Single‐Cell Membrane Potential Stimulation and Recording by an Electrolyte‐Gated Organic Field‐Effect Transistor

The reliable stimulation and recording of electrical activity in single cells by means of organic bio‐electronics will be an important milestone in developing new low‐cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single‐cell membrane pot...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 11; no. 2
Main Authors Lago, Nicolò, Galli, Alessandra, Tonello, Sarah, Ruiz‐Molina, Sara, Marino, Saralea, Casalini, Stefano, Buonomo, Marco, Pisu, Simona, Mas‐Torrent, Marta, Giorgi, Giada, Pedersen, Morten Gram, Bortolozzi, Mario, Cester, Andrea
Format Journal Article
LanguageEnglish
Published Seoul John Wiley & Sons, Inc 01.02.2025
Wiley-VCH
Subjects
Online AccessGet full text
ISSN2199-160X
2199-160X
DOI10.1002/aelm.202400134

Cover

Abstract The reliable stimulation and recording of electrical activity in single cells by means of organic bio‐electronics will be an important milestone in developing new low‐cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single‐cell membrane potential recording by means of a dual‐gate electrolyte‐gated organic field‐effect transistors (EGOFET) employing 2,8‐Difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene blended with polystyrene as active material. To obtain a sufficiently small footprint to allow bidirectional communication at the single cell level, the EGOFET technology has been scaled down implementing a Corbino layout, paving the way to the development of novel bidirectional Electrocorticography (ECoG) devices with a high spatial resolution. A specific and thorough analysis of the working mechanisms of EGOFET‐based bio‐sensors is reported, highlighting the importance of the device design and using an appropriate batch of measurements for the recording of the electrical activity of cells. A dual‐gate electrolyte‐gated organic field‐effect transistor is employed for extracellular voltage stimulation and single‐cell membrane potential recording. The dual operation allows a bidirectional communication at the single cell level, thereby paving the way to a new paradigm for the design of novel Electrocorticography devices with improved spatio‐temporal resolution.
AbstractList The reliable stimulation and recording of electrical activity in single cells by means of organic bio‐electronics will be an important milestone in developing new low‐cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single‐cell membrane potential recording by means of a dual‐gate electrolyte‐gated organic field‐effect transistors (EGOFET) employing 2,8‐Difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene blended with polystyrene as active material. To obtain a sufficiently small footprint to allow bidirectional communication at the single cell level, the EGOFET technology has been scaled down implementing a Corbino layout, paving the way to the development of novel bidirectional Electrocorticography (ECoG) devices with a high spatial resolution. A specific and thorough analysis of the working mechanisms of EGOFET‐based bio‐sensors is reported, highlighting the importance of the device design and using an appropriate batch of measurements for the recording of the electrical activity of cells.
Abstract The reliable stimulation and recording of electrical activity in single cells by means of organic bio‐electronics will be an important milestone in developing new low‐cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single‐cell membrane potential recording by means of a dual‐gate electrolyte‐gated organic field‐effect transistors (EGOFET) employing 2,8‐Difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene blended with polystyrene as active material. To obtain a sufficiently small footprint to allow bidirectional communication at the single cell level, the EGOFET technology has been scaled down implementing a Corbino layout, paving the way to the development of novel bidirectional Electrocorticography (ECoG) devices with a high spatial resolution. A specific and thorough analysis of the working mechanisms of EGOFET‐based bio‐sensors is reported, highlighting the importance of the device design and using an appropriate batch of measurements for the recording of the electrical activity of cells.
The reliable stimulation and recording of electrical activity in single cells by means of organic bio‐electronics will be an important milestone in developing new low‐cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single‐cell membrane potential recording by means of a dual‐gate electrolyte‐gated organic field‐effect transistors (EGOFET) employing 2,8‐Difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene blended with polystyrene as active material. To obtain a sufficiently small footprint to allow bidirectional communication at the single cell level, the EGOFET technology has been scaled down implementing a Corbino layout, paving the way to the development of novel bidirectional Electrocorticography (ECoG) devices with a high spatial resolution. A specific and thorough analysis of the working mechanisms of EGOFET‐based bio‐sensors is reported, highlighting the importance of the device design and using an appropriate batch of measurements for the recording of the electrical activity of cells. A dual‐gate electrolyte‐gated organic field‐effect transistor is employed for extracellular voltage stimulation and single‐cell membrane potential recording. The dual operation allows a bidirectional communication at the single cell level, thereby paving the way to a new paradigm for the design of novel Electrocorticography devices with improved spatio‐temporal resolution.
Author Galli, Alessandra
Buonomo, Marco
Marino, Saralea
Pedersen, Morten Gram
Bortolozzi, Mario
Casalini, Stefano
Tonello, Sarah
Lago, Nicolò
Mas‐Torrent, Marta
Pisu, Simona
Ruiz‐Molina, Sara
Cester, Andrea
Giorgi, Giada
Author_xml – sequence: 1
  givenname: Nicolò
  surname: Lago
  fullname: Lago, Nicolò
  organization: University of Padova
– sequence: 2
  givenname: Alessandra
  surname: Galli
  fullname: Galli, Alessandra
  organization: University of Padova
– sequence: 3
  givenname: Sarah
  surname: Tonello
  fullname: Tonello, Sarah
  organization: University of Padova
– sequence: 4
  givenname: Sara
  surname: Ruiz‐Molina
  fullname: Ruiz‐Molina, Sara
  organization: Biomaterials, and Nanomedicine (CIBER‐BBN)
– sequence: 5
  givenname: Saralea
  surname: Marino
  fullname: Marino, Saralea
  organization: Veneto Institute of Molecular Medicine (VIMM)
– sequence: 6
  givenname: Stefano
  surname: Casalini
  fullname: Casalini, Stefano
  organization: University of Padova
– sequence: 7
  givenname: Marco
  surname: Buonomo
  fullname: Buonomo, Marco
  organization: University of Padova
– sequence: 8
  givenname: Simona
  surname: Pisu
  fullname: Pisu, Simona
  organization: Policlinico Agostino Gemelli IRCCS
– sequence: 9
  givenname: Marta
  surname: Mas‐Torrent
  fullname: Mas‐Torrent, Marta
  organization: Biomaterials, and Nanomedicine (CIBER‐BBN)
– sequence: 10
  givenname: Giada
  surname: Giorgi
  fullname: Giorgi, Giada
  organization: University of Padova
– sequence: 11
  givenname: Morten Gram
  surname: Pedersen
  fullname: Pedersen, Morten Gram
  organization: University of Padova
– sequence: 12
  givenname: Mario
  surname: Bortolozzi
  fullname: Bortolozzi, Mario
  email: mario.bortolozzi@unipd.it
  organization: Institute of Endocrinology and Oncology “Gaetano Salvatore” (IEOS‐CNR)
– sequence: 13
  givenname: Andrea
  orcidid: 0000-0001-6583-1735
  surname: Cester
  fullname: Cester, Andrea
  email: cester@dei.unipd.it
  organization: University of Padova
BookMark eNqFkc1qGzEYRUVJoWmabdeCru3qb0bSMhgnDTik5AeyExrpGyMjS6lGbvGuj9Bn7JNUrkvoLiuJy7lHgvsenaScAKGPlMwpIeyzhbidM8IEIZSLN-iUUa1ntCdPJ__d36HzadqQxsiei46fou_3Ia0j_P75awEx4hvYDsUmwF9zhVSDjfi-hu0u2hpywjZ5fAcuF99aeNi3AC8juFpy3NeD5cpW8Pi2rG0KDl8GiL6ly3FsEH5o6ilMNZcP6O1o4wTn_84z9Hi5fFh8ma1ur64XF6uZ45KpmSKj6EU3ONEpJQTTAMIxIgdrpaVS-pF2Xol-cASEZ1oy0TNL3NBR7a0g_AxdH70-2415LmFry95kG8zfIJe1saUGF8FI8D10lFJPe6G4Uv3gR6L1yKllSqvm-nR0PZf8bQdTNZu8K6l933DW0U4oSmSj5kfKlTxNBcaXVykxh6nMYSrzMlUr8GPhR4iwf4U2F8vVjaaK_wFJoprZ
Cites_doi 10.1016/j.orgel.2022.106531
10.1038/ncomms2573
10.1002/adma.201304496
10.1016/j.snb.2023.134227
10.1002/adfm.202208521
10.1007/BF01870593
10.1016/j.bios.2020.112433
10.1109/TED.2009.2033308
10.1002/admt.201900207
10.1002/adfm.201703899
10.1093/hmg/ddx386
10.1002/adma.202201864
10.1021/ja00330a070
10.1039/c3cp44251a
10.1021/acs.accounts.7b00624
10.1109/TED.2011.2162648
10.1038/srep39623
10.1002/adma.202005786
10.1038/s43586-021-00065-8
10.3390/bios8030065
10.1039/D3TC00596H
10.1016/j.orgel.2017.03.021
10.3389/fnins.2022.858524
10.1002/adma.201602479
10.1002/1521-4095(20020104)14:1<51::AID-ADMA51>3.0.CO;2-#
10.1038/s43246-022-00226-6
10.1021/ja00178a004
10.1016/j.bios.2019.111844
10.1016/j.orgel.2018.07.007
10.1021/cm4022003
10.1038/nrn2148
10.1109/JEDS.2017.2751651
10.1371/journal.pone.0118771
10.1002/adma.201103131
10.1002/advs.202105211
10.1002/admt.201600090
10.1109/LED.2015.2496336
10.1021/j100254a028
10.1002/adfm.201502274
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Electronic Materials published by Wiley‐VCH GmbH
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
JQ2
DOA
DOI 10.1002/aelm.202400134
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Computer Science Collection
DOAJ Directory of Open Access Journals (ODIN)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_7ed6e5111d16483886bdf099f31a2898
10_1002_aelm_202400134
AELM918
Genre article
GrantInformation_xml – fundername: University of Padua
  funderid: MCIN/AEI/10.13039/501100011033/ERDF; PID2022‐141393OB‐I00
– fundername: Severo Ochoa Programme for Centres of Excellence in R&D
  funderid: CEX2023‐001263‐S
– fundername: Generalitat de Catalunya
  funderid: 2021 SGR 00443
– fundername: Università degli Studi di Padova
  funderid: 2017228L3J
– fundername: Italian Ministry of Education, Universities and research
– fundername: State Investigation Agency
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAFWJ
AAMMB
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFPKN
AGXDD
AIACR
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
M~E
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c3728-80f4645bc45884429ee4c207baa7a177df15d846bc0e4d2972462a0cb519da403
IEDL.DBID DOA
ISSN 2199-160X
IngestDate Wed Aug 27 01:19:31 EDT 2025
Thu Sep 18 05:10:39 EDT 2025
Sun Jul 06 05:02:18 EDT 2025
Sun Jul 06 04:45:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3728-80f4645bc45884429ee4c207baa7a177df15d846bc0e4d2972462a0cb519da403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6583-1735
OpenAccessLink https://doaj.org/article/7ed6e5111d16483886bdf099f31a2898
PQID 3251548107
PQPubID 6852865
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_7ed6e5111d16483886bdf099f31a2898
proquest_journals_3251548107
crossref_primary_10_1002_aelm_202400134
wiley_primary_10_1002_aelm_202400134_AELM918
PublicationCentury 2000
PublicationDate February 2025
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Advanced electronic materials
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2017; 5
2019; 8
2002; 14
2015; 36
2019; 4
2013; 4
2023; 33
2023; 11
2017; 27
1984; 106
2015; 10
2017; 45
2014; 26
1983; 74
2020; 167
2018; 62
2011; 58
2021; 1
1985; 89
2018; 27
2009; 56
2016; 6
2018; 8
2013; 15
2016; 1
2021; 33
2022; 3
2023; 393
2022; 9
2020; 150
2022; 34
2007; 8
2011; 23
2018; 51
1990; 112
2016; 28
2022; 106
2016; 26
2022; 16
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_1_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Jacquelin J. (e_1_2_10_40_1) 2019
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 5
  start-page: 453
  year: 2017
  publication-title: IEEE J. Electron Devices Soc.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2019
– volume: 393
  year: 2023
  publication-title: Sens. Actuators: B. Chem.
– volume: 56
  start-page: 2952
  year: 2009
  publication-title: IEEE Trans. Electron. Dev.
– volume: 89
  start-page: 1441
  year: 1985
  publication-title: J. Phys. Chem.
– volume: 23
  start-page: 4764
  year: 2011
  publication-title: Adv. Mater.
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 8
  start-page: 451
  year: 2007
  publication-title: Nature Rev. Neurosci.
– volume: 62
  start-page: 676
  year: 2018
  publication-title: Org. Electron.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 150
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 45
  start-page: 215
  year: 2017
  publication-title: Org. Electron.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 74
  start-page: 41
  year: 1983
  publication-title: J. Membr. Biol.
– volume: 58
  start-page: 3574
  year: 2011
  publication-title: IEEE Trans. Electron. Dev.
– volume: 10
  year: 2015
  publication-title: PLoS One
– volume: 15
  start-page: 3897
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 5
  year: 2022
  publication-title: Commun. Mater.
– volume: 112
  start-page: 7869
  year: 1990
  publication-title: J. Am. Chem.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1575
  year: 2013
  publication-title: Nat. Commun.
– volume: 27
  start-page: 80
  year: 2018
  publication-title: Hum. Mol. Genet.
– volume: 8
  start-page: 65
  year: 2018
  publication-title: Biosens
– volume: 28
  year: 2016
  publication-title: Adv. Mater.
– volume: 106
  year: 2022
  publication-title: Org. Electron.
– volume: 11
  start-page: 8876
  year: 2023
  publication-title: J. Mater. Chem. C
– volume: 1
  year: 2016
  publication-title: Adv. Mater. Technol.
– volume: 1
  start-page: 66
  year: 2021
  publication-title: Nat. Rev. Methods Prim.
– volume: 167
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 51
  start-page: 1368
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 26
  start-page: 1846
  year: 2014
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 14
  start-page: 51
  year: 2002
  publication-title: Adv. Mater.
– volume: 26
  start-page: 2379
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 679
  year: 2014
  publication-title: Chem. Mater.
– volume: 106
  start-page: 5375
  year: 1984
  publication-title: J. Am. Chem. Soc.
– volume: 16
  year: 2022
  publication-title: Front. Neurosci.
– volume: 36
  start-page: 1359
  year: 2015
  publication-title: IEEE Electron. Dev. Lett.
– ident: e_1_2_10_21_1
  doi: 10.1016/j.orgel.2022.106531
– ident: e_1_2_10_6_1
  doi: 10.1038/ncomms2573
– ident: e_1_2_10_4_1
  doi: 10.1002/adma.201304496
– ident: e_1_2_10_18_1
  doi: 10.1016/j.snb.2023.134227
– ident: e_1_2_10_7_1
  doi: 10.1002/adfm.202208521
– ident: e_1_2_10_19_1
  doi: 10.1007/BF01870593
– ident: e_1_2_10_28_1
  doi: 10.1016/j.bios.2020.112433
– ident: e_1_2_10_29_1
  doi: 10.1109/TED.2009.2033308
– ident: e_1_2_10_38_1
  doi: 10.1002/admt.201900207
– ident: e_1_2_10_27_1
  doi: 10.1002/adfm.201703899
– ident: e_1_2_10_20_1
  doi: 10.1093/hmg/ddx386
– ident: e_1_2_10_14_1
  doi: 10.1002/adma.202201864
– ident: e_1_2_10_8_1
  doi: 10.1021/ja00330a070
– ident: e_1_2_10_16_1
  doi: 10.1039/c3cp44251a
– ident: e_1_2_10_13_1
  doi: 10.1021/acs.accounts.7b00624
– ident: e_1_2_10_30_1
  doi: 10.1109/TED.2011.2162648
– ident: e_1_2_10_26_1
  doi: 10.1038/srep39623
– ident: e_1_2_10_3_1
  doi: 10.1002/adma.202005786
– ident: e_1_2_10_2_1
  doi: 10.1038/s43586-021-00065-8
– ident: e_1_2_10_5_1
  doi: 10.3390/bios8030065
– ident: e_1_2_10_39_1
  doi: 10.1039/D3TC00596H
– volume-title: Régressions et équations intégrales
  year: 2019
  ident: e_1_2_10_40_1
– ident: e_1_2_10_36_1
  doi: 10.1016/j.orgel.2017.03.021
– ident: e_1_2_10_33_1
  doi: 10.3389/fnins.2022.858524
– ident: e_1_2_10_25_1
  doi: 10.1002/adma.201602479
– ident: e_1_2_10_11_1
  doi: 10.1002/1521-4095(20020104)14:1<51::AID-ADMA51>3.0.CO;2-#
– ident: e_1_2_10_37_1
  doi: 10.1038/s43246-022-00226-6
– ident: e_1_2_10_10_1
  doi: 10.1021/ja00178a004
– ident: e_1_2_10_17_1
  doi: 10.1016/j.bios.2019.111844
– ident: e_1_2_10_31_1
  doi: 10.1016/j.orgel.2018.07.007
– ident: e_1_2_10_1_1
  doi: 10.1021/cm4022003
– ident: e_1_2_10_32_1
  doi: 10.1038/nrn2148
– ident: e_1_2_10_22_1
  doi: 10.1109/JEDS.2017.2751651
– ident: e_1_2_10_34_1
  doi: 10.1371/journal.pone.0118771
– ident: e_1_2_10_12_1
  doi: 10.1002/adma.201103131
– ident: e_1_2_10_15_1
  doi: 10.1002/advs.202105211
– ident: e_1_2_10_23_1
  doi: 10.1002/admt.201600090
– ident: e_1_2_10_35_1
  doi: 10.1109/LED.2015.2496336
– ident: e_1_2_10_9_1
  doi: 10.1021/j100254a028
– ident: e_1_2_10_24_1
  doi: 10.1002/adfm.201502274
SSID ssj0001763453
Score 2.3105257
Snippet The reliable stimulation and recording of electrical activity in single cells by means of organic bio‐electronics will be an important milestone in developing...
Abstract The reliable stimulation and recording of electrical activity in single cells by means of organic bio‐electronics will be an important milestone in...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Biocompatibility
cell activity recording
Cell membranes
cell stimulation
EGOFET
Electrodes
Electrolytes
Electrolytic cells
Medical devices
organic Elctronics
Polystyrene resins
Recording
Sensors
Spatial resolution
Stimulation
Transistors
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF58XLyIomJ9sQfBi8HsI9nkqNIiYqVQhd6WfUWEmEobhd78Cf5Gf4mzm7Tak3hdNiGZ3S_zzWbmG4ROVQKbQlkWxYVmETccMKdSEgFZ5zYRRvOQjNm_T28e-e0oGf2q4m_0IRYHbh4Z4XvtAa709OJHNFS50leS-xxIwvgqWgdmz_wep3zwc8oC8OFBihKQmUckjUdz5caYXizfYskzBQH_Jdb5m7sG59PbQpsta8SXzTJvoxVX7aD3Ibid0n19fF67ssR99wKvUzk8GNc-BQjmD-vnl7Y9F1aVxU2sCVdhPYMB3G164JSz2t_FH6RZ3BRnGtzzqW0w2sgb4-DTgqTILnrsdR-ub6K2jUJkmKAZ-KDC_77UJhSlgv9xjhsaC62UUEQIW5DEAg3RJnbc0lxQnlIVGw3kzioesz20Vo0rt48wxEra5CyJbQpGU1nuGQ3JlbaECE2TDjqbm1C-NmoZstFFptIbWy6M3UFX3sKLWV7lOgyMJ0-yBY0UzqYOGCGxENRlLMtSbQugtAUjCgLFrIOO5usjW-hNJQPGBmEYhLUddB7W7I9HkZfdu35OsoP_TT9EG9T3Ag4Z3EdorZ68uWMgKLU-CXvwG6Mn3zE
  priority: 102
  providerName: Wiley-Blackwell
Title Single‐Cell Membrane Potential Stimulation and Recording by an Electrolyte‐Gated Organic Field‐Effect Transistor
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.202400134
https://www.proquest.com/docview/3251548107
https://doaj.org/article/7ed6e5111d16483886bdf099f31a2898
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA26Jy-iqLi6Sg6CF4v5atMeV9lFxBVBBW8hXwWhVtEqePMn-Bv9JU6SrqwnL15DGsJMwryXzrxB6EDncCi04xmpDc-EFXDndEEzAOvC5dIaEZMxZ5fF2a04v8vvFlp9hZywJA-cDHcsvSs8oALqANiXvCwL42qANTWnGshCLPMlFVkgU_F1Ba6NyPlcpZGwY-2bUHgeUiYpF7-iUBTr_4UwF3FqDDTTNbTaI0Q8TjtbR0u-3UBv1xBiGv_18XnqmwbP_AOw3Nbjq8cupPvA_Ovu_qFvxYV163DilfAVNu8wgCep303z3oVVwqOZw6kQ0-JpSGOD0SRljGP8ivIhm-h2Ork5Pcv6lgmZ5ZKVEG_q8KvS2FiACrHGe2EZkUZrqamUrqa5A8hhLPHCsUoyUTBNrAEg57QgfAsN2sfWbyMMvMjYiufEFWA0XVYBvdBKG0epNCwfosO5CdVTUsZQSQOZqWBs9WPsIToJFv6ZFRSt4wD4WfV-Vn_5eYhGc_-o_pq9KA7oDCgXUNghOoo--2Mrajy5mFW03PmPLe2iFRa6Accc7hEadM-vfg8gSmf20TITV_vxTH4D9fzjew
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTttAEF4VOMAFURVESmj3gMQFK94fe-1jihKlJUFIkCristo_o0rGQWCQcuMReMY-SWfXTmhOVa-r9cqe3fF8MzvzDUInKoFDoSyL4kKziBsOOqdSEgFY5zYRRvOQjDm5TEdT_mOWLLMJfS1Mww-xCrh5zQj_a6_gPiDde2cNVa70peQ-CZIwvoG2EjCncMi3-j-nt9P3QAtoEA9slKCceUTSeLYkb4xpb32RNeMUOPzXgOff8DXYn-Ee2m2BI-43O_0RfXDVJ_RyDZandL9f385dWeKJu4cvqhy-mtc-CwjmX9e_7tsOXVhVFjfuJjyF9QIG8KBpg1Muar-Kj6VZ3NRnGjz02W0w2jAc42DWAqvIPpoOBzfno6jtpBAZJmgGZqjwN5jahLpUMEHOcUNjoZUSighhC5JYQCLaxI5bmgvKU6piowHfWcVjdoA2q3nlDhEGd0mbnCWxTUFoKss9qCG50pYQoWnSQadLEcqHhjBDNtTIVHphy5WwO-ibl_Bqlie6DgPzxzvZ6o0UzqYOQCGx4NdlLMtSbQtAtQUjCnzFrIO6y_2RrfY9SQagDTwx8Gw76Czs2T9eRfYH40lOss__N_0r2h7dTMZy_P3y4gjtUN8aOCR0d9Fm_fjsjgGv1PpLeyL_ACKf5G4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEF1RIiEuFYgiAqHdAxKXWng_7LWPgSaCliAkCIq4rPbLCMk4KHUrcetP6G_kl3R27YTkhHpdrVf2rJ_nzXrmDUJHKoGXQlkWxYVmETccMKdSEgFZ5zYRRvOQjDm6Ss_H_PskmSxV8Tf6EIsDN4-M8L32AH-2xcmbaKhypa8k9zmQhPEPqAO-nEP41enfje_Hb-csACAexCgBm3lE0ngy126M6cnqIiu-KUj4r_DOZfYa3M9wC31seSPuNxu9jdZctYN-34DjKd3rn79nrizxyD3BA1UOX09rnwQE82_qx6e2QRdWlcVNtAlXYf0CA3jQdMEpX2q_ij9Ks7gpzzR46JPbYLQROMbBqwVRkU9oPBzcnp1HbSOFyDBBM_BChf-BqU0oSwUP5Bw3NBZaKaGIELYgiQUiok3suKW5oDylKjYa6J1VPGa7aL2aVm4PYYiWtMlZEtsUjKay3HMakittCRGaJl10PDehfG70MmSjjEylN7ZcGLuLTr2FF7O8znUYmM4eZAsbKZxNHXBCYiGsy1iWpdoWQGoLRhSEilkX9eb7I1vw_ZQMOBsEYhDYdtHXsGfv3IrsDy5HOcn2_2_6F7Rx_W0oLy-ufhygTeobA4d07h5ar2e_3CGwlVp_bl_If81245c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90Cell+Membrane+Potential+Stimulation+and+Recording+by+an+Electrolyte%E2%80%90Gated+Organic+Field%E2%80%90Effect+Transistor&rft.jtitle=Advanced+electronic+materials&rft.au=Lago%2C+Nicol%C3%B2&rft.au=Galli%2C+Alessandra&rft.au=Tonello%2C+Sarah&rft.au=Ruiz%E2%80%90Molina%2C+Sara&rft.date=2025-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=11&rft.issue=2&rft_id=info:doi/10.1002%2Faelm.202400134&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon