Human-algorithm collaborative Bayesian optimization for engineering systems

Bayesian optimization has proven effective for optimizing expensive-to-evaluate functions in Chemical Engineering. However, valuable physical insights from domain experts are often overlooked. This article introduces a collaborative Bayesian optimization approach that re-integrates human input into...

Full description

Saved in:
Bibliographic Details
Published inComputers & chemical engineering Vol. 189; p. 108810
Main Authors Savage, Tom, del Rio Chanona, Ehecatl Antonio
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2024
Subjects
Online AccessGet full text
ISSN0098-1354
1873-4375
DOI10.1016/j.compchemeng.2024.108810

Cover

Abstract Bayesian optimization has proven effective for optimizing expensive-to-evaluate functions in Chemical Engineering. However, valuable physical insights from domain experts are often overlooked. This article introduces a collaborative Bayesian optimization approach that re-integrates human input into the data-driven decision-making process. By combining high-throughput Bayesian optimization with discrete decision theory, experts can influence the selection of experiments via a discrete choice. We propose a multi-objective approach togenerate a set of high-utility and distinct solutions, from which the expert selects the desired solution for evaluation at each iteration. Our methodology maintains the advantages of Bayesian optimization while incorporating expert knowledge and improving accountability. The approach is demonstrated across various case studies, including bioprocess optimization and reactor geometry design, demonstrating that even with an uninformed practitioner, the algorithm recovers the regret of standard Bayesian optimization. By including continuous expert opinion, the proposed method enables faster convergence and improved accountability for Bayesian optimization in engineering systems. •New Bayesian optimization approach applying human knowledge in discrete choices.•Multi-objective high-throughput method balances solution utility and diversity.•Benchmarking shows performance gains with expert input across various scenarios.•Improves knowledge integration & accountability in decisions.•Case studies showcase real-world use in bioprocess optimization & reactor design.
AbstractList Bayesian optimization has proven effective for optimizing expensive-to-evaluate functions in Chemical Engineering. However, valuable physical insights from domain experts are often overlooked. This article introduces a collaborative Bayesian optimization approach that re-integrates human input into the data-driven decision-making process. By combining high-throughput Bayesian optimization with discrete decision theory, experts can influence the selection of experiments via a discrete choice. We propose a multi-objective approach togenerate a set of high-utility and distinct solutions, from which the expert selects the desired solution for evaluation at each iteration. Our methodology maintains the advantages of Bayesian optimization while incorporating expert knowledge and improving accountability. The approach is demonstrated across various case studies, including bioprocess optimization and reactor geometry design, demonstrating that even with an uninformed practitioner, the algorithm recovers the regret of standard Bayesian optimization. By including continuous expert opinion, the proposed method enables faster convergence and improved accountability for Bayesian optimization in engineering systems. •New Bayesian optimization approach applying human knowledge in discrete choices.•Multi-objective high-throughput method balances solution utility and diversity.•Benchmarking shows performance gains with expert input across various scenarios.•Improves knowledge integration & accountability in decisions.•Case studies showcase real-world use in bioprocess optimization & reactor design.
ArticleNumber 108810
Author Savage, Tom
del Rio Chanona, Ehecatl Antonio
Author_xml – sequence: 1
  givenname: Tom
  orcidid: 0000-0001-8715-8369
  surname: Savage
  fullname: Savage, Tom
  email: trs20@ic.ac.uk
– sequence: 2
  givenname: Ehecatl Antonio
  surname: del Rio Chanona
  fullname: del Rio Chanona, Ehecatl Antonio
  email: a.del-rio-chanona@imperial.ac.uk
BookMark eNqVkMtOwzAQAH0oEm3hH8IHpNhxnAcXBBVQRCUucLY27qZ1ldiR7RaFryelHBCnclppVzMrzYSMjDVIyBWjM0ZZdr2dKdt2aoMtmvUsoUk67IuC0REZU1oWMeMiPScT77eUDteiGJOXxa4FE0Oztk6HTRsp2zRQWQdB7zG6hx69BhPZLuhWfw5ba6Laumh4oQ2i02Yd-d4HbP0FOauh8Xj5M6fk_fHhbb6Il69Pz_O7Zax4noQ44bysUigER5HXuRI15bxKEsySOgelsMSKVjwTImVZCmWNoEq-Qs5QVExwPiU3R-_OdNB_QNPIzukWXC8ZlYcUcit_pZCHFPKYYoDLI6yc9d5h_S_29g-rdPhOEhzo5iTD_GjAoc9eo5NeaTQKV9qhCnJl9QmWL4JwnG0
CitedBy_id crossref_primary_10_1002_bit_28960
crossref_primary_10_1016_j_knosys_2025_113138
crossref_primary_10_1080_24751839_2024_2447191
Cites_doi 10.1109/4235.996017
10.1007/s00158-013-0919-4
10.1039/D3RE00502J
10.1038/s41586-023-05773-7
10.1016/j.compchemeng.2024.108653
10.1016/j.compchemeng.2022.108110
10.1016/j.cej.2018.10.054
10.1016/j.knosys.2020.105663
10.1016/B978-0-443-15274-0.50061-5
10.1017/S0140525X09000284
10.1039/D3SC06133G
10.1016/j.cej.2023.145217
10.1016/j.compchemeng.2023.108410
10.1145/279232.279236
10.1016/j.compchemeng.2019.106649
10.1145/3359313
10.1016/j.coche.2021.100728
10.1038/s41598-022-18751-2
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.compchemeng.2024.108810
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10.1016/j.compchemeng.2024.108810
10_1016_j_compchemeng_2024_108810
S009813542400228X
GroupedDBID --K
--M
.DC
.~1
0R~
0SF
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c372t-2339b4a853e57f7c5f033b22e62f7acce9eb0b36554164a9feac93de31e5b1533
IEDL.DBID UNPAY
ISSN 0098-1354
1873-4375
IngestDate Tue Aug 19 19:43:48 EDT 2025
Wed Oct 01 04:02:04 EDT 2025
Thu Apr 24 22:57:56 EDT 2025
Sat Aug 17 15:42:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Bayesian optimization
Experimental design
Domain knowledge
Human-in-the-loop
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-2339b4a853e57f7c5f033b22e62f7acce9eb0b36554164a9feac93de31e5b1533
ORCID 0000-0001-8715-8369
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.compchemeng.2024.108810
ParticipantIDs unpaywall_primary_10_1016_j_compchemeng_2024_108810
crossref_primary_10_1016_j_compchemeng_2024_108810
crossref_citationtrail_10_1016_j_compchemeng_2024_108810
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2024_108810
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Computers & chemical engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References González, Zavala (b10) 2023; 170
Wang, Dowling (b26) 2022; 36
Basha, Savage, McDonough, del Rio Chanona, Matar (b4) 2023; 473
Liu (b15) 2022
Savage, Basha, McDonough, Matar, del Rio Chanona (b24) 2023; 179
Cisse, Evangelopoulos, Carruthers, Gusev, Cooper (b7) 2023
Gupta, Shilton, Kumar, Ryan, Abdolshah, Le, Rana, Berk, Rashid, Venkatesh (b11) 2023
Ament, Daulton, Eriksson, Balandat, Bakshy (b1) 2023
Deb, Pratap, Agarwal, Meyarivan (b8) 2002; 6
Wang, Weisz, Muller, Ram, Geyer, Dugan, Tausczik, Samulowitz, Gray (b27) 2019; 3
Oaksford, Chater (b17) 2009; 32
Zhang, Sugisawa, Felton, Fuse, Lapkin (b28) 2024; 9
Triantafyllou, Shah, Papathanasiou, Kontoravdi (b25) 2023
Basford, Bennett, Xiao, Turcani, Allen, Jelfs, Greenaway (b3) 2024
AV, Rana, Shilton, Venkatesh (b2) 2022; 35
Kanarik, Osowiecki, Lu, Talukder, Roschewsky, Park, Kamon, Fried, Gottscho (b13) 2023; 616
McDonough, Murta, Law, Harvey (b16) 2019; 358
Letham, Karrer, Ottoni, Bakshy (b14) 2017
Picheny, Wagner, Ginsbourger (b20) 2013; 48
Reverberi, Rigon, Solari, Hassan, Cherubini, Cherubini (b23) 2022; 12
Petsagkourakis, Sandoval, Bradford, Zhang, del Rio-Chanona (b19) 2020; 133
Cho, Shao, Mesbah (b6) 2024; 185
Zhu, Byrd, Lu, Nocedal (b29) 1997; 23
Paulson, Tsay (b18) 2024
Ramachandran, Gupta, Rana, Li, Venkatesh (b21) 2020; 195
Bradbury, Frostig, Hawkins, Johnson, Leary, Maclaurin, Necula, Paszke, VanderPlas, Wanderman-Milne, Zhang (b5) 2018
Hvarfner, Stoll, Souza, Lindauer, Hutter, Nardi (b12) 2022
Garnett (b9) 2023
Rastrigin (b22) 1974
AV (10.1016/j.compchemeng.2024.108810_b2) 2022; 35
González (10.1016/j.compchemeng.2024.108810_b10) 2023; 170
Hvarfner (10.1016/j.compchemeng.2024.108810_b12) 2022
Zhu (10.1016/j.compchemeng.2024.108810_b29) 1997; 23
Letham (10.1016/j.compchemeng.2024.108810_b14) 2017
Ament (10.1016/j.compchemeng.2024.108810_b1) 2023
Rastrigin (10.1016/j.compchemeng.2024.108810_b22) 1974
Triantafyllou (10.1016/j.compchemeng.2024.108810_b25) 2023
Cisse (10.1016/j.compchemeng.2024.108810_b7) 2023
Zhang (10.1016/j.compchemeng.2024.108810_b28) 2024; 9
Cho (10.1016/j.compchemeng.2024.108810_b6) 2024; 185
Garnett (10.1016/j.compchemeng.2024.108810_b9) 2023
Deb (10.1016/j.compchemeng.2024.108810_b8) 2002; 6
Kanarik (10.1016/j.compchemeng.2024.108810_b13) 2023; 616
Wang (10.1016/j.compchemeng.2024.108810_b26) 2022; 36
Paulson (10.1016/j.compchemeng.2024.108810_b18) 2024
Wang (10.1016/j.compchemeng.2024.108810_b27) 2019; 3
Ramachandran (10.1016/j.compchemeng.2024.108810_b21) 2020; 195
Basha (10.1016/j.compchemeng.2024.108810_b4) 2023; 473
Petsagkourakis (10.1016/j.compchemeng.2024.108810_b19) 2020; 133
Picheny (10.1016/j.compchemeng.2024.108810_b20) 2013; 48
Bradbury (10.1016/j.compchemeng.2024.108810_b5) 2018
Savage (10.1016/j.compchemeng.2024.108810_b24) 2023; 179
McDonough (10.1016/j.compchemeng.2024.108810_b16) 2019; 358
Basford (10.1016/j.compchemeng.2024.108810_b3) 2024
Liu (10.1016/j.compchemeng.2024.108810_b15) 2022
Reverberi (10.1016/j.compchemeng.2024.108810_b23) 2022; 12
Gupta (10.1016/j.compchemeng.2024.108810_b11) 2023
Oaksford (10.1016/j.compchemeng.2024.108810_b17) 2009; 32
References_xml – volume: 3
  year: 2019
  ident: b27
  article-title: Human-AI collaboration in data science: Exploring data scientists’ perceptions of automated AI
  publication-title: Proc. ACM Hum.-Comput. Interact.
– year: 2023
  ident: b9
  article-title: Bayesian Optimization
– volume: 616
  start-page: 707
  year: 2023
  end-page: 711
  ident: b13
  article-title: Human-machine collaboration for improving semiconductor process development
  publication-title: Nature
– year: 2022
  ident: b12
  article-title: BO: Augmenting acquisition functions with user beliefs for Bayesian optimization
– year: 2022
  ident: b15
  article-title: Human-in-the-loop Bayesian optimization with no-regret guarantees
– year: 2018
  ident: b5
  article-title: JAX: composable transformations of Python+NumPy programs
– volume: 170
  year: 2023
  ident: b10
  article-title: New paradigms for exploiting parallel experiments in Bayesian optimization
  publication-title: Comput. Chem. Eng.
– year: 1974
  ident: b22
  article-title: Systems of extremal control
  publication-title: Nauka
– volume: 9
  start-page: 706
  year: 2024
  end-page: 712
  ident: b28
  article-title: Multi-objective Bayesian optimisation using q-noisy expected hypervolume improvement (qNEHVI) for the Schotten–Baumann reaction
  publication-title: React. Chem. Eng.
– year: 2017
  ident: b14
  article-title: Constrained Bayesian Optimization with Noisy Experiments
– volume: 179
  year: 2023
  ident: b24
  article-title: Multi-fidelity data-driven design and analysis of reactor and tube simulations
  publication-title: Comput. Chem. Eng.
– volume: 185
  year: 2024
  ident: b6
  article-title: Run-indexed time-varying Bayesian optimization with positional encoding for auto-tuning of controllers: Application to a plasma-assisted deposition process with run-to-run drifts
  publication-title: Comput. Chem. Eng.
– volume: 36
  year: 2022
  ident: b26
  article-title: Bayesian optimization for chemical products and functional materials
  publication-title: Curr. Opin. Chem. Eng.
– year: 2023
  ident: b11
  article-title: BO-Muse: A human expert and AI teaming framework for accelerated experimental design
– volume: 35
  start-page: 16233
  year: 2022
  end-page: 16245
  ident: b2
  article-title: Human-AI collaborative Bayesian optimisation
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2023
  ident: b1
  article-title: Unexpected Improvements to Expected Improvement for Bayesian Optimization
– volume: 133
  year: 2020
  ident: b19
  article-title: Reinforcement learning for batch bioprocess optimization
  publication-title: Comput. Chem. Eng.
– volume: 358
  start-page: 643
  year: 2019
  end-page: 657
  ident: b16
  article-title: Oscillatory fluid motion unlocks plug flow operation in helical tube reactors at lower Reynolds numbers (Re
  publication-title: Chem. Eng. J.
– volume: 195
  year: 2020
  ident: b21
  article-title: Incorporating expert prior in Bayesian optimisation via space warping
  publication-title: Knowl.-Based Syst.
– year: 2024
  ident: b3
  article-title: Streamlining the automated discovery of porous organic cages
  publication-title: Chem. Sci.
– volume: 23
  start-page: 550
  year: 1997
  end-page: 560
  ident: b29
  article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Trans. Math. Softw. (TOMS)
– volume: 32
  start-page: 69
  year: 2009
  end-page: 84
  ident: b17
  article-title: Précis ofBayesian rationality: The probabilistic approach to human reasoning
  publication-title: Behav. Brain Sci.
– volume: 12
  start-page: 14952
  year: 2022
  ident: b23
  article-title: Experimental evidence of effective human–AI collaboration in medical decision-making
  publication-title: Sci. Rep.
– year: 2023
  ident: b7
  article-title: HypBO: Accelerating black-box scientific experiments using experts’ hypotheses
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b8
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– year: 2024
  ident: b18
  article-title: Bayesian optimization as a flexible and efficient design framework for sustainable process systems
– start-page: 381
  year: 2023
  end-page: 386
  ident: b25
  article-title: Combined Bayesian optimization and global sensitivity analysis for the optimization of simulation-based pharmaceutical processes
  publication-title: 33rd European Symposium on Computer Aided Process Engineering
– volume: 473
  year: 2023
  ident: b4
  article-title: Discovery of mixing characteristics for enhancing coiled reactor performance through a Bayesian optimisation-CFD approach
  publication-title: Chem. Eng. J.
– volume: 48
  start-page: 607
  year: 2013
  end-page: 626
  ident: b20
  article-title: A benchmark of kriging-based infill criteria for noisy optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.compchemeng.2024.108810_b8
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 48
  start-page: 607
  issn: 1615-1488
  issue: 3
  year: 2013
  ident: 10.1016/j.compchemeng.2024.108810_b20
  article-title: A benchmark of kriging-based infill criteria for noisy optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-0919-4
– year: 2022
  ident: 10.1016/j.compchemeng.2024.108810_b12
– volume: 9
  start-page: 706
  issn: 2058-9883
  issue: 3
  year: 2024
  ident: 10.1016/j.compchemeng.2024.108810_b28
  article-title: Multi-objective Bayesian optimisation using q-noisy expected hypervolume improvement (qNEHVI) for the Schotten–Baumann reaction
  publication-title: React. Chem. Eng.
  doi: 10.1039/D3RE00502J
– volume: 616
  start-page: 707
  issue: 7958
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108810_b13
  article-title: Human-machine collaboration for improving semiconductor process development
  publication-title: Nature
  doi: 10.1038/s41586-023-05773-7
– volume: 185
  issn: 0098-1354
  year: 2024
  ident: 10.1016/j.compchemeng.2024.108810_b6
  article-title: Run-indexed time-varying Bayesian optimization with positional encoding for auto-tuning of controllers: Application to a plasma-assisted deposition process with run-to-run drifts
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2024.108653
– year: 2017
  ident: 10.1016/j.compchemeng.2024.108810_b14
– year: 2023
  ident: 10.1016/j.compchemeng.2024.108810_b9
– volume: 170
  issn: 0098-1354
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108810_b10
  article-title: New paradigms for exploiting parallel experiments in Bayesian optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.108110
– volume: 358
  start-page: 643
  year: 2019
  ident: 10.1016/j.compchemeng.2024.108810_b16
  article-title: Oscillatory fluid motion unlocks plug flow operation in helical tube reactors at lower Reynolds numbers (Re ≤ 10)
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.10.054
– volume: 195
  year: 2020
  ident: 10.1016/j.compchemeng.2024.108810_b21
  article-title: Incorporating expert prior in Bayesian optimisation via space warping
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105663
– year: 2023
  ident: 10.1016/j.compchemeng.2024.108810_b1
– year: 2023
  ident: 10.1016/j.compchemeng.2024.108810_b11
– start-page: 381
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108810_b25
  article-title: Combined Bayesian optimization and global sensitivity analysis for the optimization of simulation-based pharmaceutical processes
  doi: 10.1016/B978-0-443-15274-0.50061-5
– volume: 32
  start-page: 69
  issn: 1469-1825
  issue: 1
  year: 2009
  ident: 10.1016/j.compchemeng.2024.108810_b17
  article-title: Précis ofBayesian rationality: The probabilistic approach to human reasoning
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X09000284
– issn: 2041-6539
  year: 2024
  ident: 10.1016/j.compchemeng.2024.108810_b3
  article-title: Streamlining the automated discovery of porous organic cages
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC06133G
– volume: 473
  issn: 1385-8947
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108810_b4
  article-title: Discovery of mixing characteristics for enhancing coiled reactor performance through a Bayesian optimisation-CFD approach
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.145217
– volume: 179
  issn: 0098-1354
  year: 2023
  ident: 10.1016/j.compchemeng.2024.108810_b24
  article-title: Multi-fidelity data-driven design and analysis of reactor and tube simulations
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2023.108410
– year: 2018
  ident: 10.1016/j.compchemeng.2024.108810_b5
– volume: 23
  start-page: 550
  issue: 4
  year: 1997
  ident: 10.1016/j.compchemeng.2024.108810_b29
  article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Trans. Math. Softw. (TOMS)
  doi: 10.1145/279232.279236
– year: 2024
  ident: 10.1016/j.compchemeng.2024.108810_b18
– volume: 133
  issn: 0098-1354
  year: 2020
  ident: 10.1016/j.compchemeng.2024.108810_b19
  article-title: Reinforcement learning for batch bioprocess optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106649
– volume: 3
  issue: CSCW
  year: 2019
  ident: 10.1016/j.compchemeng.2024.108810_b27
  article-title: Human-AI collaboration in data science: Exploring data scientists’ perceptions of automated AI
  publication-title: Proc. ACM Hum.-Comput. Interact.
  doi: 10.1145/3359313
– volume: 36
  issn: 2211-3398
  year: 2022
  ident: 10.1016/j.compchemeng.2024.108810_b26
  article-title: Bayesian optimization for chemical products and functional materials
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2021.100728
– year: 1974
  ident: 10.1016/j.compchemeng.2024.108810_b22
  article-title: Systems of extremal control
  publication-title: Nauka
– volume: 35
  start-page: 16233
  year: 2022
  ident: 10.1016/j.compchemeng.2024.108810_b2
  article-title: Human-AI collaborative Bayesian optimisation
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2023
  ident: 10.1016/j.compchemeng.2024.108810_b7
– year: 2022
  ident: 10.1016/j.compchemeng.2024.108810_b15
– volume: 12
  start-page: 14952
  issue: 1
  year: 2022
  ident: 10.1016/j.compchemeng.2024.108810_b23
  article-title: Experimental evidence of effective human–AI collaboration in medical decision-making
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-18751-2
SSID ssj0002488
Score 2.4811025
Snippet Bayesian optimization has proven effective for optimizing expensive-to-evaluate functions in Chemical Engineering. However, valuable physical insights from...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 108810
SubjectTerms Bayesian optimization
Domain knowledge
Experimental design
Human-in-the-loop
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KDz4O4hPrixW8xra7m2QXvGixFEVPFnoLu-luraRp0Vbpxd_uTpO0ETwUPCZksuGbZR7h-2YBruJQ4tgppEox7XHZF54ILPMYqjCppVZwFCc_PQedLn_o-b0KtAotDNIq89ifxfRFtM7v1HM065PhEDW-UjSZz5EFSanooYKdh3iKwfX3iuZBuRDF3Ex8egMuVxwvpG07bEYmHbhWkXJk3AkU0_6dozZn6UTNv1SSlHJQexd28uKR3GbftwcVk-7Ddmmk4AE8Lv7KeyoZjF3b_zoiJUd_GnKn5gZlk2TsQsUo12ASV7gSs3oLycY7fxxCt33_0up4-YEJXsxCOvUoY1Jz5TKw8UMbxr5tMKYpNQG1oYpjI41uaBa4EsJ1SUpaF3Ul6xvWNL7Gwu8Iquk4NcdAlEB9guLWaMmDvpKxawWp1lQ1baBZswaigCiK82nieKhFEhW0sbeohG6E6EYZujWgS9NJNlJjHaObwg_Rr_0RudC_jjlb-m79RU_-t-gpbOFVRv07g-r0fWbOXQkz1ReLPfoDhaHxLw
  priority: 102
  providerName: Elsevier
Title Human-algorithm collaborative Bayesian optimization for engineering systems
URI https://dx.doi.org/10.1016/j.compchemeng.2024.108810
https://doi.org/10.1016/j.compchemeng.2024.108810
UnpaywallVersion publishedVersion
Volume 189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0098-1354
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002488
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0098-1354
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002488
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0098-1354
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002488
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0098-1354
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0002488
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0098-1354
  databaseCode: AKRWK
  dateStart: 19770101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7MDRQfvIsTHRF87ViTXsGXKY7pcIg4mE8lyZJ56boxO2U--NtN1nZWQZz-gJOmJ4ec77Tn-w7AMXd9LTulW6UIMyy_5xmeI4lBNAsTSyw9S5OTr9pOs2Nddu1uAcyMC_Pl__2sD0u3Vqv9D0TUV-UctnRXnKdJVSXHVvC7CKVO-7p-l2ljmmQ2-cz0XGJYxLWX4ejXtX7KSSuTaESnrzQMczmnsQ432W6TVpOn6iRmVf72TcjxT6-zAWspAkX1JGQ2oSCiLVjN6RJuQ2v2ad-gYX84fojvBygXLS8CndKp0NxLNFT3zSAlciKFfpH4XAUlGtHPO9BpnN-eNY106oLBiYtjAxPiM4uqNC5sV7rcljVCGMbCwdKlnAtfsBojjsIhqtSivlRXt096gpjCZho97kIxGkZiDxD1NMmBWlIw33J61OeqnsSMYWpKhxGzDF7m94CnkuR6MkYYZL1nj0HOX4H2V5D4qwx4bjpKdDkWMTrJDjdIAUYCHAJ1TouYk3lALP7Q_X9ZHUAxHk_EoUI8MavAUvXdrECpftFqtitpxH8A3AsCWw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gJj4OxmfEZ028VmV32-4mXpRIUMCTJNya3bKLmFKIgoaLv90d2gImHki8tp1u881mHs33zQJcRoHAsVNIlaLKZaLDXe4b6lJUYRJDDGcoTm4--7UWe2p77QJUci0M0iqz2J_G9Gm0zq5cZ2heD3s91PgKXqYeQxYkIby9AqvMIwF2YFffc54HYZzngzPx8TW4mJO8kLdtwenrpGt7RcKQcsdRTft3klofJ0M5-ZJxvJCEqtuwlVWPzl36gTtQ0MkubC7MFNyD-vS3vCvj7sD2_a99Z8HTn9q5lxONuklnYGNFPxNhOrZydfT8LU463_ljH1rVh5dKzc1OTHAjGpCRSygVikmbgrUXmCDyzA2lihDtExPIKNJCqxtFfVtD2DZJCmPDrqAdTcvaU1j5HUAxGST6EBzJUaAgmdFKML8jRWR7QaIUkWXjK1ouAc8hCqNsnDieahGHOW_sLVxAN0R0wxTdEpCZ6TCdqbGM0W3uh_DXBglt7F_GnM58t_yiR_9b9BzWay_NRth4fK4fwwbeSXmAJ1AcvY_1qa1nRupsul9_ALOV9FI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tS8MwEA6ygeIH38WJSgS_Zqy59A38MsUxFIeIg_mpJFkyX7puzE6Zv95kbecUxOkPuDS9HLnn2nueQ-hE-qGVnbKtUiAIC7sBCTwNBCwLk2qqA2bJydctr9lmlx23s4Scggvz5f_9tA_Ltlab_fdV0jPlHGW2Ky6wpKqy5xr4XULlduumfl9oYzownXzmBD4QBr67jI5_XeunnLQyToZ88sbjeC7nNNbRbbHbrNXkuTpORVW-fxNy_NPrbKC1HIHiehYym2hJJVtodU6XcBtdTT_tEx73BqPH9KGP56LlVeEzPlGWe4kH5r7p50RObNAvVp-r4Ewj-mUHtRsXd-dNkk9dIBJ8mhIKEArGTRpXrq996eoagKBUeVT7XEoVKlET4BkcYkotHmpzdYfQVeAoV1j0uItKySBRewjzwJIcONNKhMzr8lCaepIKQbmjPQFOBQWF3yOZS5LbyRhxVPSePUVz_oqsv6LMXxVEZ6bDTJdjEaPT4nCjHGBkwCEy57SIOcwCYvGH7v_L6gCV0tFYHRrEk4qjPMY_ANJc_8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human-algorithm+collaborative+Bayesian+optimization+for+engineering+systems&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Savage%2C+Tom&rft.au=del+Rio+Chanona%2C+Ehecatl+Antonio&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.volume=189&rft_id=info:doi/10.1016%2Fj.compchemeng.2024.108810&rft.externalDocID=S009813542400228X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon