Human-algorithm collaborative Bayesian optimization for engineering systems
Bayesian optimization has proven effective for optimizing expensive-to-evaluate functions in Chemical Engineering. However, valuable physical insights from domain experts are often overlooked. This article introduces a collaborative Bayesian optimization approach that re-integrates human input into...
Saved in:
| Published in | Computers & chemical engineering Vol. 189; p. 108810 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0098-1354 1873-4375 |
| DOI | 10.1016/j.compchemeng.2024.108810 |
Cover
| Abstract | Bayesian optimization has proven effective for optimizing expensive-to-evaluate functions in Chemical Engineering. However, valuable physical insights from domain experts are often overlooked. This article introduces a collaborative Bayesian optimization approach that re-integrates human input into the data-driven decision-making process. By combining high-throughput Bayesian optimization with discrete decision theory, experts can influence the selection of experiments via a discrete choice. We propose a multi-objective approach togenerate a set of high-utility and distinct solutions, from which the expert selects the desired solution for evaluation at each iteration. Our methodology maintains the advantages of Bayesian optimization while incorporating expert knowledge and improving accountability. The approach is demonstrated across various case studies, including bioprocess optimization and reactor geometry design, demonstrating that even with an uninformed practitioner, the algorithm recovers the regret of standard Bayesian optimization. By including continuous expert opinion, the proposed method enables faster convergence and improved accountability for Bayesian optimization in engineering systems.
•New Bayesian optimization approach applying human knowledge in discrete choices.•Multi-objective high-throughput method balances solution utility and diversity.•Benchmarking shows performance gains with expert input across various scenarios.•Improves knowledge integration & accountability in decisions.•Case studies showcase real-world use in bioprocess optimization & reactor design. |
|---|---|
| AbstractList | Bayesian optimization has proven effective for optimizing expensive-to-evaluate functions in Chemical Engineering. However, valuable physical insights from domain experts are often overlooked. This article introduces a collaborative Bayesian optimization approach that re-integrates human input into the data-driven decision-making process. By combining high-throughput Bayesian optimization with discrete decision theory, experts can influence the selection of experiments via a discrete choice. We propose a multi-objective approach togenerate a set of high-utility and distinct solutions, from which the expert selects the desired solution for evaluation at each iteration. Our methodology maintains the advantages of Bayesian optimization while incorporating expert knowledge and improving accountability. The approach is demonstrated across various case studies, including bioprocess optimization and reactor geometry design, demonstrating that even with an uninformed practitioner, the algorithm recovers the regret of standard Bayesian optimization. By including continuous expert opinion, the proposed method enables faster convergence and improved accountability for Bayesian optimization in engineering systems.
