
  start-page: 64
  year: 2010
  ident: 551_CR18
  publication-title: Psychiatry Res
  doi: 10.1016/j.pscychresns.2009.07.007
– volume-title: Diffusion MRI: from quantitative measurement to in vivo neuroanatomy
  year: 2009
  ident: 551_CR3
– volume: 44
  start-page: 1397
  year: 2009
  ident: 551_CR12
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.10.026
– volume: 77
  start-page: 269
  year: 2011
  ident: 551_CR25
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2009.07.032
– volume: 11
  start-page: 37
  year: 1912
  ident: 551_CR36
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– volume: 25
  start-page: 169
  year: 2005
  ident: 551_CR28
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.11.018
– volume: 23
  start-page: 213
  year: 2004
  ident: 551_CR26
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.04.036
– volume: 124
  start-page: 617
  year: 2001
  ident: 551_CR30
  publication-title: Brain
  doi: 10.1093/brain/124.3.617
– volume: 26
  start-page: 546
  year: 2005
  ident: 551_CR27
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.02.013
– volume: 23
  start-page: 433
  year: 2002
  ident: 551_CR7
  publication-title: Neurobiol Aging
  doi: 10.1016/S0197-4580(01)00318-9
– volume: 36
  start-page: 1
  year: 2007
  ident: 551_CR17
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.027
– volume: 118
  start-page: 81
  year: 2003
  ident: 551_CR31
  publication-title: Am J Med Genet Part B Neuropsychiatric Genet
  doi: 10.1002/ajmg.b.10035
– volume: 12
  start-page: 419
  year: 2003
  ident: 551_CR37
  publication-title: Stat Methods Med Res
  doi: 10.1191/0962280203sm341ra
– volume: 127
  start-page: 340
  year: 2004
  ident: 551_CR15
  publication-title: Brain
  doi: 10.1093/brain/awh041
– volume: 161
  start-page: 1293
  year: 2004
  ident: 551_CR19
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.161.7.1293
– volume: 14
  start-page: 945
  year: 2004
  ident: 551_CR32
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhh055
– volume: 27
  start-page: 681
  year: 2009
  ident: 551_CR33
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2008.09.004
– volume: 34
  start-page: 51
  year: 2008
  ident: 551_CR11
  publication-title: J Mol Neurosci
  doi: 10.1007/s12031-007-0029-0
– volume: 103
  start-page: 247
  year: 1994
  ident: 551_CR1
  publication-title: J Magn Reson Ser B
  doi: 10.1006/jmrb.1994.1037
– volume: 16
  start-page: 19
  year: 2006
  ident: 551_CR9
  publication-title: NeuroImage Clin N Am
  doi: 10.1016/j.nic.2005.11.004
– volume: 34
  start-page: 486
  year: 2007
  ident: 551_CR22
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.09.025
– volume: 31
  start-page: 221
  year: 2010
  ident: 551_CR21
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.22017
– volume: 17
  start-page: 411
  year: 2004
  ident: 551_CR14
  publication-title: NMR Biomed
  doi: 10.1002/nbm.907
– volume: 124
  start-page: 627
  year: 2001
  ident: 551_CR29
  publication-title: Brain
  doi: 10.1093/brain/124.3.627
– volume: 46
  start-page: 213
  year: 2007
  ident: 551_CR10
  publication-title: J Am Acad Child Adolesc Psychiatry
  doi: 10.1097/01.chi.0000246064.93200.e8
– volume: 90
  start-page: 302
  year: 2007
  ident: 551_CR24
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2006.09.032
– volume: 65
  start-page: 1532
  year: 2011
  ident: 551_CR2
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22924
– volume: 81
  start-page: 106
  year: 2006
  ident: 551_CR35
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2005.08.004
SSID ssj0013172
Score 1.5557816
Snippet Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA),...
Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which...
SourceID proquest
crossref
springer
fao
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4077
SubjectTerms Chemistry/Food Science
Earth Sciences
Engineering
Humanities and Social Sciences
image analysis
Life Sciences
microstructure
multidisciplinary
patients
Physics
Science
Science (multidisciplinary)
seeds
t-test
三线性插值
体素
可能影响
成像
扩散张量
结构完整性
统计分析
预处理过程
Title Factors affecting the voxel-based analysis of diffusion tensor imaging
URI http://lib.cqvip.com/qk/86894X/201431/662575408.html
https://link.springer.com/article/10.1007/s11434-014-0551-8
https://www.proquest.com/docview/1663600839
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1861-9541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013172
  issn: 1001-6538
  databaseCode: KQ8
  dateStart: 20110601
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1861-9541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013172
  issn: 1001-6538
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAVX
  databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  customDbUrl:
  eissn: 1861-9541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013172
  issn: 1001-6538
  databaseCode: 40G
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1861-9541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013172
  issn: 1001-6538
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_0pGAfSj0Vz2tLhD7USmA3u5tkH6X0KopCsQe-hUw2q8J1t3XvpH9-J3u7npa24MPmZTMJ5JdkZjJfAO8RMctTH_ECJfLUKcExR8dR2Mwr53SuQrzz-YU8maanV9lVF8fd9N7uvUmyvalXwW7E2oPHBH3E5rleh40sJgZHmziNvqxMB7FamjhJT5Z0nHtT5t-GCAkVburq-idN94QxrZe2fiJz_mEmbbnP5DW86sRGdrzEeQvWfDWEl4-SCQ7hRevM6ZohbHUHtmEfuqzSh9swmSwr6zDbenAQCSPZj93Xv_yMB15WMNslKGF1yULhlEV4SWPBxb2-Y7ff23pGOzCdfP726YR3RRS4S5SYc6Gj0qscC28tCdJSixhLUtLQOm210gQRqqBUxdLlZYIysYUViqQIiwJdmuzCoKorvwfME30ZubJMUktaZJHbTIsEU4wTq6I8GsH4YTXNj2WyDCNJwVIkFuoRRP36GtflHw9lMGZmlTk5wGMIHhPgMUTy8YGkH-8_nfcINGOv6XI000sRnnJaQ7OkXwc9koZOTzCJ2MrXi8bEMuRLIzE0H8FRD7HpjnHz78n2n9V7DJsibLo2hPENDOZ3C_-WZJk5vmv3LrVnXzW1U3H8G4QK6H0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfYEGJ7QOwA7RgfQeKBD0Vq016SPk6I0wHbXthJe4viNB1Io93Wu4k_f3av3TEESDz0qXEixXFsx_bPAK8RcVLkMZElapR5MEpigUGi8pNoQrCF4XrnwyM9m-efTyYnfR13O2S7DyHJ7qZeF7uRaueMCfpIzUu7AXcZv4oB8-dqfx06SM0qxEl-siZxHkKZf5qCARW-NfXpBS13SzFtVL65ZXP-FibttM_0ITzozUaxv-LzDtyJ9Qi2fwETHMG9LpkztCPY6QW2FW96VOm3j2A6XXXWEb7L4CASQbafuGp-xjPJuqwUvgcoEU0luHHKkl_SBKe4N5fi-4-un9FjmE8_Hn-Yyb6JggyZUQupbFJFU2AZvSdDWluVYkVOGvpgvTWWWISGnapUh6LKUGe-9MqQFeFRYcizJ7BZN3XcBRGJvkpCVWW5Jy-yLPzEqgxzTDNvkiIZw97NbrrzFViG0-RgGTIL7RiSYX9d6PHHuQ3GmVsjJzN7HLHHMXsckby7IRnm-8fgXWKa86d0Obr5V8VPOV2gWdOvVwMnHUkPh0R8HZtl61LNeGlkhhZjeD-w2PVi3P59saf_Nfol3J8dHx64g09HX_ZgS_EB7MoZn8Hm4nIZn5Nds8AX3Tm-BuXF6cA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RIlA5VHQBdSkPI3HgIauJk7WdYwWE8qqQYKXeLI9jl0pt0ja7iJ_POI8uRYDEIadkbMnjyXzjGX8D8BQRZ0XuE16hRJ47JTgW6DgKO_PKOV2oeN_504Hcn-fvD2eHQ5_Tdqx2H1OS_Z2GyNJUL3bPqrC7uvhGbj5WT9BDLp_rNbiex-Z0tKHz5O0qjZCqPt1JMbMk0x7Tmn8aIpIrfGvqo3Oa-oqTWgu2uYI_f0uZdp6ovA2bA4Rke73Ot-Carydw6xdiwQnc6Ao7XTuBrcF4W_ZsYJh-fgfKsu-yw2xXzUEijHAg-9788Cc8-rWK2YGshDWBxSYqy3iqxmK5e3PBjk-73kZ3YV6--fpqnw8NFbjLlFhwoZPgVYGVt5ZAtdQixUABG1qnrVaa1IUqBlipdEXIUGa2skIRorAo0OXZPVivm9pvA_MkHxIXQpZbiiirws60yDDHNLMqKZIp7FyupjnriTOMpGBLEUTUU0jG9TVu4CKPLTFOzIpFOarHkHpMVI8hkReXIuN4__h4m5Rm7BH9KM38i4jHOl3SWdKrJ6MmDVlSTI_Y2jfL1qQycqcRJC2m8HJUsRlMuv37ZPf_6-vHcPPz69J8fHfwYQc2RNx_3c3GB7C-uFj6hwRxFvio28Y_AWtf7co
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factors+affecting+the+voxel-based+analysis+of+diffusion+tensor+imaging&rft.jtitle=Chinese+science+bulletin&rft.au=Wang%2C+Jianli&rft.au=Nie%2C+Binbin&rft.au=Zhu%2C+Haitao&rft.au=Liu%2C+Hua&rft.date=2014-11-01&rft.issn=1001-6538&rft.volume=59&rft.issue=31+p.4077-4085&rft.spage=4077&rft.epage=4085&rft_id=info:doi/10.1007%2Fs11434-014-0551-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86894X%2F86894X.jpg