Evaluating the Machine Learning Models in Predicting Intensive Care Unit Discharge for Neurosurgical Patients Undergoing Craniotomy: A Big Data Analysis

Background Predicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our study aims to develop and validate machine learning (ML) models to predict ICU discharge within 24 h for patients undergoing craniot...

Full description

Saved in:
Bibliographic Details
Published inNeurocritical care Vol. 43; no. 2; pp. 512 - 529
Main Authors Khaniyev, Taghi, Cekic, Efecan, Koc, Muhammet Abdullah, Dogan, Ilke, Hanalioglu, Sahin
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1541-6933
1556-0961
1556-0961
DOI10.1007/s12028-025-02246-9

Cover

Abstract Background Predicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our study aims to develop and validate machine learning (ML) models to predict ICU discharge within 24 h for patients undergoing craniotomy. Methods The 2,742 patients undergoing craniotomy were identified from Medical Information Mart for Intensive Care dataset using diagnosis-related group and International Classification of Diseases codes. Demographic, clinical, laboratory, and radiological data were collected and preprocessed. Textual clinical examinations were converted into numerical scales. Data were split into training (70%), validation (15%), and test (15%) sets. Four ML models, logistic regression (LR), decision tree, random forest, and neural network (NN), were trained and evaluated. Model performance was assessed using area under the receiver operating characteristic curve (AUC), average precision (AP), accuracy, and F1 scores. Shapley Additive Explanations (SHAP) were used to analyze importance of features. Statistical analyses were performed using R (version 4.2.1) and ML analyses with Python (version 3.8), using scikit-learn, tensorflow, and shap packages. Results Cohort included 2,742 patients (mean age 58.2 years; first and third quartiles 47–70 years), with 53.4% being male ( n  = 1,464). Total ICU stay was 15,645 bed days (mean length of stay 4.7 days), and total hospital stay was 32,008 bed days (mean length of stay 10.8 days). Random forest demonstrated highest performance (AUC 0.831, AP 0.561, accuracy 0.827, F1-score 0.339) on test set. NN achieved an AUC of 0.824, with an AP, accuracy, and F1-score of 0.558, 0.830, and 0.383, respectively. LR achieved an AUC of 0.821 and an accuracy of 0.829. The decision tree model showed lowest performance (AUC 0.813, accuracy 0.822). Key predictors of SHAP analysis included Glasgow Coma Scale, respiratory-related parameters (i.e., tidal volume, respiratory effort), intracranial pressure, arterial pH, and Richmond Agitation-Sedation Scale. Conclusions Random forest and NN predict ICU discharge well, whereas LR is interpretable but less accurate. Numeric conversion of clinical data improved performance. This study offers framework for predictions using clinical, radiological, and demographic features, with SHAP enhancing transparency.
AbstractList Predicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our study aims to develop and validate machine learning (ML) models to predict ICU discharge within 24 h for patients undergoing craniotomy. The 2,742 patients undergoing craniotomy were identified from Medical Information Mart for Intensive Care dataset using diagnosis-related group and International Classification of Diseases codes. Demographic, clinical, laboratory, and radiological data were collected and preprocessed. Textual clinical examinations were converted into numerical scales. Data were split into training (70%), validation (15%), and test (15%) sets. Four ML models, logistic regression (LR), decision tree, random forest, and neural network (NN), were trained and evaluated. Model performance was assessed using area under the receiver operating characteristic curve (AUC), average precision (AP), accuracy, and F1 scores. Shapley Additive Explanations (SHAP) were used to analyze importance of features. Statistical analyses were performed using R (version 4.2.1) and ML analyses with Python (version 3.8), using scikit-learn, tensorflow, and shap packages. Cohort included 2,742 patients (mean age 58.2 years; first and third quartiles 47-70 years), with 53.4% being male (n = 1,464). Total ICU stay was 15,645 bed days (mean length of stay 4.7 days), and total hospital stay was 32,008 bed days (mean length of stay 10.8 days). Random forest demonstrated highest performance (AUC 0.831, AP 0.561, accuracy 0.827, F1-score 0.339) on test set. NN achieved an AUC of 0.824, with an AP, accuracy, and F1-score of 0.558, 0.830, and 0.383, respectively. LR achieved an AUC of 0.821 and an accuracy of 0.829. The decision tree model showed lowest performance (AUC 0.813, accuracy 0.822). Key predictors of SHAP analysis included Glasgow Coma Scale, respiratory-related parameters (i.e., tidal volume, respiratory effort), intracranial pressure, arterial pH, and Richmond Agitation-Sedation Scale. Random forest and NN predict ICU discharge well, whereas LR is interpretable but less accurate. Numeric conversion of clinical data improved performance. This study offers framework for predictions using clinical, radiological, and demographic features, with SHAP enhancing transparency.
Background Predicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our study aims to develop and validate machine learning (ML) models to predict ICU discharge within 24 h for patients undergoing craniotomy. Methods The 2,742 patients undergoing craniotomy were identified from Medical Information Mart for Intensive Care dataset using diagnosis-related group and International Classification of Diseases codes. Demographic, clinical, laboratory, and radiological data were collected and preprocessed. Textual clinical examinations were converted into numerical scales. Data were split into training (70%), validation (15%), and test (15%) sets. Four ML models, logistic regression (LR), decision tree, random forest, and neural network (NN), were trained and evaluated. Model performance was assessed using area under the receiver operating characteristic curve (AUC), average precision (AP), accuracy, and F1 scores. Shapley Additive Explanations (SHAP) were used to analyze importance of features. Statistical analyses were performed using R (version 4.2.1) and ML analyses with Python (version 3.8), using scikit-learn, tensorflow, and shap packages. Results Cohort included 2,742 patients (mean age 58.2 years; first and third quartiles 47–70 years), with 53.4% being male ( n  = 1,464). Total ICU stay was 15,645 bed days (mean length of stay 4.7 days), and total hospital stay was 32,008 bed days (mean length of stay 10.8 days). Random forest demonstrated highest performance (AUC 0.831, AP 0.561, accuracy 0.827, F1-score 0.339) on test set. NN achieved an AUC of 0.824, with an AP, accuracy, and F1-score of 0.558, 0.830, and 0.383, respectively. LR achieved an AUC of 0.821 and an accuracy of 0.829. The decision tree model showed lowest performance (AUC 0.813, accuracy 0.822). Key predictors of SHAP analysis included Glasgow Coma Scale, respiratory-related parameters (i.e., tidal volume, respiratory effort), intracranial pressure, arterial pH, and Richmond Agitation-Sedation Scale. Conclusions Random forest and NN predict ICU discharge well, whereas LR is interpretable but less accurate. Numeric conversion of clinical data improved performance. This study offers framework for predictions using clinical, radiological, and demographic features, with SHAP enhancing transparency.
BackgroundPredicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our study aims to develop and validate machine learning (ML) models to predict ICU discharge within 24 h for patients undergoing craniotomy.MethodsThe 2,742 patients undergoing craniotomy were identified from Medical Information Mart for Intensive Care dataset using diagnosis-related group and International Classification of Diseases codes. Demographic, clinical, laboratory, and radiological data were collected and preprocessed. Textual clinical examinations were converted into numerical scales. Data were split into training (70%), validation (15%), and test (15%) sets. Four ML models, logistic regression (LR), decision tree, random forest, and neural network (NN), were trained and evaluated. Model performance was assessed using area under the receiver operating characteristic curve (AUC), average precision (AP), accuracy, and F1 scores. Shapley Additive Explanations (SHAP) were used to analyze importance of features. Statistical analyses were performed using R (version 4.2.1) and ML analyses with Python (version 3.8), using scikit-learn, tensorflow, and shap packages.ResultsCohort included 2,742 patients (mean age 58.2 years; first and third quartiles 47–70 years), with 53.4% being male (n = 1,464). Total ICU stay was 15,645 bed days (mean length of stay 4.7 days), and total hospital stay was 32,008 bed days (mean length of stay 10.8 days). Random forest demonstrated highest performance (AUC 0.831, AP 0.561, accuracy 0.827, F1-score 0.339) on test set. NN achieved an AUC of 0.824, with an AP, accuracy, and F1-score of 0.558, 0.830, and 0.383, respectively. LR achieved an AUC of 0.821 and an accuracy of 0.829. The decision tree model showed lowest performance (AUC 0.813, accuracy 0.822). Key predictors of SHAP analysis included Glasgow Coma Scale, respiratory-related parameters (i.e., tidal volume, respiratory effort), intracranial pressure, arterial pH, and Richmond Agitation-Sedation Scale.ConclusionsRandom forest and NN predict ICU discharge well, whereas LR is interpretable but less accurate. Numeric conversion of clinical data improved performance. This study offers framework for predictions using clinical, radiological, and demographic features, with SHAP enhancing transparency.
Predicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our study aims to develop and validate machine learning (ML) models to predict ICU discharge within 24 h for patients undergoing craniotomy.BACKGROUNDPredicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our study aims to develop and validate machine learning (ML) models to predict ICU discharge within 24 h for patients undergoing craniotomy.The 2,742 patients undergoing craniotomy were identified from Medical Information Mart for Intensive Care dataset using diagnosis-related group and International Classification of Diseases codes. Demographic, clinical, laboratory, and radiological data were collected and preprocessed. Textual clinical examinations were converted into numerical scales. Data were split into training (70%), validation (15%), and test (15%) sets. Four ML models, logistic regression (LR), decision tree, random forest, and neural network (NN), were trained and evaluated. Model performance was assessed using area under the receiver operating characteristic curve (AUC), average precision (AP), accuracy, and F1 scores. Shapley Additive Explanations (SHAP) were used to analyze importance of features. Statistical analyses were performed using R (version 4.2.1) and ML analyses with Python (version 3.8), using scikit-learn, tensorflow, and shap packages.METHODSThe 2,742 patients undergoing craniotomy were identified from Medical Information Mart for Intensive Care dataset using diagnosis-related group and International Classification of Diseases codes. Demographic, clinical, laboratory, and radiological data were collected and preprocessed. Textual clinical examinations were converted into numerical scales. Data were split into training (70%), validation (15%), and test (15%) sets. Four ML models, logistic regression (LR), decision tree, random forest, and neural network (NN), were trained and evaluated. Model performance was assessed using area under the receiver operating characteristic curve (AUC), average precision (AP), accuracy, and F1 scores. Shapley Additive Explanations (SHAP) were used to analyze importance of features. Statistical analyses were performed using R (version 4.2.1) and ML analyses with Python (version 3.8), using scikit-learn, tensorflow, and shap packages.Cohort included 2,742 patients (mean age 58.2 years; first and third quartiles 47-70 years), with 53.4% being male (n = 1,464). Total ICU stay was 15,645 bed days (mean length of stay 4.7 days), and total hospital stay was 32,008 bed days (mean length of stay 10.8 days). Random forest demonstrated highest performance (AUC 0.831, AP 0.561, accuracy 0.827, F1-score 0.339) on test set. NN achieved an AUC of 0.824, with an AP, accuracy, and F1-score of 0.558, 0.830, and 0.383, respectively. LR achieved an AUC of 0.821 and an accuracy of 0.829. The decision tree model showed lowest performance (AUC 0.813, accuracy 0.822). Key predictors of SHAP analysis included Glasgow Coma Scale, respiratory-related parameters (i.e., tidal volume, respiratory effort), intracranial pressure, arterial pH, and Richmond Agitation-Sedation Scale.RESULTSCohort included 2,742 patients (mean age 58.2 years; first and third quartiles 47-70 years), with 53.4% being male (n = 1,464). Total ICU stay was 15,645 bed days (mean length of stay 4.7 days), and total hospital stay was 32,008 bed days (mean length of stay 10.8 days). Random forest demonstrated highest performance (AUC 0.831, AP 0.561, accuracy 0.827, F1-score 0.339) on test set. NN achieved an AUC of 0.824, with an AP, accuracy, and F1-score of 0.558, 0.830, and 0.383, respectively. LR achieved an AUC of 0.821 and an accuracy of 0.829. The decision tree model showed lowest performance (AUC 0.813, accuracy 0.822). Key predictors of SHAP analysis included Glasgow Coma Scale, respiratory-related parameters (i.e., tidal volume, respiratory effort), intracranial pressure, arterial pH, and Richmond Agitation-Sedation Scale.Random forest and NN predict ICU discharge well, whereas LR is interpretable but less accurate. Numeric conversion of clinical data improved performance. This study offers framework for predictions using clinical, radiological, and demographic features, with SHAP enhancing transparency.CONCLUSIONSRandom forest and NN predict ICU discharge well, whereas LR is interpretable but less accurate. Numeric conversion of clinical data improved performance. This study offers framework for predictions using clinical, radiological, and demographic features, with SHAP enhancing transparency.
Author Dogan, Ilke
Khaniyev, Taghi
Hanalioglu, Sahin
Koc, Muhammet Abdullah
Cekic, Efecan
Author_xml – sequence: 1
  givenname: Taghi
  surname: Khaniyev
  fullname: Khaniyev, Taghi
  organization: Faculty of Engineering, Department of Industrial Engineering, Bilkent University, National Magnetic Resonance Research Center, Bilkent University, MIT Sloan School of Management, Massachusetts Institute of Technology
– sequence: 2
  givenname: Efecan
  surname: Cekic
  fullname: Cekic, Efecan
  organization: Faculty of Medicine, Department of Neurosurgery, Hacettepe University
– sequence: 3
  givenname: Muhammet Abdullah
  surname: Koc
  fullname: Koc, Muhammet Abdullah
  organization: Faculty of Engineering, Department of Computer Engineering, Bilkent University
– sequence: 4
  givenname: Ilke
  surname: Dogan
  fullname: Dogan, Ilke
  organization: Faculty of Engineering, Department of Computer Engineering, Bilkent University
– sequence: 5
  givenname: Sahin
  orcidid: 0000-0003-4988-4938
  surname: Hanalioglu
  fullname: Hanalioglu, Sahin
  email: hanalioglu@hacettepe.edu.tr
  organization: Faculty of Medicine, Department of Neurosurgery, Hacettepe University, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40329064$$D View this record in MEDLINE/PubMed
BookMark eNqNkctuFDEQRS0URB7wAyyQJTZsGsp2v8xuMnkQaQJZkHXL7S73OOqxB7s7aP6Ez8WdGUBigVhYtkrnVtW9PiVHzjsk5DWD9wyg-hAZB15nwIt0eF5m8hk5YUVRZiBLdjS_c5aVUohjchrjAwCvZFW8IMc5CC6hzE_Ij8tHNUxqtK6n4xrprdJr65CuUAU3F299h0Ok1tG7gJ3VT-SNG9FF-4h0qQLSe2dHemGjXqvQIzU-0M84BR-n0FutBnqXBqAbYyI7DL2feyyDctaPfrP7SBf03Pb0Qo2KLpwadtHGl-S5UUPEV4f7jNxfXX5dfspWX65vlotVpkXFx4yZFgpjJECtUbcpEVQKhKnb1nTCoBS51qKQIFqmGBdKG13lvMuhlrXoQJwRse87ua3afVfD0GyD3aiwaxg0c87NPucm5dw85dzIpHq3V22D_zZhHJtNso_DoBz6KTaCA2OsYFWd0Ld_oQ9-CsnlTBVQlwxKlqg3B2pqN9j93uHXTyWA7wGdco0Bzf-teTAXE-x6DH9m_0P1EyBDtko
Cites_doi 10.1038/s41597-022-01899-x
10.1093/jamia/ocab211
10.3390/jcm14041144
10.1136/bmjquality.u209098.w3772
10.1287/msom.2021.0971
10.1007/s12028-022-01558-4
10.1109/ICMLA.2018.00236
10.1016/j.mayocpiqo.2023.09.002
10.1007/s12028-022-01481-8
10.1186/s12911-021-01660-1
10.1136/bmjinnov-2020-000420
10.1007/s12028-021-01427-6
10.1161/01.CIR.101.23.e215
10.1212/CON.0000000000001039
10.1001/jamanetworkopen.2019.17221
10.12788/jhm.2802
10.1186/cc10217
10.1007/s12028-021-01434-7
10.1007/978-3-030-21642-9_20
10.1016/j.ijcard.2019.01.046
10.1109/HEALTHCOM49281.2021.9399025
10.1145/3628797.3628974
10.1038/s41746-021-00529-x
10.1007/978-3-030-17410-1_77
10.1212/CON.0000000000000227
10.4103/sni.sni_54_17
10.1109/ICMLA.2014.76
10.1109/HealthCom54947.2022.9982748
10.1101/2023.03.24.23287694
10.1056/NEJMra1814259
10.1080/02699052.2021.2008491
10.1001/jamanetworkopen.2018.4087
10.1111/imj.14962
10.1136/postgradmedj-2016-134529
10.1145/2939672.2939778
10.3390/jcm9061668
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
ADTOC
UNPAY
DOI 10.1007/s12028-025-02246-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList MEDLINE

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1556-0961
EndPage 529
ExternalDocumentID 10.1007/s12028-025-02246-9
40329064
10_1007_s12028_025_02246_9
Genre Journal Article
GrantInformation_xml – fundername: Hacettepe University
GroupedDBID ---
-Y2
.86
.VR
06C
06D
0R~
0VY
123
1N0
203
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
53G
5VS
6NX
7RV
7X7
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABRTQ
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFJLC
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHPBZ
AHSBF
AHWEU
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
B-.
BA0
BDATZ
BENPR
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG6
HLICF
HMCUK
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IMOTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NAPCQ
NPVJJ
NQJWS
NU0
O9-
O9J
OVD
P2P
P9S
PF0
PHGZM
PHGZT
PPXIY
PT4
PUEGO
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZ9
SZN
T13
TEORI
TSG
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
ZMTXR
ZOVNA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c372t-1fb05ff9008cecb120eaa03f8bbfd3fe934cc35903b1a123acfc742d408983d03
IEDL.DBID UNPAY
ISSN 1541-6933
1556-0961
IngestDate Sun Oct 26 03:45:32 EDT 2025
Fri Jul 11 18:19:59 EDT 2025
Tue Oct 07 07:15:58 EDT 2025
Fri Sep 19 01:51:05 EDT 2025
Wed Oct 01 05:22:52 EDT 2025
Tue Sep 16 01:15:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Craniotomy
Neurosurgery
Discharge
Intensive care unit
Machine learning
Language English
License 2025. The Author(s).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-1fb05ff9008cecb120eaa03f8bbfd3fe934cc35903b1a123acfc742d408983d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4988-4938
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s12028-025-02246-9.pdf
PMID 40329064
PQID 3250861061
PQPubID 6623258
PageCount 18
ParticipantIDs unpaywall_primary_10_1007_s12028_025_02246_9
proquest_miscellaneous_3201115178
proquest_journals_3250861061
pubmed_primary_40329064
crossref_primary_10_1007_s12028_025_02246_9
springer_journals_10_1007_s12028_025_02246_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Heidelberg
PublicationTitle Neurocritical care
PublicationTitleAbbrev Neurocrit Care
PublicationTitleAlternate Neurocrit Care
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References X Zhang (2246_CR26) 2021; 28
A De Grood (2246_CR6) 2016; 12
S Levin (2246_CR8) 2021; 7
A Naemi (2246_CR25) 2021; 21
JE Fugate (2246_CR2) 2015; 21
C Terwiesch (2246_CR7) 2011; 15
T Khaniyev (2246_CR32) 2025; 14
JC Hemphill (2246_CR20) 2022; 37
AEW Johnson (2246_CR30) 2023; 10
R Dhar (2246_CR21) 2022; 37
2246_CR29
2246_CR23
2246_CR24
C Perez-Vega (2246_CR1) 2023; 7
AL Goldberger (2246_CR31) 2000; 101
TH McCoy (2246_CR38) 2018; 1
M Megjhani (2246_CR19) 2022; 37
TA Daghistani (2246_CR22) 2019; 288
S Bacchi (2246_CR40) 2022; 52
A Sarwal (2246_CR5) 2021; 27
SM Lauritsen (2246_CR35) 2021; 4
A Mustafa (2246_CR12) 2016; 5
KC Safavi (2246_CR11) 2019; 2
C van Walraven (2246_CR16) 2018; 13
W Muhlestein (2246_CR28) 2017; 8
2246_CR37
2246_CR39
A Rajkomar (2246_CR27) 2019; 380
R Yu (2246_CR9) 2021; 35
FY Cheng (2246_CR15) 2020; 9
2246_CR33
2246_CR34
MV Ragavan (2246_CR13) 2017; 93
2246_CR14
G Citerio (2246_CR18) 2022; 37
2246_CR3
2246_CR10
D Bertsimas (2246_CR17) 2022; 24
2246_CR4
T Khaniyev (2246_CR36) 2020; 5
References_xml – volume: 10
  start-page: 1
  issue: 1
  year: 2023
  ident: 2246_CR30
  publication-title: Sci Data
  doi: 10.1038/s41597-022-01899-x
– volume: 28
  start-page: 2670
  issue: 12
  year: 2021
  ident: 2246_CR26
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocab211
– volume: 14
  start-page: 1144
  issue: 4
  year: 2025
  ident: 2246_CR32
  publication-title: J Clin Med
  doi: 10.3390/jcm14041144
– volume: 5
  start-page: 3772
  issue: 1
  year: 2016
  ident: 2246_CR12
  publication-title: BMJ Qual Improv Rep.
  doi: 10.1136/bmjquality.u209098.w3772
– volume: 24
  start-page: 2809
  issue: 6
  year: 2022
  ident: 2246_CR17
  publication-title: Manuf Serv Oper Manag
  doi: 10.1287/msom.2021.0971
– volume: 12
  start-page: 105
  issue: 2
  year: 2016
  ident: 2246_CR6
  publication-title: Healthc Policy
– volume: 37
  start-page: 157
  issue: S2
  year: 2022
  ident: 2246_CR21
  publication-title: Neurocrit Care
  doi: 10.1007/s12028-022-01558-4
– ident: 2246_CR23
  doi: 10.1109/ICMLA.2018.00236
– ident: 2246_CR34
– volume: 7
  start-page: 534
  issue: 6
  year: 2023
  ident: 2246_CR1
  publication-title: Mayo Clin Proc Innov Qual Outcomes
  doi: 10.1016/j.mayocpiqo.2023.09.002
– volume: 37
  start-page: 230
  issue: 2
  year: 2022
  ident: 2246_CR19
  publication-title: Neurocrit Care.
  doi: 10.1007/s12028-022-01481-8
– volume: 21
  start-page: 298
  issue: 1
  year: 2021
  ident: 2246_CR25
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-021-01660-1
– volume: 7
  start-page: 414
  issue: 2
  year: 2021
  ident: 2246_CR8
  publication-title: BMJ Innov
  doi: 10.1136/bmjinnov-2020-000420
– volume: 37
  start-page: 163
  issue: S2
  year: 2022
  ident: 2246_CR18
  publication-title: Neurocrit Care
  doi: 10.1007/s12028-021-01427-6
– ident: 2246_CR29
– volume: 101
  start-page: 25
  issue: 23
  year: 2000
  ident: 2246_CR31
  publication-title: Circulation.
  doi: 10.1161/01.CIR.101.23.e215
– volume: 27
  start-page: 1382
  issue: 5
  year: 2021
  ident: 2246_CR5
  publication-title: CONTINUUM Lifelong Learn Neurol.
  doi: 10.1212/CON.0000000000001039
– ident: 2246_CR4
– volume: 2
  start-page: e1917221
  issue: 12
  year: 2019
  ident: 2246_CR11
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.17221
– volume: 13
  start-page: 158
  issue: 3
  year: 2018
  ident: 2246_CR16
  publication-title: J Hosp Med
  doi: 10.12788/jhm.2802
– volume: 15
  start-page: 308
  issue: 4
  year: 2011
  ident: 2246_CR7
  publication-title: Crit Care.
  doi: 10.1186/cc10217
– volume: 37
  start-page: 160
  issue: S2
  year: 2022
  ident: 2246_CR20
  publication-title: Neurocrit Care
  doi: 10.1007/s12028-021-01434-7
– ident: 2246_CR14
  doi: 10.1007/978-3-030-21642-9_20
– volume: 288
  start-page: 140
  year: 2019
  ident: 2246_CR22
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2019.01.046
– ident: 2246_CR37
  doi: 10.1109/HEALTHCOM49281.2021.9399025
– ident: 2246_CR10
  doi: 10.1145/3628797.3628974
– volume: 4
  start-page: 158
  issue: 1
  year: 2021
  ident: 2246_CR35
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-021-00529-x
– ident: 2246_CR3
  doi: 10.1007/978-3-030-17410-1_77
– volume: 21
  start-page: 1425
  year: 2015
  ident: 2246_CR2
  publication-title: CONTINUUM Lifelong Learn Neurol.
  doi: 10.1212/CON.0000000000000227
– volume: 8
  start-page: 220
  issue: 1
  year: 2017
  ident: 2246_CR28
  publication-title: Surg Neurol Int
  doi: 10.4103/sni.sni_54_17
– ident: 2246_CR24
  doi: 10.1109/ICMLA.2014.76
– ident: 2246_CR39
  doi: 10.1109/HealthCom54947.2022.9982748
– volume: 5
  start-page: 639
  year: 2020
  ident: 2246_CR36
  publication-title: Science
  doi: 10.1101/2023.03.24.23287694
– volume: 380
  start-page: 1347
  issue: 14
  year: 2019
  ident: 2246_CR27
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1814259
– volume: 35
  start-page: 1658
  issue: 14
  year: 2021
  ident: 2246_CR9
  publication-title: Brain Inj
  doi: 10.1080/02699052.2021.2008491
– volume: 1
  start-page: e184087
  issue: 7
  year: 2018
  ident: 2246_CR38
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2018.4087
– volume: 52
  start-page: 176
  issue: 2
  year: 2022
  ident: 2246_CR40
  publication-title: Intern Med J
  doi: 10.1111/imj.14962
– volume: 93
  start-page: 528
  issue: 1103
  year: 2017
  ident: 2246_CR13
  publication-title: Postgrad Med J
  doi: 10.1136/postgradmedj-2016-134529
– ident: 2246_CR33
  doi: 10.1145/2939672.2939778
– volume: 9
  start-page: 1668
  issue: 6
  year: 2020
  ident: 2246_CR15
  publication-title: J Clin Med
  doi: 10.3390/jcm9061668
SSID ssj0027975
Score 2.4195158
Snippet Background Predicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving...
Predicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving outcomes. Our...
BackgroundPredicting intensive care unit (ICU) discharge for neurosurgical patients is crucial for optimizing bed sources, reducing costs, and improving...
SourceID unpaywall
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 512
SubjectTerms Accuracy
Adult
Aged
Algorithms
Aneurysms
Big Data
Brain cancer
Clinical outcomes
Codes
Comorbidity
Craniotomy - statistics & numerical data
Critical care
Critical Care Medicine
Datasets
Decision Trees
Discharge planning
Edema
Female
Glasgow Coma Scale
Hemorrhage
Humans
Intensive
Intensive care
Intensive Care Units - statistics & numerical data
Internal Medicine
Machine Learning
Male
Medicine
Medicine & Public Health
Middle Aged
Mortality
Neural Networks, Computer
Neurology
Neurosurgery
Original Work
Patient Discharge - statistics & numerical data
Patients
Physiology
Teams
Tumors
Variables
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4NJsF4mDYGW4BNN4k3iEhiJ6l5Y4WqmtSJB5B4i2zHriqVBDWpJv7Jfu7ObtoyNk3ba-JcLH-27zud7zPAsZIpy0ujQ_IvIuSKlpQSsQ6tSsnbxzYtrQsUR9-y4S3_epfedTI5rhbmWf7-rIkTr6GcuDrihGeh2ICX5KQyn5jN-uvgSnhRXWIEcZhRlN4VyPzZxq9O6Ddm-SQrugPb8-pBPn6X0-kTxzN4A687xogXC4jfwgtT7cLWqMuJv4MfV51gdzVGYnM48scjDXbKqWN0151NG5xUeD1zX_mWq6Pr6CqQ0FFPvJw0XjjJIDFZ9LIdzXzmt0a8XuivNugvShrXzkaf_Nykbuv7x3O8wC-TMV7KVuJS52QPbgdXN_1h2N23EGqWJ20YWxWl1gqCTRutaNSMlBGzPaVsyawRjGvNUhExFUvyeFJbTZF1yQnmHisjtg-bVV2ZD4CsTC2PdBZr7upPtGKJzWVOTyUvE5EEcLIEoHhYyGoUawFlB1dBcBUerkIEcLTEqOiWWFMwIm-9zEW0AXxevabF4TIesjL13LWh7Ys4Td4L4P0C29XveMSc1D0P4HQJ9tr43_pyupoQ_9D1g_-zfgivEjdP_WnBI9hsZ3PzkVhPqz756f4TAEX2zw
  priority: 102
  providerName: Springer Nature
Title Evaluating the Machine Learning Models in Predicting Intensive Care Unit Discharge for Neurosurgical Patients Undergoing Craniotomy: A Big Data Analysis
URI https://link.springer.com/article/10.1007/s12028-025-02246-9
https://www.ncbi.nlm.nih.gov/pubmed/40329064
https://www.proquest.com/docview/3250861061
https://www.proquest.com/docview/3201115178
https://link.springer.com/content/pdf/10.1007/s12028-025-02246-9.pdf
UnpaywallVersion publishedVersion
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1556-0961
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027975
  issn: 1556-0961
  databaseCode: AFBBN
  dateStart: 20040301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1556-0961
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027975
  issn: 1556-0961
  databaseCode: AGYKE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1556-0961
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027975
  issn: 1556-0961
  databaseCode: U2A
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7tthKPA-9HYamMxI1NN4mdpOFW2i4rUFc9UGn3FNmOXVWUpGoSoeWX8HMZO0m7PIRAXHJIHMd2ZjzfaGY-A7wSPKBRqqSD9iV2mECVErEnHS0CtPaeDlJtHMXZeXi2YO8vgosDmLS1MDbbvQ1J1jUNhqUpK082qT7ZF775llnZN9XFPgudeICPD6EbBojIO9BdnM9Hl5YqlXlOWJ8oj5YTnec49Jramd939KN9-gV0XguY3oabVbbhV1_4en3NJp3eBdXOpk5F-TSoSjGQX38ievzf6d6DOw1oJaNayu7DgcoewI1ZE5Z_CN-mDWd4tiQIKMnMZmgq0pC3Lok5cW1dkFVG5lvzlm25y54npgiKGPRLJqvCcjcpgmCaWOaQotra3ZnMawrYgtizmpa56WOMpnaVl_nnqzdkRN6ulmTCS05aqpVHsDidfhyfOc2RD46kkV86nhZuoHWMkiOVFDhvxblL9VAInVKtYsqkpEHsUuFxNLpcaonOfcpQ0oY0delj6GR5pp4CoWmgmStDTzJTAiMF9XXEI7zLWerHfg9etz862dTMHsmew9kseIILntgFT-IeHLWykDRaXiQU8eMwNE51D17uHqN-mqALz1RemTa4gyKsioY9eFLL0O5zzKWGbZ_14LiVgX3nfxrL8U7w_mLoz_6t-XO45RtJswmLR9Apt5V6gcCrFH3ojt5dfpj24XAcjvG68Ef9Rte-A9g6Jr8
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BJzF44GMMCAwwEm9bqiR2koa3snUUtk57WKXxFNmOXVXrkqlJhMZfwp_L2Una8SHEXhPH8ced73e6u58B3gse0jhT0kX7krhMoEqJxJeuFiFae1-HmTaO4uQkGk_Zl_PwvC0KK7ts9y4kaU_qdbFbYNmUA1NRHLDITe7CBkMHJejBxvDT16PR2tFKLMEuogPfjdBjb4tl_t7LrwbpD5R5I0L6ADbr_Ipff-OLxQ0jdPgIpt3wm9yTi35dib78_huz423n9xgetqiUDBsxegJ3VL4F9yZt3P0p_Bi1pOD5jCBiJBObgqlIy846I-ZKtUVJ5jk5XZqvbMtVejwxVU7EwFtyMC8tOZMiiJaJpQYp66U9fslpw_FaEnsZ06wwfeyjLZ0XVXF5_YEMycf5jBzwipOOS2Ubpoejs_2x297p4EoaB5Xra-GFWicoGlJJgXNWnHtUD4TQGdUqoUxKGiYeFT5Hq8qllui9ZwxFaUAzjz6DXl7k6gUQmoWaeTLyJTM1LlLQQMc8xqecZUESOLDbbWx61VB3pGuSZrPYKS52ahc7TRzY6fY-bdW4TCkCxEFkvGYH3q1eowKaqArPVVGbNnhEIm6KBw48b2Rm9TvmUUOnzxzY6_Z83fm_xrK3ErT_GPrL2_X-FjbHZ5Pj9PjzydEruB8YibPZiTvQq5a1eo0oqxJvWqX6CXYTGuE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7BIi1wQLwJLDBI3Nhok9hJam5Lu9Xy6KoHVtpbZDt2VakkVZMK7T_h5zJ20gcCIbgmziTKZ3u-0cx8BnirZMry0uiQ_IsIuaIlpUSsQ6tS8vaxTUvrAsXJRXZ-yT9dpVd7Xfy-2n2Tkux6GpxKU9WeLEt7smt8S7yycuK6ixOeheIm3OLk3dwZBsNsuAu5hJfaJZ4QhxnF7n3bzJ9t_OqafuObe7nSu3B7XS3l9Xe5WOy5o_F9uNfzSDztgH8AN0z1EA4nfab8Efw462W8qxkSx8OJL5o02OupztAdgrZocF7hdOWe8iO3Be3o-pLQEVIczRsvp2SQ-C16MY9mvfIbJk47VdYG_fFJs9rZGJL3m9dt_e36PZ7ih_kMR7KVuFE_eQyX47Ovw_OwP4Uh1CxP2jC2KkqtFQSmNlrRXzNSRswOlLIls0YwrjVLRcRULMkPSm01xdslwSEGrIzYEzio6so8A2Rlanmks1hz15WiFUtsLnO6KnmZiCSAdxsAimUntlHsZJUdXAXBVXi4ChHA0Qajol94TcGI0g0yF-cG8GZ7m5aMy4PIytRrN4Y2NWI6-SCApx2229fxiDkBfB7A8QbsnfG_fcvxdkL8w6c__z_rr-FwOhoXXz5efH4BdxI3ZX054REctKu1eUm0qFWv_Mz_CdiSAhQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NTuLjgc8BgYGMxBtLl8ROUvNW1k0TUqc-UGk8RbZjVxUlqZpEaPwl_LmcnaQdH0IgXmPHsZ073-_ku98BvJYipmmulY_2hftMokpJHirfyBitfWji3FhHcXqRnM_Z-8v4cg8mfS6Mi3bvryTbnAbL0lTUx-vcHO8S3yLHrBzZ7OKIJT4fYvMN2E9iROQD2J9fzMYfHVUqC_2krSiPlhOdZ56EXe7M7wf60T79AjqvXZjegVtNsRZXX8Rqdc0mnd0D3a-mDUX5NGxqOVRffyJ6_N_l3oe7HWgl41bKHsCeLh7CzWl3Lf8Ivp12nOHFgiCgJFMXoalJR966ILbi2qoiy4LMNvYt13MbPU9sEhSx6JdMlpXjbtIEwTRxzCFVs3GnM5m1FLAVcbWaFqUd4wRN7bKsy89Xb8mYvFsuyETUgvRUKwcwPzv9cHLudyUffEXTqPZDI4PYGI6So7SSuG4tREDNSEqTU6M5ZUrRmAdUhgKNrlBGoXOfM5S0Ec0D-hgGRVnop0BoHhsWqCRUzKbAKEkjk4oUnwqWRzzy4E3_o7N1y-yR7Tic7YZnuOGZ2_CMe3DYy0LWaXmVUcSPo8Q61R682jajftpLF1HosrF98ARFWJWOPHjSytD2cyyglm2feXDUy8Bu8D_N5WgreH8x9Wf_1v053I6spLmAxUMY1JtGv0DgVcuXnV59B_kKI2U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+Machine+Learning+Models+in+Predicting+Intensive+Care+Unit+Discharge+for+Neurosurgical+Patients+Undergoing+Craniotomy%3A+A+Big+Data+Analysis&rft.jtitle=Neurocritical+care&rft.au=Khaniyev%2C+Taghi&rft.au=Cekic%2C+Efecan&rft.au=Koc%2C+Muhammet+Abdullah&rft.au=Dogan%2C+Ilke&rft.date=2025-10-01&rft.issn=1541-6933&rft.eissn=1556-0961&rft.volume=43&rft.issue=2&rft.spage=512&rft.epage=529&rft_id=info:doi/10.1007%2Fs12028-025-02246-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12028_025_02246_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-6933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-6933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-6933&client=summon