Improved Markov‐chain‐based ultra‐short‐term PV forecasting method for enhancing power system resilience

The awareness capability of output power for renewable resources is essential for enhancing the resilience of power systems. Photovoltaic (PV) forecasting technology is an essential technology for increasing the operation efficiency and controllable resources for power systems after extreme natural...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineering (Stevenage, England) Vol. 2021; no. 2; pp. 114 - 124
Main Authors Bai, Xiaoyang, Liang, Liang, Zhu, Xueqin
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.02.2021
Wiley
Subjects
Online AccessGet full text
ISSN2051-3305
2051-3305
DOI10.1049/tje2.12015

Cover

Abstract The awareness capability of output power for renewable resources is essential for enhancing the resilience of power systems. Photovoltaic (PV) forecasting technology is an essential technology for increasing the operation efficiency and controllable resources for power systems after extreme natural events. Conventional Markov chain (MC) methods often ignore the time characteristics and the actual distribution of the PV output power sequence when making PV forecasts. This article proposes improved MC methods of equal quantity and clustering‐based division methods. The methods can consider the interval distributions of the PV output power time series and select an hour as the time interval. As a sequence, the predicted power at the next moment can be closer to the expectation of the output power distributions. Such a method is combined with a similar day algorithm to calculate the forecast result. Case studies were conducted with one‐year operation data from a 25‐MW PV station. The results indicate that the proposed methods can effectively improve the accuracy of prediction results compared with traditional methods.
AbstractList The awareness capability of output power for renewable resources is essential for enhancing the resilience of power systems. Photovoltaic (PV) forecasting technology is an essential technology for increasing the operation efficiency and controllable resources for power systems after extreme natural events. Conventional Markov chain (MC) methods often ignore the time characteristics and the actual distribution of the PV output power sequence when making PV forecasts. This article proposes improved MC methods of equal quantity and clustering‐based division methods. The methods can consider the interval distributions of the PV output power time series and select an hour as the time interval. As a sequence, the predicted power at the next moment can be closer to the expectation of the output power distributions. Such a method is combined with a similar day algorithm to calculate the forecast result. Case studies were conducted with one‐year operation data from a 25‐MW PV station. The results indicate that the proposed methods can effectively improve the accuracy of prediction results compared with traditional methods.
Abstract The awareness capability of output power for renewable resources is essential for enhancing the resilience of power systems. Photovoltaic (PV) forecasting technology is an essential technology for increasing the operation efficiency and controllable resources for power systems after extreme natural events. Conventional Markov chain (MC) methods often ignore the time characteristics and the actual distribution of the PV output power sequence when making PV forecasts. This article proposes improved MC methods of equal quantity and clustering‐based division methods. The methods can consider the interval distributions of the PV output power time series and select an hour as the time interval. As a sequence, the predicted power at the next moment can be closer to the expectation of the output power distributions. Such a method is combined with a similar day algorithm to calculate the forecast result. Case studies were conducted with one‐year operation data from a 25‐MW PV station. The results indicate that the proposed methods can effectively improve the accuracy of prediction results compared with traditional methods.
Author Liang, Liang
Zhu, Xueqin
Bai, Xiaoyang
Author_xml – sequence: 1
  givenname: Xiaoyang
  orcidid: 0000-0003-3680-461X
  surname: Bai
  fullname: Bai, Xiaoyang
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 2
  givenname: Liang
  surname: Liang
  fullname: Liang, Liang
  email: liangl@hit.edu.cn
  organization: Harbin Institute of Technology (Shenzhen)
– sequence: 3
  givenname: Xueqin
  surname: Zhu
  fullname: Zhu, Xueqin
  organization: Harbin Institute of Technology (Shenzhen)
BookMark eNp9kc1u1DAUhS1UJErphieIxA40xX-ZNEtUtTCoCBaFrXVzc93xkNjB9nQ0Ox6BZ-RJ8DQIIYS6OvbROZ_k46fsyAdPjD0X_Exw3b7OG5JnQnJRP2LHktdioRSvj_46P2GnKW0450JpybU4ZtNqnGK4o776APFruPv5_QeuwfmiHaRib4ccodzSOsRcNFMcq09fKhsiIaTs_G01Ul6H_mBV5Nfg8WBOYUexSvuUaawiJTc48kjP2GMLQ6LT33rCPl9d3ly8W1x_fLu6eHO9QNXIeoFacAGkm2WvLVhUgBqIQ9NJbGporVBogYQVeim47BCt7aSoqev6JSmhTthq5vYBNmaKboS4NwGcuTdCvDUQs8OBjFYoa96cd1Jabcm2S807wgZR91BTW1ivZtbWT7DfwTD8AQpuDtubw_bmfvuSfjGny7DftpSy2YRt9OWxRvFWqnMlhSqpl3MKY0gpkn0Yyf8Jo8uQXfDlc9zw_4qYKzs30P4BuLl5fynnzi-wFrk_
CitedBy_id crossref_primary_10_1142_S0218001423500180
crossref_primary_10_3390_s24010085
crossref_primary_10_3390_su151813423
crossref_primary_10_1016_j_epsr_2024_110223
crossref_primary_10_1016_j_rser_2022_112841
Cites_doi 10.1049/cp.2013.1735
10.1109/TSTE.2014.2313600
10.1016/S0168-1923(00)00173-8
10.1109/AUPEC.2016.7749296
10.1016/j.solener.2004.01.010
10.1109/ICPECTS.2018.8521645
10.1016/j.agrformet.2007.04.004
10.1109/ACCESS.2019.2935273
10.1109/TPEL.2005.861185
10.1109/JIOT.2018.2877510
10.1016/j.renene.2005.06.009
10.1109/ICEET.2009.305
10.1109/WINCOM47513.2019.8942412
10.1109/ICSESP.2018.8376723
10.1016/j.apenergy.2014.03.084
10.1109/ACCESS.2019.2946057
10.1016/j.solener.2004.08.016
10.1109/CICED.2016.7576104
10.1016/j.solener.2019.04.014
10.1109/ACCESS.2020.2981819
10.1109/PVSC.2017.8366516
10.1109/TSTE.2018.2832634
10.1109/ACCESS.2019.2923006
10.1109/JSYST.2020.2965993
10.1109/TSTE.2018.2825780
10.1016/j.solener.2014.03.018
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1049/tje2.12015
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-3305
EndPage 124
ExternalDocumentID oai_doaj_org_article_43c25078b22f4fef9640bec7cc4da5e9
10.1049/tje2.12015
10_1049_tje2_12015
TJE212015
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52077045
– fundername: Natural Scientific Research Innovation Foundation in Harbin Institute of Technology
  funderid: HIT.NSRIF.2020070
– fundername: Open Fund of State Key Laboratory of Operation and Control of Renewable Energy and Storage Systems DG80‐20‐001
GroupedDBID 0R~
1OC
24P
5VS
AAHJG
AAJGR
ABJCF
ABQXS
ACCMX
ACESK
ACXQS
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
IAO
IDLOA
IGS
IPNFZ
ITC
KQ8
M43
M7S
M~E
OCL
OK1
PIMPY
PTHSS
RIE
RIG
RNS
ROL
RUI
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c3725-c4101ae476d4fafc3ac4ae0a7b2c75a9f13cfae1f146102bccffb215ebbd6e313
IEDL.DBID DOA
ISSN 2051-3305
IngestDate Fri Oct 03 12:51:59 EDT 2025
Sun Sep 07 10:49:22 EDT 2025
Wed Aug 13 07:17:06 EDT 2025
Thu Apr 24 22:52:26 EDT 2025
Wed Oct 29 21:26:21 EDT 2025
Wed Jan 22 16:29:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3725-c4101ae476d4fafc3ac4ae0a7b2c75a9f13cfae1f146102bccffb215ebbd6e313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3680-461X
OpenAccessLink https://doaj.org/article/43c25078b22f4fef9640bec7cc4da5e9
PQID 3092383213
PQPubID 6853465
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_43c25078b22f4fef9640bec7cc4da5e9
unpaywall_primary_10_1049_tje2_12015
proquest_journals_3092383213
crossref_primary_10_1049_tje2_12015
crossref_citationtrail_10_1049_tje2_12015
wiley_primary_10_1049_tje2_12015_TJE212015
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
20210201
2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of engineering (Stevenage, England)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2004; 76
2020; 8
2019; 7
2007; 145
2014; 105
2014; 5
2006; 31
2019; 6
2011; 1
2006; 21
2019; 10
2017; 32
2009
2019
2018
2020; 14
2017
2016
2020; 56
2013
2019; 184
2005; 78
2014; 126
2001; 106
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Zhen Z. (e_1_2_10_16_1) 2020; 56
Ding M. (e_1_2_10_32_1) 2011; 1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
Bae K.Y. (e_1_2_10_26_1) 2017; 32
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_31_1
e_1_2_10_30_1
Gu L. (e_1_2_10_10_1) 2001; 106
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
References_xml – volume: 76
  start-page: 693
  year: 2004
  end-page: 701
  article-title: A proposed modified efficiency for thermosyphon solar heating systems
  publication-title: Sol. Energy
– volume: 21
  start-page: 263
  issue: 1
  year: 2006
  end-page: 272
  article-title: Stability of photovoltaic and wind turbine grid‐connected inverters for a large set of grid impedance values
  publication-title: IEEE Trans. Power Electron.
– volume: 5
  start-page: 917
  issue: 3
  year: 2014
  end-page: 926
  article-title: A weather‐based hybrid method for 1‐day ahead hourly forecasting of PV power output
  publication-title: IEEE Trans. Sustainable Energy
– volume: 10
  start-page: 268
  issue: 1
  year: 2019
  end-page: 279
  article-title: A solar time based analog ensemble method for regional solar power forecasting
  publication-title: IEEE Trans. Sustainable Energy
– start-page: 31
  year: 2018
  end-page: 35
  article-title: Markov models based short term forecasting of wind speed for estimating day‐ahead wind power
– volume: 78
  start-page: 157
  issue: 2
  year: 2005
  end-page: 162
  article-title: Simulation of global solar radiation based on cloud observations
  publication-title: Sol. Energy
– volume: 56
  start-page: 3385
  issue: 4
  year: 2020
  end-page: 3396
  article-title: Deep learning based surface irradiance mapping model for solar PV power forecasting using sky image
  publication-title: IEEE Trans. Ind. Appl.
– volume: 14
  start-page: 4059
  issue: 3
  year: 2020
  end-page: 4070
  article-title: A review of the measures to enhance power systems resilience
  publication-title: IEEE Syst. J.
– start-page: 1
  year: 2018
  end-page: 6
  article-title: Combined EMD‐ELM and OS‐ELM techniques based on feed‐forward networks for PV power forecasting
– volume: 126
  start-page: 29
  year: 2014
  end-page: 37
  article-title: Analysis of daily solar power prediction with data‐driven approaches
  publication-title: Appl. Energy
– volume: 6
  start-page: 2933
  issue: 2
  year: 2019
  end-page: 2944
  article-title: LASSO and LSTM integrated temporal model for short‐term solar intensity forecasting
  publication-title: IEEE Internet Things J.
– volume: 31
  start-page: 1253
  issue: 8
  year: 2006
  end-page: 1263
  article-title: Prediction of direct and global solar irradiance using broadband models: Validation of REST model
  publication-title: Renewable Energy
– volume: 106
  start-page: 41
  issue: 1
  year: 2001
  end-page: 59
  article-title: Estimation of solar radiation in Australia from rainfall and temperature observations
  publication-title: Agric For. Meteorol.
– volume: 7
  start-page: 78063
  year: 2019
  end-page: 78074
  article-title: Short‐term photovoltaic power forecasting based on long short term memory neural network and attention mechanism
  publication-title: IEEE Access
– volume: 145
  start-page: 36
  issue: 1–2
  year: 2007
  end-page: 47
  article-title: Spatio‐temporal modeling of global solar radiation dynamics as a function of sunshine duration for Turkey
  publication-title: Agric. For. Meteorol.
– volume: 7
  start-page: 145651
  year: 2019
  end-page: 145666
  article-title: An LSTM short‐term solar irradiance forecasting under complicated weather conditions
  publication-title: IEEE Access
– start-page: 1
  year: 2016
  end-page: 5
  article-title: Short‐term PV generation forecasting based on weather type clustering and improved GPR model
– volume: 10
  start-page: 3
  issue: 1
  year: 2019
  end-page: 15
  article-title: Predictive risk analytics for weather‐resilient operation of electric power systems
  publication-title: IEEE Trans. Sustainable Energy
– volume: 184
  start-page: 688
  year: 2019
  end-page: 695
  article-title: Probabilistic forecasting of high‐resolution clear‐sky index time‐series using a Markov‐chain mixture distribution model
  publication-title: Sol. Energy
– start-page: 1
  year: 2016
  end-page: 6
  article-title: An improved neural ensemble framework for accurate PV output power forecast
– start-page: 275
  year: 2009
  end-page: 278
  article-title: Short‐term forecast of power generation for grid‐connected photovoltaic system based on advanced grey‐Markov chain
– volume: 106
  start-page: 117
  year: 2001
  end-page: 129
  article-title: Shugart Cloud modulation of solar irradiance at a pasture site in southern Brazil Agric
  publication-title: For. Meteorol.
– volume: 32
  start-page: 935
  issue: 2
  year: 2017
  end-page: 945
  article-title: Hourly solar irradiance prediction based on support vector machine and its error analysis
  publication-title: IEEE Trans. Power Syst.
– volume: 7
  start-page: 112921
  year: 2019
  end-page: 112930
  article-title: Day‐ahead hourly forecasting of solar generation based on cluster analysis and ensemble model
  publication-title: IEEE Access
– start-page: 1
  year: 2019
  end-page: 7
  article-title: Short term solar irradiance forecasting using artificial neural network for a semi‐arid climate in Morocco
– volume: 8
  start-page: 54620
  year: 2020
  end-page: 54630
  article-title: Feature‐selective ensemble learning‐based long‐term regional PV generation forecasting
  publication-title: IEEE Access
– start-page: 1158
  year: 2017
  end-page: 1162
  article-title: Ultra‐short‐term photovoltaic generation forecasting model based on weather clustering and markov chain
– volume: 1
  start-page: 152
  year: 2011
  end-page: 157
  article-title: A method to forecast short‐term output power of photovoltaic generation system based on Markov chain
  publication-title: Power Syst. Technol.
– start-page: 1
  year: 2013
  end-page: 4
  article-title: Short‐term solar radiation prediction based on SVM with similar data
– volume: 105
  start-page: 401
  year: 2014
  end-page: 413
  article-title: Short‐term forecasting of power production in a large‐scale photovoltaic plant
  publication-title: Sol. Energy
– ident: e_1_2_10_14_1
  doi: 10.1049/cp.2013.1735
– volume: 56
  start-page: 3385
  issue: 4
  year: 2020
  ident: e_1_2_10_16_1
  article-title: Deep learning based surface irradiance mapping model for solar PV power forecasting using sky image
  publication-title: IEEE Trans. Ind. Appl.
– ident: e_1_2_10_5_1
– ident: e_1_2_10_24_1
  doi: 10.1109/TSTE.2014.2313600
– ident: e_1_2_10_11_1
  doi: 10.1016/S0168-1923(00)00173-8
– ident: e_1_2_10_13_1
  doi: 10.1109/AUPEC.2016.7749296
– ident: e_1_2_10_7_1
  doi: 10.1016/j.solener.2004.01.010
– ident: e_1_2_10_33_1
  doi: 10.1109/ICPECTS.2018.8521645
– ident: e_1_2_10_8_1
  doi: 10.1016/j.agrformet.2007.04.004
– ident: e_1_2_10_25_1
  doi: 10.1109/ACCESS.2019.2935273
– ident: e_1_2_10_2_1
  doi: 10.1109/TPEL.2005.861185
– ident: e_1_2_10_28_1
  doi: 10.1109/JIOT.2018.2877510
– ident: e_1_2_10_6_1
  doi: 10.1016/j.renene.2005.06.009
– ident: e_1_2_10_22_1
  doi: 10.1109/ICEET.2009.305
– volume: 106
  start-page: 117
  year: 2001
  ident: e_1_2_10_10_1
  article-title: Shugart Cloud modulation of solar irradiance at a pasture site in southern Brazil Agric
  publication-title: For. Meteorol.
– ident: e_1_2_10_12_1
  doi: 10.1109/WINCOM47513.2019.8942412
– ident: e_1_2_10_18_1
  doi: 10.1109/ICSESP.2018.8376723
– volume: 1
  start-page: 152
  year: 2011
  ident: e_1_2_10_32_1
  article-title: A method to forecast short‐term output power of photovoltaic generation system based on Markov chain
  publication-title: Power Syst. Technol.
– ident: e_1_2_10_20_1
  doi: 10.1016/j.apenergy.2014.03.084
– ident: e_1_2_10_27_1
  doi: 10.1109/ACCESS.2019.2946057
– ident: e_1_2_10_9_1
  doi: 10.1016/j.solener.2004.08.016
– ident: e_1_2_10_19_1
  doi: 10.1109/CICED.2016.7576104
– ident: e_1_2_10_34_1
– ident: e_1_2_10_31_1
  doi: 10.1016/j.solener.2019.04.014
– ident: e_1_2_10_17_1
  doi: 10.1109/ACCESS.2020.2981819
– ident: e_1_2_10_23_1
  doi: 10.1109/PVSC.2017.8366516
– ident: e_1_2_10_29_1
  doi: 10.1109/TSTE.2018.2832634
– ident: e_1_2_10_15_1
  doi: 10.1109/ACCESS.2019.2923006
– volume: 32
  start-page: 935
  issue: 2
  year: 2017
  ident: e_1_2_10_26_1
  article-title: Hourly solar irradiance prediction based on support vector machine and its error analysis
  publication-title: IEEE Trans. Power Syst.
– ident: e_1_2_10_4_1
  doi: 10.1109/JSYST.2020.2965993
– ident: e_1_2_10_21_1
  doi: 10.1109/ACCESS.2020.2981819
– ident: e_1_2_10_3_1
  doi: 10.1109/TSTE.2018.2825780
– ident: e_1_2_10_30_1
  doi: 10.1016/j.solener.2014.03.018
SSID ssj0001342041
Score 2.2219439
Snippet The awareness capability of output power for renewable resources is essential for enhancing the resilience of power systems. Photovoltaic (PV) forecasting...
Abstract The awareness capability of output power for renewable resources is essential for enhancing the resilience of power systems. Photovoltaic (PV)...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114
SubjectTerms Accuracy
Algorithms
Alternative energy
Clustering
Controllability
Energy resources
Energy storage
Forecasting
Markov analysis
Markov chains
Methods
Neural networks
Other topics in statistics
Photovoltaic cells
Power system planning and layout
Predictions
Radiation
Renewable resources
Resilience
Solar power stations and photovoltaic power systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBXp5tD2UPpJN0mLoLm04MaW5PX6UEpTNoRAl1CSkpuRRlI2xXjd_UjoLT8hv7G_pDOyvelC2ZNsIbDwjEZP0ug9xva1C5wnMoJY6gijZB4NVQKRFXksIEsSG6QTvo0Hx-fq5CK92GLj7i4MpVV2MTEEajsF2iM_kDFCEZLVkZ_rXxGpRtHpaiehoVtpBfspUIw9YNuCmLF6bPtwND79fr_rIpWIg5ylQG-McDGfdpylKj9Y_HTiY4JTYro2SwUy_zUE-nBZ1fr3jS7LdUwbJqWjp-xJiyb5l8b8z9iWq56zx_9wDL5gdbNt4CynaznT6z-3dzDRVxWWNINZviwXM41v8wkicSwpVvPTHxzRrAM9p7Ro3uhMUxV31YQoOrCyJoE13lBBc1y1X5UhTLxk50ejs6_HUSuzEIHMRBqBwmGpncoGVnntQWpQ2sU6M2isVOc-keC1SzxJgMfCAHhvECk4Y-zAyUS-Yr1qWrnXjGOE8DbWkHmLNjZJDiDs0JrMIEoUJu-z991vLaDlICcpjLIIZ-EqL8gERTBBn71bta0b5o3_tjok66xaEFt2qJjOLot28BVKAiK9bGiE8Mo7nw9UjL6bASirU4fd2utsW7RDeF7cO1yf7a_svbErH4IrbGhSnJ2MRHja2fzJXfZIUPJMSA_fY73FbOneIPpZmLetS_8FqqEH_w
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELbockA9QGmp2IpWFnChUraJ7SSbI0UghATiwFZwsuyxraWNworNtmpPfQSesU_SsZOsmqpa9ZTEmkQjz48_x_Y3hBwqGzhPeAQxVxFmySIaiwQiw4qYQZ4kJpROuLzKzifi4ja9XSP73VmY3vq9KD7Uny0bJThKpc_IepYi3h6Q9cnV9fGdrxqHHhXhhDzteEd7L_RGmkDI30ORG4tqpr5_U2XZx6VhYDnbIiedSs1-ki-jRa1H8OMvtsbVOr8gmy2upMeNI2yTNVu9JM__YBt8RWbNDwRrqD-g8_D1188nmKr7Cq9-LDN0UdaPCp_mU8TkePVZm15_oohrLai53yBNm4rTvonaaurJOrBx5kut0YYUmuL8_b4MCWOHTM5Ob07Oo7bgQgQ8Z2kEAgNUWZFnRjjlgCsQysYq12i2VBUu4eCUTZwvBh4zDeCcRsxgtTaZ5Ql_TQbVQ2V3CcVc4UysIHcGra2TAoCZsdG5RrzIdDEkR51xJLRs5L4oRinDqrgopO9FGXpxSA6WsrOGg-OfUh-9jZcSnjc7NKBpZBuGUnBAzJePNWNOOOuKTMToxTmAMCq1qNZe5yGyDea55DGiYF_RiQ_J4dJrVqryPjjUChF5c3HKwt2b__vmHhnUjwv7FiFQrd-1MfAbTBkKWA
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LahsxFBVpumi7CH1S54Wg2bQw7egxHg9005SEEGjJIinZCelKqluGsfEjIbt8Qr4xX5J7NWMnhhLoamxxjQefe6-OZM05jO3ZkDRPVAa5shl2ySobaAGZl1UuoRTCJ-uEHz_7R2f6-Lw4X2NfF8_CtPoQyw03qozUr6nArWtdSJDUIoizv0F-Fjh_FU_YU4FfQvkt9cn9DovSMk_WlRIzL8OFe7HQJ9XVl_uPr8xISbh_hW0-mzdje3Vp63qVv6YJ6PAl2-iYI__WQv2KrYXmNXvxQE_wDRu3WwTBc3oEZ3Rxe30DQ1z645VmK8_n9Wxi8d10iKwbr9SX-ckvjsw1gJ3SEWjeekrTEA_NkOQ4cHBMZmq8lX3muEL_U6eW8JadHR6cfj_KOkuFDFQpiww0lqANuux7HW0EZUHbkNvSITCFraJQEG0Qkey-c-kAYnTICoJzvh-UUO_YejNqwnvGsRtEn1soo0c8nagApB94VzpkhNJVPfZx8bMa6PTGyfaiNul_b10ZgsAkCHrswzJ23Kps_DNqn9BZRpAydhoYTX6brtCMVoCsrhw4KaOOIVZ9nWOelgDa2yLgbW0vsDVduU6NypHnkmeT6rG9Jd6P3sqnlAqPhJjT4wOZXm3-T_AWey7p2Ew6GL7N1meTedhB3jNzuym97wCIgAI1
  priority: 102
  providerName: Wiley-Blackwell
Title Improved Markov‐chain‐based ultra‐short‐term PV forecasting method for enhancing power system resilience
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftje2.12015
https://www.proquest.com/docview/3092383213
https://doi.org/10.1049/tje2.12015
https://doaj.org/article/43c25078b22f4fef9640bec7cc4da5e9
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: ADMLS
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: IDLOA
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: BENPR
  dateStart: 20210201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: AVUZU
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxELagHIADKn9qoI0s0QtIS722N7s-piWhqmgUQYPKaWWPbQW02kZNAuLGI_CMPEnH3k2USKhcuKzXlqW1PDOez97xN4Qcahc5T0QCTOgEV0mVFDKFxHLFOORpamPqhPNR73Qizy6zy41UXyEmrKEHbibuSApAL50XhnMvvfOqJxl-NweQVmcuXt1jhdrYTMXTFSE5k-mKj1Sqo8U3x9-m6O6yLQ8Uifq30OX9ZT3TP3_oqtrGq9HhDHfJoxYp0n4zwsfkjqufkIcb_IFPyaw5EnCWhis3V9___PoNU9zqYxm8k6XLanGtsTafIsrGMqzDdPyZIlJ1oOch5Jk2OaRDE3X1NNBvYOMsJE-jDc0zxR351youAc_IZDi4ODlN2hQKCYicZwlINDntZN6z0msPQoPUjuncoCAyrXwqwGuX-pDem3ED4L1BFOCMsT0nUvGc7NRXtdsjFK3fW6Yh9xblZ1IFwG1hTW4QAXKjOuT1alpLaPnFQ5qLqoz_uaUqgwjKKIIOebXuO2tYNf7a6zhIZ90jMGHHBtSPstWP8l_60SH7K9mWrXnOS8EQ14YcTaJDDtfyvnUob6Iq3NKlvDgb8Pj24n-M-yV5wEP4TAwQ3yc7i-ulO0D8szBdcpfLMT6L4fsuudd_d_7hE5bHg9H4YzeaAdYmo3H_yw0Rgg-8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKuygsEE8xbQFLlAVIoYntTCaLClGYavoaVWiKukvta5spijJhHlTd8Ql8ER_Dl3DtJFNGQrPrKollJU7u9b3Hjn0OIdvSeM4THkDIZYBRMg06IoJAszRkkESR9tIJJ_1270wcnsfnK-R3sxfGLatsYqIP1HoEbo58h4cIRZysDn9ffg-capT7u9pIaMhaWkHveoqxemPHkbm-wiHcZPfgE9r7NWP73cHHXlCrDATAExYHINArpRFJWwsrLXAJQppQJgrbGsvURhysNJF1CtghUwDWKkyURindNjzieN87ZE3gO-Pgb22v2z_9fDPLwwULvXwmQ-8POPauhiNVpDvTb4a9izAFxwtZ0YsHLCDe9VlRyusrmeeLGNonwf0H5H6NXumHyt0ekhVTPCL3_uE0fEzKaprCaOq2AY1-_Pn5C4byssCjy5iazvLpWOLVZIjIH48uN9DTLxTRswE5ccuwaaVr7YqoKYaOEgQLSyfoRivqaTo2k8vch6Un5OxWPvhTslqMCvOMUIxIVocSEqvRp1SUAjDd0SpRiEqZSlvkTfNZM6g5z530Rp75f-8izZwJMm-CFnk1r1tWTB__rbXnrDOv4di5fcFo_DWrO3smOCCyTDqKMSussWlbhNhXEgChZWywWVuNbbM6ZEyyGwdvke25vZc25a13hSVVssFhl_mzjeWPfEnWe4OT4-z4oH-0Se4yt3DHL03fIqvT8cw8R-Q1VS9q96bk4rZ71F_sUUdB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgK0E5IJ5ioYAlegEpNLGdzeZYoKtSoOqhW1VcLHtss1RRNtoHiBs_gd_IL2HGyW5ZCVXi5MQaRVHm9dkZf8PYrvGR80QmkEqTYJQsk6HKIHGiTAUUWeZi64RPx4PDsTo6z8-72hw6C9PyQ6w33MgzYrwmB_eNC-2CUxFJ5uLCi9cZJrD8OtvCRJ6qHtvaPxt_Hl9uskgl0ti9UqDxJbh2z1cUparcu3zARlKK3P0bgPPmsm7Mj--mqjYhbMxBozvsdgce-X6r7bvsmq_vsVt_UQreZ027S-Adp1M402-_f_6CCa7-caSE5fiyWswM3s0nCLxxpNDMT844glcPZk5V0LxtK01T3NcTYuTAyYb6qfGW-ZnjIv1rFaPCAzYeHZy-PUy6rgoJyELkCSj0QuNVMXAqmADSgDI-NYVF3eSmDJmEYHwWqON3KixACBaBgbfWDbzM5EPWq6e1f8Q4BoTgUgNFcKhSm5UAwg2dLSyCQmHLPnu5-qwaOspx6nxR6fjrW5WaVKCjCvrsxVq2aYk2_in1hrSzliBy7DgxnX3Rna9pJQGBXTG0QgQVfCgHKkVTLQCUM7nH19pZ6VZ3HjvXMkWoS22bZJ_trvV95au8iqZwhYg-PToQ8erx_wg_ZzdO3o30x_fHH56wbUFFNLFMfIf1FrOlf4ooaGGfdbb-B_0zBvU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELbockA9QGmp2IpWFnChUraJ7SSbI0UghATiwFZwsuyxraWNworNtmpPfQSesU_SsZOsmqpa9ZTEmkQjz48_x_Y3hBwqGzhPeAQxVxFmySIaiwQiw4qYQZ4kJpROuLzKzifi4ja9XSP73VmY3vq9KD7Uny0bJThKpc_IepYi3h6Q9cnV9fGdrxqHHhXhhDzteEd7L_RGmkDI30ORG4tqpr5_U2XZx6VhYDnbIiedSs1-ki-jRa1H8OMvtsbVOr8gmy2upMeNI2yTNVu9JM__YBt8RWbNDwRrqD-g8_D1188nmKr7Cq9-LDN0UdaPCp_mU8TkePVZm15_oohrLai53yBNm4rTvonaaurJOrBx5kut0YYUmuL8_b4MCWOHTM5Ob07Oo7bgQgQ8Z2kEAgNUWZFnRjjlgCsQysYq12i2VBUu4eCUTZwvBh4zDeCcRsxgtTaZ5Ql_TQbVQ2V3CcVc4UysIHcGra2TAoCZsdG5RrzIdDEkR51xJLRs5L4oRinDqrgopO9FGXpxSA6WsrOGg-OfUh-9jZcSnjc7NKBpZBuGUnBAzJePNWNOOOuKTMToxTmAMCq1qNZe5yGyDea55DGiYF_RiQ_J4dJrVqryPjjUChF5c3HKwt2b__vmHhnUjwv7FiFQrd-1MfAbTBkKWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Markov%E2%80%90chain%E2%80%90based+ultra%E2%80%90short%E2%80%90term+PV+forecasting+method+for+enhancing+power+system+resilience&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Xiaoyang+Bai&rft.au=Liang+Liang&rft.au=Xueqin+Zhu&rft.date=2021-02-01&rft.pub=Wiley&rft.eissn=2051-3305&rft.volume=2021&rft.issue=2&rft.spage=114&rft.epage=124&rft_id=info:doi/10.1049%2Ftje2.12015&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_43c25078b22f4fef9640bec7cc4da5e9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon