Factors affecting the voxel-based analysis of diffusion tensor imaging
Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which is a highly reproducible and user-independent tech- nique, has been used to analyze DTI data in a number of studies. Fractional anisotropy (...
Saved in:
| Published in | Chinese science bulletin Vol. 59; no. 31; pp. 4077 - 4085 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Heidelberg
Springer-Verlag
01.11.2014
Science China Press |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1001-6538 1861-9541 |
| DOI | 10.1007/s11434-014-0551-8 |
Cover
| Abstract | Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which is a highly reproducible and user-independent tech- nique, has been used to analyze DTI data in a number of studies. Fractional anisotropy (FA), which is derived from DTI, is the most frequently used parameter. The parameter setting during the DTI data preprocessing might affect the FA analysis results. However, there is no reliable evidence on how the parameters affect the results of FA analysis. This study sought to quantitatively investigate the factors that might affect the voxel-based analysis of FA; these include the interpolation during spatial normalization, smoothing kernel and statistical threshold. Because it is difficult to obtain the true information of the lesion in the patients, we simulated lesions on the healthy FA maps. The DTI data were obtained from 20 healthy subjects. The FA maps were calculated using DTIStudio. We randomly divided these FA maps into two groups. One was used as a model patient group, and the other was used as a normal control group. Simulated lesions were added to the model patient group by decreasing the FA intensities in a specified region by 5 %- 50 %. The model patient group and the normal control groupwere compared by two-sample t test statistic analysis voxel- by-voxel to detect the simulated lesions. We evaluated these factors by comparing the difference between the detected lesion through VBA and the simulated lesion. The result showed that the space normalization of FA image should use the trilinear interpolation, and the smoothing kernel should be 2-3 times the voxel size of spatially normalized FA image. For lesions with small intensity change, FWE correction must be cautiously used. This study provided an important reference to the analysis of FA with VBA method. |
|---|---|
| AbstractList | Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which is a highly reproducible and user-independent tech- nique, has been used to analyze DTI data in a number of studies. Fractional anisotropy (FA), which is derived from DTI, is the most frequently used parameter. The parameter setting during the DTI data preprocessing might affect the FA analysis results. However, there is no reliable evidence on how the parameters affect the results of FA analysis. This study sought to quantitatively investigate the factors that might affect the voxel-based analysis of FA; these include the interpolation during spatial normalization, smoothing kernel and statistical threshold. Because it is difficult to obtain the true information of the lesion in the patients, we simulated lesions on the healthy FA maps. The DTI data were obtained from 20 healthy subjects. The FA maps were calculated using DTIStudio. We randomly divided these FA maps into two groups. One was used as a model patient group, and the other was used as a normal control group. Simulated lesions were added to the model patient group by decreasing the FA intensities in a specified region by 5 %- 50 %. The model patient group and the normal control groupwere compared by two-sample t test statistic analysis voxel- by-voxel to detect the simulated lesions. We evaluated these factors by comparing the difference between the detected lesion through VBA and the simulated lesion. The result showed that the space normalization of FA image should use the trilinear interpolation, and the smoothing kernel should be 2-3 times the voxel size of spatially normalized FA image. For lesions with small intensity change, FWE correction must be cautiously used. This study provided an important reference to the analysis of FA with VBA method. Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which is a highly reproducible and user-independent technique, has been used to analyze DTI data in a number of studies. Fractional anisotropy (FA), which is derived from DTI, is the most frequently used parameter. The parameter setting during the DTI data preprocessing might affect the FA analysis results. However, there is no reliable evidence on how the parameters affect the results of FA analysis. This study sought to quantitatively investigate the factors that might affect the voxel-based analysis of FA; these include the interpolation during spatial normalization, smoothing kernel and statistical threshold. Because it is difficult to obtain the true information of the lesion in the patients, we simulated lesions on the healthy FA maps. The DTI data were obtained from 20 healthy subjects. The FA maps were calculated using DTIStudio. We randomly divided these FA maps into two groups. One was used as a model patient group, and the other was used as a normal control group. Simulated lesions were added to the model patient group by decreasing the FA intensities in a specified region by 5 %–50 %. The model patient group and the normal control group were compared by two-sample t test statistic analysis voxel-by-voxel to detect the simulated lesions. We evaluated these factors by comparing the difference between the detected lesion through VBA and the simulated lesion. The result showed that the space normalization of FA image should use the trilinear interpolation, and the smoothing kernel should be 2–3 times the voxel size of spatially normalized FA image. For lesions with small intensity change, FWE correction must be cautiously used. This study provided an important reference to the analysis of FA with VBA method. Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which is a highly reproducible and user-independent technique, has been used to analyze DTI data in a number of studies. Fractional anisotropy (FA), which is derived from DTI, is the most frequently used parameter. The parameter setting during the DTI data preprocessing might affect the FA analysis results. However, there is no reliable evidence on how the parameters affect the results of FA analysis. This study sought to quantitatively investigate the factors that might affect the voxel-based analysis of FA; these include the interpolation during spatial normalization, smoothing kernel and statistical threshold. Because it is difficult to obtain the true information of the lesion in the patients, we simulated lesions on the healthy FA maps. The DTI data were obtained from 20 healthy subjects. The FA maps were calculated using DTIStudio. We randomly divided these FA maps into two groups. One was used as a model patient group, and the other was used as a normal control group. Simulated lesions were added to the model patient group by decreasing the FA intensities in a specified region by 5 %–50 %. The model patient group and the normal control group were compared by two-sample t test statistic analysis voxel-by-voxel to detect the simulated lesions. We evaluated these factors by comparing the difference between the detected lesion through VBA and the simulated lesion. The result showed that the space normalization of FA image should use the trilinear interpolation, and the smoothing kernel should be 2–3 times the voxel size of spatially normalized FA image. For lesions with small intensity change, FWE correction must be cautiously used. This study provided an important reference to the analysis of FA with VBA method. Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which is a highly reproducible and user-independent technique, has been used to analyze DTI data in a number of studies. Fractional anisotropy (FA), which is derived from DTI, is the most frequently used parameter. The parameter setting during the DTI data preprocessing might affect the FA analysis results. However, there is no reliable evidence on how the parameters affect the results of FA analysis. This study sought to quantitatively investigate the factors that might affect the voxel-based analysis of FA; these include the interpolation during spatial normalization, smoothing kernel and statistical threshold. Because it is difficult to obtain the true information of the lesion in the patients, we simulated lesions on the healthy FA maps. The DTI data were obtained from 20 healthy subjects. The FA maps were calculated using DTIStudio. We randomly divided these FA maps into two groups. One was used as a model patient group, and the other was used as a normal control group. Simulated lesions were added to the model patient group by decreasing the FA intensities in a specified region by 5 %–50 %. The model patient group and the normal control group were compared by two-sample t test statistic analysis voxel-by-voxel to detect the simulated lesions. We evaluated these factors by comparing the difference between the detected lesion through VBA and the simulated lesion. The result showed that the space normalization of FA image should use the trilinear interpolation, and the smoothing kernel should be 2–3 times the voxel size of spatially normalized FA image. For lesions with small intensity change, FWE correction must be cautiously used. This study provided an important reference to the analysis of FA with VBA method. |
| Author | Liu, Hua Wang, Jingjuan Duan, Shaofeng Wang, Jianli Shan, Baoci Nie, Binbin Zhu, Haitao |
| AuthorAffiliation | Key Laboratory of Nuclear Radiation and Nuclear EnergyTechnology, Institute of High Energy Physics, Chinese Academyof Sciences, Beijing 100049, China Beijing Engineering Research Center of RadiographicTechniques and Equipment, Beijing 100049, China |
| Author_xml | – sequence: 1 fullname: Wang, Jianli – sequence: 2 fullname: Nie, Binbin – sequence: 3 fullname: Zhu, Haitao – sequence: 4 fullname: Liu, Hua – sequence: 5 fullname: Wang, Jingjuan – sequence: 6 fullname: Duan, Shaofeng – sequence: 7 fullname: Shan, Baoci |
| BookMark | eNp9kMFuFSEUhompiW31AVw5ceVmKgdmgFmaxqtNmrjQrsmBC1OaKbScuca-vdxM48JFFwRI_u_kP98ZO8klB8beA78AzvVnAhjk0HNoZxyhN6_YKRgF_TQOcNLenEOvRmnesDOiu_aToMUp2-3Qr6VShzEGv6Y8d-tt6H6XP2HpHVLYd5hxeaJEXYndPsV4oFRyt4ZMpXbpHucGvWWvIy4U3j3f5-xm9_XX5ff--se3q8sv172XWqy9MDwGPbl9QNRiUkaAizCBQ2_QaOOUc3oYYATlpyidkrhHoSfg6ITzgzxnn7a5D7U8HgKt9j6RD8uCOZQDWVBKKs6NnFpUb1FfC1EN0fq04tq6rxXTYoHbozm7mbPNnD2as6aR8B_5UNue9elFRmwMtWyeQ7V35VCbOXoR-rBBEYvFuSayNz8Fh5FzrrRQx8TH5yq3Jc-PbfK_LkqJUY9D2_UvMoiW7Q |
| CitedBy_id | crossref_primary_10_1007_s12264_018_0240_8 |
| Cites_doi | 10.1002/hbm.20563 10.1176/appi.ajp.161.7.1293 10.1016/S0730-725X(99)00029-6 10.1016/j.neuroimage.2006.09.025 10.1016/j.mri.2008.09.004 10.1097/01.chi.0000246064.93200.e8 10.1002/hbm.20713 10.1016/j.neurobiolaging.2006.09.003 10.1016/j.neuroimage.2008.10.026 10.1093/cercor/bhh055 10.1016/S0197-4580(01)00318-9 10.1002/ajmg.b.10035 10.1016/j.cmpb.2005.08.004 10.1002/nbm.907 10.1016/j.neuroimage.2004.11.018 10.1002/jmri.22017 10.1002/mrm.22924 10.1016/j.pscychresns.2009.07.007 10.1093/brain/124.3.627 10.1093/brain/awh041 10.1016/j.neuroimage.2008.02.023 10.1093/brain/124.3.617 10.1191/0962280203sm341ra 10.1016/j.nic.2005.11.004 10.1002/jmri.21231 10.1016/j.neuroimage.2005.02.013 10.1016/j.schres.2009.10.002 10.1016/j.ejrad.2009.07.032 10.1111/j.1469-8137.1912.tb05611.x 10.1007/s12031-007-0029-0 10.1016/j.neuroimage.2007.02.027 10.1016/j.neures.2011.09.006 10.1016/j.schres.2006.09.032 10.1006/jmrb.1994.1037 10.1016/j.neuroimage.2004.04.036 10.1093/cercor/bhp280 |
| ContentType | Journal Article |
| Copyright | Science China Press and Springer-Verlag Berlin Heidelberg 2014 |
| Copyright_xml | – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2014 |
| DBID | 2RA 92L CQIGP ~WA FBQ AAYXX CITATION 7S9 L.6 |
| DOI | 10.1007/s11434-014-0551-8 |
| DatabaseName | CQVIP 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 AGRIS CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Engineering Physics |
| DocumentTitleAlternate | Factors affecting the voxel-based analysis of diffusion tensor imaging |
| EISSN | 1861-9541 |
| EndPage | 4085 |
| ExternalDocumentID | 10_1007_s11434_014_0551_8 US201500067268 662575408 |
| GroupedDBID | -Y2 -~X .86 0R~ 1N0 29B 2B. 2C. 2RA 2VQ 4.4 40D 40G 5GY 67Z 6J9 6NX 8UJ 92E 92I 92L 92Q 93N AARTL ABJOX ABMNI ABTMW ACCUX ACGFO ACGFS ACOMO ADHIR AEGNC AEOHA AFGCZ AGQMX ALMA_UNASSIGNED_HOLDINGS AMKLP BA0 BGNMA CAG COF CQIGP CS3 CW9 DU5 EBS EJD ESBYG F5P GX1 HF~ HZ~ IHE I~X I~Z KOV KQ8 M4Y M~E NB0 NU0 O9- OK1 RNS RPX RSV S1Z S27 SCL SDH SHS SOJ T13 TCJ TN5 U2A UG4 W48 WK8 ~02 ~WA ABPTK FBQ AAHBH ABJNI CJPJV H13 AAYXX CITATION 7S9 L.6 |
| ID | FETCH-LOGICAL-c372t-280fe79bdeaa7296821bf191bac8a878b6bb7441516c9f3b63ada27910ab2bc43 |
| IEDL.DBID | 40G |
| ISSN | 1001-6538 |
| IngestDate | Fri Jul 11 06:13:49 EDT 2025 Tue Jul 01 00:48:27 EDT 2025 Thu Apr 24 23:00:18 EDT 2025 Fri Feb 21 02:34:23 EST 2025 Tue Nov 07 23:10:21 EST 2023 Wed Feb 14 10:38:56 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 31 |
| Keywords | Fractional anisotropy Jaccard similarity Voxel-based analysis Statistical parametric mapping Diffusion tensor imaging |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-280fe79bdeaa7296821bf191bac8a878b6bb7441516c9f3b63ada27910ab2bc43 |
| Notes | Diffusion tensor imaging ; Statistical parametric mapping ; Jaccard similarity ; Fractional anisotropy ; Voxel-based analysis 11-1785/N Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which is a highly reproducible and user-independent tech- nique, has been used to analyze DTI data in a number of studies. Fractional anisotropy (FA), which is derived from DTI, is the most frequently used parameter. The parameter setting during the DTI data preprocessing might affect the FA analysis results. However, there is no reliable evidence on how the parameters affect the results of FA analysis. This study sought to quantitatively investigate the factors that might affect the voxel-based analysis of FA; these include the interpolation during spatial normalization, smoothing kernel and statistical threshold. Because it is difficult to obtain the true information of the lesion in the patients, we simulated lesions on the healthy FA maps. The DTI data were obtained from 20 healthy subjects. The FA maps were calculated using DTIStudio. We randomly divided these FA maps into two groups. One was used as a model patient group, and the other was used as a normal control group. Simulated lesions were added to the model patient group by decreasing the FA intensities in a specified region by 5 %- 50 %. The model patient group and the normal control groupwere compared by two-sample t test statistic analysis voxel- by-voxel to detect the simulated lesions. We evaluated these factors by comparing the difference between the detected lesion through VBA and the simulated lesion. The result showed that the space normalization of FA image should use the trilinear interpolation, and the smoothing kernel should be 2-3 times the voxel size of spatially normalized FA image. For lesions with small intensity change, FWE correction must be cautiously used. This study provided an important reference to the analysis of FA with VBA method. http://dx.doi.org/10.1007/s11434-014-0551-8 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1663600839 |
| PQPubID | 24069 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1663600839 crossref_citationtrail_10_1007_s11434_014_0551_8 crossref_primary_10_1007_s11434_014_0551_8 springer_journals_10_1007_s11434_014_0551_8 fao_agris_US201500067268 chongqing_primary_662575408 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-11-01 |
| PublicationDateYYYYMMDD | 2014-11-01 |
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Heidelberg |
| PublicationPlace_xml | – name: Heidelberg |
| PublicationTitle | Chinese science bulletin |
| PublicationTitleAbbrev | Chin. Sci. Bull |
| PublicationTitleAlternate | Chinese Science Bulletin |
| PublicationYear | 2014 |
| Publisher | Springer-Verlag Science China Press |
| Publisher_xml | – name: Springer-Verlag – name: Science China Press |
| References | Basser, Mattiello, Le (CR1) 1994; 103 Büchel, Raedler, Sommer (CR32) 2004; 14 Roosendaal, Geurts, Vrenken (CR12) 2009; 44 Taylor, MacFall, Payne (CR19) 2004; 161 Takao, Abe, Yamasue (CR21) 2010; 31 Jiang, van Zijl, Kim (CR35) 2006; 81 Damoiseaux, Smith, Witter (CR16) 2009; 30 Qiu, Tan, Zhou (CR5) 2008; 41 Moriya, Kakeda, Abe (CR20) 2010; 116 Firbank, Blamire, Krishnan (CR17) 2007; 36 Assaf, Pasternak (CR11) 2008; 34 Simon, Ding, Bish (CR28) 2005; 25 Cascio, Gerig, Piven (CR10) 2007; 46 Abe, Yamada, Masutani (CR14) 2004; 17 Tournier, Mori, Leemans (CR2) 2011; 65 Jones, Symms, Cercignani (CR27) 2005; 26 Chao, Chou, Yang (CR33) 2009; 27 Nichols, Hayasaka (CR37) 2003; 12 Barnea-Goraly, Eliez, Hedeus (CR31) 2003; 118 Rugg-Gunn, Eriksson, Symms (CR29) 2001; 124 Hiltunen, Seppä, Hari (CR34) 2011; 71 CR6 Abe, Yamasue, Aoki (CR8) 2008; 29 Abe, Yamasue, Kasai (CR18) 2010; 181 Jaccard (CR36) 1912; 11 Johansen-Berg, Behrens (CR3) 2009 Mukherjee, McKinstry (CR9) 2006; 16 Papadakis, Xing, Houston (CR4) 1999; 17 Sach, Winkler, Glauche (CR15) 2004; 127 White, Kendi, Lehéricy (CR24) 2007; 90 Park, Westin, Kubicki (CR26) 2004; 23 Sage, Peeters, Görner (CR22) 2007; 34 Bodini, Khaleeli, Cercignani (CR13) 2009; 30 Eriksson, Rugg-Gunn, Symms (CR30) 2001; 124 Abe, Aoki, Hayashi (CR7) 2002; 23 Rose, Andrew, Chalk (CR23) 2008; 27 Zhang, Yu, Zhang (CR25) 2011; 77 551_CR6 H Jiang (551_CR35) 2006; 81 NG Papadakis (551_CR4) 1999; 17 F Rugg-Gunn (551_CR29) 2001; 124 TC Chao (551_CR33) 2009; 27 J Hiltunen (551_CR34) 2011; 71 T White (551_CR24) 2007; 90 JS Damoiseaux (551_CR16) 2009; 30 MJ Firbank (551_CR17) 2007; 36 H Takao (551_CR21) 2010; 31 JD Tournier (551_CR2) 2011; 65 N Barnea-Goraly (551_CR31) 2003; 118 O Abe (551_CR8) 2008; 29 S Roosendaal (551_CR12) 2009; 44 CJ Cascio (551_CR10) 2007; 46 O Abe (551_CR7) 2002; 23 O Abe (551_CR14) 2004; 17 CA Sage (551_CR22) 2007; 34 P Jaccard (551_CR36) 1912; 11 D Jones (551_CR27) 2005; 26 Y Assaf (551_CR11) 2008; 34 C Büchel (551_CR32) 2004; 14 J Moriya (551_CR20) 2010; 116 O Abe (551_CR18) 2010; 181 M Sach (551_CR15) 2004; 127 WD Taylor (551_CR19) 2004; 161 K Zhang (551_CR25) 2011; 77 H Johansen-Berg (551_CR3) 2009 D Qiu (551_CR5) 2008; 41 SE Rose (551_CR23) 2008; 27 T Nichols (551_CR37) 2003; 12 HJ Park (551_CR26) 2004; 23 PJ Basser (551_CR1) 1994; 103 S Eriksson (551_CR30) 2001; 124 B Bodini (551_CR13) 2009; 30 TJ Simon (551_CR28) 2005; 25 P Mukherjee (551_CR9) 2006; 16 |
| References_xml | – volume: 30 start-page: 1051 year: 2009 end-page: 1059 ident: CR16 article-title: White matter tract integrity in aging and Alzheimer’s disease publication-title: Hum Brain Mapp doi: 10.1002/hbm.20563 – volume: 161 start-page: 1293 year: 2004 end-page: 1296 ident: CR19 article-title: Late-life depression and microstructural abnormalities in dorsolateral prefrontal cortex white matter publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.161.7.1293 – volume: 17 start-page: 881 year: 1999 end-page: 892 ident: CR4 article-title: A study of rotationally invariant and symmetric indices of diffusion anisotropy publication-title: Magn Reson Imaging doi: 10.1016/S0730-725X(99)00029-6 – volume: 34 start-page: 486 year: 2007 end-page: 499 ident: CR22 article-title: Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.09.025 – volume: 27 start-page: 681 year: 2009 end-page: 690 ident: CR33 article-title: Effects of interpolation methods in spatial normalization of diffusion tensor imaging data on group comparison of fractional anisotropy publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2008.09.004 – volume: 46 start-page: 213 year: 2007 end-page: 223 ident: CR10 article-title: Diffusion tensor imaging: application to the study of the developing brain publication-title: J Am Acad Child Adolesc Psychiatry doi: 10.1097/01.chi.0000246064.93200.e8 – ident: CR6 – volume: 30 start-page: 2852 year: 2009 end-page: 2861 ident: CR13 article-title: Exploring the relationship between white matter and gray matter damage in early primary progressive multiple sclerosis: an study with TBSS and VBM publication-title: Hum Brain Mapp doi: 10.1002/hbm.20713 – volume: 29 start-page: 102 year: 2008 end-page: 116 ident: CR8 article-title: Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2006.09.003 – volume: 44 start-page: 1397 year: 2009 end-page: 1403 ident: CR12 article-title: Regional DTI differences in multiple sclerosis patients publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.026 – volume: 14 start-page: 945 year: 2004 end-page: 951 ident: CR32 article-title: White matter asymmetry in the human brain: a diffusion tensor MRI study publication-title: Cereb Cortex doi: 10.1093/cercor/bhh055 – volume: 23 start-page: 433 year: 2002 end-page: 441 ident: CR7 article-title: Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis publication-title: Neurobiol Aging doi: 10.1016/S0197-4580(01)00318-9 – volume: 118 start-page: 81 year: 2003 end-page: 88 ident: CR31 article-title: White matter tract alterations in fragile X syndrome: preliminary evidence from diffusion tensor imaging publication-title: Am J Med Genet Part B Neuropsychiatric Genet doi: 10.1002/ajmg.b.10035 – volume: 81 start-page: 106 year: 2006 end-page: 116 ident: CR35 article-title: DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2005.08.004 – volume: 17 start-page: 411 year: 2004 end-page: 416 ident: CR14 article-title: Amyotrophic lateral sclerosis: diffusion tensor tractography and voxel-based analysis publication-title: NMR Biomed doi: 10.1002/nbm.907 – volume: 25 start-page: 169 year: 2005 end-page: 180 ident: CR28 article-title: Volumetric, connective, and morphologic changes in the brains of children with chromosome 22q11. 2 deletion syndrome: an integrative study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.11.018 – volume: 31 start-page: 221 year: 2010 end-page: 226 ident: CR21 article-title: Cerebral asymmetry in patients with schizophrenia: a voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) study publication-title: J Magn Reson Imaging doi: 10.1002/jmri.22017 – volume: 65 start-page: 1532 year: 2011 end-page: 1556 ident: CR2 article-title: Diffusion tensor imaging and beyond publication-title: Magn Reson Med doi: 10.1002/mrm.22924 – volume: 181 start-page: 64 year: 2010 end-page: 70 ident: CR18 article-title: Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression publication-title: Psychiatry Res doi: 10.1016/j.pscychresns.2009.07.007 – volume: 124 start-page: 627 year: 2001 end-page: 636 ident: CR29 article-title: Diffusion tensor imaging of cryptogenic and acquired partial epilepsies publication-title: Brain doi: 10.1093/brain/124.3.627 – volume: 127 start-page: 340 year: 2004 end-page: 350 ident: CR15 article-title: Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis publication-title: Brain doi: 10.1093/brain/awh041 – volume: 41 start-page: 223 year: 2008 end-page: 232 ident: CR5 article-title: Diffusion tensor imaging of normal white matter maturation from late childhood to young adulthood: voxel-wise evaluation of mean diffusivity, fractional anisotropy, radial and axial diffusivities, and correlation with reading development publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.02.023 – volume: 124 start-page: 617 year: 2001 end-page: 626 ident: CR30 article-title: Diffusion tensor imaging in patients with epilepsy and malformations of cortical development publication-title: Brain doi: 10.1093/brain/124.3.617 – volume: 12 start-page: 419 year: 2003 end-page: 446 ident: CR37 article-title: Controlling the familywise error rate in functional neuroimaging: a comparative review publication-title: Stat Methods Med Res doi: 10.1191/0962280203sm341ra – volume: 16 start-page: 19 year: 2006 ident: CR9 article-title: Diffusion tensor imaging and tractography of human brain development publication-title: NeuroImage Clin N Am doi: 10.1016/j.nic.2005.11.004 – year: 2009 ident: CR3 publication-title: Diffusion MRI: from quantitative measurement to in vivo neuroanatomy – volume: 27 start-page: 20 year: 2008 end-page: 26 ident: CR23 article-title: Gray and white matter changes in Alzheimer’s disease: a diffusion tensor imaging study publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21231 – volume: 26 start-page: 546 year: 2005 end-page: 554 ident: CR27 article-title: The effect of filter size on VBM analyses of DT-MRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.02.013 – volume: 116 start-page: 196 year: 2010 end-page: 203 ident: CR20 article-title: Gray and white matter volumetric and diffusion tensor imaging (DTI) analyses in the early stage of first-episode schizophrenia publication-title: Schizophr Res doi: 10.1016/j.schres.2009.10.002 – volume: 77 start-page: 269 year: 2011 end-page: 273 ident: CR25 article-title: Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson’s disease publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2009.07.032 – volume: 11 start-page: 37 year: 1912 end-page: 50 ident: CR36 article-title: The distribution of the flora in the alpine zone publication-title: New Phytologist doi: 10.1111/j.1469-8137.1912.tb05611.x – volume: 34 start-page: 51 year: 2008 end-page: 61 ident: CR11 article-title: Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review publication-title: J Mol Neurosci doi: 10.1007/s12031-007-0029-0 – volume: 36 start-page: 1 year: 2007 end-page: 7 ident: CR17 article-title: Atrophy is associated with posterior cingulate white matter disruption in dementia with Lewy bodies and Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.027 – volume: 71 start-page: 377 year: 2011 end-page: 386 ident: CR34 article-title: Evaluation of voxel-based group-level analysis of diffusion tensor images using simulated brain lesions publication-title: Neurosci Res doi: 10.1016/j.neures.2011.09.006 – volume: 90 start-page: 302 year: 2007 end-page: 307 ident: CR24 article-title: Disruption of hippocampal connectivity in children and adolescents with schizophrenia: a voxel-based diffusion tensor imaging study publication-title: Schizophr Res doi: 10.1016/j.schres.2006.09.032 – volume: 103 start-page: 247 year: 1994 end-page: 254 ident: CR1 article-title: Estimation of the effective self-diffusion tensor from the NMR spin echo publication-title: J Magn Reson Ser B doi: 10.1006/jmrb.1994.1037 – volume: 23 start-page: 213 year: 2004 ident: CR26 article-title: White matter hemisphere asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.04.036 – volume: 116 start-page: 196 year: 2010 ident: 551_CR20 publication-title: Schizophr Res doi: 10.1016/j.schres.2009.10.002 – volume: 71 start-page: 377 year: 2011 ident: 551_CR34 publication-title: Neurosci Res doi: 10.1016/j.neures.2011.09.006 – volume: 17 start-page: 881 year: 1999 ident: 551_CR4 publication-title: Magn Reson Imaging doi: 10.1016/S0730-725X(99)00029-6 – volume: 30 start-page: 1051 year: 2009 ident: 551_CR16 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20563 – ident: 551_CR6 doi: 10.1093/cercor/bhp280 – volume: 27 start-page: 20 year: 2008 ident: 551_CR23 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21231 – volume: 29 start-page: 102 year: 2008 ident: 551_CR8 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2006.09.003 – volume: 30 start-page: 2852 year: 2009 ident: 551_CR13 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20713 – volume: 41 start-page: 223 year: 2008 ident: 551_CR5 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.02.023 – volume: 181 start-page: 64 year: 2010 ident: 551_CR18 publication-title: Psychiatry Res doi: 10.1016/j.pscychresns.2009.07.007 – volume-title: Diffusion MRI: from quantitative measurement to in vivo neuroanatomy year: 2009 ident: 551_CR3 – volume: 44 start-page: 1397 year: 2009 ident: 551_CR12 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.026 – volume: 77 start-page: 269 year: 2011 ident: 551_CR25 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2009.07.032 – volume: 11 start-page: 37 year: 1912 ident: 551_CR36 publication-title: New Phytologist doi: 10.1111/j.1469-8137.1912.tb05611.x – volume: 25 start-page: 169 year: 2005 ident: 551_CR28 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.11.018 – volume: 23 start-page: 213 year: 2004 ident: 551_CR26 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.04.036 – volume: 124 start-page: 617 year: 2001 ident: 551_CR30 publication-title: Brain doi: 10.1093/brain/124.3.617 – volume: 26 start-page: 546 year: 2005 ident: 551_CR27 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.02.013 – volume: 23 start-page: 433 year: 2002 ident: 551_CR7 publication-title: Neurobiol Aging doi: 10.1016/S0197-4580(01)00318-9 – volume: 36 start-page: 1 year: 2007 ident: 551_CR17 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.027 – volume: 118 start-page: 81 year: 2003 ident: 551_CR31 publication-title: Am J Med Genet Part B Neuropsychiatric Genet doi: 10.1002/ajmg.b.10035 – volume: 12 start-page: 419 year: 2003 ident: 551_CR37 publication-title: Stat Methods Med Res doi: 10.1191/0962280203sm341ra – volume: 127 start-page: 340 year: 2004 ident: 551_CR15 publication-title: Brain doi: 10.1093/brain/awh041 – volume: 161 start-page: 1293 year: 2004 ident: 551_CR19 publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.161.7.1293 – volume: 14 start-page: 945 year: 2004 ident: 551_CR32 publication-title: Cereb Cortex doi: 10.1093/cercor/bhh055 – volume: 27 start-page: 681 year: 2009 ident: 551_CR33 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2008.09.004 – volume: 34 start-page: 51 year: 2008 ident: 551_CR11 publication-title: J Mol Neurosci doi: 10.1007/s12031-007-0029-0 – volume: 103 start-page: 247 year: 1994 ident: 551_CR1 publication-title: J Magn Reson Ser B doi: 10.1006/jmrb.1994.1037 – volume: 16 start-page: 19 year: 2006 ident: 551_CR9 publication-title: NeuroImage Clin N Am doi: 10.1016/j.nic.2005.11.004 – volume: 34 start-page: 486 year: 2007 ident: 551_CR22 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.09.025 – volume: 31 start-page: 221 year: 2010 ident: 551_CR21 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.22017 – volume: 17 start-page: 411 year: 2004 ident: 551_CR14 publication-title: NMR Biomed doi: 10.1002/nbm.907 – volume: 124 start-page: 627 year: 2001 ident: 551_CR29 publication-title: Brain doi: 10.1093/brain/124.3.627 – volume: 46 start-page: 213 year: 2007 ident: 551_CR10 publication-title: J Am Acad Child Adolesc Psychiatry doi: 10.1097/01.chi.0000246064.93200.e8 – volume: 90 start-page: 302 year: 2007 ident: 551_CR24 publication-title: Schizophr Res doi: 10.1016/j.schres.2006.09.032 – volume: 65 start-page: 1532 year: 2011 ident: 551_CR2 publication-title: Magn Reson Med doi: 10.1002/mrm.22924 – volume: 81 start-page: 106 year: 2006 ident: 551_CR35 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2005.08.004 |
| SSID | ssj0013172 |
| Score | 1.5557816 |
| Snippet | Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA),... Diffusion tensor imaging (DTI) provides a unique method to reveal the integrity of white matter microstructure noninvasively. Voxel-based analysis (VBA), which... |
| SourceID | proquest crossref springer fao chongqing |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4077 |
| SubjectTerms | Chemistry/Food Science Earth Sciences Engineering Humanities and Social Sciences image analysis Life Sciences microstructure multidisciplinary patients Physics Science Science (multidisciplinary) seeds t-test 三线性插值 体素 可能影响 成像 扩散张量 结构完整性 统计分析 预处理过程 |
| Title | Factors affecting the voxel-based analysis of diffusion tensor imaging |
| URI | http://lib.cqvip.com/qk/86894X/201431/662575408.html https://link.springer.com/article/10.1007/s11434-014-0551-8 https://www.proquest.com/docview/1663600839 |
| Volume | 59 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1861-9541 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013172 issn: 1001-6538 databaseCode: KQ8 dateStart: 20110601 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1861-9541 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013172 issn: 1001-6538 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAVX databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 customDbUrl: eissn: 1861-9541 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013172 issn: 1001-6538 databaseCode: 40G dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1861-9541 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013172 issn: 1001-6538 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_0pGAfSj0Vz2tLhD7USmA3u5tkH6X0KopCsQe-hUw2q8J1t3XvpH9-J3u7npa24MPmZTMJ5JdkZjJfAO8RMctTH_ECJfLUKcExR8dR2Mwr53SuQrzz-YU8maanV9lVF8fd9N7uvUmyvalXwW7E2oPHBH3E5rleh40sJgZHmziNvqxMB7FamjhJT5Z0nHtT5t-GCAkVburq-idN94QxrZe2fiJz_mEmbbnP5DW86sRGdrzEeQvWfDWEl4-SCQ7hRevM6ZohbHUHtmEfuqzSh9swmSwr6zDbenAQCSPZj93Xv_yMB15WMNslKGF1yULhlEV4SWPBxb2-Y7ff23pGOzCdfP726YR3RRS4S5SYc6Gj0qscC28tCdJSixhLUtLQOm210gQRqqBUxdLlZYIysYUViqQIiwJdmuzCoKorvwfME30ZubJMUktaZJHbTIsEU4wTq6I8GsH4YTXNj2WyDCNJwVIkFuoRRP36GtflHw9lMGZmlTk5wGMIHhPgMUTy8YGkH-8_nfcINGOv6XI000sRnnJaQ7OkXwc9koZOTzCJ2MrXi8bEMuRLIzE0H8FRD7HpjnHz78n2n9V7DJsibLo2hPENDOZ3C_-WZJk5vmv3LrVnXzW1U3H8G4QK6H0 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfYEGJ7QOwA7RgfQeKBD0Vq016SPk6I0wHbXthJe4viNB1Io93Wu4k_f3av3TEESDz0qXEixXFsx_bPAK8RcVLkMZElapR5MEpigUGi8pNoQrCF4XrnwyM9m-efTyYnfR13O2S7DyHJ7qZeF7uRaueMCfpIzUu7AXcZv4oB8-dqfx06SM0qxEl-siZxHkKZf5qCARW-NfXpBS13SzFtVL65ZXP-FibttM_0ITzozUaxv-LzDtyJ9Qi2fwETHMG9LpkztCPY6QW2FW96VOm3j2A6XXXWEb7L4CASQbafuGp-xjPJuqwUvgcoEU0luHHKkl_SBKe4N5fi-4-un9FjmE8_Hn-Yyb6JggyZUQupbFJFU2AZvSdDWluVYkVOGvpgvTWWWISGnapUh6LKUGe-9MqQFeFRYcizJ7BZN3XcBRGJvkpCVWW5Jy-yLPzEqgxzTDNvkiIZw97NbrrzFViG0-RgGTIL7RiSYX9d6PHHuQ3GmVsjJzN7HLHHMXsckby7IRnm-8fgXWKa86d0Obr5V8VPOV2gWdOvVwMnHUkPh0R8HZtl61LNeGlkhhZjeD-w2PVi3P59saf_Nfol3J8dHx64g09HX_ZgS_EB7MoZn8Hm4nIZn5Nds8AX3Tm-BuXF6cA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RIlA5VHQBdSkPI3HgIauJk7WdYwWE8qqQYKXeLI9jl0pt0ja7iJ_POI8uRYDEIadkbMnjyXzjGX8D8BQRZ0XuE16hRJ47JTgW6DgKO_PKOV2oeN_504Hcn-fvD2eHQ5_Tdqx2H1OS_Z2GyNJUL3bPqrC7uvhGbj5WT9BDLp_rNbiex-Z0tKHz5O0qjZCqPt1JMbMk0x7Tmn8aIpIrfGvqo3Oa-oqTWgu2uYI_f0uZdp6ovA2bA4Rke73Ot-Carydw6xdiwQnc6Ao7XTuBrcF4W_ZsYJh-fgfKsu-yw2xXzUEijHAg-9788Cc8-rWK2YGshDWBxSYqy3iqxmK5e3PBjk-73kZ3YV6--fpqnw8NFbjLlFhwoZPgVYGVt5ZAtdQixUABG1qnrVaa1IUqBlipdEXIUGa2skIRorAo0OXZPVivm9pvA_MkHxIXQpZbiiirws60yDDHNLMqKZIp7FyupjnriTOMpGBLEUTUU0jG9TVu4CKPLTFOzIpFOarHkHpMVI8hkReXIuN4__h4m5Rm7BH9KM38i4jHOl3SWdKrJ6MmDVlSTI_Y2jfL1qQycqcRJC2m8HJUsRlMuv37ZPf_6-vHcPPz69J8fHfwYQc2RNx_3c3GB7C-uFj6hwRxFvio28Y_AWtf7co |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factors+affecting+the+voxel-based+analysis+of+diffusion+tensor+imaging&rft.jtitle=Chinese+science+bulletin&rft.au=Wang%2C+Jianli&rft.au=Nie%2C+Binbin&rft.au=Zhu%2C+Haitao&rft.au=Liu%2C+Hua&rft.date=2014-11-01&rft.issn=1001-6538&rft.volume=59&rft.issue=31+p.4077-4085&rft.spage=4077&rft.epage=4085&rft_id=info:doi/10.1007%2Fs11434-014-0551-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86894X%2F86894X.jpg |