Tightening methods for continuous-time mixed-integer programming models for chemical production scheduling

Significance Important advances in modeling chemical production scheduling problems have been made in recent years, yet effective solution methods are still required. We use an algorithm that uses process network and customer demand information to formulate powerful valid inequalities that substanti...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 59; no. 12; pp. 4461 - 4467
Main Authors Merchan, Andres F., Velez, Sara, Maravelias, Christos T.
Format Journal Article
LanguageEnglish
Published New York Blackwell Publishing Ltd 01.12.2013
American Institute of Chemical Engineers
Subjects
Online AccessGet full text
ISSN0001-1541
1547-5905
DOI10.1002/aic.14249

Cover

Abstract Significance Important advances in modeling chemical production scheduling problems have been made in recent years, yet effective solution methods are still required. We use an algorithm that uses process network and customer demand information to formulate powerful valid inequalities that substantially improve the solution process. In particular, we extend the ideas recently developed for discrete‐time formulations to continuous‐time models and show that these tightening methods lead to a significant decrease in computational time, up to more than three orders of magnitude for some instances. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4461–4467, 2013
AbstractList Important advances in modeling chemical production scheduling problems have been made in recent years, yet effective solution methods are still required. We use an algorithm that uses process network and customer demand information to formulate powerful valid inequalities that substantially improve the solution process. In particular, we extend the ideas recently developed for discrete-time formulations to continuous-time models and show that these tightening methods lead to a significant decrease in computational time, up to more than three orders of magnitude for some instances. [PUBLICATION ABSTRACT]
Important advances in modeling chemical production scheduling problems have been made in recent years, yet effective solution methods are still required. We use an algorithm that uses process network and customer demand information to formulate powerful valid inequalities that substantially improve the solution process. In particular, we extend the ideas recently developed for discrete‐time formulations to continuous‐time models and show that these tightening methods lead to a significant decrease in computational time, up to more than three orders of magnitude for some instances. © 2013 American Institute of Chemical Engineers AIChE J , 59: 4461–4467, 2013
Significance Important advances in modeling chemical production scheduling problems have been made in recent years, yet effective solution methods are still required. We use an algorithm that uses process network and customer demand information to formulate powerful valid inequalities that substantially improve the solution process. In particular, we extend the ideas recently developed for discrete‐time formulations to continuous‐time models and show that these tightening methods lead to a significant decrease in computational time, up to more than three orders of magnitude for some instances. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4461–4467, 2013
Author Velez, Sara
Merchan, Andres F.
Maravelias, Christos T.
Author_xml – sequence: 1
  givenname: Andres F.
  surname: Merchan
  fullname: Merchan, Andres F.
  organization: Dept. of Chemical and Biological Engineering, University of Wisconsin-Madison, Engineering Dr., WI, 141553706, Madison
– sequence: 2
  givenname: Sara
  surname: Velez
  fullname: Velez, Sara
  organization: Dept. of Chemical and Biological Engineering, University of Wisconsin-Madison, Engineering Dr., WI, 141553706, Madison
– sequence: 3
  givenname: Christos T.
  surname: Maravelias
  fullname: Maravelias, Christos T.
  email: maravelias@wisc.edu
  organization: Dept. of Chemical and Biological Engineering, University of Wisconsin-Madison, Engineering Dr., WI, 141553706, Madison
BookMark eNp1kMFOAyEQhompibV68A028eRhFVh2KUfTqLUxetH0SJCdbam7oMBG-_ZSWz0YPRDC8H0zk_8QDayzgNAJwecEY3qhjD4njDKxh4akZDwvBS4HaIgxJnkqkAN0GMIqvSgf0yFaPZrFMoI1dpF1EJeuDlnjfKadjcb2rg95NB1knfmAOjc2wgJ89urdwquu-7JcDe1OWkJntGo3_3Wvo3E2C6lY920ij9B-o9oAx7t7hJ6urx4n0_zu4eZ2cnmX64JTkXNSEl5TAc1zOgQLIIxxUYxLpVnBuCJKNxyEqipcKiWwrhtNq-exoFArxosROt32TVu89RCiXLne2zRSElaRouKE0ERdbCntXQgeGqlNVJuVo1emlQTLTaAyBSq_Ak3G2S_j1ZtO-fWf7K77u2lh_T8oL28n30a-NUyI8PFjKP8iK17wUs7vb-Ssms3meDqXVfEJ9QqYNw
CODEN AICEAC
CitedBy_id crossref_primary_10_1021_ie404274b
crossref_primary_10_1021_acs_iecr_4c01934
crossref_primary_10_1016_j_compchemeng_2014_03_003
crossref_primary_10_1007_s10898_020_00882_3
crossref_primary_10_1021_acs_iecr_5b00600
crossref_primary_10_1016_j_compchemeng_2014_05_024
crossref_primary_10_1016_j_compchemeng_2016_02_013
crossref_primary_10_1016_j_compchemeng_2024_108700
crossref_primary_10_1002_aic_16926
crossref_primary_10_1016_j_compchemeng_2016_04_034
crossref_primary_10_1016_j_compchemeng_2017_12_003
crossref_primary_10_1016_j_compchemeng_2015_10_003
crossref_primary_10_1002_aic_15553
crossref_primary_10_1016_j_ces_2015_05_021
crossref_primary_10_1016_j_compchemeng_2024_108609
crossref_primary_10_1146_annurev_chembioeng_060713_035859
Cites_doi 10.1016/0098-1354(93)80016-G
10.1002/aic.690421209
10.1016/0098-1354(96)00211-6
10.1016/j.compchemeng.2009.04.013
10.1002/aic.12261
10.1021/ie0105573
10.1021/ie950081l
10.1016/j.ces.2004.12.023
10.1021/ie970927g
10.1016/S0098-1354(02)00100-X
10.1002/aic.14021
10.1016/j.compchemeng.2009.05.015
10.1016/0098-1354(93)80015-F
10.1002/aic.13801
10.1021/ie302741b
10.1016/j.compchemeng.2011.11.004
10.1021/ie101419z
10.1287/ijoc.1090.0339
10.1016/j.compchemeng.2013.03.030
10.1021/ie000683r
10.1016/j.compchemeng.2007.03.019
10.1016/j.compchemeng.2005.02.037
10.1016/S0098-1354(03)00051-6
10.1021/ie020923y
10.1021/ie034053b
10.1016/j.compchemeng.2009.03.007
10.1016/0098-1354(91)85012-J
10.1016/j.compchemeng.2007.09.001
10.1016/j.compchemeng.2006.02.008
10.1021/ie950082d
10.1021/ie970312j
10.1021/ie303421h
10.1016/j.compchemeng.2005.09.011
10.1016/S0098-1354(97)87585-0
10.1002/aic.12300
10.1021/ie0500117
ContentType Journal Article
Copyright 2013 American Institute of Chemical Engineers
Copyright American Institute of Chemical Engineers Dec 2013
Copyright_xml – notice: 2013 American Institute of Chemical Engineers
– notice: Copyright American Institute of Chemical Engineers Dec 2013
DBID BSCLL
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.14249
DatabaseName Istex
CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 4467
ExternalDocumentID 3136428771
10_1002_aic_14249
AIC14249
ark_67375_WNG_J6JJW0HW_6
Genre article
Feature
GrantInformation_xml – fundername: National Science Foundation
  funderid: CBET‐1066206
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHQN
AAIHA
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJIA
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PRG
PROAC
PTHSS
PUEGO
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
3V.
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RBB
RWI
UAO
WRC
WSB
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c3729-71517d29efb9ef109e14479385ac4347a1acf7e9a6605aa90cdfc26b892eda473
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Fri Jul 25 11:02:39 EDT 2025
Thu Oct 09 00:40:32 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
Wed Jan 22 16:58:29 EST 2025
Sun Sep 21 06:18:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3729-71517d29efb9ef109e14479385ac4347a1acf7e9a6605aa90cdfc26b892eda473
Notes istex:F02C46820E4AAC86F7B57B2968F0E26194A95C1A
ark:/67375/WNG-J6JJW0HW-6
National Science Foundation - No. CBET-1066206
ArticleID:AIC14249
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1461367112
PQPubID 7879
PageCount 7
ParticipantIDs proquest_journals_1461367112
crossref_citationtrail_10_1002_aic_14249
crossref_primary_10_1002_aic_14249
wiley_primary_10_1002_aic_14249_AIC14249
istex_primary_ark_67375_WNG_J6JJW0HW_6
PublicationCentury 2000
PublicationDate December 2013
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: December 2013
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2013
Publisher Blackwell Publishing Ltd
American Institute of Chemical Engineers
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Institute of Chemical Engineers
References Ierapetritou MG, Floudas CA. Effective continuous-time formulation for short-term scheduling. 1. Multipurpose batch processes. Ind Eng Chem Res. 1998;37(11):4341-4359.
Giannelos NF, Georgiadis MC. A novel event-driven formulation for short-term scheduling of multipurpose continuous processes. Ind Eng Chem Res. 2002;41(10):2431-2439.
Sundaramoorthy A, Karimi IA. A simpler better slot-based continuous-time formulation for short-term scheduling in multipurpose batch plants. Chem Eng Sci. 2005;60(10):2679-2702.
Mockus L, Reklaitis GV. Continuous time representation approach to batch and continuous process scheduling. 2. Computational issues. Ind Eng Chem Res. 1999;38(1):204-210.
Harjunkoski I, Grossmann IE. Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods. Comput Chem Eng. 2002;26(11):1533-1552.
Papageorgiou LG, Pantelides CC. Optimal campaign planning scheduling of multipurpose batch semicontinuous plants.1. Mathematical formulation. Ind Eng Chem Res. 1996;35(2):488-509.
Pochet Y, Warichet F. A tighter continuous time formulation for the cyclic scheduling of a mixed plant. Comput Chem Eng. 2008;32(11):2723-2744.
BarbosaPovoa APFD, Pantelides CC. Design of multipurpose plants using the resource-task network unified framework. Comput Chem Eng. 1997;21:S703-S708.
Gimenez DM, Henning GP, Maravelias CT. A novel network-based continuous-time representation for process scheduling: Part I. Main concepts and mathematical formulation. Comput Chem Eng. 2009;33(9):1511-1528.
Maravelias CT, Papalamprou K. Polyhedral results for discrete-time production planning MIP formulations for continuous processes. Comput Chem Eng. 2009;33(11):1890-1904.
Castro P, Barbosa-Povoa APFD, Matos H. An improved RTN continuous-time formulation for the short-term scheduling of multipurpose batch plants. Ind Eng Chem Res. 2001;40(9):2059-2068.
Maravelias CT, Grossmann IE. New general continuous-time state-task network formulation for short-term scheduling of multipurpose batch plants. Ind Eng Chem Res. 2003;42(13):3056-3074.
Maravelias CT. On the combinatorial structure of discrete-time MIP formulations for chemical production scheduling. Comput Chem Eng. 2012;38:204-212.
Velez S, Sundaramoorthy A, Maravelias CT. Valid inequalities based on demand propagation for chemical production scheduling MIP models. AIChE J. 2013;59(3):872-887.
Bassett MH, Pekny JF, Reklaitis GV. Decomposition techniques for the solution of large-scale scheduling problems. AIChE J. 1996;42(12):3373-3387.
Maravelias CT. Mixed-time representation for state-task network models. Ind Eng Chem Res. 2005;44(24):9129-9145.
Sundaramoorthy A, Maravelias CT. A general framework for process scheduling. AIChE J. 2011;57(3):695-710.
Velez S, Maravelias CT. A branch-and-bound algorithm for the solution of chemical production scheduling MIP models using parallel computing. Comput Chem Eng. 2013;55(0):28-39.
Kondili E, Pantelides CC, Sargent RWH. A general algorithm for short-term scheduling of batch-operations.1. Milp Formulation. Comput Chem Eng. 1993;17(2):211-227.
Maravelias CT. A decomposition framework for the scheduling of single- and multi-stage processes. Comput Chem Eng. 2006;30(3):407-420.
Shah N, Pantelides CC, Sargent RWH. A general algorithm for short-term scheduling of batch-operations.2. Computational issues. Comput Chem Eng. 1993;17(2):229-244.
Maravelias CT, Grossmann IE. Minimization of the makespan with a discrete-time state-task network formulation. Ind Eng Chem Res. 2003;42(24):6252-6257.
Sahinidis NV, Grossmann IE. Reformulation of multiperiod MILP models for planning and scheduling of chemical processes. Comput Chem Eng. 1991;15(4):255-272.
Papageorgiou LG, Pantelides CC. Optimal campaign planning scheduling of multipurpose batch semicontinuous plants.2. A mathematical decomposition approach. Ind Eng Chem Res. 1996;35(2):510-529.
Schilling G, Pantelides CC. A simple continuous-time process scheduling formulation and a novel solution algorithm. Comput Chem Eng. 1996;20:S1221-S1226.
Velez S, Maravelias CT. Reformulations and branching methods for mixed-integer programming chemical production scheduling models. Ind Eng Chem Res. 2013;52(10):3832-3841.
Velez S, Maravelias CT. Mixed-integer programming model and tightening methods for scheduling in general chemical production environments. Ind Eng Chem Res. 2013;52(9):3407-3423.
Castro PM, Harjunkoski I, Grossmann IE. Greedy algorithm for scheduling batch plants with sequence-dependent changeovers. AIChE J. 2011;57(2):373-387.
Wu D, Ierapetritou MG. Decomposition approaches for the efficient solution of short-term scheduling problems. Comput Chem Eng. 2003;27(8-9):1261-1276.
Sundaramoorthy A, Maravelias CT. Computational study of network-based mixed-integer programming approaches for chemical production scheduling. Ind Eng Chem Res. 2011;50(9):5023-5040.
Maravelias CT. General framework and modeling approach classification for chemical production scheduling. AIChE J. 2012;58(6):1812-1828.
Ferris MC, Maravelias CT, Sundaramoorthy A. Simultaneous batching and scheduling using dynamic decomposition on a grid. INFORMS J Comput Sum 2009;21(3):398-410.
Burkard RE, Hatzl J. Review, extensions and computational comparison of MILP formulations for scheduling of batch processes. Comput Chem Eng. 2005;29(8):1752-1769.
Gimenez DM, Henning GP, Maravelias CT. A novel network-based continuous-time representation for process scheduling: Part II. General framework. Comput Chem Eng. 2009;33(10):1644-1660.
Janak SL, Floudas CA. Improving unit-specific event based continuous-time approaches for batch processes: Integrality gap and task splitting. Comput Chem Eng. 2008;32(4-5):913-955.
Mendez CA, Cerda J, Grossmann IE, Harjunkoski I, Fahl M. State-of-the-art review of optimization methods for short-term scheduling of batch processes. Comput Chem Eng. 2006;30(6-7):913-946.
2006; 30
2009; 21
1991; 15
1997; 21
2009
1994
2011; 57
2008; 32
2005; 60
2012; 38
2012; 58
1996; 35
2005; 29
2001; 40
2005; 44
52
1998; 37
2009; 33
2002; 26
2013; 59
1993; 17
2002; 41
2013; 55
1999; 38
2013; 52
2011; 50
2003; 27
2003; 42
1996; 20
1996; 42
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
Velez S (e_1_2_9_33_1); 52
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Kelly JD (e_1_2_9_19_1) 2009
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – reference: Gimenez DM, Henning GP, Maravelias CT. A novel network-based continuous-time representation for process scheduling: Part II. General framework. Comput Chem Eng. 2009;33(10):1644-1660.
– reference: Maravelias CT, Papalamprou K. Polyhedral results for discrete-time production planning MIP formulations for continuous processes. Comput Chem Eng. 2009;33(11):1890-1904.
– reference: Maravelias CT. A decomposition framework for the scheduling of single- and multi-stage processes. Comput Chem Eng. 2006;30(3):407-420.
– reference: Velez S, Maravelias CT. Mixed-integer programming model and tightening methods for scheduling in general chemical production environments. Ind Eng Chem Res. 2013;52(9):3407-3423.
– reference: Velez S, Sundaramoorthy A, Maravelias CT. Valid inequalities based on demand propagation for chemical production scheduling MIP models. AIChE J. 2013;59(3):872-887.
– reference: Velez S, Maravelias CT. Reformulations and branching methods for mixed-integer programming chemical production scheduling models. Ind Eng Chem Res. 2013;52(10):3832-3841.
– reference: Ferris MC, Maravelias CT, Sundaramoorthy A. Simultaneous batching and scheduling using dynamic decomposition on a grid. INFORMS J Comput Sum 2009;21(3):398-410.
– reference: Harjunkoski I, Grossmann IE. Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods. Comput Chem Eng. 2002;26(11):1533-1552.
– reference: Janak SL, Floudas CA. Improving unit-specific event based continuous-time approaches for batch processes: Integrality gap and task splitting. Comput Chem Eng. 2008;32(4-5):913-955.
– reference: BarbosaPovoa APFD, Pantelides CC. Design of multipurpose plants using the resource-task network unified framework. Comput Chem Eng. 1997;21:S703-S708.
– reference: Gimenez DM, Henning GP, Maravelias CT. A novel network-based continuous-time representation for process scheduling: Part I. Main concepts and mathematical formulation. Comput Chem Eng. 2009;33(9):1511-1528.
– reference: Sundaramoorthy A, Karimi IA. A simpler better slot-based continuous-time formulation for short-term scheduling in multipurpose batch plants. Chem Eng Sci. 2005;60(10):2679-2702.
– reference: Schilling G, Pantelides CC. A simple continuous-time process scheduling formulation and a novel solution algorithm. Comput Chem Eng. 1996;20:S1221-S1226.
– reference: Burkard RE, Hatzl J. Review, extensions and computational comparison of MILP formulations for scheduling of batch processes. Comput Chem Eng. 2005;29(8):1752-1769.
– reference: Papageorgiou LG, Pantelides CC. Optimal campaign planning scheduling of multipurpose batch semicontinuous plants.1. Mathematical formulation. Ind Eng Chem Res. 1996;35(2):488-509.
– reference: Maravelias CT. General framework and modeling approach classification for chemical production scheduling. AIChE J. 2012;58(6):1812-1828.
– reference: Maravelias CT. Mixed-time representation for state-task network models. Ind Eng Chem Res. 2005;44(24):9129-9145.
– reference: Castro P, Barbosa-Povoa APFD, Matos H. An improved RTN continuous-time formulation for the short-term scheduling of multipurpose batch plants. Ind Eng Chem Res. 2001;40(9):2059-2068.
– reference: Sundaramoorthy A, Maravelias CT. Computational study of network-based mixed-integer programming approaches for chemical production scheduling. Ind Eng Chem Res. 2011;50(9):5023-5040.
– reference: Wu D, Ierapetritou MG. Decomposition approaches for the efficient solution of short-term scheduling problems. Comput Chem Eng. 2003;27(8-9):1261-1276.
– reference: Maravelias CT, Grossmann IE. New general continuous-time state-task network formulation for short-term scheduling of multipurpose batch plants. Ind Eng Chem Res. 2003;42(13):3056-3074.
– reference: Papageorgiou LG, Pantelides CC. Optimal campaign planning scheduling of multipurpose batch semicontinuous plants.2. A mathematical decomposition approach. Ind Eng Chem Res. 1996;35(2):510-529.
– reference: Shah N, Pantelides CC, Sargent RWH. A general algorithm for short-term scheduling of batch-operations.2. Computational issues. Comput Chem Eng. 1993;17(2):229-244.
– reference: Sundaramoorthy A, Maravelias CT. A general framework for process scheduling. AIChE J. 2011;57(3):695-710.
– reference: Mendez CA, Cerda J, Grossmann IE, Harjunkoski I, Fahl M. State-of-the-art review of optimization methods for short-term scheduling of batch processes. Comput Chem Eng. 2006;30(6-7):913-946.
– reference: Castro PM, Harjunkoski I, Grossmann IE. Greedy algorithm for scheduling batch plants with sequence-dependent changeovers. AIChE J. 2011;57(2):373-387.
– reference: Kondili E, Pantelides CC, Sargent RWH. A general algorithm for short-term scheduling of batch-operations.1. Milp Formulation. Comput Chem Eng. 1993;17(2):211-227.
– reference: Maravelias CT. On the combinatorial structure of discrete-time MIP formulations for chemical production scheduling. Comput Chem Eng. 2012;38:204-212.
– reference: Sahinidis NV, Grossmann IE. Reformulation of multiperiod MILP models for planning and scheduling of chemical processes. Comput Chem Eng. 1991;15(4):255-272.
– reference: Pochet Y, Warichet F. A tighter continuous time formulation for the cyclic scheduling of a mixed plant. Comput Chem Eng. 2008;32(11):2723-2744.
– reference: Ierapetritou MG, Floudas CA. Effective continuous-time formulation for short-term scheduling. 1. Multipurpose batch processes. Ind Eng Chem Res. 1998;37(11):4341-4359.
– reference: Mockus L, Reklaitis GV. Continuous time representation approach to batch and continuous process scheduling. 2. Computational issues. Ind Eng Chem Res. 1999;38(1):204-210.
– reference: Bassett MH, Pekny JF, Reklaitis GV. Decomposition techniques for the solution of large-scale scheduling problems. AIChE J. 1996;42(12):3373-3387.
– reference: Maravelias CT, Grossmann IE. Minimization of the makespan with a discrete-time state-task network formulation. Ind Eng Chem Res. 2003;42(24):6252-6257.
– reference: Velez S, Maravelias CT. A branch-and-bound algorithm for the solution of chemical production scheduling MIP models using parallel computing. Comput Chem Eng. 2013;55(0):28-39.
– reference: Giannelos NF, Georgiadis MC. A novel event-driven formulation for short-term scheduling of multipurpose continuous processes. Ind Eng Chem Res. 2002;41(10):2431-2439.
– volume: 38
  start-page: 204
  year: 2012
  end-page: 212
  article-title: On the combinatorial structure of discrete‐time MIP formulations for chemical production scheduling
  publication-title: Comput Chem Eng.
– volume: 52
  start-page: 3407
  issue: 9
  year: 2013
  end-page: 3423
  article-title: Mixed‐integer programming model and tightening methods for scheduling in general chemical production environments
  publication-title: Ind Eng Chem Res.
– volume: 42
  start-page: 6252
  issue: 24
  year: 2003
  end-page: 6257
  article-title: Minimization of the makespan with a discrete‐time state‐task network formulation
  publication-title: Ind Eng Chem Res.
– volume: 21
  start-page: 398
  issue: 3
  year: 2009
  end-page: 410
  article-title: Simultaneous batching and scheduling using dynamic decomposition on a grid
  publication-title: INFORMS J Comput Sum
– volume: 17
  start-page: 229
  issue: 2
  year: 1993
  end-page: 244
  article-title: A general algorithm for short‐term scheduling of batch‐operations.2. Computational issues
  publication-title: Comput Chem Eng.
– volume: 42
  start-page: 3373
  issue: 12
  year: 1996
  end-page: 3387
  article-title: Decomposition techniques for the solution of large‐scale scheduling problems
  publication-title: AIChE J.
– volume: 41
  start-page: 2431
  issue: 10
  year: 2002
  end-page: 2439
  article-title: A novel event‐driven formulation for short‐term scheduling of multipurpose continuous processes
  publication-title: Ind Eng Chem Res.
– volume: 33
  start-page: 1890
  issue: 11
  year: 2009
  end-page: 1904
  article-title: Polyhedral results for discrete‐time production planning MIP formulations for continuous processes
  publication-title: Comput Chem Eng.
– volume: 44
  start-page: 9129
  issue: 24
  year: 2005
  end-page: 9145
  article-title: Mixed‐time representation for state‐task network models
  publication-title: Ind Eng Chem Res.
– volume: 57
  start-page: 695
  issue: 3
  year: 2011
  end-page: 710
  article-title: A general framework for process scheduling
  publication-title: AIChE J.
– volume: 33
  start-page: 1511
  issue: 9
  year: 2009
  end-page: 1528
  article-title: A novel network‐based continuous‐time representation for process scheduling: Part I. Main concepts and mathematical formulation
  publication-title: Comput Chem Eng.
– volume: 17
  start-page: 211
  issue: 2
  year: 1993
  end-page: 227
  article-title: A general algorithm for short‐term scheduling of batch‐operations.1. Milp Formulation
  publication-title: Comput Chem Eng.
– year: 1994
– volume: 40
  start-page: 2059
  issue: 9
  year: 2001
  end-page: 2068
  article-title: An improved RTN continuous‐time formulation for the short‐term scheduling of multipurpose batch plants
  publication-title: Ind Eng Chem Res.
– volume: 26
  start-page: 1533
  issue: 11
  year: 2002
  end-page: 1552
  article-title: Decomposition techniques for multistage scheduling problems using mixed‐integer and constraint programming methods
  publication-title: Comput Chem Eng.
– volume: 15
  start-page: 255
  issue: 4
  year: 1991
  end-page: 272
  article-title: Reformulation of multiperiod MILP models for planning and scheduling of chemical processes
  publication-title: Comput Chem Eng.
– volume: 37
  start-page: 4341
  issue: 11
  year: 1998
  end-page: 4359
  article-title: Effective continuous‐time formulation for short‐term scheduling. 1. Multipurpose batch processes
  publication-title: Ind Eng Chem Res.
– volume: 57
  start-page: 373
  issue: 2
  year: 2011
  end-page: 387
  article-title: Greedy algorithm for scheduling batch plants with sequence‐dependent changeovers
  publication-title: AIChE J.
– volume: 42
  start-page: 3056
  issue: 13
  year: 2003
  end-page: 3074
  article-title: New general continuous‐time state‐task network formulation for short‐term scheduling of multipurpose batch plants
  publication-title: Ind Eng Chem Res.
– volume: 32
  start-page: 913
  issue: 4-5
  year: 2008
  end-page: 955
  article-title: Improving unit‐specific event based continuous‐time approaches for batch processes: Integrality gap and task splitting
  publication-title: Comput Chem Eng.
– volume: 35
  start-page: 510
  issue: 2
  year: 1996
  end-page: 529
  article-title: Optimal campaign planning scheduling of multipurpose batch semicontinuous plants.2. A mathematical decomposition approach
  publication-title: Ind Eng Chem Res.
– volume: 59
  start-page: 872
  issue: 3
  year: 2013
  end-page: 887
  article-title: Valid inequalities based on demand propagation for chemical production scheduling MIP models
  publication-title: AIChE J.
– volume: 20
  start-page: S1221
  year: 1996
  end-page: S1226
  article-title: A simple continuous‐time process scheduling formulation and a novel solution algorithm
  publication-title: Comput Chem Eng.
– volume: 60
  start-page: 2679
  issue: 10
  year: 2005
  end-page: 2702
  article-title: A simpler better slot‐based continuous‐time formulation for short‐term scheduling in multipurpose batch plants
  publication-title: Chem Eng Sci.
– volume: 38
  start-page: 204
  issue: 1
  year: 1999
  end-page: 210
  article-title: Continuous time representation approach to batch and continuous process scheduling. 2. Computational issues
  publication-title: Ind Eng Chem Res.
– start-page: 61
  year: 2009
  end-page: 95
– volume: 33
  start-page: 1644
  issue: 10
  year: 2009
  end-page: 1660
  article-title: A novel network‐based continuous‐time representation for process scheduling: Part II. General framework
  publication-title: Comput Chem Eng.
– volume: 29
  start-page: 1752
  issue: 8
  year: 2005
  end-page: 1769
  article-title: Review, extensions and computational comparison of MILP formulations for scheduling of batch processes
  publication-title: Comput Chem Eng.
– volume: 58
  start-page: 1812
  issue: 6
  year: 2012
  end-page: 1828
  article-title: General framework and modeling approach classification for chemical production scheduling
  publication-title: AIChE J.
– volume: 30
  start-page: 407
  issue: 3
  year: 2006
  end-page: 420
  article-title: A decomposition framework for the scheduling of single‐ and multi‐stage processes
  publication-title: Comput Chem Eng.
– volume: 55
  start-page: 28
  issue: 0
  year: 2013
  end-page: 39
  article-title: A branch‐and‐bound algorithm for the solution of chemical production scheduling MIP models using parallel computing
  publication-title: Comput Chem Eng.
– volume: 35
  start-page: 488
  issue: 2
  year: 1996
  end-page: 509
  article-title: Optimal campaign planning scheduling of multipurpose batch semicontinuous plants.1. Mathematical formulation
  publication-title: Ind Eng Chem Res.
– volume: 52
  start-page: 3832
  issue: 10
  end-page: 3841
  article-title: Reformulations and branching methods for mixed‐integer programming chemical production scheduling models
  publication-title: Ind Eng Chem Res.
– volume: 30
  start-page: 913
  issue: 6-7
  year: 2006
  end-page: 946
  article-title: State‐of‐the‐art review of optimization methods for short‐term scheduling of batch processes
  publication-title: Comput Chem Eng.
– volume: 32
  start-page: 2723
  issue: 11
  year: 2008
  end-page: 2744
  article-title: A tighter continuous time formulation for the cyclic scheduling of a mixed plant
  publication-title: Comput Chem Eng.
– volume: 21
  start-page: S703
  year: 1997
  end-page: S708
  article-title: Design of multipurpose plants using the resource‐task network unified framework
  publication-title: Comput Chem Eng.
– volume: 27
  start-page: 1261
  issue: 8-9
  year: 2003
  end-page: 1276
  article-title: Decomposition approaches for the efficient solution of short‐term scheduling problems
  publication-title: Comput Chem Eng.
– volume: 50
  start-page: 5023
  issue: 9
  year: 2011
  end-page: 5040
  article-title: Computational study of network‐based mixed‐integer programming approaches for chemical production scheduling
  publication-title: Ind Eng Chem Res.
– ident: e_1_2_9_5_1
  doi: 10.1016/0098-1354(93)80016-G
– ident: e_1_2_9_23_1
  doi: 10.1002/aic.690421209
– ident: e_1_2_9_7_1
  doi: 10.1016/0098-1354(96)00211-6
– ident: e_1_2_9_18_1
  doi: 10.1016/j.compchemeng.2009.04.013
– ident: e_1_2_9_28_1
  doi: 10.1002/aic.12261
– ident: e_1_2_9_11_1
  doi: 10.1021/ie0105573
– ident: e_1_2_9_39_1
  doi: 10.1021/ie950081l
– ident: e_1_2_9_15_1
  doi: 10.1016/j.ces.2004.12.023
– ident: e_1_2_9_6_1
– ident: e_1_2_9_8_1
  doi: 10.1021/ie970927g
– ident: e_1_2_9_25_1
  doi: 10.1016/S0098-1354(02)00100-X
– ident: e_1_2_9_37_1
  doi: 10.1002/aic.14021
– ident: e_1_2_9_21_1
  doi: 10.1016/j.compchemeng.2009.05.015
– ident: e_1_2_9_4_1
  doi: 10.1016/0098-1354(93)80015-F
– ident: e_1_2_9_3_1
  doi: 10.1002/aic.13801
– ident: e_1_2_9_36_1
  doi: 10.1021/ie302741b
– ident: e_1_2_9_22_1
  doi: 10.1016/j.compchemeng.2011.11.004
– ident: e_1_2_9_38_1
  doi: 10.1021/ie101419z
– ident: e_1_2_9_29_1
  doi: 10.1287/ijoc.1090.0339
– ident: e_1_2_9_30_1
  doi: 10.1016/j.compchemeng.2013.03.030
– ident: e_1_2_9_10_1
  doi: 10.1021/ie000683r
– ident: e_1_2_9_32_1
  doi: 10.1016/j.compchemeng.2007.03.019
– ident: e_1_2_9_34_1
  doi: 10.1016/j.compchemeng.2005.02.037
– ident: e_1_2_9_26_1
  doi: 10.1016/S0098-1354(03)00051-6
– ident: e_1_2_9_13_1
  doi: 10.1021/ie020923y
– ident: e_1_2_9_12_1
  doi: 10.1021/ie034053b
– ident: e_1_2_9_17_1
  doi: 10.1016/j.compchemeng.2009.03.007
– ident: e_1_2_9_31_1
  doi: 10.1016/0098-1354(91)85012-J
– ident: e_1_2_9_35_1
  doi: 10.1016/j.compchemeng.2007.09.001
– ident: e_1_2_9_2_1
  doi: 10.1016/j.compchemeng.2006.02.008
– ident: e_1_2_9_24_1
  doi: 10.1021/ie950082d
– ident: e_1_2_9_9_1
  doi: 10.1021/ie970312j
– start-page: 61
  volume-title: Optimization and Logistics Challenges in the Enterprise
  year: 2009
  ident: e_1_2_9_19_1
– volume: 52
  start-page: 3832
  issue: 10
  ident: e_1_2_9_33_1
  article-title: Reformulations and branching methods for mixed‐integer programming chemical production scheduling models
  publication-title: Ind Eng Chem Res.
  doi: 10.1021/ie303421h
– ident: e_1_2_9_27_1
  doi: 10.1016/j.compchemeng.2005.09.011
– ident: e_1_2_9_16_1
  doi: 10.1016/S0098-1354(97)87585-0
– ident: e_1_2_9_20_1
  doi: 10.1002/aic.12300
– ident: e_1_2_9_14_1
  doi: 10.1021/ie0500117
SSID ssj0012782
Score 2.1859825
Snippet Significance Important advances in modeling chemical production scheduling problems have been made in recent years, yet effective solution methods are still...
Important advances in modeling chemical production scheduling problems have been made in recent years, yet effective solution methods are still required. We...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4461
SubjectTerms Algorithms
demand propagation
Integer programming
Mixed-integer programming
Production scheduling
valid inequalities
Title Tightening methods for continuous-time mixed-integer programming models for chemical production scheduling
URI https://api.istex.fr/ark:/67375/WNG-J6JJW0HW-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.14249
https://www.proquest.com/docview/1461367112
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: ADMLS
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0001-1541
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz34FtcXRUS8dG3TbNvgSURdF_QgynoQQpImsKxW2QeIJ3-Cv9Ff4kz68IGCeCi0dELTJNP5Jp35hpAdTmOumLW-jWzmMxNkvozAWQFLqLTNqKaufNv5Rdy-Zp2b1s0EOahyYQp-iHrDDTXDfa9RwaUa7n-QhsqebmKaFibvhVHs3KnLmjoqpElaMIWDuwwwIaxYhQK6X7f8YoumcFifvgDNz3DV2ZuTOXJb9bQIM-k3xyPV1M_fSBz_-SrzZLbEod5hsXAWyITJF8nMJ3bCJZJfoeNucOPEKwpNDz2AuB5Gt_fy8cN4-PbyirXpvfvek8ngwnFPmIFXBn3du5ZYaqdsWJIT4P2sYK31wLkGY4c58cvk-uT46qjtl-UZfI3_-vwEwEKSUW6sgiMMuAHnDNQ9bUnNIpbIUGqbGC5jcJmk5IHOrKaxSjk1mWRJtEIm84fcrBIPUAnXXCmmNGdWhSpOoyA1SsnQcM10g-xVEyV0yV2OJTTuRMG6TAUMoXBD2CDbtehjQdjxk9Cum-1aQg76GOGWtET34lR04k6nG7S7Im6QjWo5iFK5h-gtIdEdIFXol5vX358kDs-O3Mna30XXyTTFohsuaGaDTI4GY7MJ0GekttwafwfroAN5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLQ9FPpA3UJpVFVVL1kSx5vEEheEgGULe6gWLZfKsh1bWlFCtQ8JceIn8Bv5Jcw4j0LVSlUPkRJlrDi2J_4-Z_wNwCfBUqG5c6FLXBFyGxWhSpCs4EyojSuYYT5928kw7Z_ywVnvbAl2mr0wlT5Eu-BGnuG_1-TgtCC9_Us1VE1Ml_ZpiSewwlPkKQSJvrXiUTHL8korHAkzAoW40RWK2HZb9NFstEINe_UIaj4ErH7GOViF701dq0CT8-5irrvm-jcZx_99mTV4UUPRYLcaOy9hyZav4PkDgcLXUI6Iu1taOwmqXNOzAFFuQAHuk3JxuZjd3dxSevrgYnJlC7zw8hN2GtRxXxe-JGXbqQvW-gR0v6iEawPk1zjf0bb4N3B6sD_a64d1hobQ0O--MEO8kBVMWKfxiCNhkZ-hx-c9ZXjCMxUr4zIrVIqsSSkRmcIZlupcMFsoniXrsFxelvYtBAhMhBFac20EdzrWaZ5EudVaxVYYbjrwpekpaWr5csqi8UNWwstMYhNK34Qd-Nia_qw0O_5k9Nl3d2uhpucU5Jb15Hh4KAfpYDCO-mOZdmCzGQ-y9u8ZESbSukOwivXyHfv3J8ndoz1_8u7fTT_A0_7o5FgeHw2_bsAzRjk4fAzNJizPpwv7HpHQXG_5AX8PGkkHmg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qC6IPfhevVg0i4kuuyWYvyYIvpfW8nnqItFxfZNlPONqm5T6g-OSf4N_oX-LM5sNWFMSHQEJmyWZ3J_ObzcxvAF4KlgvNvY995m3MXWJjlaGzgpZQG2-ZYaF828dJPjri4-PB8Rq8aXNhan6IbsONNCN8r0nB3YX1O79YQ9XM9ClPS9yADT4QJQX07X_uyKNSVpQ1Vzg6zAgU0pZXKGE7XdNr1miDBvbyGtS8CliDxRnehS9tX-tAk5P-aqn75utvNI7_-zL34E4DRaPdeu3chzVXPYDbVwgKH0J1SL67o72TqK41vYgQ5UYU4D6rVuerxY9v36k8fXQ2u3QWLwL9hJtHTdzXWWhJ1Xaahg0_Ad23NXFthP412jtKi38ER8O3h3ujuKnQEBv63RcXiBcKy4TzGo80EQ79M9T4cqAMz3ihUmV84YTK0WtSSiTGesNyXQrmrOJFtgnr1XnlHkOEwEQYoTXXRnCvU52XWVI6rVXqhOGmB6_bmZKmoS-nKhqnsiZeZhKHUIYh7MGLTvSi5uz4k9CrMN2dhJqfUJBbMZDTyTs5zsfjaTKayrwH2-16kI1-L8hhIq47BKvYrzCxf3-S3D3YCydb_y76HG5-2h_KDweT90_gFqMSHCGEZhvWl_OVe4pAaKmfhfX-E7m0Bx4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tightening+methods+for+continuous-time+mixed-integer+programming+models+for+chemical+production+scheduling&rft.jtitle=AIChE+journal&rft.au=Merchan%2C+Andres+F&rft.au=Velez%2C+Sara&rft.au=Maravelias%2C+Christos+T&rft.date=2013-12-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=59&rft.issue=12&rft.spage=4461&rft_id=info:doi/10.1002%2Faic.14249&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3136428771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon