A multi‐modal heterogeneous data mining algorithm using federated learning
In disease diagnosis, the classification accuracy based on multi‐modal models is usually higher than single‐modal models. However, in the process of multimodal data fusion, how to reasonably solve the heterogeneity problem and better extract the information between different modal data has attracted...
Saved in:
| Published in | Journal of engineering (Stevenage, England) Vol. 2021; no. 8; pp. 458 - 466 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
London
John Wiley & Sons, Inc
01.08.2021
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2051-3305 2051-3305 |
| DOI | 10.1049/tje2.12049 |
Cover
| Abstract | In disease diagnosis, the classification accuracy based on multi‐modal models is usually higher than single‐modal models. However, in the process of multimodal data fusion, how to reasonably solve the heterogeneity problem and better extract the information between different modal data has attracted the attention of scholars. Federated learning is an efficient machine learning method that can expand between multiple parameters or multiple computing nodes. It has been applied successfully in the financial industry and cross‐industry cooperation. In this paper, a novel algorithm to disease diagnosis model based on federated learning is proposed. The model not only cleverly solves heterogeneous problems, but also excavates information between different modal data to promote the model to be more robust and discriminative. The experiment results show that the proposed model has better performance than traditional fusion algorithms. Notably, compared with other models, this model converges faster and requires less computation. |
|---|---|
| AbstractList | Abstract In disease diagnosis, the classification accuracy based on multi‐modal models is usually higher than single‐modal models. However, in the process of multimodal data fusion, how to reasonably solve the heterogeneity problem and better extract the information between different modal data has attracted the attention of scholars. Federated learning is an efficient machine learning method that can expand between multiple parameters or multiple computing nodes. It has been applied successfully in the financial industry and cross‐industry cooperation. In this paper, a novel algorithm to disease diagnosis model based on federated learning is proposed. The model not only cleverly solves heterogeneous problems, but also excavates information between different modal data to promote the model to be more robust and discriminative. The experiment results show that the proposed model has better performance than traditional fusion algorithms. Notably, compared with other models, this model converges faster and requires less computation. In disease diagnosis, the classification accuracy based on multi‐modal models is usually higher than single‐modal models. However, in the process of multimodal data fusion, how to reasonably solve the heterogeneity problem and better extract the information between different modal data has attracted the attention of scholars. Federated learning is an efficient machine learning method that can expand between multiple parameters or multiple computing nodes. It has been applied successfully in the financial industry and cross‐industry cooperation. In this paper, a novel algorithm to disease diagnosis model based on federated learning is proposed. The model not only cleverly solves heterogeneous problems, but also excavates information between different modal data to promote the model to be more robust and discriminative. The experiment results show that the proposed model has better performance than traditional fusion algorithms. Notably, compared with other models, this model converges faster and requires less computation. |
| Author | Wei, Xianyong |
| Author_xml | – sequence: 1 givenname: Xianyong surname: Wei fullname: Wei, Xianyong email: weixianyong2020@163.com organization: Shangqiu Polytechnic |
| BookMark | eNp9kM1qGzEUhUVJoYnrTZ9goLsEO_qZ36UxaZNg6MZdi2vpypHRjByNBuNdHiHP2CepnCmlhOKVrqTvnMs5V-Si8x0S8oXROaN5cxt3yOeMp_EDueS0YDMhaHHxz_yJTPt-RyllIk8cuySrRdYOLtpfL6-t1-CyJ4wY_BY79EOfaYiQtbaz3TYDt_XBxqc2G_rT3aDGABF15hDCCflMPhpwPU7_nBPy89vdenk_W_34_rBcrGZKVLyZNTyHvMTCgNY522iDIFhtBG9U-jam5BXXdc1w02ioaq44KxRUm8LkUGGeiwl5GH21h53cB9tCOEoPVr49-LCVEKJVDqWBUmlTMqRYpMgIjG2qshKsaYxSafGE3IxeQ7eH4wGc-2vIqDz1Kk-9yrdeE_11pPfBPw_YR7nzQ-hSWClow0WdgtBEXY-UCr7vA5rzlvQdrGyEaH0XA1j3fwkbJQfr8HjGXK4f7_io-Q0JeKgA |
| CitedBy_id | crossref_primary_10_1007_s11633_022_1398_0 crossref_primary_10_1109_ACCESS_2024_3508030 |
| Cites_doi | 10.1016/j.neucom.2016.10.087 10.1145/2808196.2811641 10.1007/11428572_18 10.1109/ICCV.2017.450 10.1049/el:20064068 10.1016/j.sigpro.2020.107466 10.1145/2529989 10.1109/TNNLS.2019.2900077 10.1109/TETCI.2017.2784878 10.1109/TIP.2015.2487860 10.1145/3298981 10.1016/0003-2670(86)80028-9 10.1371/journal.pone.0037155 10.18653/v1/P18-1209 10.1016/j.neuroimage.2011.09.069 10.1145/1282280.1282290 10.1162/NECO_a_00766 10.1016/j.neuroimage.2011.01.008 10.1109/JOE.2016.2578218 10.1007/978-3-642-23626-6_15 10.1016/j.inffus.2017.05.002 10.1023/A:1018628609742 10.1037/apl0000284 10.1016/j.neucom.2019.04.066 10.1109/TSP.2014.2304432 10.1016/j.patcog.2009.11.018 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA |
| DOI | 10.1049/tje2.12049 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central (NC Live) Technology collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2051-3305 |
| EndPage | 466 |
| ExternalDocumentID | oai_doaj_org_article_fa6cdf61e0e5420ea11b7673199fccea 10.1049/tje2.12049 10_1049_tje2_12049 TJE212049 |
| Genre | article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: Young Backbone Teachers Funding Project of Henan Colleges and Universities funderid: 2017GGJS263 |
| GroupedDBID | 0R~ 1OC 24P 5VS AAHJG AAJGR ABJCF ABQXS ACCMX ACESK ACXQS ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AVUZU BCNDV BENPR BGLVJ CCPQU EBS GROUPED_DOAJ HCIFZ IAO IDLOA IGS IPNFZ ITC KQ8 M43 M7S M~E OCL OK1 PIMPY PTHSS RIE RIG RNS ROL RUI AAMMB AAYXX ADMLS AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION PHGZM PHGZT PQGLB WIN 8FE 8FG ABUWG AZQEC DWQXO L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC PUEGO UNPAY |
| ID | FETCH-LOGICAL-c3729-924a46e5fadd41bdfea318f329c729ff6272d881eb9da782c215ca7b5f4a7e443 |
| IEDL.DBID | DOA |
| ISSN | 2051-3305 |
| IngestDate | Fri Oct 03 12:45:46 EDT 2025 Sun Sep 07 10:53:18 EDT 2025 Wed Aug 13 09:09:50 EDT 2025 Wed Oct 29 21:17:18 EDT 2025 Thu Apr 24 22:52:00 EDT 2025 Wed Jan 22 16:29:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3729-924a46e5fadd41bdfea318f329c729ff6272d881eb9da782c215ca7b5f4a7e443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/fa6cdf61e0e5420ea11b7673199fccea |
| PQID | 3092383180 |
| PQPubID | 6853465 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fa6cdf61e0e5420ea11b7673199fccea unpaywall_primary_10_1049_tje2_12049 proquest_journals_3092383180 crossref_primary_10_1049_tje2_12049 crossref_citationtrail_10_1049_tje2_12049 wiley_primary_10_1049_tje2_12049_TJE212049 |
| PublicationCentury | 2000 |
| PublicationDate | August 2021 2021-08-00 20210801 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Journal of engineering (Stevenage, England) |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2019; 31 2019; 10 2018; 103 2011; 55 2007 2005 2017; 253 2012; 59 2011; 14 2014; 61 1999; 9 2015; 24 2010; 43 2018; 39 2006; 42 2018; 2 2015; 27 2001 2014); 62 2020 1986; 185 2020; 171 2016; 42 2019 2018 2019; 355 2017 2016 2015 2012; 7 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Jiang A. (e_1_2_7_34_1) 2018 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 |
| References_xml | – volume: 31 start-page: 186 issue: 1 year: 2019 end-page: 200 article-title: Leveraging coupled interaction for multimodal Alzheimer's disease diagnosis publication-title: IEEE Trans. Neural Networks Learn. Syst. – start-page: 4203 year: 2017 end-page: 4212 – volume: 2 start-page: 117 issue: 2 year: 2018 end-page: 128 article-title: Audio‐visual speech enhancement using multimodal deep convolutional neural networks publication-title: IEEE Trans. Emerg. Top. Comput. Intell. – year: 2001 – volume: 9 start-page: 293 issue: 3 year: 1999 end-page: 300 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. – volume: 43 start-page: 1789 issue: 5 year: 2010 end-page: 1800 article-title: Performance evaluation of score level fusion in multimodal biometric systems publication-title: Pattern Recognit. – volume: 24 start-page: 5659 issue: 12 year: 2015 end-page: 5670 article-title: Multimodal deep autoencoder for human pose recovery publication-title: IEEE Trans. Image Process. – volume: 55 start-page: 856 issue: 3 year: 2011 end-page: 867 article-title: Multimodal classification of Alzheimer∖”s disease and mild cognitive impairment publication-title: Neuroimage – start-page: 1 year: 2020 end-page: 1 – volume: 61 start-page: 1 issue: 1 year: 2014 article-title: Linear‐Time Approximation for Maximum Weight Matching publication-title: J. ACM – volume: 42 start-page: 