Tightening methods for continuous-time mixed-integer programming models for chemical production scheduling
Significance Important advances in modeling chemical production scheduling problems have been made in recent years, yet effective solution methods are still required. We use an algorithm that uses process network and customer demand information to formulate powerful valid inequalities that substanti...
        Saved in:
      
    
          | Published in | AIChE journal Vol. 59; no. 12; pp. 4461 - 4467 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Blackwell Publishing Ltd
    
        01.12.2013
     American Institute of Chemical Engineers  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0001-1541 1547-5905  | 
| DOI | 10.1002/aic.14249 | 
Cover
| Abstract | Significance
Important advances in modeling chemical production scheduling problems have been made in recent years, yet effective solution methods are still required. We use an algorithm that uses process network and customer demand information to formulate powerful valid inequalities that substantially improve the solution process. In particular, we extend the ideas recently developed for discrete‐time formulations to continuous‐time models and show that these tightening methods lead to a significant decrease in computational time, up to more than three orders of magnitude for some instances. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4461–4467, 2013 | 
    
|---|---|
| AbstractList | Important advances in modeling chemical production scheduling problems have been made in recent years, yet effective solution methods are still required. We use an algorithm that uses process network and customer demand information to formulate powerful valid inequalities that substantially improve the solution process. In particular, we extend the ideas recently developed for discrete-time formulations to continuous-time models and show that these tightening methods lead to a significant decrease in computational time, up to more than three orders of magnitude for some instances. [PUBLICATION ABSTRACT] Important advances in modeling chemical production scheduling problems have been made in recent years, yet effective solution methods are still required. We use an algorithm that uses process network and customer demand information to formulate powerful valid inequalities that substantially improve the solution process. In particular, we extend the ideas recently developed for discrete‐time formulations to continuous‐time models and show that these tightening methods lead to a significant decrease in computational time, up to more than three orders of magnitude for some instances. © 2013 American Institute of Chemical Engineers AIChE J , 59: 4461–4467, 2013 Significance Important advances in modeling chemical production scheduling problems have been made in recent years, yet effective solution methods are still required. We use an algorithm that uses process network and customer demand information to formulate powerful valid inequalities that substantially improve the solution process. In particular, we extend the ideas recently developed for discrete‐time formulations to continuous‐time models and show that these tightening methods lead to a significant decrease in computational time, up to more than three orders of magnitude for some instances. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4461–4467, 2013  | 
    
| Author | Velez, Sara Merchan, Andres F. Maravelias, Christos T.  | 
    
| Author_xml | – sequence: 1 givenname: Andres F. surname: Merchan fullname: Merchan, Andres F. organization: Dept. of Chemical and Biological Engineering, University of Wisconsin-Madison, Engineering Dr., WI, 141553706, Madison – sequence: 2 givenname: Sara surname: Velez fullname: Velez, Sara organization: Dept. of Chemical and Biological Engineering, University of Wisconsin-Madison, Engineering Dr., WI, 141553706, Madison – sequence: 3 givenname: Christos T. surname: Maravelias fullname: Maravelias, Christos T. email: maravelias@wisc.edu organization: Dept. of Chemical and Biological Engineering, University of Wisconsin-Madison, Engineering Dr., WI, 141553706, Madison  | 
    
| BookMark | eNp1kMFOAyEQhompibV68A028eRhFVh2KUfTqLUxetH0SJCdbam7oMBG-_ZSWz0YPRDC8H0zk_8QDayzgNAJwecEY3qhjD4njDKxh4akZDwvBS4HaIgxJnkqkAN0GMIqvSgf0yFaPZrFMoI1dpF1EJeuDlnjfKadjcb2rg95NB1knfmAOjc2wgJ89urdwquu-7JcDe1OWkJntGo3_3Wvo3E2C6lY920ij9B-o9oAx7t7hJ6urx4n0_zu4eZ2cnmX64JTkXNSEl5TAc1zOgQLIIxxUYxLpVnBuCJKNxyEqipcKiWwrhtNq-exoFArxosROt32TVu89RCiXLne2zRSElaRouKE0ERdbCntXQgeGqlNVJuVo1emlQTLTaAyBSq_Ak3G2S_j1ZtO-fWf7K77u2lh_T8oL28n30a-NUyI8PFjKP8iK17wUs7vb-Ssms3meDqXVfEJ9QqYNw | 
    
| CODEN | AICEAC | 
    
| CitedBy_id | crossref_primary_10_1021_ie404274b crossref_primary_10_1021_acs_iecr_4c01934 crossref_primary_10_1016_j_compchemeng_2014_03_003 crossref_primary_10_1007_s10898_020_00882_3 crossref_primary_10_1021_acs_iecr_5b00600 crossref_primary_10_1016_j_compchemeng_2014_05_024 crossref_primary_10_1016_j_compchemeng_2016_02_013 crossref_primary_10_1016_j_compchemeng_2024_108700 crossref_primary_10_1002_aic_16926 crossref_primary_10_1016_j_compchemeng_2016_04_034 crossref_primary_10_1016_j_compchemeng_2017_12_003 crossref_primary_10_1016_j_compchemeng_2015_10_003 crossref_primary_10_1002_aic_15553 crossref_primary_10_1016_j_ces_2015_05_021 crossref_primary_10_1016_j_compchemeng_2024_108609 crossref_primary_10_1146_annurev_chembioeng_060713_035859  | 
    
| Cites_doi | 10.1016/0098-1354(93)80016-G 10.1002/aic.690421209 10.1016/0098-1354(96)00211-6 10.1016/j.compchemeng.2009.04.013 10.1002/aic.12261 10.1021/ie0105573 10.1021/ie950081l 10.1016/j.ces.2004.12.023 10.1021/ie970927g 10.1016/S0098-1354(02)00100-X 10.1002/aic.14021 10.1016/j.compchemeng.2009.05.015 10.1016/0098-1354(93)80015-F 10.1002/aic.13801 10.1021/ie302741b 10.1016/j.compchemeng.2011.11.004 10.1021/ie101419z 10.1287/ijoc.1090.0339 10.1016/j.compchemeng.2013.03.030 10.1021/ie000683r 10.1016/j.compchemeng.2007.03.019 10.1016/j.compchemeng.2005.02.037 10.1016/S0098-1354(03)00051-6 10.1021/ie020923y 10.1021/ie034053b 10.1016/j.compchemeng.2009.03.007 10.1016/0098-1354(91)85012-J 10.1016/j.compchemeng.2007.09.001 10.1016/j.compchemeng.2006.02.008 10.1021/ie950082d 10.1021/ie970312j 10.1021/ie303421h 10.1016/j.compchemeng.2005.09.011 10.1016/S0098-1354(97)87585-0 10.1002/aic.12300 10.1021/ie0500117  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2013 American Institute of Chemical Engineers Copyright American Institute of Chemical Engineers Dec 2013  | 
    
| Copyright_xml | – notice: 2013 American Institute of Chemical Engineers – notice: Copyright American Institute of Chemical Engineers Dec 2013  | 
    
| DBID | BSCLL AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI  | 
    
| DOI | 10.1002/aic.14249 | 
    
| DatabaseName | Istex CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts  | 
    
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1547-5905 | 
    
| EndPage | 4467 | 
    
| ExternalDocumentID | 3136428771 10_1002_aic_14249 AIC14249 ark_67375_WNG_J6JJW0HW_6  | 
    
| Genre | article Feature  | 
    
| GrantInformation_xml | – fundername: National Science Foundation funderid: CBET‐1066206  | 
    
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHQN AAIHA AAIKC AAMMB AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJIA ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYN AEUYR AEYWJ AFBPY AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PHGZM PHGZT PQGLB PQQKQ PRG PROAC PTHSS PUEGO PYCSY Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 S0X SAMSI SUPJJ TAE TN5 TUS UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT 3V. AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RBB RWI UAO WRC WSB AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI  | 
    
| ID | FETCH-LOGICAL-c3729-71517d29efb9ef109e14479385ac4347a1acf7e9a6605aa90cdfc26b892eda473 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0001-1541 | 
    
| IngestDate | Fri Jul 25 11:02:39 EDT 2025 Thu Oct 09 00:40:32 EDT 2025 Thu Apr 24 22:57:15 EDT 2025 Wed Jan 22 16:58:29 EST 2025 Sun Sep 21 06:18:32 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3729-71517d29efb9ef109e14479385ac4347a1acf7e9a6605aa90cdfc26b892eda473 | 
    
| Notes | istex:F02C46820E4AAC86F7B57B2968F0E26194A95C1A ark:/67375/WNG-J6JJW0HW-6 National Science Foundation - No. CBET-1066206 ArticleID:AIC14249 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14  | 
    
| PQID | 1461367112 | 
    
| PQPubID | 7879 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | proquest_journals_1461367112 crossref_citationtrail_10_1002_aic_14249 crossref_primary_10_1002_aic_14249 wiley_primary_10_1002_aic_14249_AIC14249 istex_primary_ark_67375_WNG_J6JJW0HW_6  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2013 | 
    
| PublicationDateYYYYMMDD | 2013-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2013 text: December 2013  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | AIChE journal | 
    
| PublicationTitleAlternate | AIChE J | 
    
| PublicationYear | 2013 | 
    
| Publisher | Blackwell Publishing Ltd American Institute of Chemical Engineers  | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd – name: American Institute of Chemical Engineers  | 
    
| References | Ierapetritou MG, Floudas CA. Effective continuous-time formulation for short-term scheduling. 1. Multipurpose batch processes. Ind Eng Chem Res. 1998;37(11):4341-4359. Giannelos NF, Georgiadis MC. A novel event-driven formulation for short-term scheduling of multipurpose continuous processes. Ind Eng Chem Res. 2002;41(10):2431-2439. Sundaramoorthy A, Karimi IA. A simpler better slot-based continuous-time formulation for short-term scheduling in multipurpose batch plants. Chem Eng Sci. 2005;60(10):2679-2702. Mockus L, Reklaitis GV. Continuous time representation approach to batch and continuous process scheduling. 2. Computational issues. Ind Eng Chem Res. 1999;38(1):204-210. Harjunkoski I, Grossmann IE. Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods. Comput Chem Eng. 2002;26(11):1533-1552. Papageorgiou LG, Pantelides CC. Optimal campaign planning scheduling of multipurpose batch semicontinuous plants.1. Mathematical formulation. Ind Eng Chem Res. 1996;35(2):488-509. Pochet Y, Warichet F. A tighter continuous time formulation for the cyclic scheduling of a mixed plant. Comput Chem Eng. 2008;32(11):2723-2744. BarbosaPovoa APFD, Pantelides CC. Design of multipurpose plants using the resource-task network unified framework. Comput Chem Eng. 1997;21:S703-S708. Gimenez DM, Henning GP, Maravelias CT. A novel network-based continuous-time representation for process scheduling: Part I. Main concepts and mathematical formulation. Comput Chem Eng. 2009;33(9):1511-1528. Maravelias CT, Papalamprou K. Polyhedral results for discrete-time production planning MIP formulations for continuous processes. Comput Chem Eng. 2009;33(11):1890-1904. Castro P, Barbosa-Povoa APFD, Matos H. An improved RTN continuous-time formulation for the short-term scheduling of multipurpose batch plants. Ind Eng Chem Res. 2001;40(9):2059-2068. Maravelias CT, Grossmann IE. New general continuous-time state-task network formulation for short-term scheduling of multipurpose batch plants. Ind Eng Chem Res. 2003;42(13):3056-3074. Maravelias CT. On the combinatorial structure of discrete-time MIP formulations for chemical production scheduling. Comput Chem Eng. 2012;38:204-212. Velez S, Sundaramoorthy A, Maravelias CT. Valid inequalities based on demand propagation for chemical production scheduling MIP models. AIChE J. 2013;59(3):872-887. Bassett MH, Pekny JF, Reklaitis GV. Decomposition techniques for the solution of large-scale scheduling problems. AIChE J. 1996;42(12):3373-3387. Maravelias CT. Mixed-time representation for state-task network models. Ind Eng Chem Res. 2005;44(24):9129-9145. Sundaramoorthy A, Maravelias CT. A general framework for process scheduling. AIChE J. 2011;57(3):695-710. Velez S, Maravelias CT. A branch-and-bound algorithm for the solution of chemical production scheduling MIP models using parallel computing. Comput Chem Eng. 2013;55(0):28-39. Kondili E, Pantelides CC, Sargent RWH. A general algorithm for short-term scheduling of batch-operations.1. Milp Formulation. Comput Chem Eng. 1993;17(2):211-227. Maravelias CT. A decomposition framework for the scheduling of single- and multi-stage processes. Comput Chem Eng. 2006;30(3):407-420. Shah N, Pantelides CC, Sargent RWH. A general algorithm for short-term scheduling of batch-operations.2. Computational issues. Comput Chem Eng. 1993;17(2):229-244. Maravelias CT, Grossmann IE. Minimization of the makespan with a discrete-time state-task network formulation. Ind Eng Chem Res. 2003;42(24):6252-6257. Sahinidis NV, Grossmann IE. Reformulation of multiperiod MILP models for planning and scheduling of chemical processes. Comput Chem Eng. 1991;15(4):255-272. Papageorgiou LG, Pantelides CC. Optimal campaign planning scheduling of multipurpose batch semicontinuous plants.2. A mathematical decomposition approach. Ind Eng Chem Res. 1996;35(2):510-529. Schilling G, Pantelides CC. A simple continuous-time process scheduling formulation and a novel solution algorithm. Comput Chem Eng. 1996;20:S1221-S1226. Velez S, Maravelias CT. Reformulations and branching methods for mixed-integer programming chemical production scheduling models. Ind Eng Chem Res. 2013;52(10):3832-3841. Velez S, Maravelias CT. Mixed-integer programming model and tightening methods for scheduling in general chemical production environments. Ind Eng Chem Res. 2013;52(9):3407-3423. Castro PM, Harjunkoski I, Grossmann IE. Greedy algorithm for scheduling batch plants with sequence-dependent changeovers. AIChE J. 2011;57(2):373-387. Wu D, Ierapetritou MG. Decomposition approaches for the efficient solution of short-term scheduling problems. Comput Chem Eng. 2003;27(8-9):1261-1276. Sundaramoorthy A, Maravelias CT. Computational study of network-based mixed-integer programming approaches for chemical production scheduling. Ind Eng Chem Res. 2011;50(9):5023-5040. Maravelias CT. General framework and modeling approach classification for chemical production scheduling. AIChE J. 2012;58(6):1812-1828. Ferris MC, Maravelias CT, Sundaramoorthy A. Simultaneous batching and scheduling using dynamic decomposition on a grid. INFORMS J Comput Sum 2009;21(3):398-410. Burkard RE, Hatzl J. Review, extensions and computational comparison of MILP formulations for scheduling of batch processes. Comput Chem Eng. 2005;29(8):1752-1769. Gimenez DM, Henning GP, Maravelias CT. A novel network-based continuous-time representation for process scheduling: Part II. General framework. Comput Chem Eng. 2009;33(10):1644-1660. Janak SL, Floudas CA. Improving unit-specific event based continuous-time approaches for batch processes: Integrality gap and task splitting. Comput Chem Eng. 2008;32(4-5):913-955. Mendez CA, Cerda J, Grossmann IE, Harjunkoski I, Fahl M. State-of-the-art review of optimization methods for short-term scheduling of batch processes. Comput Chem Eng. 2006;30(6-7):913-946. 2006; 30 2009; 21 1991; 15 1997; 21 2009 1994 2011; 57 2008; 32 2005; 60 2012; 38 2012; 58 1996; 35 2005; 29 2001; 40 2005; 44 52 1998; 37 2009; 33 2002; 26 2013; 59 1993; 17 2002; 41 2013; 55 1999; 38 2013; 52 2011; 50 2003; 27 2003; 42 1996; 20 1996; 42 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 Velez S (e_1_2_9_33_1); 52 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Kelly JD (e_1_2_9_19_1) 2009 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1  | 
    
| References_xml | – reference: Gimenez DM, Henning GP, Maravelias CT. A novel network-based continuous-time representation for process scheduling: Part II. General framework. Comput Chem Eng. 2009;33(10):1644-1660. – reference: Maravelias CT, Papalamprou K. Polyhedral results for discrete-time production planning MIP formulations for continuous processes. Comput Chem Eng. 2009;33(11):1890-1904. – reference: Maravelias CT. A decomposition framework for the scheduling of single- and multi-stage processes. Comput Chem Eng. 2006;30(3):407-420. – reference: Velez S, Maravelias CT. Mixed-integer programming model and tightening methods for scheduling in general chemical production environments. Ind Eng Chem Res. 2013;52(9):3407-3423. – reference: Velez S, Sundaramoorthy A, Maravelias CT. Valid inequalities based on demand propagation for chemical production scheduling MIP models. AIChE J. 2013;59(3):872-887. – reference: Velez S, Maravelias CT. Reformulations and branching methods for mixed-integer programming chemical production scheduling models. Ind Eng Chem Res. 2013;52(10):3832-3841. – reference: Ferris MC, Maravelias CT, Sundaramoorthy A. Simultaneous batching and scheduling using dynamic decomposition on a grid. INFORMS J Comput Sum 2009;21(3):398-410. – reference: Harjunkoski I, Grossmann IE. Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods. Comput Chem Eng. 2002;26(11):1533-1552. – reference: Janak SL, Floudas CA. Improving unit-specific event based continuous-time approaches for batch processes: Integrality gap and task splitting. Comput Chem Eng. 2008;32(4-5):913-955. – reference: BarbosaPovoa APFD, Pantelides CC. Design of multipurpose plants using the resource-task network unified framework. Comput Chem Eng. 1997;21:S703-S708. – reference: Gimenez DM, Henning GP, Maravelias CT. A novel network-based continuous-time representation for process scheduling: Part I. Main concepts and mathematical formulation. Comput Chem Eng. 2009;33(9):1511-1528. – reference: Sundaramoorthy A, Karimi IA. A simpler better slot-based continuous-time formulation for short-term scheduling in multipurpose batch plants. Chem Eng Sci. 2005;60(10):2679-2702. – reference: Schilling G, Pantelides CC. A simple continuous-time process scheduling formulation and a novel solution algorithm. Comput Chem Eng. 1996;20:S1221-S1226. – reference: Burkard RE, Hatzl J. Review, extensions and computational comparison of MILP formulations for scheduling of batch processes. Comput Chem Eng. 2005;29(8):1752-1769. – reference: Papageorgiou LG, Pantelides CC. Optimal campaign planning scheduling of multipurpose batch semicontinuous plants.1. Mathematical formulation. Ind Eng Chem Res. 1996;35(2):488-509. – reference: Maravelias CT. General framework and modeling approach classification for chemical production scheduling. AIChE J. 2012;58(6):1812-1828. – reference: Maravelias CT. Mixed-time representation for state-task network models. Ind Eng Chem Res. 2005;44(24):9129-9145. – reference: Castro P, Barbosa-Povoa APFD, Matos H. An improved RTN continuous-time formulation for the short-term scheduling of multipurpose batch plants. Ind Eng Chem Res. 2001;40(9):2059-2068. – reference: Sundaramoorthy A, Maravelias CT. Computational study of network-based mixed-integer programming approaches for chemical production scheduling. Ind Eng Chem Res. 2011;50(9):5023-5040. – reference: Wu D, Ierapetritou MG. Decomposition approaches for the efficient solution of short-term scheduling problems. Comput Chem Eng. 2003;27(8-9):1261-1276. – reference: Maravelias CT, Grossmann IE. New general continuous-time state-task network formulation for short-term scheduling of multipurpose batch plants. Ind Eng Chem Res. 2003;42(13):3056-3074. – reference: Papageorgiou LG, Pantelides CC. Optimal campaign planning scheduling of multipurpose batch semicontinuous plants.2. A mathematical decomposition approach. Ind Eng Chem Res. 1996;35(2):510-529. – reference: Shah N, Pantelides CC, Sargent RWH. A general algorithm for short-term scheduling of batch-operations.2. Computational issues. Comput Chem Eng. 1993;17(2):229-244. – reference: Sundaramoorthy A, Maravelias CT. A general framework for process scheduling. AIChE J. 2011;57(3):695-710. – reference: Mendez CA, Cerda J, Grossmann IE, Harjunkoski I, Fahl M. State-of-the-art review of optimization methods for short-term scheduling of batch processes. Comput Chem Eng. 2006;30(6-7):913-946. – reference: Castro PM, Harjunkoski I, Grossmann IE. Greedy algorithm for scheduling batch plants with sequence-dependent changeovers. AIChE J. 2011;57(2):373-387. – reference: Kondili E, Pantelides CC, Sargent RWH. A general algorithm for short-term scheduling of batch-operations.1. Milp Formulation. Comput Chem Eng. 1993;17(2):211-227. – reference: Maravelias CT. On the combinatorial structure of discrete-time MIP formulations for chemical production scheduling. Comput Chem Eng. 2012;38:204-212. – reference: Sahinidis NV, Grossmann IE. Reformulation of multiperiod MILP models for planning and scheduling of chemical processes. Comput Chem Eng. 1991;15(4):255-272. – reference: Pochet Y, Warichet F. A tighter continuous time formulation for the cyclic scheduling of a mixed plant. Comput Chem Eng. 2008;32(11):2723-2744. – reference: Ierapetritou MG, Floudas CA. Effective continuous-time formulation for short-term scheduling. 1. Multipurpose batch processes. Ind Eng Chem Res. 1998;37(11):4341-4359. – reference: Mockus L, Reklaitis GV. Continuous time representation approach to batch and continuous process scheduling. 2. Computational issues. Ind Eng Chem Res. 1999;38(1):204-210. – reference: Bassett MH, Pekny JF, Reklaitis GV. Decomposition techniques for the solution of large-scale scheduling problems. AIChE J. 1996;42(12):3373-3387. – reference: Maravelias CT, Grossmann IE. Minimization of the makespan with a discrete-time state-task network formulation. Ind Eng Chem Res. 2003;42(24):6252-6257. – reference: Velez S, Maravelias CT. A branch-and-bound algorithm for the solution of chemical production scheduling MIP models using parallel computing. Comput Chem Eng. 2013;55(0):28-39. – reference: Giannelos NF, Georgiadis MC. A novel event-driven formulation for short-term scheduling of multipurpose continuous processes. Ind Eng Chem Res. 2002;41(10):2431-2439. – volume: 38 start-page: 204 year: 2012 end-page: 212 article-title: On the combinatorial structure of discrete‐time MIP formulations for chemical production scheduling publication-title: Comput Chem Eng. – volume: 52 start-page: 3407 issue: 9 year: 2013 end-page: 3423 article-title: Mixed‐integer programming model and tightening methods for scheduling in general chemical production environments publication-title: Ind Eng Chem Res. – volume: 42 start-page: 6252 issue: 24 year: 2003 end-page: 6257 article-title: Minimization of the makespan with a discrete‐time state‐task network formulation publication-title: Ind Eng Chem Res. – volume: 21 start-page: 398 issue: 3 year: 2009 end-page: 410 article-title: Simultaneous batching and scheduling using dynamic decomposition on a grid publication-title: INFORMS J Comput Sum – volume: 17 start-page: 229 issue: 2 year: 1993 end-page: 244 article-title: A general algorithm for short‐term scheduling of batch‐operations.2. Computational issues publication-title: Comput Chem Eng. – volume: 42 start-page: 3373 issue: 12 year: 1996 end-page: 3387 article-title: Decomposition techniques for the solution of large‐scale scheduling problems publication-title: AIChE J. – volume: 41 start-page: 2431 issue: 10 year: 2002 end-page: 2439 article-title: A novel event‐driven formulation for short‐term scheduling of multipurpose continuous processes publication-title: Ind Eng Chem Res. – volume: 33 start-page: 1890 issue: 11 year: 2009 end-page: 1904 article-title: Polyhedral results for discrete‐time production planning MIP formulations for continuous processes publication-title: Comput Chem Eng. – volume: 44 start-page: 9129 issue: 24 year: 2005 end-page: 9145 article-title: Mixed‐time representation for state‐task network models publication-title: Ind Eng Chem Res. – volume: 57 start-page: 695 issue: 3 year: 2011 end-page: 710 article-title: A general framework for process scheduling publication-title: AIChE J. – volume: 33 start-page: 1511 issue: 9 year: 2009 end-page: 1528 article-title: A novel network‐based continuous‐time representation for process scheduling: Part I. Main concepts and mathematical formulation publication-title: Comput Chem Eng. – volume: 17 start-page: 211 issue: 2 year: 1993 end-page: 227 article-title: A general algorithm for short‐term scheduling of batch‐operations.1. Milp Formulation publication-title: Comput Chem Eng. – year: 1994 – volume: 40 start-page: 2059 issue: 9 year: 2001 end-page: 2068 article-title: An improved RTN continuous‐time formulation for the short‐term scheduling of multipurpose batch plants publication-title: Ind Eng Chem Res. – volume: 26 start-page: 1533 issue: 11 year: 2002 end-page: 1552 article-title: Decomposition techniques for multistage scheduling problems using mixed‐integer and constraint programming methods publication-title: Comput Chem Eng. – volume: 15 start-page: 255 issue: 4 year: 1991 end-page: 272 article-title: Reformulation of multiperiod MILP models for planning and scheduling of chemical processes publication-title: Comput Chem Eng. – volume: 37 start-page: 4341 issue: 11 year: 1998 end-page: 4359 article-title: Effective continuous‐time formulation for short‐term scheduling. 1. Multipurpose batch processes publication-title: Ind Eng Chem Res. – volume: 57 start-page: 373 issue: 2 year: 2011 end-page: 387 article-title: Greedy algorithm for scheduling batch plants with sequence‐dependent changeovers publication-title: AIChE J. – volume: 42 start-page: 3056 issue: 13 year: 2003 end-page: 3074 article-title: New general continuous‐time state‐task network formulation for short‐term scheduling of multipurpose batch plants publication-title: Ind Eng Chem Res. – volume: 32 start-page: 913 issue: 4-5 year: 2008 end-page: 955 article-title: Improving unit‐specific event based continuous‐time approaches for batch processes: Integrality gap and task splitting publication-title: Comput Chem Eng. – volume: 35 start-page: 510 issue: 2 year: 1996 end-page: 529 article-title: Optimal campaign planning scheduling of multipurpose batch semicontinuous plants.2. A mathematical decomposition approach publication-title: Ind Eng Chem Res. – volume: 59 start-page: 872 issue: 3 year: 2013 end-page: 887 article-title: Valid inequalities based on demand propagation for chemical production scheduling MIP models publication-title: AIChE J. – volume: 20 start-page: S1221 year: 1996 end-page: S1226 article-title: A simple continuous‐time process scheduling formulation and a novel solution algorithm publication-title: Comput Chem Eng. – volume: 60 start-page: 2679 issue: 10 year: 2005 end-page: 2702 article-title: A simpler better slot‐based continuous‐time formulation for short‐term scheduling in multipurpose batch plants publication-title: Chem Eng Sci. – volume: 38 start-page: 204 issue: 1 year: 1999 end-page: 210 article-title: Continuous time representation approach to batch and continuous process scheduling. 2. Computational issues publication-title: Ind Eng Chem Res. – start-page: 61 year: 2009 end-page: 95 – volume: 33 start-page: 1644 issue: 10 year: 2009 end-page: 1660 article-title: A novel network‐based continuous‐time representation for process scheduling: Part II. General framework publication-title: Comput Chem Eng. – volume: 29 start-page: 1752 issue: 8 year: 2005 end-page: 1769 article-title: Review, extensions and computational comparison of MILP formulations for scheduling of batch processes publication-title: Comput Chem Eng. – volume: 58 start-page: 1812 issue: 6 year: 2012 end-page: 1828 article-title: General framework and modeling approach classification for chemical production scheduling publication-title: AIChE J. – volume: 30 start-page: 407 issue: 3 year: 2006 end-page: 420 article-title: A decomposition framework for the scheduling of single‐ and multi‐stage processes publication-title: Comput Chem Eng. – volume: 55 start-page: 28 issue: 0 year: 2013 end-page: 39 article-title: A branch‐and‐bound algorithm for the solution of chemical production scheduling MIP models using parallel computing publication-title: Comput Chem Eng. – volume: 35 start-page: 488 issue: 2 year: 1996 end-page: 509 article-title: Optimal campaign planning scheduling of multipurpose batch semicontinuous plants.1. Mathematical formulation publication-title: Ind Eng Chem Res. – volume: 52 start-page: 3832 issue: 10 end-page: 3841 article-title: Reformulations and branching methods for mixed‐integer programming chemical production scheduling models publication-title: Ind Eng Chem Res. – volume: 30 start-page: 913 issue: 6-7 year: 2006 end-page: 946 article-title: State‐of‐the‐art review of optimization methods for short‐term scheduling of batch processes publication-title: Comput Chem Eng. – volume: 32 start-page: 2723 issue: 11 year: 2008 end-page: 2744 article-title: A tighter continuous time formulation for the cyclic scheduling of a mixed plant publication-title: Comput Chem Eng. – volume: 21 start-page: S703 year: 1997 end-page: S708 article-title: Design of multipurpose plants using the resource‐task network unified framework publication-title: Comput Chem Eng. – volume: 27 start-page: 1261 issue: 8-9 year: 2003 end-page: 1276 article-title: Decomposition approaches for the efficient solution of short‐term scheduling problems publication-title: Comput Chem Eng. – volume: 50 start-page: 5023 issue: 9 year: 2011 end-page: 5040 article-title: Computational study of network‐based mixed‐integer programming approaches for chemical production scheduling publication-title: Ind Eng Chem Res. – ident: e_1_2_9_5_1 doi: 10.1016/0098-1354(93)80016-G – ident: e_1_2_9_23_1 doi: 10.1002/aic.690421209 – ident: e_1_2_9_7_1 doi: 10.1016/0098-1354(96)00211-6 – ident: e_1_2_9_18_1 doi: 10.1016/j.compchemeng.2009.04.013 – ident: e_1_2_9_28_1 doi: 10.1002/aic.12261 – ident: e_1_2_9_11_1 doi: 10.1021/ie0105573 – ident: e_1_2_9_39_1 doi: 10.1021/ie950081l – ident: e_1_2_9_15_1 doi: 10.1016/j.ces.2004.12.023 – ident: e_1_2_9_6_1 – ident: e_1_2_9_8_1 doi: 10.1021/ie970927g – ident: e_1_2_9_25_1 doi: 10.1016/S0098-1354(02)00100-X – ident: e_1_2_9_37_1 doi: 10.1002/aic.14021 – ident: e_1_2_9_21_1 doi: 10.1016/j.compchemeng.2009.05.015 – ident: e_1_2_9_4_1 doi: 10.1016/0098-1354(93)80015-F – ident: e_1_2_9_3_1 doi: 10.1002/aic.13801 – ident: e_1_2_9_36_1 doi: 10.1021/ie302741b – ident: e_1_2_9_22_1 doi: 10.1016/j.compchemeng.2011.11.004 – ident: e_1_2_9_38_1 doi: 10.1021/ie101419z – ident: e_1_2_9_29_1 doi: 10.1287/ijoc.1090.0339 – ident: e_1_2_9_30_1 doi: 10.1016/j.compchemeng.2013.03.030 – ident: e_1_2_9_10_1 doi: 10.1021/ie000683r – ident: e_1_2_9_32_1 doi: 10.1016/j.compchemeng.2007.03.019 – ident: e_1_2_9_34_1 doi: 10.1016/j.compchemeng.2005.02.037 – ident: e_1_2_9_26_1 doi: 10.1016/S0098-1354(03)00051-6 – ident: e_1_2_9_13_1 doi: 10.1021/ie020923y – ident: e_1_2_9_12_1 doi: 10.1021/ie034053b – ident: e_1_2_9_17_1 doi: 10.1016/j.compchemeng.2009.03.007 – ident: e_1_2_9_31_1 doi: 10.1016/0098-1354(91)85012-J – ident: e_1_2_9_35_1 doi: 10.1016/j.compchemeng.2007.09.001 – ident: e_1_2_9_2_1 doi: 10.1016/j.compchemeng.2006.02.008 – ident: e_1_2_9_24_1 doi: 10.1021/ie950082d – ident: e_1_2_9_9_1 doi: 10.1021/ie970312j – start-page: 61 volume-title: Optimization and Logistics Challenges in the Enterprise year: 2009 ident: e_1_2_9_19_1 – volume: 52 start-page: 3832 issue: 10 ident: e_1_2_9_33_1 article-title: Reformulations and branching methods for mixed‐integer programming chemical production scheduling models publication-title: Ind Eng Chem Res. doi: 10.1021/ie303421h – ident: e_1_2_9_27_1 doi: 10.1016/j.compchemeng.2005.09.011 – ident: e_1_2_9_16_1 doi: 10.1016/S0098-1354(97)87585-0 – ident: e_1_2_9_20_1 doi: 10.1002/aic.12300 – ident: e_1_2_9_14_1 doi: 10.1021/ie0500117  | 
    
| SSID | ssj0012782 | 
    
| Score | 2.1859825 | 
    
| Snippet | Significance
Important advances in modeling chemical production scheduling problems have been made in recent years, yet effective solution methods are still... Important advances in modeling chemical production scheduling problems have been made in recent years, yet effective solution methods are still required. We...  | 
    
| SourceID | proquest crossref wiley istex  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 4461 | 
    
| SubjectTerms | Algorithms demand propagation Integer programming Mixed-integer programming Production scheduling valid inequalities  | 
    
| Title | Tightening methods for continuous-time mixed-integer programming models for chemical production scheduling | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-J6JJW0HW-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.14249 https://www.proquest.com/docview/1461367112  | 
    
| Volume | 59 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1547-5905 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0012782 issn: 0001-1541 databaseCode: ADMLS dateStart: 20120601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0001-1541 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1547-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012782 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz34FtcXRUS8dG3TbNvgSURdF_QgynoQQpImsKxW2QeIJ3-Cv9Ff4kz68IGCeCi0dELTJNP5Jp35hpAdTmOumLW-jWzmMxNkvozAWQFLqLTNqKaufNv5Rdy-Zp2b1s0EOahyYQp-iHrDDTXDfa9RwaUa7n-QhsqebmKaFibvhVHs3KnLmjoqpElaMIWDuwwwIaxYhQK6X7f8YoumcFifvgDNz3DV2ZuTOXJb9bQIM-k3xyPV1M_fSBz_-SrzZLbEod5hsXAWyITJF8nMJ3bCJZJfoeNucOPEKwpNDz2AuB5Gt_fy8cN4-PbyirXpvfvek8ngwnFPmIFXBn3du5ZYaqdsWJIT4P2sYK31wLkGY4c58cvk-uT46qjtl-UZfI3_-vwEwEKSUW6sgiMMuAHnDNQ9bUnNIpbIUGqbGC5jcJmk5IHOrKaxSjk1mWRJtEIm84fcrBIPUAnXXCmmNGdWhSpOoyA1SsnQcM10g-xVEyV0yV2OJTTuRMG6TAUMoXBD2CDbtehjQdjxk9Cum-1aQg76GOGWtET34lR04k6nG7S7Im6QjWo5iFK5h-gtIdEdIFXol5vX358kDs-O3Mna30XXyTTFohsuaGaDTI4GY7MJ0GekttwafwfroAN5 | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLQ9FPpA3UJpVFVVL1kSx5vEEheEgGULe6gWLZfKsh1bWlFCtQ8JceIn8Bv5Jcw4j0LVSlUPkRJlrDi2J_4-Z_wNwCfBUqG5c6FLXBFyGxWhSpCs4EyojSuYYT5928kw7Z_ywVnvbAl2mr0wlT5Eu-BGnuG_1-TgtCC9_Us1VE1Ml_ZpiSewwlPkKQSJvrXiUTHL8korHAkzAoW40RWK2HZb9NFstEINe_UIaj4ErH7GOViF701dq0CT8-5irrvm-jcZx_99mTV4UUPRYLcaOy9hyZav4PkDgcLXUI6Iu1taOwmqXNOzAFFuQAHuk3JxuZjd3dxSevrgYnJlC7zw8hN2GtRxXxe-JGXbqQvW-gR0v6iEawPk1zjf0bb4N3B6sD_a64d1hobQ0O--MEO8kBVMWKfxiCNhkZ-hx-c9ZXjCMxUr4zIrVIqsSSkRmcIZlupcMFsoniXrsFxelvYtBAhMhBFac20EdzrWaZ5EudVaxVYYbjrwpekpaWr5csqi8UNWwstMYhNK34Qd-Nia_qw0O_5k9Nl3d2uhpucU5Jb15Hh4KAfpYDCO-mOZdmCzGQ-y9u8ZESbSukOwivXyHfv3J8ndoz1_8u7fTT_A0_7o5FgeHw2_bsAzRjk4fAzNJizPpwv7HpHQXG_5AX8PGkkHmg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qC6IPfhevVg0i4kuuyWYvyYIvpfW8nnqItFxfZNlPONqm5T6g-OSf4N_oX-LM5sNWFMSHQEJmyWZ3J_ObzcxvAF4KlgvNvY995m3MXWJjlaGzgpZQG2-ZYaF828dJPjri4-PB8Rq8aXNhan6IbsONNCN8r0nB3YX1O79YQ9XM9ClPS9yADT4QJQX07X_uyKNSVpQ1Vzg6zAgU0pZXKGE7XdNr1miDBvbyGtS8CliDxRnehS9tX-tAk5P-aqn75utvNI7_-zL34E4DRaPdeu3chzVXPYDbVwgKH0J1SL67o72TqK41vYgQ5UYU4D6rVuerxY9v36k8fXQ2u3QWLwL9hJtHTdzXWWhJ1Xaahg0_Ad23NXFthP412jtKi38ER8O3h3ujuKnQEBv63RcXiBcKy4TzGo80EQ79M9T4cqAMz3ihUmV84YTK0WtSSiTGesNyXQrmrOJFtgnr1XnlHkOEwEQYoTXXRnCvU52XWVI6rVXqhOGmB6_bmZKmoS-nKhqnsiZeZhKHUIYh7MGLTvSi5uz4k9CrMN2dhJqfUJBbMZDTyTs5zsfjaTKayrwH2-16kI1-L8hhIq47BKvYrzCxf3-S3D3YCydb_y76HG5-2h_KDweT90_gFqMSHCGEZhvWl_OVe4pAaKmfhfX-E7m0Bx4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tightening+methods+for+continuous-time+mixed-integer+programming+models+for+chemical+production+scheduling&rft.jtitle=AIChE+journal&rft.au=Merchan%2C+Andres+F&rft.au=Velez%2C+Sara&rft.au=Maravelias%2C+Christos+T&rft.date=2013-12-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=59&rft.issue=12&rft.spage=4461&rft_id=info:doi/10.1002%2Faic.14249&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3136428771 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |