Computer-assisted delineation of hematoma from CT volume using autoencoder and Chan Vese model

Purpose To reduce the inter- and intra- rater variability as well as time and effort, a method for computer-assisted delineation of hematoma is proposed. Delineation of hematoma is done for further automated analysis such as the volume of hematoma, anatomical location of hematoma, etc. for proper su...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for computer assisted radiology and surgery Vol. 14; no. 2; pp. 259 - 269
Main Authors Nag, Manas Kumar, Chatterjee, Saunak, Sadhu, Anup Kumar, Chatterjee, Jyotirmoy, Ghosh, Nirmalya
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1861-6410
1861-6429
1861-6429
DOI10.1007/s11548-018-1873-9

Cover

Abstract Purpose To reduce the inter- and intra- rater variability as well as time and effort, a method for computer-assisted delineation of hematoma is proposed. Delineation of hematoma is done for further automated analysis such as the volume of hematoma, anatomical location of hematoma, etc. for proper surgical planning. Methods Fuzzy-based intensifier was used as a pre-processing technique for enhancing the computed tomography (CT) volume. Autoencoder was trained to detect the CT slices with hematoma for initialization. Then active contour Chan–Vese model was used for automated delineation of hematoma from CT volume. Results The proposed algorithm was tested on 48 hemorrhagic patients. Two radiologists have independently segmented the hematoma manually from CT volume. The intersection of two volumes was used as ground-truth for comparison with the segmentation performed by the proposed method. The accuracy was determined by using similarity matrices. The result of sensitivity, positive predictive value, Jaccard index and Dice similarity index were calculated as 0.71 ± 0.12, 0.73 ± 0.18, 0.55 ± 0.14, and 0.70 ± 0.12 respectively. Conclusions A new approach for delineation of hematoma is proposed. The algorithm works well with the whole volume. Similarity indices of the proposed method are comparable with the existing state of art.
AbstractList To reduce the inter- and intra- rater variability as well as time and effort, a method for computer-assisted delineation of hematoma is proposed. Delineation of hematoma is done for further automated analysis such as the volume of hematoma, anatomical location of hematoma, etc. for proper surgical planning. Fuzzy-based intensifier was used as a pre-processing technique for enhancing the computed tomography (CT) volume. Autoencoder was trained to detect the CT slices with hematoma for initialization. Then active contour Chan-Vese model was used for automated delineation of hematoma from CT volume. The proposed algorithm was tested on 48 hemorrhagic patients. Two radiologists have independently segmented the hematoma manually from CT volume. The intersection of two volumes was used as ground-truth for comparison with the segmentation performed by the proposed method. The accuracy was determined by using similarity matrices. The result of sensitivity, positive predictive value, Jaccard index and Dice similarity index were calculated as 0.71 ± 0.12, 0.73 ± 0.18, 0.55 ± 0.14, and 0.70 ± 0.12 respectively. A new approach for delineation of hematoma is proposed. The algorithm works well with the whole volume. Similarity indices of the proposed method are comparable with the existing state of art.
PurposeTo reduce the inter- and intra- rater variability as well as time and effort, a method for computer-assisted delineation of hematoma is proposed. Delineation of hematoma is done for further automated analysis such as the volume of hematoma, anatomical location of hematoma, etc. for proper surgical planning. MethodsFuzzy-based intensifier was used as a pre-processing technique for enhancing the computed tomography (CT) volume. Autoencoder was trained to detect the CT slices with hematoma for initialization. Then active contour Chan–Vese model was used for automated delineation of hematoma from CT volume. ResultsThe proposed algorithm was tested on 48 hemorrhagic patients. Two radiologists have independently segmented the hematoma manually from CT volume. The intersection of two volumes was used as ground-truth for comparison with the segmentation performed by the proposed method. The accuracy was determined by using similarity matrices. The result of sensitivity, positive predictive value, Jaccard index and Dice similarity index were calculated as 0.71 ± 0.12, 0.73 ± 0.18, 0.55 ± 0.14, and 0.70 ± 0.12 respectively.ConclusionsA new approach for delineation of hematoma is proposed. The algorithm works well with the whole volume. Similarity indices of the proposed method are comparable with the existing state of art.
To reduce the inter- and intra- rater variability as well as time and effort, a method for computer-assisted delineation of hematoma is proposed. Delineation of hematoma is done for further automated analysis such as the volume of hematoma, anatomical location of hematoma, etc. for proper surgical planning.PURPOSETo reduce the inter- and intra- rater variability as well as time and effort, a method for computer-assisted delineation of hematoma is proposed. Delineation of hematoma is done for further automated analysis such as the volume of hematoma, anatomical location of hematoma, etc. for proper surgical planning.Fuzzy-based intensifier was used as a pre-processing technique for enhancing the computed tomography (CT) volume. Autoencoder was trained to detect the CT slices with hematoma for initialization. Then active contour Chan-Vese model was used for automated delineation of hematoma from CT volume.METHODSFuzzy-based intensifier was used as a pre-processing technique for enhancing the computed tomography (CT) volume. Autoencoder was trained to detect the CT slices with hematoma for initialization. Then active contour Chan-Vese model was used for automated delineation of hematoma from CT volume.The proposed algorithm was tested on 48 hemorrhagic patients. Two radiologists have independently segmented the hematoma manually from CT volume. The intersection of two volumes was used as ground-truth for comparison with the segmentation performed by the proposed method. The accuracy was determined by using similarity matrices. The result of sensitivity, positive predictive value, Jaccard index and Dice similarity index were calculated as 0.71 ± 0.12, 0.73 ± 0.18, 0.55 ± 0.14, and 0.70 ± 0.12 respectively.RESULTSThe proposed algorithm was tested on 48 hemorrhagic patients. Two radiologists have independently segmented the hematoma manually from CT volume. The intersection of two volumes was used as ground-truth for comparison with the segmentation performed by the proposed method. The accuracy was determined by using similarity matrices. The result of sensitivity, positive predictive value, Jaccard index and Dice similarity index were calculated as 0.71 ± 0.12, 0.73 ± 0.18, 0.55 ± 0.14, and 0.70 ± 0.12 respectively.A new approach for delineation of hematoma is proposed. The algorithm works well with the whole volume. Similarity indices of the proposed method are comparable with the existing state of art.CONCLUSIONSA new approach for delineation of hematoma is proposed. The algorithm works well with the whole volume. Similarity indices of the proposed method are comparable with the existing state of art.
Purpose To reduce the inter- and intra- rater variability as well as time and effort, a method for computer-assisted delineation of hematoma is proposed. Delineation of hematoma is done for further automated analysis such as the volume of hematoma, anatomical location of hematoma, etc. for proper surgical planning. Methods Fuzzy-based intensifier was used as a pre-processing technique for enhancing the computed tomography (CT) volume. Autoencoder was trained to detect the CT slices with hematoma for initialization. Then active contour Chan–Vese model was used for automated delineation of hematoma from CT volume. Results The proposed algorithm was tested on 48 hemorrhagic patients. Two radiologists have independently segmented the hematoma manually from CT volume. The intersection of two volumes was used as ground-truth for comparison with the segmentation performed by the proposed method. The accuracy was determined by using similarity matrices. The result of sensitivity, positive predictive value, Jaccard index and Dice similarity index were calculated as 0.71 ± 0.12, 0.73 ± 0.18, 0.55 ± 0.14, and 0.70 ± 0.12 respectively. Conclusions A new approach for delineation of hematoma is proposed. The algorithm works well with the whole volume. Similarity indices of the proposed method are comparable with the existing state of art.
Author Sadhu, Anup Kumar
Nag, Manas Kumar
Chatterjee, Saunak
Chatterjee, Jyotirmoy
Ghosh, Nirmalya
Author_xml – sequence: 1
  givenname: Manas Kumar
  surname: Nag
  fullname: Nag, Manas Kumar
  organization: School of Medical Science and Technology, Indian Institute of Technology
– sequence: 2
  givenname: Saunak
  surname: Chatterjee
  fullname: Chatterjee, Saunak
  organization: School of Medical Science and Technology, Indian Institute of Technology
– sequence: 3
  givenname: Anup Kumar
  surname: Sadhu
  fullname: Sadhu, Anup Kumar
  organization: EKO Diagnostics, Medical College and Hospitals Campus
– sequence: 4
  givenname: Jyotirmoy
  surname: Chatterjee
  fullname: Chatterjee, Jyotirmoy
  organization: School of Medical Science and Technology, Indian Institute of Technology
– sequence: 5
  givenname: Nirmalya
  surname: Ghosh
  fullname: Ghosh, Nirmalya
  email: nirmalyaghosh11@gmail.com
  organization: Electrical Engineering, Indian Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30377937$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rFjEQh4NU7If-AV4k4MXLaj42O7tHWbQKBS_VoyFvMmm3bJLXJCv435v2bRUKeppheJ5hmN8pOYopIiEvOXvLGYN3hXPVjx3jY8dHkN30hJzwceDd0Ivp6E_P2TE5LeWGsV6BVM_IsWQSYJJwQr7PKey3irkzpSyloqMO1yWiqUuKNHl6jcHUFAz1OQU6X9Kfad0C0q0s8YqarSaMNjnM1ERH52sT6TcsSEObrc_JU2_Wgi_u6xn5-vHD5fypu_hy_nl-f9FZCaJ2XI1-GLmyykyeewa-31nn3G7YTdAPhrlBWg69YVKi8wKgIa4XdvSKARPyjLw57N3n9GPDUnVYisV1NRHTVrTgAoaBCdY39PUj9CZtObbrGgUgmFJKNurVPbXtAjq9z0sw-Zd--FwD4ADYnErJ6LVd6t3TajbLqjnTtxnpQ0a6ZaRvM9JTM_kj82H5_xxxcEpj4xXmv0f_W_oNXcaiTA
CitedBy_id crossref_primary_10_1016_j_ipm_2020_102352
crossref_primary_10_3233_THC_230099
crossref_primary_10_1088_2057_1976_acd256
crossref_primary_10_3390_diagnostics13091640
crossref_primary_10_1007_s40747_020_00257_x
crossref_primary_10_1016_j_jneumeth_2020_109033
crossref_primary_10_1016_j_nonrwa_2023_103908
crossref_primary_10_1016_j_artmed_2020_101910
crossref_primary_10_32604_cmc_2021_015480
crossref_primary_10_3390_data5010014
crossref_primary_10_1007_s00723_024_01661_z
crossref_primary_10_1016_j_jocn_2022_03_014
crossref_primary_10_1007_s00062_025_01507_6
crossref_primary_10_3390_brainsci13030400
crossref_primary_10_1166_jmihi_2021_3659
crossref_primary_10_3389_fneur_2022_865023
crossref_primary_10_1007_s11042_021_11478_8
crossref_primary_10_1161_SVIN_123_001314
Cites_doi 10.1109/83.902291
10.1016/j.bbe.2015.12.001
10.1016/j.compeleceng.2013.04.010
10.1016/j.media.2004.06.019
10.1016/j.compmedimag.2010.03.003
10.1016/j.nicl.2015.06.013
10.1016/j.compmedimag.2009.02.001
10.1002/hbm.23110
10.1016/j.compmedimag.2009.04.001
10.1016/j.nicl.2014.03.009
10.1117/12.2293725
10.1109/TMI.2004.828354
10.1016/j.bbe.2018.04.003
10.1117/12.2286844
10.1002/cpa.3160420503
10.1049/el:19800267
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2008.03.028
10.1109/34.56205
10.1117/12.348648
10.1007/s11548-011-0664-3
10.1007/s11548-012-0670-0
10.1016/j.compmedimag.2007.02.010
10.1161/01.STR.27.8.1304
10.1109/ISBI.2018.8363574
10.1016/j.eswa.2017.12.032
ContentType Journal Article
Copyright CARS 2018
2018© CARS 2018
Copyright_xml – notice: CARS 2018
– notice: 2018© CARS 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1007/s11548-018-1873-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1861-6429
EndPage 269
ExternalDocumentID 30377937
10_1007_s11548_018_1873_9
Genre Journal Article
GrantInformation_xml – fundername: Council of Scientific and Industrial Research
  grantid: 9/81(1296)/17
  funderid: http://dx.doi.org/10.13039/501100001412
– fundername: Council of Scientific and Industrial Research
  grantid: 9/81(1296)/17
GroupedDBID ---
-5E
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AVXWI
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O93
O9I
O9J
OAM
P2P
P9S
PF0
PT4
QOR
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7V
Z7X
Z82
Z83
Z87
Z88
ZMTXR
ZOVNA
~A9
-Y2
2VQ
AANXM
AARHV
AAYXX
AAYZH
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACSTC
ADHKG
ADKFA
AEBTG
AEKMD
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CAG
CITATION
COF
EN4
H13
IHE
N2Q
O9-
S1Z
CGR
CUY
CVF
ECM
EIF
NPM
ABRTQ
K9.
7X8
ID FETCH-LOGICAL-c372t-158f6815c5a9f1f07f4bcdddb6b9746a0d63c174a033edf27707fd42c8f507023
IEDL.DBID AGYKE
ISSN 1861-6410
1861-6429
IngestDate Tue Aug 05 10:23:29 EDT 2025
Wed Sep 17 23:55:18 EDT 2025
Thu Apr 03 06:55:31 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Tue Jul 01 00:15:07 EDT 2025
Fri Feb 21 02:42:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Chan–Vese model
Computed tomography
Autoencoders
Hematoma
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-158f6815c5a9f1f07f4bcdddb6b9746a0d63c174a033edf27707fd42c8f507023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30377937
PQID 2177205553
PQPubID 2043910
PageCount 11
ParticipantIDs proquest_miscellaneous_2127660204
proquest_journals_2177205553
pubmed_primary_30377937
crossref_citationtrail_10_1007_s11548_018_1873_9
crossref_primary_10_1007_s11548_018_1873_9
springer_journals_10_1007_s11548_018_1873_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Germany
– name: Heidelberg
PublicationSubtitle A journal for interdisciplinary research, development and applications of image guided diagnosis and therapy
PublicationTitle International journal for computer assisted radiology and surgery
PublicationTitleAbbrev Int J CARS
PublicationTitleAlternate Int J Comput Assist Radiol Surg
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Shahangian, Pourghassem (CR14) 2016; 36
Seghier, Ramlackhansingh, Crinion, Leff, Price (CR6) 2008; 41
Liao, Xiao, Wong, Chiang (CR7) 2009; 33
Ray, Kumar, Ahuja, Khandelwal (CR16) 2017; 97
Gautam, Raman, Raghuvanshi (CR19) 2018; 38
Prakash, Zhou, Morgan, Daniel, Wieslaw (CR11) 2012; 7
Jenkinson, Beckmann, Behrens, Woolrich, Smith (CR22) 2012; 62
Chan (CR4) 2007; 31
Anbeek, Vincken, van Osch, Robertus, Jeroen (CR5) 2004; 8
CR18
CR17
Kothari, Brott, Broderick, Barsan, Sauerbeck, Zuccarello, Khoury (CR27) 1996; 27
Gillebert, Humphreys, Mantini (CR13) 2014; 4
Li, Zhang, Hu, Li, Jia, Wu (CR10) 2012; 7
Pustina, Coslett, Turkeltaub, Tustison, Schwartz, Avants (CR1) 2016; 37
Bardera, Boada, Feixas, Romello, Blasco, Silva, Pedraza (CR8) 2009; 33
De Haan, Clas, Juenger, Wilke, Karnath (CR15) 2015; 9
CR2
Chan, Vese (CR21) 2001; 10
CR3
Pal, King (CR23) 1980; 16
Warfield, Zou, Wells (CR26) 2004; 23
Bhadauria, Singh, Dewal (CR12) 2013; 39
CR20
Perona, Malik (CR24) 1990; 12
Mumford, Shah (CR25) 1989; 42
Liao, Xiao, Wong, Chiang (CR9) 2010; 34
A Bardera (1873_CR8) 2009; 33
RU Kothari (1873_CR27) 1996; 27
SK Warfield (1873_CR26) 2004; 23
T Chan (1873_CR4) 2007; 31
ML Seghier (1873_CR6) 2008; 41
B Haan De (1873_CR15) 2015; 9
1873_CR20
D Pustina (1873_CR1) 2016; 37
B Shahangian (1873_CR14) 2016; 36
1873_CR18
CR Gillebert (1873_CR13) 2014; 4
1873_CR17
1873_CR3
D Mumford (1873_CR25) 1989; 42
Y-H Li (1873_CR10) 2012; 7
S Ray (1873_CR16) 2017; 97
SK Pal (1873_CR23) 1980; 16
CC Liao (1873_CR7) 2009; 33
1873_CR2
P Anbeek (1873_CR5) 2004; 8
CC Liao (1873_CR9) 2010; 34
KNB Prakash (1873_CR11) 2012; 7
A Gautam (1873_CR19) 2018; 38
HS Bhadauria (1873_CR12) 2013; 39
P Perona (1873_CR24) 1990; 12
TF Chan (1873_CR21) 2001; 10
M Jenkinson (1873_CR22) 2012; 62
References_xml – ident: CR18
– volume: 38
  start-page: 504
  year: 2018
  end-page: 518
  ident: CR19
  article-title: A hybrid approach for the delineation of brain lesion from CT images
  publication-title: Biocybern Biomed Eng
– volume: 42
  start-page: 577
  year: 1989
  end-page: 685
  ident: CR25
  article-title: Optimal approximations by piecewise smooth functions and associated variational problems
  publication-title: Commun Pure Appl Math
– ident: CR2
– volume: 10
  start-page: 266
  year: 2001
  end-page: 277
  ident: CR21
  article-title: Active contours without edges
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.902291
– volume: 41
  start-page: 1253
  year: 2008
  end-page: 1266
  ident: CR6
  article-title: Lesion identification using unified segmentation-normalisation models and fuzzy clustering
  publication-title: Neuroimage
– volume: 36
  start-page: 217
  year: 2016
  end-page: 232
  ident: CR14
  article-title: Automatic brain hemorrhage segmentation and classification algorithm based on weighted grayscale histogram feature in a hierarchical classification structure
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2015.12.001
– volume: 39
  start-page: 1527
  year: 2013
  end-page: 1536
  ident: CR12
  article-title: An integrated method for hemorrhage segmentation from brain CT Imaging
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2013.04.010
– volume: 8
  start-page: 205
  year: 2004
  end-page: 215
  ident: CR5
  article-title: Automatic segmentation of different-sized white matter lesions by voxel probability estimation
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2004.06.019
– volume: 31
  start-page: 285
  year: 2007
  end-page: 298
  ident: CR4
  article-title: Computer aided detection of small acute intracranial hemorrhage on computer tomography of brain
  publication-title: Comput Med Imaging Graph
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: CR22
  publication-title: Fsl Neuroimage
– volume: 34
  start-page: 563
  year: 2010
  end-page: 571
  ident: CR9
  article-title: Computer-aided diagnosis of intracranial hematoma with brain deformation on computed tomography
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2010.03.003
– volume: 9
  start-page: 69
  year: 2015
  end-page: 74
  ident: CR15
  article-title: Fast semi-automated lesion demarcation in stroke
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2015.06.013
– volume: 7
  start-page: 785
  year: 2012
  end-page: 798
  ident: CR11
  article-title: Segmentation and quantification of intra-ventricular/cerebral hemorrhage in CT scans by modified distance regularized level set evolution technique
  publication-title: Int J Comput Assist Radiol Surg
– volume: 33
  start-page: 304
  year: 2009
  end-page: 311
  ident: CR8
  article-title: Semi-automated method for brain hematoma and edema quantification using computed tomography
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2009.02.001
– volume: 7
  start-page: 507
  year: 2012
  end-page: 516
  ident: CR10
  article-title: Automatic subarachnoid space segmentation and hemorrhage detection in clinical head CT scans
  publication-title: Int J Comput Assist Radiol Surg
– volume: 12
  start-page: 629
  year: 1990
  end-page: 639
  ident: CR24
  article-title: Scale-space and edge detection using anisotropic diffusion
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: CR3
– volume: 37
  start-page: 1405
  year: 2016
  end-page: 1421
  ident: CR1
  article-title: Automated segmentation of chronic stroke lesions using LINDA: lesion identification with neighborhood data analysis
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23110
– ident: CR17
– volume: 16
  start-page: 376
  year: 1980
  end-page: 378
  ident: CR23
  article-title: Image enhancement using fuzzy set
  publication-title: Electron Lett
– volume: 23
  start-page: 903
  year: 2004
  end-page: 921
  ident: CR26
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans Med Imaging
– volume: 33
  start-page: 423
  year: 2009
  end-page: 430
  ident: CR7
  article-title: A multiresolution binary level set method and its application to intracranial hematoma segmentation
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2009.04.001
– volume: 27
  start-page: 1304
  issue: 8
  year: 1996
  end-page: 1305
  ident: CR27
  article-title: The ABCs of measuring intracerebral hemorrhage volumes
  publication-title: Stroke
– volume: 97
  start-page: 325
  year: 2017
  end-page: 335
  ident: CR16
  article-title: Intensity population based unsupervised hemorrhage segmentation from brain CT images
  publication-title: Expert Syst Appl
– ident: CR20
– volume: 4
  start-page: 540
  year: 2014
  end-page: 548
  ident: CR13
  article-title: Automated delineation of stroke lesions using brain CT images
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2014.03.009
– ident: 1873_CR17
  doi: 10.1117/12.2293725
– volume: 37
  start-page: 1405
  year: 2016
  ident: 1873_CR1
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23110
– volume: 23
  start-page: 903
  year: 2004
  ident: 1873_CR26
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2004.828354
– volume: 8
  start-page: 205
  year: 2004
  ident: 1873_CR5
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2004.06.019
– volume: 36
  start-page: 217
  year: 2016
  ident: 1873_CR14
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2015.12.001
– volume: 38
  start-page: 504
  year: 2018
  ident: 1873_CR19
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2018.04.003
– ident: 1873_CR18
  doi: 10.1117/12.2286844
– volume: 34
  start-page: 563
  year: 2010
  ident: 1873_CR9
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2010.03.003
– volume: 42
  start-page: 577
  year: 1989
  ident: 1873_CR25
  publication-title: Commun Pure Appl Math
  doi: 10.1002/cpa.3160420503
– volume: 16
  start-page: 376
  year: 1980
  ident: 1873_CR23
  publication-title: Electron Lett
  doi: 10.1049/el:19800267
– volume: 62
  start-page: 782
  year: 2012
  ident: 1873_CR22
  publication-title: Fsl Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 41
  start-page: 1253
  year: 2008
  ident: 1873_CR6
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.03.028
– volume: 12
  start-page: 629
  year: 1990
  ident: 1873_CR24
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.56205
– ident: 1873_CR3
  doi: 10.1117/12.348648
– volume: 7
  start-page: 507
  year: 2012
  ident: 1873_CR10
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-011-0664-3
– volume: 39
  start-page: 1527
  year: 2013
  ident: 1873_CR12
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2013.04.010
– volume: 9
  start-page: 69
  year: 2015
  ident: 1873_CR15
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2015.06.013
– volume: 10
  start-page: 266
  year: 2001
  ident: 1873_CR21
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.902291
– volume: 4
  start-page: 540
  year: 2014
  ident: 1873_CR13
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2014.03.009
– volume: 7
  start-page: 785
  year: 2012
  ident: 1873_CR11
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-012-0670-0
– volume: 33
  start-page: 423
  year: 2009
  ident: 1873_CR7
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2009.04.001
– volume: 31
  start-page: 285
  year: 2007
  ident: 1873_CR4
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2007.02.010
– ident: 1873_CR2
– volume: 33
  start-page: 304
  year: 2009
  ident: 1873_CR8
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2009.02.001
– volume: 27
  start-page: 1304
  issue: 8
  year: 1996
  ident: 1873_CR27
  publication-title: Stroke
  doi: 10.1161/01.STR.27.8.1304
– ident: 1873_CR20
  doi: 10.1109/ISBI.2018.8363574
– volume: 97
  start-page: 325
  year: 2017
  ident: 1873_CR16
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.12.032
SSID ssj0045735
Score 2.260545
Snippet Purpose To reduce the inter- and intra- rater variability as well as time and effort, a method for computer-assisted delineation of hematoma is proposed....
To reduce the inter- and intra- rater variability as well as time and effort, a method for computer-assisted delineation of hematoma is proposed. Delineation...
PurposeTo reduce the inter- and intra- rater variability as well as time and effort, a method for computer-assisted delineation of hematoma is proposed....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 259
SubjectTerms Algorithms
Automation
Brain Neoplasms - diagnostic imaging
Computed tomography
Computer Imaging
Computer Science
Computer Simulation
Cone-Beam Computed Tomography - methods
Delineation
Female
Health Informatics
Hematoma - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Imaging
Medicine
Medicine & Public Health
Original Article
Pattern Recognition and Graphics
Radiology
Segmentation
Similarity
Surgery
Vision
Title Computer-assisted delineation of hematoma from CT volume using autoencoder and Chan Vese model
URI https://link.springer.com/article/10.1007/s11548-018-1873-9
https://www.ncbi.nlm.nih.gov/pubmed/30377937
https://www.proquest.com/docview/2177205553
https://www.proquest.com/docview/2127660204
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RVkJcKJRHA6UyEieQq8R27OS4qvoQqJx2UbkQ-cmBNkHd7IVfzziJdwWlSD3bmTi2x_4mM98MwDtfWmlCEFTISMkRXFOTV4HqvDDc5lYwEdnIF5_l-UJ8vCwvJx73MkW7J5fkcFJvyG4RXaPpi1ZPpTitt2CnRPsEtXFndvb100k6gEWphrqaRSULKkWxdmb-S8if19EtjHnLPzpcO6e7ME8DHqNNfhytenNkf_2Vy_GeX_QEHk8wlMzGffMUHvh2D3ZTiQcyafwePLyYfO_P4FtqpYi34-ZwxEUy-wg6SRfIkP-1u9YkclbI8ZyMRx-JsfXfiV71Xcya6VC-bh2JvAbyxS89GarxPIfF6cn8-JxO1Rmo5Yr1tCirIKuitKWuQxFyFYSxzjkjDdooUudOcov2js459y4wpbCLE8xWATEoQoUXsN12rd8HwmzOS24QbFW1sMyjnMKZ-L9LM-tdnkGeFqmxU-ryWEHjqtkkXY5T2eBUNnEqmzqD9-tHfo55O_7X-SCtfDOp8LJBW02xmA6NZ_B23YzKFz0quvXdKvZhSsrIL87g5bhj1m9DbKBi8sEMPqTV3wi_cyiv7tX7NTxCAFePUeQHsN3frPwbBEm9OZyU4hC2Fmz2GzU_Bs8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkaCXFgq0oQWMxAlkybEdOzlWVavtY3vaRT0R-dkLJKi7-__ryWNXqBSpZ08mUb7Y_ibjbwbgayicsjFKKhVKcqQw1LIyUsNyKxxzkktUI0-v1WQuL26Km0HHvRhPu48pyW6l3ojdkF2n0DdFPaUWtHoOLzDLiBHXnB-Py68sdNdVMy9VTpXM16nMf7n4ezN6wDAfZEe7TefsNewMbJEc9_C-gWeh2YPdsRMDGSbmHrycDinyt_BzHKWJFiOGnnjUnPfckLSRdGVa29-GoLSEnMxIv0IRPAJ_S8xq2WJxS5_8m8YTlB-QH2ERSNc05x3Mz05nJxM6NFGgTmi-pHlRRlXmhStMFfPIdJTWee-tsimUUIZ5JVwKSwwTIvjItU4mXnJXxkQV047-HraatgkHQLhjohA2caKyko6H5Cf3Fn9LGe6CZxmw8W3Wbqgwjo0uftWb2sgIQJ0AqBGAusrg2_qSP315jf8ZH40Q1cNMW9QppNIcq5aJDL6sh9McwcSHaUK7QhuulUIZcAb7PbTru6UtXGONwAy-j1hvnD_6KB-eZP0ZXk1m06v66vz68hC2E-eq-oPfR7C1vFuFj4nXLO2n7ju-B-JR6_A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVqq4tFBegQJG4gRK69iOnRyr0qVQWnFoUbkQ_ORQSCo2e-HX49nEu4ICEuKcycRxxvY3mZlvAJ750koTgsiFxJIcwXVuaBVyTQvDLbWCCaxGPj6Rh2fizXl5PvY5naVs9xSSHGoakKWp7XcvXdhdFb4h0o5ucPSAKsXz-jqsCWwhMYG1vVcfjg7SZixKteixWVSyyKUoloHN3yn5-Wi6gjevxEoXR9B0Ez6lwQ-ZJxc7897s2O-_8Dr-x9vdhI0RnpK9wZ5uwTXfbsFmav1Axp1gC9aPx5j8bfiYruYRh6PROOKwyH0Ao6QLZMEL233VBGtZyP4pGbZEgjn3n4me9x2yabqoX7eOYL0Dee9nniy69NyBs-nB6f5hPnZtyC1XrM-LsgqyKkpb6joUgaogjHXOGWmi7yI1dZLb6Adpyrl3gSkVRZxgtgoRm0YIcRcmbdf6-0CYpbzkJoKwqhaW-aincAb_g2lmvaMZ0PTBGjtSmmNnjS_NiowZp7KJU9ngVDZ1Bs-Xt1wOfB5_E95OVtCMS3vWRB9OMaRJ4xk8XV6OixIjLbr13RxlmJIS644zuDdYz_JpETMoJCXM4EWyhJXyPw7lwT9JP4H1dy-nzdvXJ0cP4UbEePWQaL4Nk_7b3D-KOKo3j8e18gMX4BGy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-assisted+delineation+of+hematoma+from+CT+volume+using+autoencoder+and+Chan+Vese+model&rft.jtitle=International+journal+for+computer+assisted+radiology+and+surgery&rft.au=Nag%2C+Manas+Kumar&rft.au=Chatterjee%2C+Saunak&rft.au=Sadhu%2C+Anup+Kumar&rft.au=Chatterjee%2C+Jyotirmoy&rft.date=2019-02-01&rft.eissn=1861-6429&rft.volume=14&rft.issue=2&rft.spage=259&rft_id=info:doi/10.1007%2Fs11548-018-1873-9&rft_id=info%3Apmid%2F30377937&rft.externalDocID=30377937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-6410&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-6410&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-6410&client=summon