•New Bayesian optimization approach applying human knowledge in discrete choices.•Multi-objective high-throughput method balances solution utility and diversity.•Benchmarking shows performance gains with expert input across various scenarios.•Improves knowledge integration & accountability in decisions.•Case studies showcase real-world use in bioprocess optimization & reactor design. |
| ArticleNumber | 108810 |
| Author | Savage, Tom del Rio Chanona, Ehecatl Antonio |
| Author_xml | – sequence: 1 givenname: Tom orcidid: 0000-0001-8715-8369 surname: Savage fullname: Savage, Tom email: trs20@ic.ac.uk – sequence: 2 givenname: Ehecatl Antonio surname: del Rio Chanona fullname: del Rio Chanona, Ehecatl Antonio email: a.del-rio-chanona@imperial.ac.uk |
| BookMark | eNqVkMtOwzAQAH0oEm3hH8IHpNhxnAcXBBVQRCUucLY27qZ1ldiR7RaFryelHBCnclppVzMrzYSMjDVIyBWjM0ZZdr2dKdt2aoMtmvUsoUk67IuC0REZU1oWMeMiPScT77eUDteiGJOXxa4FE0Oztk6HTRsp2zRQWQdB7zG6hx69BhPZLuhWfw5ba6Laumh4oQ2i02Yd-d4HbP0FOauh8Xj5M6fk_fHhbb6Il69Pz_O7Zax4noQ44bysUigER5HXuRI15bxKEsySOgelsMSKVjwTImVZCmWNoEq-Qs5QVExwPiU3R-_OdNB_QNPIzukWXC8ZlYcUcit_pZCHFPKYYoDLI6yc9d5h_S_29g-rdPhOEhzo5iTD_GjAoc9eo5NeaTQKV9qhCnJl9QmWL4JwnG0 |
| CitedBy_id | crossref_primary_10_1002_bit_28960 crossref_primary_10_1016_j_knosys_2025_113138 crossref_primary_10_1080_24751839_2024_2447191 |
| Cites_doi | 10.1109/4235.996017 10.1007/s00158-013-0919-4 10.1039/D3RE00502J 10.1038/s41586-023-05773-7 10.1016/j.compchemeng.2024.108653 10.1016/j.compchemeng.2022.108110 10.1016/j.cej.2018.10.054 10.1016/j.knosys.2020.105663 10.1016/B978-0-443-15274-0.50061-5 10.1017/S0140525X09000284 10.1039/D3SC06133G 10.1016/j.cej.2023.145217 10.1016/j.compchemeng.2023.108410 10.1145/279232.279236 10.1016/j.compchemeng.2019.106649 10.1145/3359313 10.1016/j.coche.2021.100728 10.1038/s41598-022-18751-2 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.compchemeng.2024.108810 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10.1016/j.compchemeng.2024.108810 10_1016_j_compchemeng_2024_108810 S009813542400228X |
| GroupedDBID | --K --M .DC .~1 0R~ 0SF 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SST SSZ T5K VH1 WUQ ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c372t-2339b4a853e57f7c5f033b22e62f7acce9eb0b36554164a9feac93de31e5b1533 |
| IEDL.DBID | UNPAY |
| ISSN | 0098-1354 1873-4375 |
| IngestDate | Tue Aug 19 19:43:48 EDT 2025 Wed Oct 01 04:02:04 EDT 2025 Thu Apr 24 22:57:56 EDT 2025 Sat Aug 17 15:42:24 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bayesian optimization Experimental design Domain knowledge Human-in-the-loop |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-2339b4a853e57f7c5f033b22e62f7acce9eb0b36554164a9feac93de31e5b1533 |
| ORCID | 0000-0001-8715-8369 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.compchemeng.2024.108810 |
| ParticipantIDs | unpaywall_primary_10_1016_j_compchemeng_2024_108810 crossref_primary_10_1016_j_compchemeng_2024_108810 crossref_citationtrail_10_1016_j_compchemeng_2024_108810 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2024_108810 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | October 2024 2024-10-00 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & chemical engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | González, Zavala (b10) 2023; 170 Wang, Dowling (b26) 2022; 36 Basha, Savage, McDonough, del Rio Chanona, Matar (b4) 2023; 473 Liu (b15) 2022 Savage, Basha, McDonough, Matar, del Rio Chanona (b24) 2023; 179 Cisse, Evangelopoulos, Carruthers, Gusev, Cooper (b7) 2023 Gupta, Shilton, Kumar, Ryan, Abdolshah, Le, Rana, Berk, Rashid, Venkatesh (b11) 2023 Ament, Daulton, Eriksson, Balandat, Bakshy (b1) 2023 Deb, Pratap, Agarwal, Meyarivan (b8) 2002; 6 Wang, Weisz, Muller, Ram, Geyer, Dugan, Tausczik, Samulowitz, Gray (b27) 2019; 3 Oaksford, Chater (b17) 2009; 32 Zhang, Sugisawa, Felton, Fuse, Lapkin (b28) 2024; 9 Triantafyllou, Shah, Papathanasiou, Kontoravdi (b25) 2023 Basford, Bennett, Xiao, Turcani, Allen, Jelfs, Greenaway (b3) 2024 AV, Rana, Shilton, Venkatesh (b2) 2022; 35 Kanarik, Osowiecki, Lu, Talukder, Roschewsky, Park, Kamon, Fried, Gottscho (b13) 2023; 616 McDonough, Murta, Law, Harvey (b16) 2019; 358 Letham, Karrer, Ottoni, Bakshy (b14) 2017 Picheny, Wagner, Ginsbourger (b20) 2013; 48 Reverberi, Rigon, Solari, Hassan, Cherubini, Cherubini (b23) 2022; 12 Petsagkourakis, Sandoval, Bradford, Zhang, del Rio-Chanona (b19) 2020; 133 Cho, Shao, Mesbah (b6) 2024; 185 Zhu, Byrd, Lu, Nocedal (b29) 1997; 23 Paulson, Tsay (b18) 2024 Ramachandran, Gupta, Rana, Li, Venkatesh (b21) 2020; 195 Bradbury, Frostig, Hawkins, Johnson, Leary, Maclaurin, Necula, Paszke, VanderPlas, Wanderman-Milne, Zhang (b5) 2018 Hvarfner, Stoll, Souza, Lindauer, Hutter, Nardi (b12) 2022 Garnett (b9) 2023 Rastrigin (b22) 1974 AV (10.1016/j.compchemeng.2024.108810_b2) 2022; 35 González (10.1016/j.compchemeng.2024.108810_b10) 2023; 170 Hvarfner (10.1016/j.compchemeng.2024.108810_b12) 2022 Zhu (10.1016/j.compchemeng.2024.108810_b29) 1997; 23 Letham (10.1016/j.compchemeng.2024.108810_b14) 2017 Ament (10.1016/j.compchemeng.2024.108810_b1) 2023 Rastrigin (10.1016/j.compchemeng.2024.108810_b22) 1974 Triantafyllou (10.1016/j.compchemeng.2024.108810_b25) 2023 Cisse (10.1016/j.compchemeng.2024.108810_b7) 2023 Zhang (10.1016/j.compchemeng.2024.108810_b28) 2024; 9 Cho (10.1016/j.compchemeng.2024.108810_b6) 2024; 185 Garnett (10.1016/j.compchemeng.2024.108810_b9) 2023 Deb (10.1016/j.compchemeng.2024.108810_b8) 2002; 6 Kanarik (10.1016/j.compchemeng.2024.108810_b13) 2023; 616 Wang (10.1016/j.compchemeng.2024.108810_b26) 2022; 36 Paulson (10.1016/j.compchemeng.2024.108810_b18) 2024 Wang (10.1016/j.compchemeng.2024.108810_b27) 2019; 3 Ramachandran (10.1016/j.compchemeng.2024.108810_b21) 2020; 195 Basha (10.1016/j.compchemeng.2024.108810_b4) 2023; 473 Petsagkourakis (10.1016/j.compchemeng.2024.108810_b19) 2020; 133 Picheny (10.1016/j.compchemeng.2024.108810_b20) 2013; 48 Bradbury (10.1016/j.compchemeng.2024.108810_b5) 2018 Savage (10.1016/j.compchemeng.2024.108810_b24) 2023; 179 McDonough (10.1016/j.compchemeng.2024.108810_b16) 2019; 358 Basford (10.1016/j.compchemeng.2024.108810_b3) 2024 Liu (10.1016/j.compchemeng.2024.108810_b15) 2022 Reverberi (10.1016/j.compchemeng.2024.108810_b23) 2022; 12 Gupta (10.1016/j.compchemeng.2024.108810_b11) 2023 Oaksford (10.1016/j.compchemeng.2024.108810_b17) 2009; 32 |
| References_xml | – volume: 3 year: 2019 ident: b27 article-title: Human-AI collaboration in data science: Exploring data scientists’ perceptions of automated AI publication-title: Proc. ACM Hum.-Comput. Interact. – year: 2023 ident: b9 article-title: Bayesian Optimization – volume: 616 start-page: 707 year: 2023 end-page: 711 ident: b13 article-title: Human-machine collaboration for improving semiconductor process development publication-title: Nature – year: 2022 ident: b12 article-title: BO: Augmenting acquisition functions with user beliefs for Bayesian optimization – year: 2022 ident: b15 article-title: Human-in-the-loop Bayesian optimization with no-regret guarantees – year: 2018 ident: b5 article-title: JAX: composable transformations of Python+NumPy programs – volume: 170 year: 2023 ident: b10 article-title: New paradigms for exploiting parallel experiments in Bayesian optimization publication-title: Comput. Chem. Eng. – year: 1974 ident: b22 article-title: Systems of extremal control publication-title: Nauka – volume: 9 start-page: 706 year: 2024 end-page: 712 ident: b28 article-title: Multi-objective Bayesian optimisation using q-noisy expected hypervolume improvement (qNEHVI) for the Schotten–Baumann reaction publication-title: React. Chem. Eng. – year: 2017 ident: b14 article-title: Constrained Bayesian Optimization with Noisy Experiments – volume: 179 year: 2023 ident: b24 article-title: Multi-fidelity data-driven design and analysis of reactor and tube simulations publication-title: Comput. Chem. Eng. – volume: 185 year: 2024 ident: b6 article-title: Run-indexed time-varying Bayesian optimization with positional encoding for auto-tuning of controllers: Application to a plasma-assisted deposition process with run-to-run drifts publication-title: Comput. Chem. Eng. – volume: 36 year: 2022 ident: b26 article-title: Bayesian optimization for chemical products and functional materials publication-title: Curr. Opin. Chem. Eng. – year: 2023 ident: b11 article-title: BO-Muse: A human expert and AI teaming framework for accelerated experimental design – volume: 35 start-page: 16233 year: 2022 end-page: 16245 ident: b2 article-title: Human-AI collaborative Bayesian optimisation publication-title: Adv. Neural Inf. Process. Syst. – year: 2023 ident: b1 article-title: Unexpected Improvements to Expected Improvement for Bayesian Optimization – volume: 133 year: 2020 ident: b19 article-title: Reinforcement learning for batch bioprocess optimization publication-title: Comput. Chem. Eng. – volume: 358 start-page: 643 year: 2019 end-page: 657 ident: b16 article-title: Oscillatory fluid motion unlocks plug flow operation in helical tube reactors at lower Reynolds numbers (Re publication-title: Chem. Eng. J. – volume: 195 year: 2020 ident: b21 article-title: Incorporating expert prior in Bayesian optimisation via space warping publication-title: Knowl.-Based Syst. – year: 2024 ident: b3 article-title: Streamlining the automated discovery of porous organic cages publication-title: Chem. Sci. – volume: 23 start-page: 550 year: 1997 end-page: 560 ident: b29 article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization publication-title: ACM Trans. Math. Softw. (TOMS) – volume: 32 start-page: 69 year: 2009 end-page: 84 ident: b17 article-title: Précis ofBayesian rationality: The probabilistic approach to human reasoning publication-title: Behav. Brain Sci. – volume: 12 start-page: 14952 year: 2022 ident: b23 article-title: Experimental evidence of effective human–AI collaboration in medical decision-making publication-title: Sci. Rep. – year: 2023 ident: b7 article-title: HypBO: Accelerating black-box scientific experiments using experts’ hypotheses – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b8 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – year: 2024 ident: b18 article-title: Bayesian optimization as a flexible and efficient design framework for sustainable process systems – start-page: 381 year: 2023 end-page: 386 ident: b25 article-title: Combined Bayesian optimization and global sensitivity analysis for the optimization of simulation-based pharmaceutical processes publication-title: 33rd European Symposium on Computer Aided Process Engineering – volume: 473 year: 2023 ident: b4 article-title: Discovery of mixing characteristics for enhancing coiled reactor performance through a Bayesian optimisation-CFD approach publication-title: Chem. Eng. J. – volume: 48 start-page: 607 year: 2013 end-page: 626 ident: b20 article-title: A benchmark of kriging-based infill criteria for noisy optimization publication-title: Struct. Multidiscip. Optim. – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.compchemeng.2024.108810_b8 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 48 start-page: 607 issn: 1615-1488 issue: 3 year: 2013 ident: 10.1016/j.compchemeng.2024.108810_b20 article-title: A benchmark of kriging-based infill criteria for noisy optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-0919-4 – year: 2022 ident: 10.1016/j.compchemeng.2024.108810_b12 – volume: 9 start-page: 706 issn: 2058-9883 issue: 3 year: 2024 ident: 10.1016/j.compchemeng.2024.108810_b28 article-title: Multi-objective Bayesian optimisation using q-noisy expected hypervolume improvement (qNEHVI) for the Schotten–Baumann reaction publication-title: React. Chem. Eng. doi: 10.1039/D3RE00502J – volume: 616 start-page: 707 issue: 7958 year: 2023 ident: 10.1016/j.compchemeng.2024.108810_b13 article-title: Human-machine collaboration for improving semiconductor process development publication-title: Nature doi: 10.1038/s41586-023-05773-7 – volume: 185 issn: 0098-1354 year: 2024 ident: 10.1016/j.compchemeng.2024.108810_b6 article-title: Run-indexed time-varying Bayesian optimization with positional encoding for auto-tuning of controllers: Application to a plasma-assisted deposition process with run-to-run drifts publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2024.108653 – year: 2017 ident: 10.1016/j.compchemeng.2024.108810_b14 – year: 2023 ident: 10.1016/j.compchemeng.2024.108810_b9 – volume: 170 issn: 0098-1354 year: 2023 ident: 10.1016/j.compchemeng.2024.108810_b10 article-title: New paradigms for exploiting parallel experiments in Bayesian optimization publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.108110 – volume: 358 start-page: 643 year: 2019 ident: 10.1016/j.compchemeng.2024.108810_b16 article-title: Oscillatory fluid motion unlocks plug flow operation in helical tube reactors at lower Reynolds numbers (Re ≤ 10) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.10.054 – volume: 195 year: 2020 ident: 10.1016/j.compchemeng.2024.108810_b21 article-title: Incorporating expert prior in Bayesian optimisation via space warping publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105663 – year: 2023 ident: 10.1016/j.compchemeng.2024.108810_b1 – year: 2023 ident: 10.1016/j.compchemeng.2024.108810_b11 – start-page: 381 year: 2023 ident: 10.1016/j.compchemeng.2024.108810_b25 article-title: Combined Bayesian optimization and global sensitivity analysis for the optimization of simulation-based pharmaceutical processes doi: 10.1016/B978-0-443-15274-0.50061-5 – volume: 32 start-page: 69 issn: 1469-1825 issue: 1 year: 2009 ident: 10.1016/j.compchemeng.2024.108810_b17 article-title: Précis ofBayesian rationality: The probabilistic approach to human reasoning publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X09000284 – issn: 2041-6539 year: 2024 ident: 10.1016/j.compchemeng.2024.108810_b3 article-title: Streamlining the automated discovery of porous organic cages publication-title: Chem. Sci. doi: 10.1039/D3SC06133G – volume: 473 issn: 1385-8947 year: 2023 ident: 10.1016/j.compchemeng.2024.108810_b4 article-title: Discovery of mixing characteristics for enhancing coiled reactor performance through a Bayesian optimisation-CFD approach publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.145217 – volume: 179 issn: 0098-1354 year: 2023 ident: 10.1016/j.compchemeng.2024.108810_b24 article-title: Multi-fidelity data-driven design and analysis of reactor and tube simulations publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2023.108410 – year: 2018 ident: 10.1016/j.compchemeng.2024.108810_b5 – volume: 23 start-page: 550 issue: 4 year: 1997 ident: 10.1016/j.compchemeng.2024.108810_b29 article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization publication-title: ACM Trans. Math. Softw. (TOMS) doi: 10.1145/279232.279236 – year: 2024 ident: 10.1016/j.compchemeng.2024.108810_b18 – volume: 133 issn: 0098-1354 year: 2020 ident: 10.1016/j.compchemeng.2024.108810_b19 article-title: Reinforcement learning for batch bioprocess optimization publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106649 – volume: 3 issue: CSCW year: 2019 ident: 10.1016/j.compchemeng.2024.108810_b27 article-title: Human-AI collaboration in data science: Exploring data scientists’ perceptions of automated AI publication-title: Proc. ACM Hum.-Comput. Interact. doi: 10.1145/3359313 – volume: 36 issn: 2211-3398 year: 2022 ident: 10.1016/j.compchemeng.2024.108810_b26 article-title: Bayesian optimization for chemical products and functional materials publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2021.100728 – year: 1974 ident: 10.1016/j.compchemeng.2024.108810_b22 article-title: Systems of extremal control publication-title: Nauka – volume: 35 start-page: 16233 year: 2022 ident: 10.1016/j.compchemeng.2024.108810_b2 article-title: Human-AI collaborative Bayesian optimisation publication-title: Adv. Neural Inf. Process. Syst. – year: 2023 ident: 10.1016/j.compchemeng.2024.108810_b7 – year: 2022 ident: 10.1016/j.compchemeng.2024.108810_b15 – volume: 12 start-page: 14952 issue: 1 year: 2022 ident: 10.1016/j.compchemeng.2024.108810_b23 article-title: Experimental evidence of effective human–AI collaboration in medical decision-making publication-title: Sci. Rep. doi: 10.1038/s41598-022-18751-2 |
| SSID | ssj0002488 |
| Score | 2.4811025 |
| Snippet | Bayesian optimization has proven effective for optimizing expensive-to-evaluate functions in Chemical Engineering. However, valuable physical insights from... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 108810 |
| SubjectTerms | Bayesian optimization Domain knowledge Experimental design Human-in-the-loop |
| SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KDz4O4hPrixW8xra7m2QXvGixFEVPFnoLu-luraRp0Vbpxd_uTpO0ETwUPCZksuGbZR7h-2YBruJQ4tgppEox7XHZF54ILPMYqjCppVZwFCc_PQedLn_o-b0KtAotDNIq89ifxfRFtM7v1HM065PhEDW-UjSZz5EFSanooYKdh3iKwfX3iuZBuRDF3Ex8egMuVxwvpG07bEYmHbhWkXJk3AkU0_6dozZn6UTNv1SSlHJQexd28uKR3GbftwcVk-7Ddmmk4AE8Lv7KeyoZjF3b_zoiJUd_GnKn5gZlk2TsQsUo12ASV7gSs3oLycY7fxxCt33_0up4-YEJXsxCOvUoY1Jz5TKw8UMbxr5tMKYpNQG1oYpjI41uaBa4EsJ1SUpaF3Ul6xvWNL7Gwu8Iquk4NcdAlEB9guLWaMmDvpKxawWp1lQ1baBZswaigCiK82nieKhFEhW0sbeohG6E6EYZujWgS9NJNlJjHaObwg_Rr_0RudC_jjlb-m79RU_-t-gpbOFVRv07g-r0fWbOXQkz1ReLPfoDhaHxLw priority: 102 providerName: Elsevier |
| Title | Human-algorithm collaborative Bayesian optimization for engineering systems |
| URI | https://dx.doi.org/10.1016/j.compchemeng.2024.108810 https://doi.org/10.1016/j.compchemeng.2024.108810 |
| UnpaywallVersion | publishedVersion |
| Volume | 189 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0098-1354 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002488 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0098-1354 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002488 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0098-1354 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002488 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0098-1354 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002488 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0098-1354 databaseCode: AKRWK dateStart: 19770101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002488 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7MDRQfvIsTHRF87ViTXsGXKY7pcIg4mE8lyZJ56boxO2U--NtN1nZWQZz-gJOmJ4ec77Tn-w7AMXd9LTulW6UIMyy_5xmeI4lBNAsTSyw9S5OTr9pOs2Nddu1uAcyMC_Pl__2sD0u3Vqv9D0TUV-UctnRXnKdJVSXHVvC7CKVO-7p-l2ljmmQ2-cz0XGJYxLWX4ejXtX7KSSuTaESnrzQMczmnsQ432W6TVpOn6iRmVf72TcjxT6-zAWspAkX1JGQ2oSCiLVjN6RJuQ2v2ad-gYX84fojvBygXLS8CndKp0NxLNFT3zSAlciKFfpH4XAUlGtHPO9BpnN-eNY106oLBiYtjAxPiM4uqNC5sV7rcljVCGMbCwdKlnAtfsBojjsIhqtSivlRXt096gpjCZho97kIxGkZiDxD1NMmBWlIw33J61OeqnsSMYWpKhxGzDF7m94CnkuR6MkYYZL1nj0HOX4H2V5D4qwx4bjpKdDkWMTrJDjdIAUYCHAJ1TouYk3lALP7Q_X9ZHUAxHk_EoUI8MavAUvXdrECpftFqtitpxH8A3AsCWw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gJj4OxmfEZ028VmV32-4mXpRIUMCTJNya3bKLmFKIgoaLv90d2gImHki8tp1u881mHs33zQJcRoHAsVNIlaLKZaLDXe4b6lJUYRJDDGcoTm4--7UWe2p77QJUci0M0iqz2J_G9Gm0zq5cZ2heD3s91PgKXqYeQxYkIby9AqvMIwF2YFffc54HYZzngzPx8TW4mJO8kLdtwenrpGt7RcKQcsdRTft3klofJ0M5-ZJxvJCEqtuwlVWPzl36gTtQ0MkubC7MFNyD-vS3vCvj7sD2_a99Z8HTn9q5lxONuklnYGNFPxNhOrZydfT8LU463_ljH1rVh5dKzc1OTHAjGpCRSygVikmbgrUXmCDyzA2lihDtExPIKNJCqxtFfVtD2DZJCmPDrqAdTcvaU1j5HUAxGST6EBzJUaAgmdFKML8jRWR7QaIUkWXjK1ouAc8hCqNsnDieahGHOW_sLVxAN0R0wxTdEpCZ6TCdqbGM0W3uh_DXBglt7F_GnM58t_yiR_9b9BzWay_NRth4fK4fwwbeSXmAJ1AcvY_1qa1nRupsul9_ALOV9FI |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tS8MwEA6ygeIH38WJSgS_Zqy59A38MsUxFIeIg_mpJFkyX7puzE6Zv95kbecUxOkPuDS9HLnn2nueQ-hE-qGVnbKtUiAIC7sBCTwNBCwLk2qqA2bJydctr9lmlx23s4Scggvz5f_9tA_Ltlab_fdV0jPlHGW2Ky6wpKqy5xr4XULlduumfl9oYzownXzmBD4QBr67jI5_XeunnLQyToZ88sbjeC7nNNbRbbHbrNXkuTpORVW-fxNy_NPrbKC1HIHiehYym2hJJVtodU6XcBtdTT_tEx73BqPH9KGP56LlVeEzPlGWe4kH5r7p50RObNAvVp-r4Ewj-mUHtRsXd-dNkk9dIBJ8mhIKEArGTRpXrq996eoagKBUeVT7XEoVKlET4BkcYkotHmpzdYfQVeAoV1j0uItKySBRewjzwJIcONNKhMzr8lCaepIKQbmjPQFOBQWF3yOZS5LbyRhxVPSePUVz_oqsv6LMXxVEZ6bDTJdjEaPT4nCjHGBkwCEy57SIOcwCYvGH7v_L6gCV0tFYHRrEk4qjPMY_ANJc_8A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human-algorithm+collaborative+Bayesian+optimization+for+engineering+systems&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Savage%2C+Tom&rft.au=del+Rio+Chanona%2C+Ehecatl+Antonio&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.volume=189&rft_id=info:doi/10.1016%2Fj.compchemeng.2024.108810&rft.externalDocID=S009813542400228X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |