Single‐Cell Membrane Potential Stimulation and Recording by an Electrolyte‐Gated Organic Field‐Effect Transistor
The reliable stimulation and recording of electrical activity in single cells by means of organic bio‐electronics will be an important milestone in developing new low‐cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single‐cell membrane pot...
Saved in:
Published in | Advanced electronic materials Vol. 11; no. 2 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
John Wiley & Sons, Inc
01.02.2025
Wiley-VCH |
Subjects | |
Online Access | Get full text |
ISSN | 2199-160X 2199-160X |
DOI | 10.1002/aelm.202400134 |
Cover
Abstract | The reliable stimulation and recording of electrical activity in single cells by means of organic bio‐electronics will be an important milestone in developing new low‐cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single‐cell membrane potential recording by means of a dual‐gate electrolyte‐gated organic field‐effect transistors (EGOFET) employing 2,8‐Difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene blended with polystyrene as active material. To obtain a sufficiently small footprint to allow bidirectional communication at the single cell level, the EGOFET technology has been scaled down implementing a Corbino layout, paving the way to the development of novel bidirectional Electrocorticography (ECoG) devices with a high spatial resolution. A specific and thorough analysis of the working mechanisms of EGOFET‐based bio‐sensors is reported, highlighting the importance of the device design and using an appropriate batch of measurements for the recording of the electrical activity of cells.
A dual‐gate electrolyte‐gated organic field‐effect transistor is employed for extracellular voltage stimulation and single‐cell membrane potential recording. The dual operation allows a bidirectional communication at the single cell level, thereby paving the way to a new paradigm for the design of novel Electrocorticography devices with improved spatio‐temporal resolution. |
---|---|
AbstractList | The reliable stimulation and recording of electrical activity in single cells by means of organic bio‐electronics will be an important milestone in developing new low‐cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single‐cell membrane potential recording by means of a dual‐gate electrolyte‐gated organic field‐effect transistors (EGOFET) employing 2,8‐Difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene blended with polystyrene as active material. To obtain a sufficiently small footprint to allow bidirectional communication at the single cell level, the EGOFET technology has been scaled down implementing a Corbino layout, paving the way to the development of novel bidirectional Electrocorticography (ECoG) devices with a high spatial resolution. A specific and thorough analysis of the working mechanisms of EGOFET‐based bio‐sensors is reported, highlighting the importance of the device design and using an appropriate batch of measurements for the recording of the electrical activity of cells. Abstract The reliable stimulation and recording of electrical activity in single cells by means of organic bio‐electronics will be an important milestone in developing new low‐cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single‐cell membrane potential recording by means of a dual‐gate electrolyte‐gated organic field‐effect transistors (EGOFET) employing 2,8‐Difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene blended with polystyrene as active material. To obtain a sufficiently small footprint to allow bidirectional communication at the single cell level, the EGOFET technology has been scaled down implementing a Corbino layout, paving the way to the development of novel bidirectional Electrocorticography (ECoG) devices with a high spatial resolution. A specific and thorough analysis of the working mechanisms of EGOFET‐based bio‐sensors is reported, highlighting the importance of the device design and using an appropriate batch of measurements for the recording of the electrical activity of cells. The reliable stimulation and recording of electrical activity in single cells by means of organic bio‐electronics will be an important milestone in developing new low‐cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single‐cell membrane potential recording by means of a dual‐gate electrolyte‐gated organic field‐effect transistors (EGOFET) employing 2,8‐Difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene blended with polystyrene as active material. To obtain a sufficiently small footprint to allow bidirectional communication at the single cell level, the EGOFET technology has been scaled down implementing a Corbino layout, paving the way to the development of novel bidirectional Electrocorticography (ECoG) devices with a high spatial resolution. A specific and thorough analysis of the working mechanisms of EGOFET‐based bio‐sensors is reported, highlighting the importance of the device design and using an appropriate batch of measurements for the recording of the electrical activity of cells. A dual‐gate electrolyte‐gated organic field‐effect transistor is employed for extracellular voltage stimulation and single‐cell membrane potential recording. The dual operation allows a bidirectional communication at the single cell level, thereby paving the way to a new paradigm for the design of novel Electrocorticography devices with improved spatio‐temporal resolution. |
Author | Galli, Alessandra Buonomo, Marco Marino, Saralea Pedersen, Morten Gram Bortolozzi, Mario Casalini, Stefano Tonello, Sarah Lago, Nicolò Mas‐Torrent, Marta Pisu, Simona Ruiz‐Molina, Sara Cester, Andrea Giorgi, Giada |
Author_xml | – sequence: 1 givenname: Nicolò surname: Lago fullname: Lago, Nicolò organization: University of Padova – sequence: 2 givenname: Alessandra surname: Galli fullname: Galli, Alessandra organization: University of Padova – sequence: 3 givenname: Sarah surname: Tonello fullname: Tonello, Sarah organization: University of Padova – sequence: 4 givenname: Sara surname: Ruiz‐Molina fullname: Ruiz‐Molina, Sara organization: Biomaterials, and Nanomedicine (CIBER‐BBN) – sequence: 5 givenname: Saralea surname: Marino fullname: Marino, Saralea organization: Veneto Institute of Molecular Medicine (VIMM) – sequence: 6 givenname: Stefano surname: Casalini fullname: Casalini, Stefano organization: University of Padova – sequence: 7 givenname: Marco surname: Buonomo fullname: Buonomo, Marco organization: University of Padova – sequence: 8 givenname: Simona surname: Pisu fullname: Pisu, Simona organization: Policlinico Agostino Gemelli IRCCS – sequence: 9 givenname: Marta surname: Mas‐Torrent fullname: Mas‐Torrent, Marta organization: Biomaterials, and Nanomedicine (CIBER‐BBN) – sequence: 10 givenname: Giada surname: Giorgi fullname: Giorgi, Giada organization: University of Padova – sequence: 11 givenname: Morten Gram surname: Pedersen fullname: Pedersen, Morten Gram organization: University of Padova – sequence: 12 givenname: Mario surname: Bortolozzi fullname: Bortolozzi, Mario email: mario.bortolozzi@unipd.it organization: Institute of Endocrinology and Oncology “Gaetano Salvatore” (IEOS‐CNR) – sequence: 13 givenname: Andrea orcidid: 0000-0001-6583-1735 surname: Cester fullname: Cester, Andrea email: cester@dei.unipd.it organization: University of Padova |
BookMark | eNqFkc1qGzEYRUVJoWmabdeCru3qb0bSMhgnDTik5AeyExrpGyMjS6lGbvGuj9Bn7JNUrkvoLiuJy7lHgvsenaScAKGPlMwpIeyzhbidM8IEIZSLN-iUUa1ntCdPJ__d36HzadqQxsiei46fou_3Ia0j_P75awEx4hvYDsUmwF9zhVSDjfi-hu0u2hpywjZ5fAcuF99aeNi3AC8juFpy3NeD5cpW8Pi2rG0KDl8GiL6ly3FsEH5o6ilMNZcP6O1o4wTn_84z9Hi5fFh8ma1ur64XF6uZ45KpmSKj6EU3ONEpJQTTAMIxIgdrpaVS-pF2Xol-cASEZ1oy0TNL3NBR7a0g_AxdH70-2415LmFry95kG8zfIJe1saUGF8FI8D10lFJPe6G4Uv3gR6L1yKllSqvm-nR0PZf8bQdTNZu8K6l933DW0U4oSmSj5kfKlTxNBcaXVykxh6nMYSrzMlUr8GPhR4iwf4U2F8vVjaaK_wFJoprZ |
Cites_doi | 10.1016/j.orgel.2022.106531 10.1038/ncomms2573 10.1002/adma.201304496 10.1016/j.snb.2023.134227 10.1002/adfm.202208521 10.1007/BF01870593 10.1016/j.bios.2020.112433 10.1109/TED.2009.2033308 10.1002/admt.201900207 10.1002/adfm.201703899 10.1093/hmg/ddx386 10.1002/adma.202201864 10.1021/ja00330a070 10.1039/c3cp44251a 10.1021/acs.accounts.7b00624 10.1109/TED.2011.2162648 10.1038/srep39623 10.1002/adma.202005786 10.1038/s43586-021-00065-8 10.3390/bios8030065 10.1039/D3TC00596H 10.1016/j.orgel.2017.03.021 10.3389/fnins.2022.858524 10.1002/adma.201602479 10.1002/1521-4095(20020104)14:1<51::AID-ADMA51>3.0.CO;2-# 10.1038/s43246-022-00226-6 10.1021/ja00178a004 10.1016/j.bios.2019.111844 10.1016/j.orgel.2018.07.007 10.1021/cm4022003 10.1038/nrn2148 10.1109/JEDS.2017.2751651 10.1371/journal.pone.0118771 10.1002/adma.201103131 10.1002/advs.202105211 10.1002/admt.201600090 10.1109/LED.2015.2496336 10.1021/j100254a028 10.1002/adfm.201502274 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH – notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION JQ2 DOA |
DOI | 10.1002/aelm.202400134 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Computer Science Collection DOAJ Directory of Open Access Journals (ODIN) |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2199-160X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_7ed6e5111d16483886bdf099f31a2898 10_1002_aelm_202400134 AELM918 |
Genre | article |
GrantInformation_xml | – fundername: University of Padua funderid: MCIN/AEI/10.13039/501100011033/ERDF; PID2022‐141393OB‐I00 – fundername: Severo Ochoa Programme for Centres of Excellence in R&D funderid: CEX2023‐001263‐S – fundername: Generalitat de Catalunya funderid: 2021 SGR 00443 – fundername: Università degli Studi di Padova funderid: 2017228L3J – fundername: Italian Ministry of Education, Universities and research – fundername: State Investigation Agency |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAFWJ AAMMB AAXRX AAZKR ABCUV ABJNI ACAHQ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFPKN AGXDD AIACR AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG EBS EJD GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI M~E O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW AAYXX CITATION JQ2 |
ID | FETCH-LOGICAL-c3728-80f4645bc45884429ee4c207baa7a177df15d846bc0e4d2972462a0cb519da403 |
IEDL.DBID | DOA |
ISSN | 2199-160X |
IngestDate | Wed Aug 27 01:19:31 EDT 2025 Thu Sep 18 05:10:39 EDT 2025 Sun Jul 06 05:02:18 EDT 2025 Sun Jul 06 04:45:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3728-80f4645bc45884429ee4c207baa7a177df15d846bc0e4d2972462a0cb519da403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6583-1735 |
OpenAccessLink | https://doaj.org/article/7ed6e5111d16483886bdf099f31a2898 |
PQID | 3251548107 |
PQPubID | 6852865 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7ed6e5111d16483886bdf099f31a2898 proquest_journals_3251548107 crossref_primary_10_1002_aelm_202400134 wiley_primary_10_1002_aelm_202400134_AELM918 |
PublicationCentury | 2000 |
PublicationDate | February 2025 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | Advanced electronic materials |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2017; 5 2019; 8 2002; 14 2015; 36 2019; 4 2013; 4 2023; 33 2023; 11 2017; 27 1984; 106 2015; 10 2017; 45 2014; 26 1983; 74 2020; 167 2018; 62 2011; 58 2021; 1 1985; 89 2018; 27 2009; 56 2016; 6 2018; 8 2013; 15 2016; 1 2021; 33 2022; 3 2023; 393 2022; 9 2020; 150 2022; 34 2007; 8 2011; 23 2018; 51 1990; 112 2016; 28 2022; 106 2016; 26 2022; 16 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_1_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Jacquelin J. (e_1_2_10_40_1) 2019 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 5 start-page: 453 year: 2017 publication-title: IEEE J. Electron Devices Soc. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 8 year: 2019 – volume: 393 year: 2023 publication-title: Sens. Actuators: B. Chem. – volume: 56 start-page: 2952 year: 2009 publication-title: IEEE Trans. Electron. Dev. – volume: 89 start-page: 1441 year: 1985 publication-title: J. Phys. Chem. – volume: 23 start-page: 4764 year: 2011 publication-title: Adv. Mater. – volume: 4 year: 2019 publication-title: Adv. Mater. Technol. – volume: 8 start-page: 451 year: 2007 publication-title: Nature Rev. Neurosci. – volume: 62 start-page: 676 year: 2018 publication-title: Org. Electron. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 150 year: 2020 publication-title: Biosens. Bioelectron. – volume: 45 start-page: 215 year: 2017 publication-title: Org. Electron. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 74 start-page: 41 year: 1983 publication-title: J. Membr. Biol. – volume: 58 start-page: 3574 year: 2011 publication-title: IEEE Trans. Electron. Dev. – volume: 10 year: 2015 publication-title: PLoS One – volume: 15 start-page: 3897 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 3 start-page: 5 year: 2022 publication-title: Commun. Mater. – volume: 112 start-page: 7869 year: 1990 publication-title: J. Am. Chem. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 4 start-page: 1575 year: 2013 publication-title: Nat. Commun. – volume: 27 start-page: 80 year: 2018 publication-title: Hum. Mol. Genet. – volume: 8 start-page: 65 year: 2018 publication-title: Biosens – volume: 28 year: 2016 publication-title: Adv. Mater. – volume: 106 year: 2022 publication-title: Org. Electron. – volume: 11 start-page: 8876 year: 2023 publication-title: J. Mater. Chem. C – volume: 1 year: 2016 publication-title: Adv. Mater. Technol. – volume: 1 start-page: 66 year: 2021 publication-title: Nat. Rev. Methods Prim. – volume: 167 year: 2020 publication-title: Biosens. Bioelectron. – volume: 51 start-page: 1368 year: 2018 publication-title: Acc. Chem. Res. – volume: 26 start-page: 1846 year: 2014 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 14 start-page: 51 year: 2002 publication-title: Adv. Mater. – volume: 26 start-page: 2379 year: 2016 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 679 year: 2014 publication-title: Chem. Mater. – volume: 106 start-page: 5375 year: 1984 publication-title: J. Am. Chem. Soc. – volume: 16 year: 2022 publication-title: Front. Neurosci. – volume: 36 start-page: 1359 year: 2015 publication-title: IEEE Electron. Dev. Lett. – ident: e_1_2_10_21_1 doi: 10.1016/j.orgel.2022.106531 – ident: e_1_2_10_6_1 doi: 10.1038/ncomms2573 – ident: e_1_2_10_4_1 doi: 10.1002/adma.201304496 – ident: e_1_2_10_18_1 doi: 10.1016/j.snb.2023.134227 – ident: e_1_2_10_7_1 doi: 10.1002/adfm.202208521 – ident: e_1_2_10_19_1 doi: 10.1007/BF01870593 – ident: e_1_2_10_28_1 doi: 10.1016/j.bios.2020.112433 – ident: e_1_2_10_29_1 doi: 10.1109/TED.2009.2033308 – ident: e_1_2_10_38_1 doi: 10.1002/admt.201900207 – ident: e_1_2_10_27_1 doi: 10.1002/adfm.201703899 – ident: e_1_2_10_20_1 doi: 10.1093/hmg/ddx386 – ident: e_1_2_10_14_1 doi: 10.1002/adma.202201864 – ident: e_1_2_10_8_1 doi: 10.1021/ja00330a070 – ident: e_1_2_10_16_1 doi: 10.1039/c3cp44251a – ident: e_1_2_10_13_1 doi: 10.1021/acs.accounts.7b00624 – ident: e_1_2_10_30_1 doi: 10.1109/TED.2011.2162648 – ident: e_1_2_10_26_1 doi: 10.1038/srep39623 – ident: e_1_2_10_3_1 doi: 10.1002/adma.202005786 – ident: e_1_2_10_2_1 doi: 10.1038/s43586-021-00065-8 – ident: e_1_2_10_5_1 doi: 10.3390/bios8030065 – ident: e_1_2_10_39_1 doi: 10.1039/D3TC00596H – volume-title: Régressions et équations intégrales year: 2019 ident: e_1_2_10_40_1 – ident: e_1_2_10_36_1 doi: 10.1016/j.orgel.2017.03.021 – ident: e_1_2_10_33_1 doi: 10.3389/fnins.2022.858524 – ident: e_1_2_10_25_1 doi: 10.1002/adma.201602479 – ident: e_1_2_10_11_1 doi: 10.1002/1521-4095(20020104)14:1<51::AID-ADMA51>3.0.CO;2-# – ident: e_1_2_10_37_1 doi: 10.1038/s43246-022-00226-6 – ident: e_1_2_10_10_1 doi: 10.1021/ja00178a004 – ident: e_1_2_10_17_1 doi: 10.1016/j.bios.2019.111844 – ident: e_1_2_10_31_1 doi: 10.1016/j.orgel.2018.07.007 – ident: e_1_2_10_1_1 doi: 10.1021/cm4022003 – ident: e_1_2_10_32_1 doi: 10.1038/nrn2148 – ident: e_1_2_10_22_1 doi: 10.1109/JEDS.2017.2751651 – ident: e_1_2_10_34_1 doi: 10.1371/journal.pone.0118771 – ident: e_1_2_10_12_1 doi: 10.1002/adma.201103131 – ident: e_1_2_10_15_1 doi: 10.1002/advs.202105211 – ident: e_1_2_10_23_1 doi: 10.1002/admt.201600090 – ident: e_1_2_10_35_1 doi: 10.1109/LED.2015.2496336 – ident: e_1_2_10_9_1 doi: 10.1021/j100254a028 – ident: e_1_2_10_24_1 doi: 10.1002/adfm.201502274 |
SSID | ssj0001763453 |
Score | 2.3105257 |
Snippet | The reliable stimulation and recording of electrical activity in single cells by means of organic bio‐electronics will be an important milestone in developing... Abstract The reliable stimulation and recording of electrical activity in single cells by means of organic bio‐electronics will be an important milestone in... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | Biocompatibility cell activity recording Cell membranes cell stimulation EGOFET Electrodes Electrolytes Electrolytic cells Medical devices organic Elctronics Polystyrene resins Recording Sensors Spatial resolution Stimulation Transistors |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58XLyIomJ9sQfBi8HsI9nkqNIiYqVQhd6WfUWEmEobhd78Cf5Gf4mzm7Tak3hdNiGZ3S_zzWbmG4ROVQKbQlkWxYVmETccMKdSEgFZ5zYRRvOQjNm_T28e-e0oGf2q4m_0IRYHbh4Z4XvtAa709OJHNFS50leS-xxIwvgqWgdmz_wep3zwc8oC8OFBihKQmUckjUdz5caYXizfYskzBQH_Jdb5m7sG59PbQpsta8SXzTJvoxVX7aD3Ibid0n19fF67ssR99wKvUzk8GNc-BQjmD-vnl7Y9F1aVxU2sCVdhPYMB3G164JSz2t_FH6RZ3BRnGtzzqW0w2sgb4-DTgqTILnrsdR-ub6K2jUJkmKAZ-KDC_77UJhSlgv9xjhsaC62UUEQIW5DEAg3RJnbc0lxQnlIVGw3kzioesz20Vo0rt48wxEra5CyJbQpGU1nuGQ3JlbaECE2TDjqbm1C-NmoZstFFptIbWy6M3UFX3sKLWV7lOgyMJ0-yBY0UzqYOGCGxENRlLMtSbQugtAUjCgLFrIOO5usjW-hNJQPGBmEYhLUddB7W7I9HkZfdu35OsoP_TT9EG9T3Ag4Z3EdorZ68uWMgKLU-CXvwG6Mn3zE priority: 102 providerName: Wiley-Blackwell |
Title | Single‐Cell Membrane Potential Stimulation and Recording by an Electrolyte‐Gated Organic Field‐Effect Transistor |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400134 https://www.proquest.com/docview/3251548107 https://doaj.org/article/7ed6e5111d16483886bdf099f31a2898 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA26Jy-iqLi6Sg6CF4v5atMeV9lFxBVBBW8hXwWhVtEqePMn-Bv9JU6SrqwnL15DGsJMwryXzrxB6EDncCi04xmpDc-EFXDndEEzAOvC5dIaEZMxZ5fF2a04v8vvFlp9hZywJA-cDHcsvSs8oALqANiXvCwL42qANTWnGshCLPMlFVkgU_F1Ba6NyPlcpZGwY-2bUHgeUiYpF7-iUBTr_4UwF3FqDDTTNbTaI0Q8TjtbR0u-3UBv1xBiGv_18XnqmwbP_AOw3Nbjq8cupPvA_Ovu_qFvxYV163DilfAVNu8wgCep303z3oVVwqOZw6kQ0-JpSGOD0SRljGP8ivIhm-h2Ork5Pcv6lgmZ5ZKVEG_q8KvS2FiACrHGe2EZkUZrqamUrqa5A8hhLPHCsUoyUTBNrAEg57QgfAsN2sfWbyMMvMjYiufEFWA0XVYBvdBKG0epNCwfosO5CdVTUsZQSQOZqWBs9WPsIToJFv6ZFRSt4wD4WfV-Vn_5eYhGc_-o_pq9KA7oDCgXUNghOoo--2Mrajy5mFW03PmPLe2iFRa6Accc7hEadM-vfg8gSmf20TITV_vxTH4D9fzjew |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTttAEF4VOMAFURVESmj3gMQFK94fe-1jihKlJUFIkCristo_o0rGQWCQcuMReMY-SWfXTmhOVa-r9cqe3fF8MzvzDUInKoFDoSyL4kKziBsOOqdSEgFY5zYRRvOQjDm5TEdT_mOWLLMJfS1Mww-xCrh5zQj_a6_gPiDde2cNVa70peQ-CZIwvoG2EjCncMi3-j-nt9P3QAtoEA9slKCceUTSeLYkb4xpb32RNeMUOPzXgOff8DXYn-Ee2m2BI-43O_0RfXDVJ_RyDZandL9f385dWeKJu4cvqhy-mtc-CwjmX9e_7tsOXVhVFjfuJjyF9QIG8KBpg1Muar-Kj6VZ3NRnGjz02W0w2jAc42DWAqvIPpoOBzfno6jtpBAZJmgGZqjwN5jahLpUMEHOcUNjoZUSighhC5JYQCLaxI5bmgvKU6piowHfWcVjdoA2q3nlDhEGd0mbnCWxTUFoKss9qCG50pYQoWnSQadLEcqHhjBDNtTIVHphy5WwO-ibl_Bqlie6DgPzxzvZ6o0UzqYOQCGx4NdlLMtSbQtAtQUjCnzFrIO6y_2RrfY9SQagDTwx8Gw76Czs2T9eRfYH40lOss__N_0r2h7dTMZy_P3y4gjtUN8aOCR0d9Fm_fjsjgGv1PpLeyL_ACKf5G4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEF1RIiEuFYgiAqHdAxKXWng_7LWPgSaCliAkCIq4rPbLCMk4KHUrcetP6G_kl3R27YTkhHpdrVf2rJ_nzXrmDUJHKoGXQlkWxYVmETccMKdSEgFZ5zYRRvOQjDm6Ss_H_PskmSxV8Tf6EIsDN4-M8L32AH-2xcmbaKhypa8k9zmQhPEPqAO-nEP41enfje_Hb-csACAexCgBm3lE0ngy126M6cnqIiu-KUj4r_DOZfYa3M9wC31seSPuNxu9jdZctYN-34DjKd3rn79nrizxyD3BA1UOX09rnwQE82_qx6e2QRdWlcVNtAlXYf0CA3jQdMEpX2q_ij9Ks7gpzzR46JPbYLQROMbBqwVRkU9oPBzcnp1HbSOFyDBBM_BChf-BqU0oSwUP5Bw3NBZaKaGIELYgiQUiok3suKW5oDylKjYa6J1VPGa7aL2aVm4PYYiWtMlZEtsUjKay3HMakittCRGaJl10PDehfG70MmSjjEylN7ZcGLuLTr2FF7O8znUYmM4eZAsbKZxNHXBCYiGsy1iWpdoWQGoLRhSEilkX9eb7I1vw_ZQMOBsEYhDYdtHXsGfv3IrsDy5HOcn2_2_6F7Rx_W0oLy-ufhygTeobA4d07h5ar2e_3CGwlVp_bl_If81245c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90Cell+Membrane+Potential+Stimulation+and+Recording+by+an+Electrolyte%E2%80%90Gated+Organic+Field%E2%80%90Effect+Transistor&rft.jtitle=Advanced+electronic+materials&rft.au=Lago%2C+Nicol%C3%B2&rft.au=Galli%2C+Alessandra&rft.au=Tonello%2C+Sarah&rft.au=Ruiz%E2%80%90Molina%2C+Sara&rft.date=2025-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=11&rft.issue=2&rft_id=info:doi/10.1002%2Faelm.202400134&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon |