A multi‐modal heterogeneous data mining algorithm using federated learning

In disease diagnosis, the classification accuracy based on multi‐modal models is usually higher than single‐modal models. However, in the process of multimodal data fusion, how to reasonably solve the heterogeneity problem and better extract the information between different modal data has attracted...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineering (Stevenage, England) Vol. 2021; no. 8; pp. 458 - 466
Main Author Wei, Xianyong
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.08.2021
Wiley
Subjects
Online AccessGet full text
ISSN2051-3305
2051-3305
DOI10.1049/tje2.12049

Cover

Abstract In disease diagnosis, the classification accuracy based on multi‐modal models is usually higher than single‐modal models. However, in the process of multimodal data fusion, how to reasonably solve the heterogeneity problem and better extract the information between different modal data has attracted the attention of scholars. Federated learning is an efficient machine learning method that can expand between multiple parameters or multiple computing nodes. It has been applied successfully in the financial industry and cross‐industry cooperation. In this paper, a novel algorithm to disease diagnosis model based on federated learning is proposed. The model not only cleverly solves heterogeneous problems, but also excavates information between different modal data to promote the model to be more robust and discriminative. The experiment results show that the proposed model has better performance than traditional fusion algorithms. Notably, compared with other models, this model converges faster and requires less computation.
AbstractList Abstract In disease diagnosis, the classification accuracy based on multi‐modal models is usually higher than single‐modal models. However, in the process of multimodal data fusion, how to reasonably solve the heterogeneity problem and better extract the information between different modal data has attracted the attention of scholars. Federated learning is an efficient machine learning method that can expand between multiple parameters or multiple computing nodes. It has been applied successfully in the financial industry and cross‐industry cooperation. In this paper, a novel algorithm to disease diagnosis model based on federated learning is proposed. The model not only cleverly solves heterogeneous problems, but also excavates information between different modal data to promote the model to be more robust and discriminative. The experiment results show that the proposed model has better performance than traditional fusion algorithms. Notably, compared with other models, this model converges faster and requires less computation.
In disease diagnosis, the classification accuracy based on multi‐modal models is usually higher than single‐modal models. However, in the process of multimodal data fusion, how to reasonably solve the heterogeneity problem and better extract the information between different modal data has attracted the attention of scholars. Federated learning is an efficient machine learning method that can expand between multiple parameters or multiple computing nodes. It has been applied successfully in the financial industry and cross‐industry cooperation. In this paper, a novel algorithm to disease diagnosis model based on federated learning is proposed. The model not only cleverly solves heterogeneous problems, but also excavates information between different modal data to promote the model to be more robust and discriminative. The experiment results show that the proposed model has better performance than traditional fusion algorithms. Notably, compared with other models, this model converges faster and requires less computation.
Author Wei, Xianyong
Author_xml – sequence: 1
  givenname: Xianyong
  surname: Wei
  fullname: Wei, Xianyong
  email: weixianyong2020@163.com
  organization: Shangqiu Polytechnic
BookMark eNp9kM1qGzEUhUVJoYnrTZ9goLsEO_qZ36UxaZNg6MZdi2vpypHRjByNBuNdHiHP2CepnCmlhOKVrqTvnMs5V-Si8x0S8oXROaN5cxt3yOeMp_EDueS0YDMhaHHxz_yJTPt-RyllIk8cuySrRdYOLtpfL6-t1-CyJ4wY_BY79EOfaYiQtbaz3TYDt_XBxqc2G_rT3aDGABF15hDCCflMPhpwPU7_nBPy89vdenk_W_34_rBcrGZKVLyZNTyHvMTCgNY522iDIFhtBG9U-jam5BXXdc1w02ioaq44KxRUm8LkUGGeiwl5GH21h53cB9tCOEoPVr49-LCVEKJVDqWBUmlTMqRYpMgIjG2qshKsaYxSafGE3IxeQ7eH4wGc-2vIqDz1Kk-9yrdeE_11pPfBPw_YR7nzQ-hSWClow0WdgtBEXY-UCr7vA5rzlvQdrGyEaH0XA1j3fwkbJQfr8HjGXK4f7_io-Q0JeKgA
CitedBy_id crossref_primary_10_1007_s11633_022_1398_0
crossref_primary_10_1109_ACCESS_2024_3508030
Cites_doi 10.1016/j.neucom.2016.10.087
10.1145/2808196.2811641
10.1007/11428572_18
10.1109/ICCV.2017.450
10.1049/el:20064068
10.1016/j.sigpro.2020.107466
10.1145/2529989
10.1109/TNNLS.2019.2900077
10.1109/TETCI.2017.2784878
10.1109/TIP.2015.2487860
10.1145/3298981
10.1016/0003-2670(86)80028-9
10.1371/journal.pone.0037155
10.18653/v1/P18-1209
10.1016/j.neuroimage.2011.09.069
10.1145/1282280.1282290
10.1162/NECO_a_00766
10.1016/j.neuroimage.2011.01.008
10.1109/JOE.2016.2578218
10.1007/978-3-642-23626-6_15
10.1016/j.inffus.2017.05.002
10.1023/A:1018628609742
10.1037/apl0000284
10.1016/j.neucom.2019.04.066
10.1109/TSP.2014.2304432
10.1016/j.patcog.2009.11.018
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1049/tje2.12049
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (NC Live)
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-3305
EndPage 466
ExternalDocumentID oai_doaj_org_article_fa6cdf61e0e5420ea11b7673199fccea
10.1049/tje2.12049
10_1049_tje2_12049
TJE212049
Genre article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Young Backbone Teachers Funding Project of Henan Colleges and Universities
  funderid: 2017GGJS263
GroupedDBID 0R~
1OC
24P
5VS
AAHJG
AAJGR
ABJCF
ABQXS
ACCMX
ACESK
ACXQS
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
IAO
IDLOA
IGS
IPNFZ
ITC
KQ8
M43
M7S
M~E
OCL
OK1
PIMPY
PTHSS
RIE
RIG
RNS
ROL
RUI
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c3729-924a46e5fadd41bdfea318f329c729ff6272d881eb9da782c215ca7b5f4a7e443
IEDL.DBID DOA
ISSN 2051-3305
IngestDate Fri Oct 03 12:45:46 EDT 2025
Sun Sep 07 10:53:18 EDT 2025
Wed Aug 13 09:09:50 EDT 2025
Wed Oct 29 21:17:18 EDT 2025
Thu Apr 24 22:52:00 EDT 2025
Wed Jan 22 16:29:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3729-924a46e5fadd41bdfea318f329c729ff6272d881eb9da782c215ca7b5f4a7e443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/fa6cdf61e0e5420ea11b7673199fccea
PQID 3092383180
PQPubID 6853465
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_fa6cdf61e0e5420ea11b7673199fccea
unpaywall_primary_10_1049_tje2_12049
proquest_journals_3092383180
crossref_primary_10_1049_tje2_12049
crossref_citationtrail_10_1049_tje2_12049
wiley_primary_10_1049_tje2_12049_TJE212049
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of engineering (Stevenage, England)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2019; 31
2019; 10
2018; 103
2011; 55
2007
2005
2017; 253
2012; 59
2011; 14
2014; 61
1999; 9
2015; 24
2010; 43
2018; 39
2006; 42
2018; 2
2015; 27
2001
2014); 62
2020
1986; 185
2020; 171
2016; 42
2019
2018
2019; 355
2017
2016
2015
2012; 7
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Jiang A. (e_1_2_7_34_1) 2018
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
References_xml – volume: 31
  start-page: 186
  issue: 1
  year: 2019
  end-page: 200
  article-title: Leveraging coupled interaction for multimodal Alzheimer's disease diagnosis
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– start-page: 4203
  year: 2017
  end-page: 4212
– volume: 2
  start-page: 117
  issue: 2
  year: 2018
  end-page: 128
  article-title: Audio‐visual speech enhancement using multimodal deep convolutional neural networks
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– year: 2001
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  end-page: 300
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 43
  start-page: 1789
  issue: 5
  year: 2010
  end-page: 1800
  article-title: Performance evaluation of score level fusion in multimodal biometric systems
  publication-title: Pattern Recognit.
– volume: 24
  start-page: 5659
  issue: 12
  year: 2015
  end-page: 5670
  article-title: Multimodal deep autoencoder for human pose recovery
  publication-title: IEEE Trans. Image Process.
– volume: 55
  start-page: 856
  issue: 3
  year: 2011
  end-page: 867
  article-title: Multimodal classification of Alzheimer∖”s disease and mild cognitive impairment
  publication-title: Neuroimage
– start-page: 1
  year: 2020
  end-page: 1
– volume: 61
  start-page: 1
  issue: 1
  year: 2014
  article-title: Linear‐Time Approximation for Maximum Weight Matching
  publication-title: J. ACM
– volume: 42
  start-page: 426
  issue: 7
  year: 2006
  end-page: 428
  article-title: SVM‐based speech endpoint detection using contextual speech features
  publication-title: Electron. Lett.
– year: 2016
– volume: 171
  year: 2020
  article-title: Latent correlation embedded discriminative multi‐modal data fusion
  publication-title: Signal Process.
– year: 2018
– volume: 62
  start-page: 1750
  issue: 7
  year: 2014)
  end-page: 1761
  article-title: On the linear convergence of the ADMM in decentralized consensus optimization
  publication-title: IEEE Trans. Signal Process.
– volume: 185
  start-page: 1
  issue: 1
  year: 1986
  end-page: 17
  article-title: Partial least‐squares regression: A tutorial
  publication-title: Anal. Chim. Acta
– year: 2019
  article-title: Towards federated learning at scale: System design
– year: 2018
  article-title: Efficient low‐rank multimodal fusion with modality‐specific factors
– volume: 42
  start-page: 603
  issue: 3
  year: 2016
  end-page: 618
  article-title: Kernel‐function‐based models for acoustic localization of underwater vehicles
  publication-title: IEEE J. Oceanic Eng.
– year: 2007
  article-title: Online video recommendation based on multimodal fusion and relevance feedback
– volume: 27
  start-page: 1
  issue: 9
  year: 2015
  end-page: 28
  article-title: Fusion of scores in a detection context based on alpha integration
  publication-title: Neural Comput.
– volume: 103
  start-page: 787
  issue: 7
  year: 2018
  end-page: 803
  article-title: Issues in solving the problem of effect size heterogeneity in meta‐analytic structural equation modeling: A commentary and simulation study on Yu, Downes, Carter, and O'Boyle (2016)
  publication-title: J. Appl. Psychol.
– year: 2005
  article-title: Integrating intra and extra gestures into a mobile and multimodal shopping assistant
– volume: 14
  start-page: 115
  issue: Pt 3
  year: 2011
– volume: 39
  start-page: 168
  year: 2018
  end-page: 177
  article-title: Multimodal sparse and low‐rank subspace clustering
  publication-title: Inf. Fusion
– volume: 10
  start-page: 12.1
  issue: 2
  year: 2019
  end-page: 12.19
  article-title: Federated machine learning: Concept and applications
  publication-title: ACM Trans. Intell. Syst.
– volume: 7
  issue: 6
  year: 2012
  article-title: Imbalanced Multi‐Modal Multi‐Label Learning for Subcellular Localization Prediction of Human Proteins with Both Single and Multiple Sites
  publication-title: PLoS ONE
– volume: 59
  start-page: 895
  issue: 2
  year: 2012
  end-page: 907
  article-title: Multi‐modal multi‐task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
  publication-title: Neuroimage
– start-page: 17
  year: 2018
  end-page: 23
  article-title: Induction motor fault diagnosis based on multimodal stacked auto‐encoder
  publication-title: J. Electron. Meas. Instrum.
– volume: 355
  start-page: 143
  year: 2019
  end-page: 154
  article-title: Multi‐modal AD classification via self‐paced latent correlation analysis
  publication-title: Neurocomputing
– volume: 253
  start-page: 127
  year: 2017
  end-page: 134
  article-title: Feature self‐representation based hypergraph unsupervised feature selection via low‐rank representation
  publication-title: Neurocomputing
– year: 2017
– start-page: 73
  year: 2015
  end-page: 80
  article-title: Multimodal affective dimension prediction using deep bidirectional long short‐term memory recurrent neural networks
– ident: e_1_2_7_17_1
  doi: 10.1016/j.neucom.2016.10.087
– ident: e_1_2_7_35_1
  doi: 10.1145/2808196.2811641
– ident: e_1_2_7_2_1
  doi: 10.1007/11428572_18
– ident: e_1_2_7_3_1
– ident: e_1_2_7_12_1
  doi: 10.1109/ICCV.2017.450
– ident: e_1_2_7_18_1
  doi: 10.1049/el:20064068
– ident: e_1_2_7_22_1
– ident: e_1_2_7_28_1
– ident: e_1_2_7_32_1
  doi: 10.1016/j.sigpro.2020.107466
– ident: e_1_2_7_8_1
  doi: 10.1145/2529989
– ident: e_1_2_7_5_1
  doi: 10.1109/TNNLS.2019.2900077
– ident: e_1_2_7_33_1
  doi: 10.1109/TETCI.2017.2784878
– ident: e_1_2_7_14_1
  doi: 10.1109/TIP.2015.2487860
– ident: e_1_2_7_25_1
  doi: 10.1145/3298981
– ident: e_1_2_7_10_1
  doi: 10.1016/0003-2670(86)80028-9
– ident: e_1_2_7_6_1
  doi: 10.1371/journal.pone.0037155
– ident: e_1_2_7_16_1
  doi: 10.18653/v1/P18-1209
– ident: e_1_2_7_13_1
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neuroimage.2011.09.069
– ident: e_1_2_7_24_1
– ident: e_1_2_7_27_1
– start-page: 17
  year: 2018
  ident: e_1_2_7_34_1
  article-title: Induction motor fault diagnosis based on multimodal stacked auto‐encoder
  publication-title: J. Electron. Meas. Instrum.
– ident: e_1_2_7_11_1
  doi: 10.1145/1282280.1282290
– ident: e_1_2_7_36_1
  doi: 10.1162/NECO_a_00766
– ident: e_1_2_7_4_1
  doi: 10.1016/j.neuroimage.2011.01.008
– ident: e_1_2_7_9_1
  doi: 10.1109/JOE.2016.2578218
– ident: e_1_2_7_30_1
  doi: 10.1007/978-3-642-23626-6_15
– ident: e_1_2_7_15_1
  doi: 10.1016/j.inffus.2017.05.002
– ident: e_1_2_7_19_1
  doi: 10.1023/A:1018628609742
– ident: e_1_2_7_7_1
  doi: 10.1037/apl0000284
– ident: e_1_2_7_26_1
– ident: e_1_2_7_31_1
  doi: 10.1016/j.neucom.2019.04.066
– ident: e_1_2_7_23_1
– ident: e_1_2_7_29_1
  doi: 10.1109/TSP.2014.2304432
– ident: e_1_2_7_21_1
  doi: 10.1016/j.patcog.2009.11.018
SSID ssj0001342041
Score 2.208084
Snippet In disease diagnosis, the classification accuracy based on multi‐modal models is usually higher than single‐modal models. However, in the process of multimodal...
Abstract In disease diagnosis, the classification accuracy based on multi‐modal models is usually higher than single‐modal models. However, in the process of...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 458
SubjectTerms Algorithms
Alzheimer's disease
Biology and medical computing
Classification
Computer vision and image processing techniques
Data handling techniques
Data integration
Data mining
Diagnosis
Disease
Federated learning
Heterogeneity
Machine learning
Medical diagnosis
Modal data
Other topics in statistics
Third party
SummonAdditionalLinks – databaseName: ProQuest Central (NC Live)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fS9xAEB_s-dD2oVTb0rNWFvTFwtZkb5NsHkpRORFpDxEF35bN_jkpd5ernpS--RH8jH4SZ9bk7EG5t5AMJJmZnf3N7uxvAHYEJjdSpDk3ON9xmSUJN0pZLkzlg5KqCvG42M9BfnwhTy6zyxUYtGdhqKyyjYkxULva0hr5Xi9BKKLQA5Pv09-cukbR7mrbQsM0rRXct0gx9gJWBTFjdWD1oD84PXtedcEPS2I7S4HeyDGZz1rOUlnuzX558TVFgXJhlopk_gsI9OXtZGr-_jGj0SKmjZPS0Vt406BJtv9k_jVY8ZN1eP0Px-A7-LHPYtHgw939uHYofEUFMDX6jcekn1GFKBvHLhHMjIb4x7OrMaNq-CELRDSBWNSxprfE8D1cHPXPD49500KBW9qP45hdGZn7LGAYk2nlgjeowtATpcXHIeSiEE6p1FelMwgWLCIAa4oqC9IUXsreB-hM6on_CEwZzC0wm-wZ4qQPCY1chGMhLVTiytJ2YbdVmbYNvzi1uRjpuM8tS03q1VG9Xdiey06fWDX-K3VAmp9LEBN2vFFfD3UzsHQwuXXoUD7xGdrWmzStirzAyFIGa73pwmZrN90Mzxv97Exd2JnbcumnfIlmXiKiz0_6Il5tLH_lJ3glqDAmVhFuQmd2fes_I7KZVVuNuz4C7bH1aQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fT9swED9BeZh4AMaG1qlD1ugLk9IlrpM4j6UCIbRVPFCJPVmOY7ew_lNJNcETH4HPyCfZ2U0qglDFm5VcIut8Z_9Od_4dQJNicMNoEHkSzzuPhb7vSc6VR2WqDWc8Ne662O9edN5nF9fh9QZ8L-_CVPL3LPmZ32raCigON2ErChFv12Cr37vs_LFd49CiPAzIw5J3tPJB5aRxhPwVFPlhMZnJ-39yNKriUnewnO1Ct5zSsp7kb2uRpy318Iqtcf2c92CnwJWkszSEj7ChJ_uw_YJt8BP86hBXPvj8-DSeZig8tKUwU7QgjeE_sbWiZOz6RRA5GkznN_lwTGxd_IAYSzmBqDQjRZeJwWfon51edc-9opmCp2xmzsM4S7JIhwY3NBakmdES3dm0aaLwtTERjWnGeaDTJJMIGxRiASXjNDRMxpqx9gHUJtOJ_gKES4wyMK5sS8tOb3zrwwjMTBBzP0sSVYfjUvFCFUzjtuHFSLiMN0uE1ZBwGqrD0Up2tuTXeFPqxK7fSsJyYrsHqHZRuJgwMlIZmpb2dcior2UQpHEU4x6TGKW0rEOjXH1ROOqdaPuIcDlqwq9Dc2URa6fywxnLGhFxdXFK3ejr-_7ZgFo-X-hvCG_y9LCw7__RU_fL
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HNSD-MTVVQJ6Uai22bRNwcsqioiKBwVvYZomq7K7lXVFvPkT_I3-EifZ7uqCCN76mEKZR_JNMvkGYIdTciN4lARI810g4jAMUEodcMyNlULm1h8Xu7xKzm7F-V18NwGHw7MwA36I0YKbiww_XrsAx3zQhYRALRmx_2j4fsTpZhKmIwIyzr-5uP5eYaGfCH3rSk6eF1DiHg_5SUV28P352IzkifvH0ObMS_cJ316x3R7Hr34COl2A-Qo5subA1IswYbpLMPeDT3AZLprMFwh-vn90yoKE712xS0k-YijBZ64alHV8RwiG7VbZe-jfd5irfG8x60glCHcWrOoj0VqB29OTm-OzoGqXEGi39xZQJoUiMbGlIUtEeWENUsDaBs80vbY24SkvpIxMnhVIwEDTbK8xzWMrMDVCNFZhqlt2zRowiZRHUObYQMc_b0MXpQS9bJTKsMgyXYPdocqUrrjEXUuLtvJ72iJTTr3Kq7cG2yPZpwGDxq9SR07zIwnHeu0flL2WqoJIWUx0Qc5jQhOTbQ1GUZ4mKY0imdXaYA3qQ7upKhSfVSMkDCtJE2ENdka2_PNX9ryZ_xBRN-cn3F-t_0d4A2a5K4nx9YN1mOr3XswmYZp-vuVd9wsmRu-u
  priority: 102
  providerName: Wiley-Blackwell
Title A multi‐modal heterogeneous data mining algorithm using federated learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftje2.12049
https://www.proquest.com/docview/3092383180
https://doi.org/10.1049/tje2.12049
https://doaj.org/article/fa6cdf61e0e5420ea11b7673199fccea
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: ADMLS
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: IDLOA
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central (NC Live)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: BENPR
  dateStart: 20210201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: AVUZU
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NThsxEB4VeoAeEIVWpIXIElxAWvA63l37GGhShCCKgEhwsrxeO4Dyg2gQ4sYj8Iw8CWNnEyVSRS-97O-sNJqxd75Zz34DsMMwueEsTiON8S7iCaWRFsJETOfWCS5yF34XO2ulxx1-cpVczbT68jVhY3rgseEOnE5NgQ9YahPOqNVxnGdphiNHOmNsgEZUyJlkKnxdQQUojyd8pFwejO4s24_xopyLQIGofw5dLj0O7vXzk-715vFqCDjNVVgpkSKpjzX8Cp_sYA2-zPAHrsNpnYSCwLeX1_6wQOEbX9wyxDFhMaEnvvqT9EMHCKJ73eHD7eimT3yle5c4TyKBOLMgZd-I7jfoNBuXR8dR2R4hMn6tLcLMSfPUJg5fUTzOC2c1TlBXY9LgbedSlrFCiNjmstAIBAxGd6OzPHFcZ5bz2ndYHAwHdgOI0Jg3YKZY055v3lE_KxFquTgTtJDSVGB3YjJlSu5w38Kip8IaNpfKm1cF81Zgeyp7P2bM-KvUobf8VMKzXIcL6HtV-l79y_cV2Jz4TZVT74-qUcSsAi1BK7Az9eWHquwFN38goi5PGiwc_fgfev-EZeZLY0Id4SYsjh4e7RZim1FehQXG27gVzd9V-Fz_dXZ6gfvDRqt9Xg1DHM86rXb9-h1Awf1q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9lA4IH5FoMBKlANIpvZ6be8eKtRCqrRNI4RSqbdlvT-pUBKHJlHVG4_AE_EwPAmzWzslEsqtN8se2db8z-7sfADbFIsbRpM8UhjvIpbFcaQ41xFVpXWc8dKF42Invbxzyo7OsrM1-N2chfFtlY1PDI7aVNqvke-kMaYiHDUw_jj5EXnUKL-72kBoqBpaweyGEWP1wY5je3WJJdx09_AzyvstpQft_qdOVKMMRNpvWUVYgCiW28yhpbOkNM4q_IpLqdD42LmcFtRwnthSGIXxVGOQ1KooM8dUYRlL8b13YIOlTGDxt7Hf7n35erPKg4yIA3wmRe2PUrSuZkYqEzuz75Z-SJBALEXFAB6wlPFuzscTdXWphsPlHDoEwYMHcL_OXsnetbo9hDU7fgT3_plp-Bi6eyQ0Kf75-WtUGSQ-9w03FeqpreZT4jtSySigUhA1HCCHZ-cj4rvvB8T5wRaY-xpSY1kMnsDprTDzKayPq7F9BoQrrGWwek2Vn4HvYu8pMP1zScFjI4RuwbuGZVLX88w9rMZQhn11JqRnrwzsbcGbBe3keorHf6n2PecXFH7ydrhRXQxkbcjSqVwbVGAb2wxla1WSlEVeoCcTTmurWrDVyE3W7mAqb5S3BdsLWa78lfdBzCtIZP-oTcPV89WffA2bnf5JV3YPe8cv4C71TTmhg3EL1mcXc_sSs6pZ-apWXQLfbtta_gKcLTL8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xRWLhgHgsojwtLRdWyuK4TuIcy6NigUUc6ApxsRzHLqC2qUoR4sZP4DfySxi7aaESQtpbHqMomvF4vrHH3wDsMExuOAvjQGG8C3hEaaCE0AFTmbGCi8z642J_z-PjJj-5iq7K2hx3FmbIDzFecHOe4edr5-Cml9thwskdSebgzrDfIcObbzCNgZzyCkzX_zWvm--LLPgf1HevZDj4AszdoxFFKU_33j8wEZQ8d_8E4Pz-0O2pp0fVbk9CWB-DGgswX4JHUh9aexGmTHcJ5j5QCi7DWZ34GsHX55dOkaPwjat3KXCYGMzxiSsIJR3fFIKodqvo3w5uOsQVv7eIdbwSCD1zUraSaP2AZuPo8uA4KDsmBNptvwWYTCkem8jirMXDLLdGoc_aGks1vrY2ZgnLhQhNluYKsYHGgK9VkkWWq8RwXluBSrfomlUgQmEqgcljTTkKekudoyL6smEiaJ6mugq7I5VJXdKJu64Wbem3tXkqnXqlV28Vfo5le0MSjU-l9p3mxxKO-No_KPotWfqRtCrWOY4fQ02EtjUqDLMkTnAiSa3WRlVhY2Q3WXrjvaxRhLECNUGrsDO25Ze_8sub-QsReXlyxPzV2v8Ib8PMxWFDnv05P12HWeYKZHw14QZUBv0Hs4kIZ5BtleP4DXyf9G4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fT9swED9BeZh4AMaG1qlD1ugLk9IlrpM4j6UCIbRVPFCJPVmOY7ew_lNJNcETH4HPyCfZ2U0qglDFm5VcIut8Z_9Od_4dQJNicMNoEHkSzzuPhb7vSc6VR2WqDWc8Ne662O9edN5nF9fh9QZ8L-_CVPL3LPmZ32raCigON2ErChFv12Cr37vs_LFd49CiPAzIw5J3tPJB5aRxhPwVFPlhMZnJ-39yNKriUnewnO1Ct5zSsp7kb2uRpy318Iqtcf2c92CnwJWkszSEj7ChJ_uw_YJt8BP86hBXPvj8-DSeZig8tKUwU7QgjeE_sbWiZOz6RRA5GkznN_lwTGxd_IAYSzmBqDQjRZeJwWfon51edc-9opmCp2xmzsM4S7JIhwY3NBakmdES3dm0aaLwtTERjWnGeaDTJJMIGxRiASXjNDRMxpqx9gHUJtOJ_gKES4wyMK5sS8tOb3zrwwjMTBBzP0sSVYfjUvFCFUzjtuHFSLiMN0uE1ZBwGqrD0Up2tuTXeFPqxK7fSsJyYrsHqHZRuJgwMlIZmpb2dcior2UQpHEU4x6TGKW0rEOjXH1ROOqdaPuIcDlqwq9Dc2URa6fywxnLGhFxdXFK3ejr-_7ZgFo-X-hvCG_y9LCw7__RU_fL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi%E2%80%90modal+heterogeneous+data+mining+algorithm+using+federated+learning&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Xianyong+Wei&rft.date=2021-08-01&rft.pub=Wiley&rft.eissn=2051-3305&rft.volume=2021&rft.issue=8&rft.spage=458&rft.epage=466&rft_id=info:doi/10.1049%2Ftje2.12049&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fa6cdf61e0e5420ea11b7673199fccea
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon