Evaluating the Machine Learning Models in Predicting Intensive Care Unit Discharge for Neurosurgical Patients Undergoing Craniotomy: A Big Data Analysis
Background Predicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our study aims to develop and validate machine learning (ML) models to predict ICU discharge within 24 h for patients undergoing craniot...
Saved in:
| Published in | Neurocritical care Vol. 43; no. 2; pp. 512 - 529 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1541-6933 1556-0961 1556-0961 |
| DOI | 10.1007/s12028-025-02246-9 |
Cover
| Abstract | Background
Predicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our study aims to develop and validate machine learning (ML) models to predict ICU discharge within 24 h for patients undergoing craniotomy.
Methods
The 2,742 patients undergoing craniotomy were identified from Medical Information Mart for Intensive Care dataset using diagnosis-related group and International Classification of Diseases codes. Demographic, clinical, laboratory, and radiological data were collected and preprocessed. Textual clinical examinations were converted into numerical scales. Data were split into training (70%), validation (15%), and test (15%) sets. Four ML models, logistic regression (LR), decision tree, random forest, and neural network (NN), were trained and evaluated. Model performance was assessed using area under the receiver operating characteristic curve (AUC), average precision (AP), accuracy, and F1 scores. Shapley Additive Explanations (SHAP) were used to analyze importance of features. Statistical analyses were performed using R (version 4.2.1) and ML analyses with Python (version 3.8), using scikit-learn, tensorflow, and shap packages.
Results
Cohort included 2,742 patients (mean age 58.2 years; first and third quartiles 47–70 years), with 53.4% being male (
n
= 1,464). Total ICU stay was 15,645 bed days (mean length of stay 4.7 days), and total hospital stay was 32,008 bed days (mean length of stay 10.8 days). Random forest demonstrated highest performance (AUC 0.831, AP 0.561, accuracy 0.827, F1-score 0.339) on test set. NN achieved an AUC of 0.824, with an AP, accuracy, and F1-score of 0.558, 0.830, and 0.383, respectively. LR achieved an AUC of 0.821 and an accuracy of 0.829. The decision tree model showed lowest performance (AUC 0.813, accuracy 0.822). Key predictors of SHAP analysis included Glasgow Coma Scale, respiratory-related parameters (i.e., tidal volume, respiratory effort), intracranial pressure, arterial pH, and Richmond Agitation-Sedation Scale.
Conclusions
Random forest and NN predict ICU discharge well, whereas LR is interpretable but less accurate. Numeric conversion of clinical data improved performance. This study offers framework for predictions using clinical, radiological, and demographic features, with SHAP enhancing transparency. |
|---|---|
| AbstractList | Predicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our study aims to develop and validate machine learning (ML) models to predict ICU discharge within 24 h for patients undergoing craniotomy.
The 2,742 patients undergoing craniotomy were identified from Medical Information Mart for Intensive Care dataset using diagnosis-related group and International Classification of Diseases codes. Demographic, clinical, laboratory, and radiological data were collected and preprocessed. Textual clinical examinations were converted into numerical scales. Data were split into training (70%), validation (15%), and test (15%) sets. Four ML models, logistic regression (LR), decision tree, random forest, and neural network (NN), were trained and evaluated. Model performance was assessed using area under the receiver operating characteristic curve (AUC), average precision (AP), accuracy, and F1 scores. Shapley Additive Explanations (SHAP) were used to analyze importance of features. Statistical analyses were performed using R (version 4.2.1) and ML analyses with Python (version 3.8), using scikit-learn, tensorflow, and shap packages.
Cohort included 2,742 patients (mean age 58.2 years; first and third quartiles 47-70 years), with 53.4% being male (n = 1,464). Total ICU stay was 15,645 bed days (mean length of stay 4.7 days), and total hospital stay was 32,008 bed days (mean length of stay 10.8 days). Random forest demonstrated highest performance (AUC 0.831, AP 0.561, accuracy 0.827, F1-score 0.339) on test set. NN achieved an AUC of 0.824, with an AP, accuracy, and F1-score of 0.558, 0.830, and 0.383, respectively. LR achieved an AUC of 0.821 and an accuracy of 0.829. The decision tree model showed lowest performance (AUC 0.813, accuracy 0.822). Key predictors of SHAP analysis included Glasgow Coma Scale, respiratory-related parameters (i.e., tidal volume, respiratory effort), intracranial pressure, arterial pH, and Richmond Agitation-Sedation Scale.
Random forest and NN predict ICU discharge well, whereas LR is interpretable but less accurate. Numeric conversion of clinical data improved performance. This study offers framework for predictions using clinical, radiological, and demographic features, with SHAP enhancing transparency. Background Predicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our study aims to develop and validate machine learning (ML) models to predict ICU discharge within 24 h for patients undergoing craniotomy. Methods The 2,742 patients undergoing craniotomy were identified from Medical Information Mart for Intensive Care dataset using diagnosis-related group and International Classification of Diseases codes. Demographic, clinical, laboratory, and radiological data were collected and preprocessed. Textual clinical examinations were converted into numerical scales. Data were split into training (70%), validation (15%), and test (15%) sets. Four ML models, logistic regression (LR), decision tree, random forest, and neural network (NN), were trained and evaluated. Model performance was assessed using area under the receiver operating characteristic curve (AUC), average precision (AP), accuracy, and F1 scores. Shapley Additive Explanations (SHAP) were used to analyze importance of features. Statistical analyses were performed using R (version 4.2.1) and ML analyses with Python (version 3.8), using scikit-learn, tensorflow, and shap packages. Results Cohort included 2,742 patients (mean age 58.2 years; first and third quartiles 47–70 years), with 53.4% being male ( n = 1,464). Total ICU stay was 15,645 bed days (mean length of stay 4.7 days), and total hospital stay was 32,008 bed days (mean length of stay 10.8 days). Random forest demonstrated highest performance (AUC 0.831, AP 0.561, accuracy 0.827, F1-score 0.339) on test set. NN achieved an AUC of 0.824, with an AP, accuracy, and F1-score of 0.558, 0.830, and 0.383, respectively. LR achieved an AUC of 0.821 and an accuracy of 0.829. The decision tree model showed lowest performance (AUC 0.813, accuracy 0.822). Key predictors of SHAP analysis included Glasgow Coma Scale, respiratory-related parameters (i.e., tidal volume, respiratory effort), intracranial pressure, arterial pH, and Richmond Agitation-Sedation Scale. Conclusions Random forest and NN predict ICU discharge well, whereas LR is interpretable but less accurate. Numeric conversion of clinical data improved performance. This study offers framework for predictions using clinical, radiological, and demographic features, with SHAP enhancing transparency. BackgroundPredicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our study aims to develop and validate machine learning (ML) models to predict ICU discharge within 24 h for patients undergoing craniotomy.MethodsThe 2,742 patients undergoing craniotomy were identified from Medical Information Mart for Intensive Care dataset using diagnosis-related group and International Classification of Diseases codes. Demographic, clinical, laboratory, and radiological data were collected and preprocessed. Textual clinical examinations were converted into numerical scales. Data were split into training (70%), validation (15%), and test (15%) sets. Four ML models, logistic regression (LR), decision tree, random forest, and neural network (NN), were trained and evaluated. Model performance was assessed using area under the receiver operating characteristic curve (AUC), average precision (AP), accuracy, and F1 scores. Shapley Additive Explanations (SHAP) were used to analyze importance of features. Statistical analyses were performed using R (version 4.2.1) and ML analyses with Python (version 3.8), using scikit-learn, tensorflow, and shap packages.ResultsCohort included 2,742 patients (mean age 58.2 years; first and third quartiles 47–70 years), with 53.4% being male (n = 1,464). Total ICU stay was 15,645 bed days (mean length of stay 4.7 days), and total hospital stay was 32,008 bed days (mean length of stay 10.8 days). Random forest demonstrated highest performance (AUC 0.831, AP 0.561, accuracy 0.827, F1-score 0.339) on test set. NN achieved an AUC of 0.824, with an AP, accuracy, and F1-score of 0.558, 0.830, and 0.383, respectively. LR achieved an AUC of 0.821 and an accuracy of 0.829. The decision tree model showed lowest performance (AUC 0.813, accuracy 0.822). Key predictors of SHAP analysis included Glasgow Coma Scale, respiratory-related parameters (i.e., tidal volume, respiratory effort), intracranial pressure, arterial pH, and Richmond Agitation-Sedation Scale.ConclusionsRandom forest and NN predict ICU discharge well, whereas LR is interpretable but less accurate. Numeric conversion of clinical data improved performance. This study offers framework for predictions using clinical, radiological, and demographic features, with SHAP enhancing transparency. Predicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our study aims to develop and validate machine learning (ML) models to predict ICU discharge within 24 h for patients undergoing craniotomy.BACKGROUNDPredicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our study aims to develop and validate machine learning (ML) models to predict ICU discharge within 24 h for patients undergoing craniotomy.The 2,742 patients undergoing craniotomy were identified from Medical Information Mart for Intensive Care dataset using diagnosis-related group and International Classification of Diseases codes. Demographic, clinical, laboratory, and radiological data were collected and preprocessed. Textual clinical examinations were converted into numerical scales. Data were split into training (70%), validation (15%), and test (15%) sets. Four ML models, logistic regression (LR), decision tree, random forest, and neural network (NN), were trained and evaluated. Model performance was assessed using area under the receiver operating characteristic curve (AUC), average precision (AP), accuracy, and F1 scores. Shapley Additive Explanations (SHAP) were used to analyze importance of features. Statistical analyses were performed using R (version 4.2.1) and ML analyses with Python (version 3.8), using scikit-learn, tensorflow, and shap packages.METHODSThe 2,742 patients undergoing craniotomy were identified from Medical Information Mart for Intensive Care dataset using diagnosis-related group and International Classification of Diseases codes. Demographic, clinical, laboratory, and radiological data were collected and preprocessed. Textual clinical examinations were converted into numerical scales. Data were split into training (70%), validation (15%), and test (15%) sets. Four ML models, logistic regression (LR), decision tree, random forest, and neural network (NN), were trained and evaluated. Model performance was assessed using area under the receiver operating characteristic curve (AUC), average precision (AP), accuracy, and F1 scores. Shapley Additive Explanations (SHAP) were used to analyze importance of features. Statistical analyses were performed using R (version 4.2.1) and ML analyses with Python (version 3.8), using scikit-learn, tensorflow, and shap packages.Cohort included 2,742 patients (mean age 58.2 years; first and third quartiles 47-70 years), with 53.4% being male (n = 1,464). Total ICU stay was 15,645 bed days (mean length of stay 4.7 days), and total hospital stay was 32,008 bed days (mean length of stay 10.8 days). Random forest demonstrated highest performance (AUC 0.831, AP 0.561, accuracy 0.827, F1-score 0.339) on test set. NN achieved an AUC of 0.824, with an AP, accuracy, and F1-score of 0.558, 0.830, and 0.383, respectively. LR achieved an AUC of 0.821 and an accuracy of 0.829. The decision tree model showed lowest performance (AUC 0.813, accuracy 0.822). Key predictors of SHAP analysis included Glasgow Coma Scale, respiratory-related parameters (i.e., tidal volume, respiratory effort), intracranial pressure, arterial pH, and Richmond Agitation-Sedation Scale.RESULTSCohort included 2,742 patients (mean age 58.2 years; first and third quartiles 47-70 years), with 53.4% being male (n = 1,464). Total ICU stay was 15,645 bed days (mean length of stay 4.7 days), and total hospital stay was 32,008 bed days (mean length of stay 10.8 days). Random forest demonstrated highest performance (AUC 0.831, AP 0.561, accuracy 0.827, F1-score 0.339) on test set. NN achieved an AUC of 0.824, with an AP, accuracy, and F1-score of 0.558, 0.830, and 0.383, respectively. LR achieved an AUC of 0.821 and an accuracy of 0.829. The decision tree model showed lowest performance (AUC 0.813, accuracy 0.822). Key predictors of SHAP analysis included Glasgow Coma Scale, respiratory-related parameters (i.e., tidal volume, respiratory effort), intracranial pressure, arterial pH, and Richmond Agitation-Sedation Scale.Random forest and NN predict ICU discharge well, whereas LR is interpretable but less accurate. Numeric conversion of clinical data improved performance. This study offers framework for predictions using clinical, radiological, and demographic features, with SHAP enhancing transparency.CONCLUSIONSRandom forest and NN predict ICU discharge well, whereas LR is interpretable but less accurate. Numeric conversion of clinical data improved performance. This study offers framework for predictions using clinical, radiological, and demographic features, with SHAP enhancing transparency. |
| Author | Dogan, Ilke Khaniyev, Taghi Hanalioglu, Sahin Koc, Muhammet Abdullah Cekic, Efecan |
| Author_xml | – sequence: 1 givenname: Taghi surname: Khaniyev fullname: Khaniyev, Taghi organization: Faculty of Engineering, Department of Industrial Engineering, Bilkent University, National Magnetic Resonance Research Center, Bilkent University, MIT Sloan School of Management, Massachusetts Institute of Technology – sequence: 2 givenname: Efecan surname: Cekic fullname: Cekic, Efecan organization: Faculty of Medicine, Department of Neurosurgery, Hacettepe University – sequence: 3 givenname: Muhammet Abdullah surname: Koc fullname: Koc, Muhammet Abdullah organization: Faculty of Engineering, Department of Computer Engineering, Bilkent University – sequence: 4 givenname: Ilke surname: Dogan fullname: Dogan, Ilke organization: Faculty of Engineering, Department of Computer Engineering, Bilkent University – sequence: 5 givenname: Sahin orcidid: 0000-0003-4988-4938 surname: Hanalioglu fullname: Hanalioglu, Sahin email: hanalioglu@hacettepe.edu.tr organization: Faculty of Medicine, Department of Neurosurgery, Hacettepe University, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40329064$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkctuFDEQRS0URB7wAyyQJTZsGsp2v8xuMnkQaQJZkHXL7S73OOqxB7s7aP6Ez8WdGUBigVhYtkrnVtW9PiVHzjsk5DWD9wyg-hAZB15nwIt0eF5m8hk5YUVRZiBLdjS_c5aVUohjchrjAwCvZFW8IMc5CC6hzE_Ij8tHNUxqtK6n4xrprdJr65CuUAU3F299h0Ok1tG7gJ3VT-SNG9FF-4h0qQLSe2dHemGjXqvQIzU-0M84BR-n0FutBnqXBqAbYyI7DL2feyyDctaPfrP7SBf03Pb0Qo2KLpwadtHGl-S5UUPEV4f7jNxfXX5dfspWX65vlotVpkXFx4yZFgpjJECtUbcpEVQKhKnb1nTCoBS51qKQIFqmGBdKG13lvMuhlrXoQJwRse87ua3afVfD0GyD3aiwaxg0c87NPucm5dw85dzIpHq3V22D_zZhHJtNso_DoBz6KTaCA2OsYFWd0Ld_oQ9-CsnlTBVQlwxKlqg3B2pqN9j93uHXTyWA7wGdco0Bzf-teTAXE-x6DH9m_0P1EyBDtko |
| Cites_doi | 10.1038/s41597-022-01899-x 10.1093/jamia/ocab211 10.3390/jcm14041144 10.1136/bmjquality.u209098.w3772 10.1287/msom.2021.0971 10.1007/s12028-022-01558-4 10.1109/ICMLA.2018.00236 10.1016/j.mayocpiqo.2023.09.002 10.1007/s12028-022-01481-8 10.1186/s12911-021-01660-1 10.1136/bmjinnov-2020-000420 10.1007/s12028-021-01427-6 10.1161/01.CIR.101.23.e215 10.1212/CON.0000000000001039 10.1001/jamanetworkopen.2019.17221 10.12788/jhm.2802 10.1186/cc10217 10.1007/s12028-021-01434-7 10.1007/978-3-030-21642-9_20 10.1016/j.ijcard.2019.01.046 10.1109/HEALTHCOM49281.2021.9399025 10.1145/3628797.3628974 10.1038/s41746-021-00529-x 10.1007/978-3-030-17410-1_77 10.1212/CON.0000000000000227 10.4103/sni.sni_54_17 10.1109/ICMLA.2014.76 10.1109/HealthCom54947.2022.9982748 10.1101/2023.03.24.23287694 10.1056/NEJMra1814259 10.1080/02699052.2021.2008491 10.1001/jamanetworkopen.2018.4087 10.1111/imj.14962 10.1136/postgradmedj-2016-134529 10.1145/2939672.2939778 10.3390/jcm9061668 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 ADTOC UNPAY |
| DOI | 10.1007/s12028-025-02246-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
| DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1556-0961 |
| EndPage | 529 |
| ExternalDocumentID | 10.1007/s12028-025-02246-9 40329064 10_1007_s12028_025_02246_9 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Hacettepe University |
| GroupedDBID | --- -Y2 .86 .VR 06C 06D 0R~ 0VY 123 1N0 203 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 53G 5VS 6NX 7RV 7X7 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABRTQ ABSXP ABTEG ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFJLC AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHPBZ AHSBF AHWEU AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA B-. BA0 BDATZ BENPR BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG6 HLICF HMCUK HMJXF HRMNR HZ~ IJ- IKXTQ IMOTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MA- NAPCQ NPVJJ NQJWS NU0 O9- O9J OVD P2P P9S PF0 PHGZM PHGZT PPXIY PT4 PUEGO QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZ9 SZN T13 TEORI TSG TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR ZMTXR ZOVNA AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c372t-1fb05ff9008cecb120eaa03f8bbfd3fe934cc35903b1a123acfc742d408983d03 |
| IEDL.DBID | UNPAY |
| ISSN | 1541-6933 1556-0961 |
| IngestDate | Sun Oct 26 03:45:32 EDT 2025 Fri Jul 11 18:19:59 EDT 2025 Tue Oct 07 07:15:58 EDT 2025 Fri Sep 19 01:51:05 EDT 2025 Wed Oct 01 05:22:52 EDT 2025 Tue Sep 16 01:15:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Craniotomy Neurosurgery Discharge Intensive care unit Machine learning |
| Language | English |
| License | 2025. The Author(s). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-1fb05ff9008cecb120eaa03f8bbfd3fe934cc35903b1a123acfc742d408983d03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4988-4938 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s12028-025-02246-9.pdf |
| PMID | 40329064 |
| PQID | 3250861061 |
| PQPubID | 6623258 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_1007_s12028_025_02246_9 proquest_miscellaneous_3201115178 proquest_journals_3250861061 pubmed_primary_40329064 crossref_primary_10_1007_s12028_025_02246_9 springer_journals_10_1007_s12028_025_02246_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States – name: Heidelberg |
| PublicationTitle | Neurocritical care |
| PublicationTitleAbbrev | Neurocrit Care |
| PublicationTitleAlternate | Neurocrit Care |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | X Zhang (2246_CR26) 2021; 28 A De Grood (2246_CR6) 2016; 12 S Levin (2246_CR8) 2021; 7 A Naemi (2246_CR25) 2021; 21 JE Fugate (2246_CR2) 2015; 21 C Terwiesch (2246_CR7) 2011; 15 T Khaniyev (2246_CR32) 2025; 14 JC Hemphill (2246_CR20) 2022; 37 AEW Johnson (2246_CR30) 2023; 10 R Dhar (2246_CR21) 2022; 37 2246_CR29 2246_CR23 2246_CR24 C Perez-Vega (2246_CR1) 2023; 7 AL Goldberger (2246_CR31) 2000; 101 TH McCoy (2246_CR38) 2018; 1 M Megjhani (2246_CR19) 2022; 37 TA Daghistani (2246_CR22) 2019; 288 S Bacchi (2246_CR40) 2022; 52 A Sarwal (2246_CR5) 2021; 27 SM Lauritsen (2246_CR35) 2021; 4 A Mustafa (2246_CR12) 2016; 5 KC Safavi (2246_CR11) 2019; 2 C van Walraven (2246_CR16) 2018; 13 W Muhlestein (2246_CR28) 2017; 8 2246_CR37 2246_CR39 A Rajkomar (2246_CR27) 2019; 380 R Yu (2246_CR9) 2021; 35 FY Cheng (2246_CR15) 2020; 9 2246_CR33 2246_CR34 MV Ragavan (2246_CR13) 2017; 93 2246_CR14 G Citerio (2246_CR18) 2022; 37 2246_CR3 2246_CR10 D Bertsimas (2246_CR17) 2022; 24 2246_CR4 T Khaniyev (2246_CR36) 2020; 5 |
| References_xml | – volume: 10 start-page: 1 issue: 1 year: 2023 ident: 2246_CR30 publication-title: Sci Data doi: 10.1038/s41597-022-01899-x – volume: 28 start-page: 2670 issue: 12 year: 2021 ident: 2246_CR26 publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocab211 – volume: 14 start-page: 1144 issue: 4 year: 2025 ident: 2246_CR32 publication-title: J Clin Med doi: 10.3390/jcm14041144 – volume: 5 start-page: 3772 issue: 1 year: 2016 ident: 2246_CR12 publication-title: BMJ Qual Improv Rep. doi: 10.1136/bmjquality.u209098.w3772 – volume: 24 start-page: 2809 issue: 6 year: 2022 ident: 2246_CR17 publication-title: Manuf Serv Oper Manag doi: 10.1287/msom.2021.0971 – volume: 12 start-page: 105 issue: 2 year: 2016 ident: 2246_CR6 publication-title: Healthc Policy – volume: 37 start-page: 157 issue: S2 year: 2022 ident: 2246_CR21 publication-title: Neurocrit Care doi: 10.1007/s12028-022-01558-4 – ident: 2246_CR23 doi: 10.1109/ICMLA.2018.00236 – ident: 2246_CR34 – volume: 7 start-page: 534 issue: 6 year: 2023 ident: 2246_CR1 publication-title: Mayo Clin Proc Innov Qual Outcomes doi: 10.1016/j.mayocpiqo.2023.09.002 – volume: 37 start-page: 230 issue: 2 year: 2022 ident: 2246_CR19 publication-title: Neurocrit Care. doi: 10.1007/s12028-022-01481-8 – volume: 21 start-page: 298 issue: 1 year: 2021 ident: 2246_CR25 publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-021-01660-1 – volume: 7 start-page: 414 issue: 2 year: 2021 ident: 2246_CR8 publication-title: BMJ Innov doi: 10.1136/bmjinnov-2020-000420 – volume: 37 start-page: 163 issue: S2 year: 2022 ident: 2246_CR18 publication-title: Neurocrit Care doi: 10.1007/s12028-021-01427-6 – ident: 2246_CR29 – volume: 101 start-page: 25 issue: 23 year: 2000 ident: 2246_CR31 publication-title: Circulation. doi: 10.1161/01.CIR.101.23.e215 – volume: 27 start-page: 1382 issue: 5 year: 2021 ident: 2246_CR5 publication-title: CONTINUUM Lifelong Learn Neurol. doi: 10.1212/CON.0000000000001039 – ident: 2246_CR4 – volume: 2 start-page: e1917221 issue: 12 year: 2019 ident: 2246_CR11 publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2019.17221 – volume: 13 start-page: 158 issue: 3 year: 2018 ident: 2246_CR16 publication-title: J Hosp Med doi: 10.12788/jhm.2802 – volume: 15 start-page: 308 issue: 4 year: 2011 ident: 2246_CR7 publication-title: Crit Care. doi: 10.1186/cc10217 – volume: 37 start-page: 160 issue: S2 year: 2022 ident: 2246_CR20 publication-title: Neurocrit Care doi: 10.1007/s12028-021-01434-7 – ident: 2246_CR14 doi: 10.1007/978-3-030-21642-9_20 – volume: 288 start-page: 140 year: 2019 ident: 2246_CR22 publication-title: Int J Cardiol doi: 10.1016/j.ijcard.2019.01.046 – ident: 2246_CR37 doi: 10.1109/HEALTHCOM49281.2021.9399025 – ident: 2246_CR10 doi: 10.1145/3628797.3628974 – volume: 4 start-page: 158 issue: 1 year: 2021 ident: 2246_CR35 publication-title: NPJ Digit Med doi: 10.1038/s41746-021-00529-x – ident: 2246_CR3 doi: 10.1007/978-3-030-17410-1_77 – volume: 21 start-page: 1425 year: 2015 ident: 2246_CR2 publication-title: CONTINUUM Lifelong Learn Neurol. doi: 10.1212/CON.0000000000000227 – volume: 8 start-page: 220 issue: 1 year: 2017 ident: 2246_CR28 publication-title: Surg Neurol Int doi: 10.4103/sni.sni_54_17 – ident: 2246_CR24 doi: 10.1109/ICMLA.2014.76 – ident: 2246_CR39 doi: 10.1109/HealthCom54947.2022.9982748 – volume: 5 start-page: 639 year: 2020 ident: 2246_CR36 publication-title: Science doi: 10.1101/2023.03.24.23287694 – volume: 380 start-page: 1347 issue: 14 year: 2019 ident: 2246_CR27 publication-title: N Engl J Med doi: 10.1056/NEJMra1814259 – volume: 35 start-page: 1658 issue: 14 year: 2021 ident: 2246_CR9 publication-title: Brain Inj doi: 10.1080/02699052.2021.2008491 – volume: 1 start-page: e184087 issue: 7 year: 2018 ident: 2246_CR38 publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2018.4087 – volume: 52 start-page: 176 issue: 2 year: 2022 ident: 2246_CR40 publication-title: Intern Med J doi: 10.1111/imj.14962 – volume: 93 start-page: 528 issue: 1103 year: 2017 ident: 2246_CR13 publication-title: Postgrad Med J doi: 10.1136/postgradmedj-2016-134529 – ident: 2246_CR33 doi: 10.1145/2939672.2939778 – volume: 9 start-page: 1668 issue: 6 year: 2020 ident: 2246_CR15 publication-title: J Clin Med doi: 10.3390/jcm9061668 |
| SSID | ssj0027975 |
| Score | 2.4195158 |
| Snippet | Background
Predicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving... Predicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our... BackgroundPredicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving... |
| SourceID | unpaywall proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 512 |
| SubjectTerms | Accuracy Adult Aged Algorithms Aneurysms Big Data Brain cancer Clinical outcomes Codes Comorbidity Craniotomy - statistics & numerical data Critical care Critical Care Medicine Datasets Decision Trees Discharge planning Edema Female Glasgow Coma Scale Hemorrhage Humans Intensive Intensive care Intensive Care Units - statistics & numerical data Internal Medicine Machine Learning Male Medicine Medicine & Public Health Middle Aged Mortality Neural Networks, Computer Neurology Neurosurgery Original Work Patient Discharge - statistics & numerical data Patients Physiology Teams Tumors Variables |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4NJsF4mDYGW4BNN4k3iEhiJ6l5Y4WqmtSJB5B4i2zHriqVBDWpJv7Jfu7ObtoyNk3ba-JcLH-27zud7zPAsZIpy0ujQ_IvIuSKlpQSsQ6tSsnbxzYtrQsUR9-y4S3_epfedTI5rhbmWf7-rIkTr6GcuDrihGeh2ICX5KQyn5jN-uvgSnhRXWIEcZhRlN4VyPzZxq9O6Ddm-SQrugPb8-pBPn6X0-kTxzN4A687xogXC4jfwgtT7cLWqMuJv4MfV51gdzVGYnM48scjDXbKqWN0151NG5xUeD1zX_mWq6Pr6CqQ0FFPvJw0XjjJIDFZ9LIdzXzmt0a8XuivNugvShrXzkaf_Nykbuv7x3O8wC-TMV7KVuJS52QPbgdXN_1h2N23EGqWJ20YWxWl1gqCTRutaNSMlBGzPaVsyawRjGvNUhExFUvyeFJbTZF1yQnmHisjtg-bVV2ZD4CsTC2PdBZr7upPtGKJzWVOTyUvE5EEcLIEoHhYyGoUawFlB1dBcBUerkIEcLTEqOiWWFMwIm-9zEW0AXxevabF4TIesjL13LWh7Ys4Td4L4P0C29XveMSc1D0P4HQJ9tr43_pyupoQ_9D1g_-zfgivEjdP_WnBI9hsZ3PzkVhPqz756f4TAEX2zw priority: 102 providerName: Springer Nature |
| Title | Evaluating the Machine Learning Models in Predicting Intensive Care Unit Discharge for Neurosurgical Patients Undergoing Craniotomy: A Big Data Analysis |
| URI | https://link.springer.com/article/10.1007/s12028-025-02246-9 https://www.ncbi.nlm.nih.gov/pubmed/40329064 https://www.proquest.com/docview/3250861061 https://www.proquest.com/docview/3201115178 https://link.springer.com/content/pdf/10.1007/s12028-025-02246-9.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1556-0961 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027975 issn: 1556-0961 databaseCode: AFBBN dateStart: 20040301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1556-0961 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027975 issn: 1556-0961 databaseCode: AGYKE dateStart: 20040101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1556-0961 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027975 issn: 1556-0961 databaseCode: U2A dateStart: 20040301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7tthKPA-9HYamMxI1NN4mdpOFW2i4rUFc9UGn3FNmOXVWUpGoSoeWX8HMZO0m7PIRAXHJIHMd2ZjzfaGY-A7wSPKBRqqSD9iV2mECVErEnHS0CtPaeDlJtHMXZeXi2YO8vgosDmLS1MDbbvQ1J1jUNhqUpK082qT7ZF775llnZN9XFPgudeICPD6EbBojIO9BdnM9Hl5YqlXlOWJ8oj5YTnec49Jramd939KN9-gV0XguY3oabVbbhV1_4en3NJp3eBdXOpk5F-TSoSjGQX38ievzf6d6DOw1oJaNayu7DgcoewI1ZE5Z_CN-mDWd4tiQIKMnMZmgq0pC3Lok5cW1dkFVG5lvzlm25y54npgiKGPRLJqvCcjcpgmCaWOaQotra3ZnMawrYgtizmpa56WOMpnaVl_nnqzdkRN6ulmTCS05aqpVHsDidfhyfOc2RD46kkV86nhZuoHWMkiOVFDhvxblL9VAInVKtYsqkpEHsUuFxNLpcaonOfcpQ0oY0delj6GR5pp4CoWmgmStDTzJTAiMF9XXEI7zLWerHfg9etz862dTMHsmew9kseIILntgFT-IeHLWykDRaXiQU8eMwNE51D17uHqN-mqALz1RemTa4gyKsioY9eFLL0O5zzKWGbZ_14LiVgX3nfxrL8U7w_mLoz_6t-XO45RtJswmLR9Apt5V6gcCrFH3ojt5dfpj24XAcjvG68Ef9Rte-A9g6Jr8 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BJzF44GMMCAwwEm9bqiR2koa3snUUtk57WKXxFNmOXVXrkqlJhMZfwp_L2Una8SHEXhPH8ced73e6u58B3gse0jhT0kX7krhMoEqJxJeuFiFae1-HmTaO4uQkGk_Zl_PwvC0KK7ts9y4kaU_qdbFbYNmUA1NRHLDITe7CBkMHJejBxvDT16PR2tFKLMEuogPfjdBjb4tl_t7LrwbpD5R5I0L6ADbr_Ipff-OLxQ0jdPgIpt3wm9yTi35dib78_huz423n9xgetqiUDBsxegJ3VL4F9yZt3P0p_Bi1pOD5jCBiJBObgqlIy846I-ZKtUVJ5jk5XZqvbMtVejwxVU7EwFtyMC8tOZMiiJaJpQYp66U9fslpw_FaEnsZ06wwfeyjLZ0XVXF5_YEMycf5jBzwipOOS2Ubpoejs_2x297p4EoaB5Xra-GFWicoGlJJgXNWnHtUD4TQGdUqoUxKGiYeFT5Hq8qllui9ZwxFaUAzjz6DXl7k6gUQmoWaeTLyJTM1LlLQQMc8xqecZUESOLDbbWx61VB3pGuSZrPYKS52ahc7TRzY6fY-bdW4TCkCxEFkvGYH3q1eowKaqArPVVGbNnhEIm6KBw48b2Rm9TvmUUOnzxzY6_Z83fm_xrK3ErT_GPrL2_X-FjbHZ5Pj9PjzydEruB8YibPZiTvQq5a1eo0oqxJvWqX6CXYTGuE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7BIi1wQLwJLDBI3Nhok9hJam5Lu9Xy6KoHVtpbZDt2VakkVZMK7T_h5zJ20gcCIbgmziTKZ3u-0cx8BnirZMry0uiQ_IsIuaIlpUSsQ6tS8vaxTUvrAsXJRXZ-yT9dpVd7Xfy-2n2Tkux6GpxKU9WeLEt7smt8S7yycuK6ixOeheIm3OLk3dwZBsNsuAu5hJfaJZ4QhxnF7n3bzJ9t_OqafuObe7nSu3B7XS3l9Xe5WOy5o_F9uNfzSDztgH8AN0z1EA4nfab8Efw462W8qxkSx8OJL5o02OupztAdgrZocF7hdOWe8iO3Be3o-pLQEVIczRsvp2SQ-C16MY9mvfIbJk47VdYG_fFJs9rZGJL3m9dt_e36PZ7ih_kMR7KVuFE_eQyX47Ovw_OwP4Uh1CxP2jC2KkqtFQSmNlrRXzNSRswOlLIls0YwrjVLRcRULMkPSm01xdslwSEGrIzYEzio6so8A2Rlanmks1hz15WiFUtsLnO6KnmZiCSAdxsAimUntlHsZJUdXAXBVXi4ChHA0Qajol94TcGI0g0yF-cG8GZ7m5aMy4PIytRrN4Y2NWI6-SCApx2229fxiDkBfB7A8QbsnfG_fcvxdkL8w6c__z_rr-FwOhoXXz5efH4BdxI3ZX054REctKu1eUm0qFWv_Mz_CdiSAhQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTuLjgc8BgYGMxBtLl8ROUvNW1k0TUqc-UGk8RbZjVxUlqZpEaPwl_LmcnaQdH0IgXmPHsZ073-_ku98BvJYipmmulY_2hftMokpJHirfyBitfWji3FhHcXqRnM_Z-8v4cg8mfS6Mi3bvryTbnAbL0lTUx-vcHO8S3yLHrBzZ7OKIJT4fYvMN2E9iROQD2J9fzMYfHVUqC_2krSiPlhOdZ56EXe7M7wf60T79AjqvXZjegVtNsRZXX8Rqdc0mnd0D3a-mDUX5NGxqOVRffyJ6_N_l3oe7HWgl41bKHsCeLh7CzWl3Lf8Ivp12nOHFgiCgJFMXoalJR966ILbi2qoiy4LMNvYt13MbPU9sEhSx6JdMlpXjbtIEwTRxzCFVs3GnM5m1FLAVcbWaFqUd4wRN7bKsy89Xb8mYvFsuyETUgvRUKwcwPzv9cHLudyUffEXTqPZDI4PYGI6So7SSuG4tREDNSEqTU6M5ZUrRmAdUhgKNrlBGoXOfM5S0Ec0D-hgGRVnop0BoHhsWqCRUzKbAKEkjk4oUnwqWRzzy4E3_o7N1y-yR7Tic7YZnuOGZ2_CMe3DYy0LWaXmVUcSPo8Q61R682jajftpLF1HosrF98ARFWJWOPHjSytD2cyyglm2feXDUy8Bu8D_N5WgreH8x9Wf_1v053I6spLmAxUMY1JtGv0DgVcuXnV59B_kKI2U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+Machine+Learning+Models+in+Predicting+Intensive+Care+Unit+Discharge+for+Neurosurgical+Patients+Undergoing+Craniotomy%3A+A+Big+Data+Analysis&rft.jtitle=Neurocritical+care&rft.au=Khaniyev%2C+Taghi&rft.au=Cekic%2C+Efecan&rft.au=Koc%2C+Muhammet+Abdullah&rft.au=Dogan%2C+Ilke&rft.date=2025-10-01&rft.issn=1541-6933&rft.eissn=1556-0961&rft.volume=43&rft.issue=2&rft.spage=512&rft.epage=529&rft_id=info:doi/10.1007%2Fs12028-025-02246-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12028_025_02246_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-6933&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-6933&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-6933&client=summon |