426 issue: 7 year: 2006 end-page: 428 article-title: SVM‐based speech endpoint detection using contextual speech features publication-title: Electron. Lett. – year: 2016 – volume: 171 year: 2020 article-title: Latent correlation embedded discriminative multi‐modal data fusion publication-title: Signal Process. – year: 2018 – volume: 62 start-page: 1750 issue: 7 year: 2014) end-page: 1761 article-title: On the linear convergence of the ADMM in decentralized consensus optimization publication-title: IEEE Trans. Signal Process. – volume: 185 start-page: 1 issue: 1 year: 1986 end-page: 17 article-title: Partial least‐squares regression: A tutorial publication-title: Anal. Chim. Acta – year: 2019 article-title: Towards federated learning at scale: System design – year: 2018 article-title: Efficient low‐rank multimodal fusion with modality‐specific factors – volume: 42 start-page: 603 issue: 3 year: 2016 end-page: 618 article-title: Kernel‐function‐based models for acoustic localization of underwater vehicles publication-title: IEEE J. Oceanic Eng. – year: 2007 article-title: Online video recommendation based on multimodal fusion and relevance feedback – volume: 27 start-page: 1 issue: 9 year: 2015 end-page: 28 article-title: Fusion of scores in a detection context based on alpha integration publication-title: Neural Comput. – volume: 103 start-page: 787 issue: 7 year: 2018 end-page: 803 article-title: Issues in solving the problem of effect size heterogeneity in meta‐analytic structural equation modeling: A commentary and simulation study on Yu, Downes, Carter, and O'Boyle (2016) publication-title: J. Appl. Psychol. – year: 2005 article-title: Integrating intra and extra gestures into a mobile and multimodal shopping assistant – volume: 14 start-page: 115 issue: Pt 3 year: 2011 – volume: 39 start-page: 168 year: 2018 end-page: 177 article-title: Multimodal sparse and low‐rank subspace clustering publication-title: Inf. Fusion – volume: 10 start-page: 12.1 issue: 2 year: 2019 end-page: 12.19 article-title: Federated machine learning: Concept and applications publication-title: ACM Trans. Intell. Syst. – volume: 7 issue: 6 year: 2012 article-title: Imbalanced Multi‐Modal Multi‐Label Learning for Subcellular Localization Prediction of Human Proteins with Both Single and Multiple Sites publication-title: PLoS ONE – volume: 59 start-page: 895 issue: 2 year: 2012 end-page: 907 article-title: Multi‐modal multi‐task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease publication-title: Neuroimage – start-page: 17 year: 2018 end-page: 23 article-title: Induction motor fault diagnosis based on multimodal stacked auto‐encoder publication-title: J. Electron. Meas. Instrum. – volume: 355 start-page: 143 year: 2019 end-page: 154 article-title: Multi‐modal AD classification via self‐paced latent correlation analysis publication-title: Neurocomputing – volume: 253 start-page: 127 year: 2017 end-page: 134 article-title: Feature self‐representation based hypergraph unsupervised feature selection via low‐rank representation publication-title: Neurocomputing – year: 2017 – start-page: 73 year: 2015 end-page: 80 article-title: Multimodal affective dimension prediction using deep bidirectional long short‐term memory recurrent neural networks – ident: e_1_2_7_17_1 doi: 10.1016/j.neucom.2016.10.087 – ident: e_1_2_7_35_1 doi: 10.1145/2808196.2811641 – ident: e_1_2_7_2_1 doi: 10.1007/11428572_18 – ident: e_1_2_7_3_1 – ident: e_1_2_7_12_1 doi: 10.1109/ICCV.2017.450 – ident: e_1_2_7_18_1 doi: 10.1049/el:20064068 – ident: e_1_2_7_22_1 – ident: e_1_2_7_28_1 – ident: e_1_2_7_32_1 doi: 10.1016/j.sigpro.2020.107466 – ident: e_1_2_7_8_1 doi: 10.1145/2529989 – ident: e_1_2_7_5_1 doi: 10.1109/TNNLS.2019.2900077 – ident: e_1_2_7_33_1 doi: 10.1109/TETCI.2017.2784878 – ident: e_1_2_7_14_1 doi: 10.1109/TIP.2015.2487860 – ident: e_1_2_7_25_1 doi: 10.1145/3298981 – ident: e_1_2_7_10_1 doi: 10.1016/0003-2670(86)80028-9 – ident: e_1_2_7_6_1 doi: 10.1371/journal.pone.0037155 – ident: e_1_2_7_16_1 doi: 10.18653/v1/P18-1209 – ident: e_1_2_7_13_1 – ident: e_1_2_7_20_1 doi: 10.1016/j.neuroimage.2011.09.069 – ident: e_1_2_7_24_1 – ident: e_1_2_7_27_1 – start-page: 17 year: 2018 ident: e_1_2_7_34_1 article-title: Induction motor fault diagnosis based on multimodal stacked auto‐encoder publication-title: J. Electron. Meas. Instrum. – ident: e_1_2_7_11_1 doi: 10.1145/1282280.1282290 – ident: e_1_2_7_36_1 doi: 10.1162/NECO_a_00766 – ident: e_1_2_7_4_1 doi: 10.1016/j.neuroimage.2011.01.008 – ident: e_1_2_7_9_1 doi: 10.1109/JOE.2016.2578218 – ident: e_1_2_7_30_1 doi: 10.1007/978-3-642-23626-6_15 – ident: e_1_2_7_15_1 doi: 10.1016/j.inffus.2017.05.002 – ident: e_1_2_7_19_1 doi: 10.1023/A:1018628609742 – ident: e_1_2_7_7_1 doi: 10.1037/apl0000284 – ident: e_1_2_7_26_1 – ident: e_1_2_7_31_1 doi: 10.1016/j.neucom.2019.04.066 – ident: e_1_2_7_23_1 – ident: e_1_2_7_29_1 doi: 10.1109/TSP.2014.2304432 – ident: e_1_2_7_21_1 doi: 10.1016/j.patcog.2009.11.018 |
| SSID | ssj0001342041 |
| Score | 2.208084 |
| Snippet | In disease diagnosis, the classification accuracy based on multi‐modal models is usually higher than single‐modal models. However, in the process of multimodal... Abstract In disease diagnosis, the classification accuracy based on multi‐modal models is usually higher than single‐modal models. However, in the process of... |
| SourceID | doaj unpaywall proquest crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 458 |
| SubjectTerms | Algorithms Alzheimer's disease Biology and medical computing Classification Computer vision and image processing techniques Data handling techniques Data integration Data mining Diagnosis Disease Federated learning Heterogeneity Machine learning Medical diagnosis Modal data Other topics in statistics Third party |
| SummonAdditionalLinks | – databaseName: ProQuest Central (NC Live) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fS9xAEB_s-dD2oVTb0rNWFvTFwtZkb5NsHkpRORFpDxEF35bN_jkpd5ernpS--RH8jH4SZ9bk7EG5t5AMJJmZnf3N7uxvAHYEJjdSpDk3ON9xmSUJN0pZLkzlg5KqCvG42M9BfnwhTy6zyxUYtGdhqKyyjYkxULva0hr5Xi9BKKLQA5Pv09-cukbR7mrbQsM0rRXct0gx9gJWBTFjdWD1oD84PXtedcEPS2I7S4HeyDGZz1rOUlnuzX558TVFgXJhlopk_gsI9OXtZGr-_jGj0SKmjZPS0Vt406BJtv9k_jVY8ZN1eP0Px-A7-LHPYtHgw939uHYofEUFMDX6jcekn1GFKBvHLhHMjIb4x7OrMaNq-CELRDSBWNSxprfE8D1cHPXPD49500KBW9qP45hdGZn7LGAYk2nlgjeowtATpcXHIeSiEE6p1FelMwgWLCIAa4oqC9IUXsreB-hM6on_CEwZzC0wm-wZ4qQPCY1chGMhLVTiytJ2YbdVmbYNvzi1uRjpuM8tS03q1VG9Xdiey06fWDX-K3VAmp9LEBN2vFFfD3UzsHQwuXXoUD7xGdrWmzStirzAyFIGa73pwmZrN90Mzxv97Exd2JnbcumnfIlmXiKiz0_6Il5tLH_lJ3glqDAmVhFuQmd2fes_I7KZVVuNuz4C7bH1aQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fT9swED9BeZh4AMaG1qlD1ugLk9IlrpM4j6UCIbRVPFCJPVmOY7ew_lNJNcETH4HPyCfZ2U0qglDFm5VcIut8Z_9Od_4dQJNicMNoEHkSzzuPhb7vSc6VR2WqDWc8Ne662O9edN5nF9fh9QZ8L-_CVPL3LPmZ32raCigON2ErChFv12Cr37vs_LFd49CiPAzIw5J3tPJB5aRxhPwVFPlhMZnJ-39yNKriUnewnO1Ct5zSsp7kb2uRpy318Iqtcf2c92CnwJWkszSEj7ChJ_uw_YJt8BP86hBXPvj8-DSeZig8tKUwU7QgjeE_sbWiZOz6RRA5GkznN_lwTGxd_IAYSzmBqDQjRZeJwWfon51edc-9opmCp2xmzsM4S7JIhwY3NBakmdES3dm0aaLwtTERjWnGeaDTJJMIGxRiASXjNDRMxpqx9gHUJtOJ_gKES4wyMK5sS8tOb3zrwwjMTBBzP0sSVYfjUvFCFUzjtuHFSLiMN0uE1ZBwGqrD0Up2tuTXeFPqxK7fSsJyYrsHqHZRuJgwMlIZmpb2dcior2UQpHEU4x6TGKW0rEOjXH1ROOqdaPuIcDlqwq9Dc2URa6fywxnLGhFxdXFK3ejr-_7ZgFo-X-hvCG_y9LCw7__RU_fL priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58HNSD-MTVVQJ6Uai22bRNwcsqioiKBwVvYZomq7K7lXVFvPkT_I3-EifZ7uqCCN76mEKZR_JNMvkGYIdTciN4lARI810g4jAMUEodcMyNlULm1h8Xu7xKzm7F-V18NwGHw7MwA36I0YKbiww_XrsAx3zQhYRALRmx_2j4fsTpZhKmIwIyzr-5uP5eYaGfCH3rSk6eF1DiHg_5SUV28P352IzkifvH0ObMS_cJ316x3R7Hr34COl2A-Qo5subA1IswYbpLMPeDT3AZLprMFwh-vn90yoKE712xS0k-YijBZ64alHV8RwiG7VbZe-jfd5irfG8x60glCHcWrOoj0VqB29OTm-OzoGqXEGi39xZQJoUiMbGlIUtEeWENUsDaBs80vbY24SkvpIxMnhVIwEDTbK8xzWMrMDVCNFZhqlt2zRowiZRHUObYQMc_b0MXpQS9bJTKsMgyXYPdocqUrrjEXUuLtvJ72iJTTr3Kq7cG2yPZpwGDxq9SR07zIwnHeu0flL2WqoJIWUx0Qc5jQhOTbQ1GUZ4mKY0imdXaYA3qQ7upKhSfVSMkDCtJE2ENdka2_PNX9ryZ_xBRN-cn3F-t_0d4A2a5K4nx9YN1mOr3XswmYZp-vuVd9wsmRu-u priority: 102 providerName: Wiley-Blackwell |
| Title | A multi‐modal heterogeneous data mining algorithm using federated learning |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftje2.12049 https://www.proquest.com/docview/3092383180 https://doi.org/10.1049/tje2.12049 https://doaj.org/article/fa6cdf61e0e5420ea11b7673199fccea |
| UnpaywallVersion | publishedVersion |
| Volume | 2021 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2051-3305 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: ADMLS dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: IDLOA dateStart: 20130601 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central (NC Live) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: BENPR dateStart: 20210201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: AVUZU dateStart: 20130601 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NThsxEB4VeoAeEIVWpIXIElxAWvA63l37GGhShCCKgEhwsrxeO4Dyg2gQ4sYj8Iw8CWNnEyVSRS-97O-sNJqxd75Zz34DsMMwueEsTiON8S7iCaWRFsJETOfWCS5yF34XO2ulxx1-cpVczbT68jVhY3rgseEOnE5NgQ9YahPOqNVxnGdphiNHOmNsgEZUyJlkKnxdQQUojyd8pFwejO4s24_xopyLQIGofw5dLj0O7vXzk-715vFqCDjNVVgpkSKpjzX8Cp_sYA2-zPAHrsNpnYSCwLeX1_6wQOEbX9wyxDFhMaEnvvqT9EMHCKJ73eHD7eimT3yle5c4TyKBOLMgZd-I7jfoNBuXR8dR2R4hMn6tLcLMSfPUJg5fUTzOC2c1TlBXY9LgbedSlrFCiNjmstAIBAxGd6OzPHFcZ5bz2ndYHAwHdgOI0Jg3YKZY055v3lE_KxFquTgTtJDSVGB3YjJlSu5w38Kip8IaNpfKm1cF81Zgeyp7P2bM-KvUobf8VMKzXIcL6HtV-l79y_cV2Jz4TZVT74-qUcSsAi1BK7Az9eWHquwFN38goi5PGiwc_fgfev-EZeZLY0Id4SYsjh4e7RZim1FehQXG27gVzd9V-Fz_dXZ6gfvDRqt9Xg1DHM86rXb9-h1Awf1q |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9lA4IH5FoMBKlANIpvZ6be8eKtRCqrRNI4RSqbdlvT-pUBKHJlHVG4_AE_EwPAmzWzslEsqtN8se2db8z-7sfADbFIsbRpM8UhjvIpbFcaQ41xFVpXWc8dKF42Invbxzyo7OsrM1-N2chfFtlY1PDI7aVNqvke-kMaYiHDUw_jj5EXnUKL-72kBoqBpaweyGEWP1wY5je3WJJdx09_AzyvstpQft_qdOVKMMRNpvWUVYgCiW28yhpbOkNM4q_IpLqdD42LmcFtRwnthSGIXxVGOQ1KooM8dUYRlL8b13YIOlTGDxt7Hf7n35erPKg4yIA3wmRe2PUrSuZkYqEzuz75Z-SJBALEXFAB6wlPFuzscTdXWphsPlHDoEwYMHcL_OXsnetbo9hDU7fgT3_plp-Bi6eyQ0Kf75-WtUGSQ-9w03FeqpreZT4jtSySigUhA1HCCHZ-cj4rvvB8T5wRaY-xpSY1kMnsDprTDzKayPq7F9BoQrrGWwek2Vn4HvYu8pMP1zScFjI4RuwbuGZVLX88w9rMZQhn11JqRnrwzsbcGbBe3keorHf6n2PecXFH7ydrhRXQxkbcjSqVwbVGAb2wxla1WSlEVeoCcTTmurWrDVyE3W7mAqb5S3BdsLWa78lfdBzCtIZP-oTcPV89WffA2bnf5JV3YPe8cv4C71TTmhg3EL1mcXc_sSs6pZ-apWXQLfbtta_gKcLTL8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xRWLhgHgsojwtLRdWyuK4TuIcy6NigUUc6ApxsRzHLqC2qUoR4sZP4DfySxi7aaESQtpbHqMomvF4vrHH3wDsMExuOAvjQGG8C3hEaaCE0AFTmbGCi8z642J_z-PjJj-5iq7K2hx3FmbIDzFecHOe4edr5-Cml9thwskdSebgzrDfIcObbzCNgZzyCkzX_zWvm--LLPgf1HevZDj4AszdoxFFKU_33j8wEZQ8d_8E4Pz-0O2pp0fVbk9CWB-DGgswX4JHUh9aexGmTHcJ5j5QCi7DWZ34GsHX55dOkaPwjat3KXCYGMzxiSsIJR3fFIKodqvo3w5uOsQVv7eIdbwSCD1zUraSaP2AZuPo8uA4KDsmBNptvwWYTCkem8jirMXDLLdGoc_aGks1vrY2ZgnLhQhNluYKsYHGgK9VkkWWq8RwXluBSrfomlUgQmEqgcljTTkKekudoyL6smEiaJ6mugq7I5VJXdKJu64Wbem3tXkqnXqlV28Vfo5le0MSjU-l9p3mxxKO-No_KPotWfqRtCrWOY4fQ02EtjUqDLMkTnAiSa3WRlVhY2Q3WXrjvaxRhLECNUGrsDO25Ze_8sub-QsReXlyxPzV2v8Ib8PMxWFDnv05P12HWeYKZHw14QZUBv0Hs4kIZ5BtleP4DXyf9G4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fT9swED9BeZh4AMaG1qlD1ugLk9IlrpM4j6UCIbRVPFCJPVmOY7ew_lNJNcETH4HPyCfZ2U0qglDFm5VcIut8Z_9Od_4dQJNicMNoEHkSzzuPhb7vSc6VR2WqDWc8Ne662O9edN5nF9fh9QZ8L-_CVPL3LPmZ32raCigON2ErChFv12Cr37vs_LFd49CiPAzIw5J3tPJB5aRxhPwVFPlhMZnJ-39yNKriUnewnO1Ct5zSsp7kb2uRpy318Iqtcf2c92CnwJWkszSEj7ChJ_uw_YJt8BP86hBXPvj8-DSeZig8tKUwU7QgjeE_sbWiZOz6RRA5GkznN_lwTGxd_IAYSzmBqDQjRZeJwWfon51edc-9opmCp2xmzsM4S7JIhwY3NBakmdES3dm0aaLwtTERjWnGeaDTJJMIGxRiASXjNDRMxpqx9gHUJtOJ_gKES4wyMK5sS8tOb3zrwwjMTBBzP0sSVYfjUvFCFUzjtuHFSLiMN0uE1ZBwGqrD0Up2tuTXeFPqxK7fSsJyYrsHqHZRuJgwMlIZmpb2dcior2UQpHEU4x6TGKW0rEOjXH1ROOqdaPuIcDlqwq9Dc2URa6fywxnLGhFxdXFK3ejr-_7ZgFo-X-hvCG_y9LCw7__RU_fL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi%E2%80%90modal+heterogeneous+data+mining+algorithm+using+federated+learning&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Xianyong+Wei&rft.date=2021-08-01&rft.pub=Wiley&rft.eissn=2051-3305&rft.volume=2021&rft.issue=8&rft.spage=458&rft.epage=466&rft_id=info:doi/10.1049%2Ftje2.12049&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fa6cdf61e0e5420ea11b7673199fccea |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon |