Fault detection and classification using deep learning method and neuro‐fuzzy algorithm in a smart distribution grid
This article proposes a deep learning (DL) model made of Long Short Term Memory (LSTM) and Adaptive Neuro Fuzzy Inference System (ANFIS) to detect fault in smart distribution grid assisted by communication systems using smart meter data. In smart grid, data analysis for fault identification and dete...
Saved in:
| Published in | Journal of engineering (Stevenage, England) Vol. 2023; no. 11 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
John Wiley & Sons, Inc
01.11.2023
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2051-3305 2051-3305 |
| DOI | 10.1049/tje2.12324 |
Cover
| Abstract | This article proposes a deep learning (DL) model made of Long Short Term Memory (LSTM) and Adaptive Neuro Fuzzy Inference System (ANFIS) to detect fault in smart distribution grid assisted by communication systems using smart meter data. In smart grid, data analysis for fault identification and detection is crucial for grid monitoring. Nowadays, there are several DL techniques developed for smart grid data analysis applications. To solve this problem, a novel data analysis model based on deep learning and Neuro‐fuzzy algorithm is developed for fault location in a smart power grid. First, the LSTM is applied for training the data samples extracted from the smart meters. Then, an ANFIS algorithm is implemented for fault detection and identification from the trained data. Finally, faults are located with the higher accuracy. With this intelligent method proposed, single‐phase, two‐phase and three‐phase faults can be identified using a restricted amount of data. The novelty of the proposed method compared with other methods is the capability of fast training and testing even with large amount of data. To verify the effectiveness of our methodology, an intelligent model of the IEEE 13‐node network is used. The effectiveness and robustness of the proposed model are evaluated using several parameters such as accuracy, precision‐recall, F1‐score, Receiver Operating Characteristic (ROC) curve and complexity time. The obtained results indicate that the proposed deep learning model outperforms existing deep learning methods in the literature for fault detection and classification with 99.99% accuracy.
In this paper, a novel data analysis model based on deep learning and neuro‐fuzzy algorithm is proposed for detection and classification of faults in a smart grid. We used a 13‐node IEEE network modelled with smart meters and faults on some nodes to evaluate the ability of our deep learning method to analyze data and detect faults. The results of the proposed model show its outperformance compared to the models of the literature in terms of accuracy. |
|---|---|
| AbstractList | This article proposes a deep learning (DL) model made of Long Short Term Memory (LSTM) and Adaptive Neuro Fuzzy Inference System (ANFIS) to detect fault in smart distribution grid assisted by communication systems using smart meter data. In smart grid, data analysis for fault identification and detection is crucial for grid monitoring. Nowadays, there are several DL techniques developed for smart grid data analysis applications. To solve this problem, a novel data analysis model based on deep learning and Neuro‐fuzzy algorithm is developed for fault location in a smart power grid. First, the LSTM is applied for training the data samples extracted from the smart meters. Then, an ANFIS algorithm is implemented for fault detection and identification from the trained data. Finally, faults are located with the higher accuracy. With this intelligent method proposed, single‐phase, two‐phase and three‐phase faults can be identified using a restricted amount of data. The novelty of the proposed method compared with other methods is the capability of fast training and testing even with large amount of data. To verify the effectiveness of our methodology, an intelligent model of the IEEE 13‐node network is used. The effectiveness and robustness of the proposed model are evaluated using several parameters such as accuracy, precision‐recall, F1‐score, Receiver Operating Characteristic (ROC) curve and complexity time. The obtained results indicate that the proposed deep learning model outperforms existing deep learning methods in the literature for fault detection and classification with 99.99% accuracy. Abstract This article proposes a deep learning (DL) model made of Long Short Term Memory (LSTM) and Adaptive Neuro Fuzzy Inference System (ANFIS) to detect fault in smart distribution grid assisted by communication systems using smart meter data. In smart grid, data analysis for fault identification and detection is crucial for grid monitoring. Nowadays, there are several DL techniques developed for smart grid data analysis applications. To solve this problem, a novel data analysis model based on deep learning and Neuro‐fuzzy algorithm is developed for fault location in a smart power grid. First, the LSTM is applied for training the data samples extracted from the smart meters. Then, an ANFIS algorithm is implemented for fault detection and identification from the trained data. Finally, faults are located with the higher accuracy. With this intelligent method proposed, single‐phase, two‐phase and three‐phase faults can be identified using a restricted amount of data. The novelty of the proposed method compared with other methods is the capability of fast training and testing even with large amount of data. To verify the effectiveness of our methodology, an intelligent model of the IEEE 13‐node network is used. The effectiveness and robustness of the proposed model are evaluated using several parameters such as accuracy, precision‐recall, F1‐score, Receiver Operating Characteristic (ROC) curve and complexity time. The obtained results indicate that the proposed deep learning model outperforms existing deep learning methods in the literature for fault detection and classification with 99.99% accuracy. This article proposes a deep learning (DL) model made of Long Short Term Memory (LSTM) and Adaptive Neuro Fuzzy Inference System (ANFIS) to detect fault in smart distribution grid assisted by communication systems using smart meter data. In smart grid, data analysis for fault identification and detection is crucial for grid monitoring. Nowadays, there are several DL techniques developed for smart grid data analysis applications. To solve this problem, a novel data analysis model based on deep learning and Neuro‐fuzzy algorithm is developed for fault location in a smart power grid. First, the LSTM is applied for training the data samples extracted from the smart meters. Then, an ANFIS algorithm is implemented for fault detection and identification from the trained data. Finally, faults are located with the higher accuracy. With this intelligent method proposed, single‐phase, two‐phase and three‐phase faults can be identified using a restricted amount of data. The novelty of the proposed method compared with other methods is the capability of fast training and testing even with large amount of data. To verify the effectiveness of our methodology, an intelligent model of the IEEE 13‐node network is used. The effectiveness and robustness of the proposed model are evaluated using several parameters such as accuracy, precision‐recall, F1‐score, Receiver Operating Characteristic (ROC) curve and complexity time. The obtained results indicate that the proposed deep learning model outperforms existing deep learning methods in the literature for fault detection and classification with 99.99% accuracy. In this paper, a novel data analysis model based on deep learning and neuro‐fuzzy algorithm is proposed for detection and classification of faults in a smart grid. We used a 13‐node IEEE network modelled with smart meters and faults on some nodes to evaluate the ability of our deep learning method to analyze data and detect faults. The results of the proposed model show its outperformance compared to the models of the literature in terms of accuracy. |
| Author | Mbey, Camille Franklin Foba Kakeu, Vinny Junior Souhe, Felix Ghislain Yem Boum, Alexandre Teplaira |
| Author_xml | – sequence: 1 givenname: Camille Franklin surname: Mbey fullname: Mbey, Camille Franklin organization: University of Douala – sequence: 2 givenname: Vinny Junior orcidid: 0000-0001-7848-3004 surname: Foba Kakeu fullname: Foba Kakeu, Vinny Junior email: kakeuvinny@gmail.com organization: University of Douala – sequence: 3 givenname: Alexandre Teplaira surname: Boum fullname: Boum, Alexandre Teplaira organization: University of Douala – sequence: 4 givenname: Felix Ghislain Yem orcidid: 0000-0002-1257-8470 surname: Souhe fullname: Souhe, Felix Ghislain Yem organization: University of Douala |
| BookMark | eNp9kc1qVDEYhoNUsNZuvIID7pSp-Ts_WUppbUvBTV2H7-RnmiGTjEmOZbrqJXiNXomZc0REpKskH8_38Ib3NToKMRiE3hJ8RjAXH8vG0DNCGeUv0DHFLVkxhtujv-6v0GnOG4wxYZxiTo7R90uYfGm0KUYVF0MDQTfKQ87OOgXzaMourCtido03kMLhtTXlPuqZDmZK8efTDzs9Pu4b8OuYXLnfNq7KmryFVPUul-TGadatk9Nv0EsLPpvT3-cJ-np5cXd-tbr98vn6_NPtSrGe8pWmwpIaVrUDYYNhqsejxcK2gDUTfcfoYGDotCbGqr63lIDplGadYNoyJtgJul68OsJG7pKrcfYygpPzIKa1rPmc8kYyzgmn3dhqIFzoUXQaMAfRUjUKraG6PiyuKexg_wDe_xESLA8NyEMDcm6g0u8Wepfit8nkIjdxSqF-VjIsKBsYoaRS7xdKpZhzMvZ5Jf4HVq7MFZUEzv9_hSwrD86b_TNyeXdzQZedX5vKtt8 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3445287 crossref_primary_10_1080_23311916_2024_2340302 crossref_primary_10_1155_2024_9257508 |
| Cites_doi | 10.1109/TAES.2014.120556 10.1016/j.epsr.2022.109025 10.1109/ACCESS.2019.2894819 10.1002/er.6745 10.1109/TSG.2019.2918330 10.1016/j.protcy.2015.10.085 10.1016/j.ijepes.2021.107452 10.1016/j.rser.2016.01.023 10.1049/iet-gtd.2008.0287 10.1016/j.epsr.2022.108894 10.1109/ECCE.2016.7855166 10.1016/j.enconman.2017.09.019 10.1109/TAPENERGY.2017.8397249 10.1016/j.ijepes.2022.108699 10.1016/j.epsr.2022.108921 10.1016/j.cherd.2021.08.013 10.1016/j.ijepes.2022.108675 10.3934/mbe.2022155 10.1016/j.ijepes.2022.108777 10.1109/ACCESS.2019.2951750 10.1109/SECON.2017.7925277 10.3390/machines11010109 10.1016/j.procs.2015.09.169 10.1109/ACCESS.2019.2933020 10.1109/ChiCC.2016.7554408 10.1109/ACCESS.2018.2858256 10.1109/INCOS45849.2019.8951377 10.1109/TSG.2018.2818167 10.1016/j.ijepes.2022.108921 10.1109/TDC.2012.6281527 10.1186/s40064-015-1080-x 10.5220/0005936604890496 10.1016/j.compeleceng.2021.107211 10.1109/SoSE50414.2020.9130524 10.1007/s11265-017-1269-z 10.1109/TSG.2016.2626469 10.1016/j.aej.2021.02.050 10.1016/j.ijepes.2015.11.048 10.1109/ISGT.2015.7131868 10.1109/JIOT.2019.2963635 10.1109/ICC.2018.8423021 10.1109/TCNS.2014.2357531 10.1109/JSAC.2019.2952769 10.1109/ISIE.2015.7281669 10.1109/TNSM.2021.3078381 10.1016/j.jesit.2015.03.015 10.1109/ICICTA.2018.00091 10.1109/TSG.2018.2805723 10.1016/j.enconman.2019.112317 10.1109/TSG.2017.2703842 10.3390/s22062205 10.1016/j.compeleceng.2021.107209 10.1016/j.bdr.2015.03.003 10.1007/s10586-017-1362-x 10.1109/TSG.2017.2776310 10.1007/s10207-019-00452-z 10.1109/SURV.2011.122211.00021 10.1016/j.egypro.2016.12.128 10.1109/ICRERA.2016.7884486 10.1016/j.rser.2017.05.134 10.1109/TSG.2016.2552229 10.1155/2022/7495548 10.1016/j.automatica.2018.06.039 10.23919/WAC50355.2021.9559474 10.1016/j.engappai.2021.104504 10.1088/1757-899X/750/1/012221 10.1155/2017/9429676 10.1007/s00202-022-01718-x 10.1016/j.epsr.2022.108911 10.1109/TSG.2015.2478855 10.1016/j.rser.2015.12.257 10.1088/1755-1315/701/1/012074 10.1109/TSG.2016.2593358 10.17775/CSEEJPES.2018.00520 10.1002/psp.1972 10.1109/ISGT-Asia.2016.7796448 10.1016/j.epsr.2022.108973 10.1155/2017/2198262 10.1016/j.egypro.2017.09.596 10.3390/en12040646 10.1016/j.ijepes.2022.108570 10.1016/j.epsr.2017.06.006 10.1049/et.2016.0503 10.1007/s00500-022-06761-1 10.1109/ICRERA47325.2019.8996527 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA |
| DOI | 10.1049/tje2.12324 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2051-3305 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_3441426b5da149db96da04a952cb9dda 10.1049/tje2.12324 10_1049_tje2_12324 TJE212324 |
| Genre | article |
| GroupedDBID | 0R~ 1OC 24P 5VS AAHJG AAJGR AAMMB ABJCF ABQXS ACCMX ACESK ACXQS ADBBV ADMLS AEFGJ AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ARAPS AVUZU BCNDV BENPR BGLVJ CCPQU EBS GROUPED_DOAJ HCIFZ IAO IDLOA IGS IPNFZ ITC KQ8 M43 M7S M~E OK1 PHGZM PHGZT PIMPY PTHSS RIG RNS ROL RUI AAYXX AFFHD CITATION PQGLB WIN 8FE 8FG ABUWG AZQEC DWQXO L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC PUEGO UNPAY |
| ID | FETCH-LOGICAL-c3724-d29f1013c58138e3c70bf09f5a0d3976328ea86dd1efc77f21ae6cd3693df3393 |
| IEDL.DBID | DOA |
| ISSN | 2051-3305 |
| IngestDate | Fri Oct 03 12:41:34 EDT 2025 Wed Oct 01 16:41:22 EDT 2025 Wed Aug 13 04:14:07 EDT 2025 Thu Apr 24 23:13:15 EDT 2025 Wed Oct 29 21:27:23 EDT 2025 Sun Jul 06 04:46:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3724-d29f1013c58138e3c70bf09f5a0d3976328ea86dd1efc77f21ae6cd3693df3393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7848-3004 0000-0002-1257-8470 |
| OpenAccessLink | https://doaj.org/article/3441426b5da149db96da04a952cb9dda |
| PQID | 3092383121 |
| PQPubID | 6853465 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3441426b5da149db96da04a952cb9dda unpaywall_primary_10_1049_tje2_12324 proquest_journals_3092383121 crossref_primary_10_1049_tje2_12324 crossref_citationtrail_10_1049_tje2_12324 wiley_primary_10_1049_tje2_12324_TJE212324 |
| PublicationCentury | 2000 |
| PublicationDate | November 2023 2023-11-00 20231101 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Journal of engineering (Stevenage, England) |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2022; 134 2017; 8 2019; 11 2019; 10 2023; 146 2019; 12 2023; 145 2023; 144 2023; 105 2023; 148 2020; 205 2022; 26 2017; 151 2012; 15 2022; 22 2012; 14 2016; 78 2020; 19 2014; 1 2018; 6 2020; 7 2018; 9 2018; 4 2018; 1 2019; 22 2017; 79 2023; 216 2023; 215 2023; 214 2007; 22 2015; 2 2019; 7 2021; 45 2015; 4 2023; 11 2021; 2 2017; 2017 2012 2015; 51 2021; 106 2021; 701 2020; 38 2017; 134 2021; 93 2016; 59 2016; 58 2016; 11 2016; 4 2016; 7 2022; 2022 2021 2020; 72 2015; 61 2020 2021; 18 2015; 21 2020; 28 2019 2018 2018; 90 2017 2016 2020; 750 2018; 96 2015 2021; 174 2009; 3 2021; 60 2018; 10 2022; 19 2016; 22 2020; 29 2017; 107 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_97_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 Umer M.A. (e_1_2_10_79_1) 2020; 28 e_1_2_10_82_1 Dhupia B. (e_1_2_10_30_1) 2020; 29 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 Yem Souhe F.G. (e_1_2_10_83_1) 2022; 26 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_19_1 Xu L. (e_1_2_10_16_1) 2007; 22 e_1_2_10_98_1 e_1_2_10_56_1 Zhang Y. (e_1_2_10_4_1) 2018; 1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_60_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 Cai Z.Y. (e_1_2_10_8_1) 2016; 4 e_1_2_10_42_1 Yem Souhe F.G. (e_1_2_10_9_1) 2022; 2022 Perez R. (e_1_2_10_96_1) 2016 Lu N. (e_1_2_10_38_1) 2012 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_53_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 Chun‐Hao L. (e_1_2_10_12_1) 2012; 14 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 Foba Kakeu V.J. (e_1_2_10_18_1) 2021; 2 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_92_1 e_1_2_10_73_1 Taft J.D. (e_1_2_10_74_1) 2017 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_36_1 e_1_2_10_35_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 Syed D. (e_1_2_10_3_1) 2020; 72 Saleh K. (e_1_2_10_75_1) 2019 Atencia‐De la Ossa J. (e_1_2_10_91_1) 2023; 148 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
| References_xml | – volume: 11 start-page: 148 year: 2019 end-page: 160 article-title: A practical solution for nonintrusive type ii load monitoring based on deep learning and post‐processing publication-title: IEEE Trans. Smart Grid – volume: 19 start-page: 189 issue: 2 year: 2020 end-page: 211 article-title: Attacks on smart grid: power supply interruption and malicious power generation publication-title: Int. J. Inf. Secur. – volume: 2022 start-page: 1 year: 2022 end-page: 13 article-title: Photovoltaic power generation forecasting using a novel hybrid intelligent model in smart grid publication-title: Comput. Intell. Neurosci. – start-page: 20 year: 2016 end-page: 23 article-title: Big data issues in smart grid systems – start-page: 1 year: 2017 end-page: 38 – volume: 2 start-page: 94 issue: 3 year: 2015 end-page: 101 article-title: Big data analytics for dynamic energy management in smart grids publication-title: Elsevier Big Data Res. – volume: 72 start-page: 59564 year: 2020 end-page: 59585 article-title: Smart grid big data analytics: survey of technologies, techniques, and applications publication-title: IEEE Access – volume: 215 year: 2023 article-title: Fault ride through constrained protection scheme for distribution networks with DFIG‐based wind parks publication-title: Electr. Power Syst. Res. – volume: 701 issue: 1 year: 2021 article-title: Deep adversarial‐ transfer learning based fault classification of power lines in smart grid – year: 2015 article-title: Big data analytics in power distribution systems – volume: 7 start-page: 13960 year: 2019 end-page: 13988 article-title: Application of big data and machine learning in smart grid, and associated security concerns: a review publication-title: IEEE Access – volume: 96 start-page: 201 year: 2018 end-page: 212 article-title: Model‐based fault identification of discrete event systems using partially observed Petri nets publication-title: Automatica – volume: 148 year: 2023 article-title: Active detection fault diagnosis and fault location technology for LVDC distribution networks publication-title: Int. J. Electr. Power Energy Syst. – volume: 51 start-page: 40 year: 2015 end-page: 51 article-title: Aircraft electric system intermittent arc fault detection and location publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 90 start-page: 1091 year: 2018 end-page: 1103 article-title: A query oriented adaptive indexing technique for smart grid big data analytics publication-title: J. Sign. Process. Syst. – volume: 10 start-page: 2593 year: 2018 end-page: 2602 article-title: Deep learning‐based socio‐demographic information identification from smart meter data publication-title: IEEE Trans. Smart Grid – volume: 7 start-page: 164650 year: 2019 end-page: 164666 article-title: A survey of deep learning techniques: application in wind and solar energy resources publication-title: IEEE Access – volume: 2017 start-page: 1 year: 2017 end-page: 12 article-title: Big data analytics embedded smart city architecture for performance enhancement through real‐time data processing and decision‐making publication-title: Wireless Commun. Mobile Comput. – volume: 146 year: 2023 article-title: Location method of single line‐to‐ground faults in low‐resistance grounded distribution networks based on ratio of zero‐sequence admittance publication-title: Int. J. Electr. Power Energy Syst. – volume: 11 start-page: 38 issue: 5 year: 2016 end-page: 41 article-title: Greening the smart city publication-title: IEEE Eng. Technol. – volume: 107 start-page: 49 year: 2017 end-page: 59 article-title: Smart meter data analytics for optimal customer selection in demand response Programs publication-title: Comput. Sci. Energy Procedia – volume: 151 start-page: 369 year: 2017 end-page: 380 article-title: Big data framework for analytics in smart grids publication-title: Electr. Power Syst. Res. – volume: 174 start-page: 414 year: 2021 end-page: 441 article-title: Machine learning on sustainable energy: a review and outlook on renewable energy systems, catalysis, smart grid and energy storage publication-title: Chem. Eng. Res. Des. – volume: 93 start-page: 1 year: 2021 end-page: 23 article-title: Detection of false data cyber‐attacks for the assessment of security in smart grid using deep learning publication-title: Comput. Electr. Eng. – volume: 6 start-page: 40463 year: 2018 end-page: 40471 article-title: Data lake lambda architecture for smart grids big data analytics publication-title: IEEE Access – volume: 4 start-page: 970 year: 2016 end-page: 976 article-title: Reliability assessment method with integrated prior accelerated degradation and field degradation data publication-title: Syst. Eng. Electron. – start-page: 1 year: 2016 end-page: 6 article-title: A hybrid algorithm for fault locating in looped microgrids – start-page: 375 year: 2018 end-page: 379 article-title: Analysis and exploration of power grid realtime data communication technology under computer intelligence – volume: 7 start-page: 4329 issue: 5 year: 2020 end-page: 4341 article-title: Toward edge based deep learning in industrial internet of things publication-title: IEEE Internet Things J. – volume: 58 start-page: 911 year: 2016 end-page: 917 article-title: Initiatives and technical challenges in smart distribution grid publication-title: Renewable Sustainable Energy Rev. – volume: 22 start-page: 1065 year: 2019 end-page: 1077 article-title: Collaborative data analytics for smart buildings: Opportunities and models publication-title: Cluster Comput. – volume: 93 start-page: 1 year: 2021 end-page: 11 article-title: Blockchain and homomorphic encryption based privacy‐preserving data aggregation model in smart grid publication-title: Comput. Electr. Eng. – volume: 22 start-page: 2205 issue: 6 year: 2022 article-title: Fault handling in industry 4.0: definition, process and applications publication-title: Sensors – volume: 79 start-page: 1099 year: 2017 end-page: 1107 article-title: Big data issues in smart grid—a review publication-title: Renewable Sustainable Energy Rev. – start-page: 6678 year: 2016 end-page: 6683 article-title: Deep learning neural network for power system fault diagnosis – start-page: 1 year: 2016 end-page: 6 article-title: Fault location in distribution systems with distributed generation using support vector machines and smart meters publication-title: IEEE Ecuador Technical Chapters Meeting (ETCM) – volume: 214 year: 2023 article-title: Countermeasures for reduction of screen currents due to cross country faults in MV cable distribution networks publication-title: Electr. Power Syst. Res. – volume: 22 start-page: 849 issue: 8 year: 2016 end-page: 863 article-title: The role of digital trace data in supporting the collection of population statistics–the case for smart metered electricity consumption data publication-title: Popul. Space Place – volume: 216 year: 2023 article-title: Machine learning based adaptive fault diagnosis considering hosting capacity amendment in active distribution network publication-title: Electr. Power Syst. Res. – volume: 29 start-page: 171 issue: 6 year: 2020 end-page: 179 article-title: A review: big data analytics in smart grid management publication-title: Int. J. Adv. Sci. Technol. – volume: 38 start-page: 1 issue: 1 year: 2020 end-page: 4 article-title: Guest editorial special issue on communications and data analytics in smart gri publication-title: IEEE J. Sel. Areas Commun. – start-page: 1 year: 2017 end-page: 6 article-title: Deep power: deep learning architectures for power quality disturbances classification – volume: 59 start-page: 1130 year: 2016 end-page: 1148 article-title: Distributed generation: a review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks publication-title: Renew. Sustain. Energy Rev. – volume: 2 start-page: 257 issue: 2 year: 2015 end-page: 267 article-title: Fault identification in electrical power distribution system using combined discrete wavelet transform and fuzzy logic publication-title: J. Electr. Syst. Inf. Technol. – volume: 10 start-page: 3125 issue: 3 year: 2018 end-page: 3148 article-title: Review of smart meter data analytics: applications, methodologies, and challenges publication-title: IEEE Trans. Smart Grid – volume: 8 start-page: 1163 issue: 3 year: 2017 end-page: 1172 article-title: Photovoltaic energy conversion system fault detection using fractional‐order color relation classifier in micro distribution systems publication-title: IEEE Trans. Smart Grid – volume: 7 start-page: 2395 issue: 5 year: 2016 end-page: 2396 article-title: Guest editorial: big data analytics for grid modernization publication-title: IEEE Trans. Smart Grid – volume: 61 start-page: 113 year: 2015 end-page: 119 article-title: Real‐time complex event processing and analytics for smart grid publication-title: Procedia Comput. Sci. – volume: 750 year: 2020 article-title: Monitoring data analysis technology of smart grid based on cloud computing publication-title: IOP Conf. Series: Mater. Sci. Eng. – start-page: 1351 year: 2015 end-page: 1356 article-title: On phasor estimation for voltage sags detection in a smart grid context – volume: 134 year: 2022 article-title: A novel hybrid model based on nonlinear weighted combination for short‐term wind power forecasting publication-title: Electr. Power Energy Syst. – volume: 26 start-page: 23 issue: 1 year: 2022 end-page: 34 article-title: Fault detection, classification and location in power distribution smart grid using smart meters data publication-title: J. Appl. Sci. Eng. – volume: 19 start-page: 3350 issue: 4 year: 2022 end-page: 3368 article-title: Mitigating consumer privacy breach in smart grid using obfuscation‐based generative adversarial network publication-title: Math. Biosci. and Engineering – year: 2016 article-title: Data analytics in smart distribution networks: applications and challenges – year: 2019 article-title: Smart meter data analysis issues: a data analytics perspective – volume: 145 year: 2023 article-title: Single phase to ground fault location method of overhead line based on magnetic field detection and multi‐criteria fusion publication-title: Int. J. Electr. Power Energy Syst. – volume: 18 start-page: 1137 year: 2021 end-page: 1151 article-title: A unified deep learning anomaly detection and classification approach for smart grid environments publication-title: IEEE Trans. Network Serv. Manage. – start-page: 489 year: 2016 end-page: 496 article-title: Business intelligence and data analytics (bi and da) to support the operation of smart grid – volume: 21 start-page: 171 year: 2015 end-page: 178 article-title: Apache spark a big data analytics platform for smart grid publication-title: Procedia Technol. – volume: 214 year: 2023 article-title: Distribution network fault diagnosis method for the deep integration of cyberphysics publication-title: Electr. Power Syst. Res. – volume: 2017 year: 2017 article-title: Optimizing hadoop performance for big data analytics in smart grid publication-title: Math. Prob. Eng. – volume: 205 year: 2020 article-title: Multivariate statistical monitoring of photovoltaic plant operation publication-title: Energy Convers. Manage. – volume: 28 year: 2020 article-title: Generating invariants using design and data‐centric approaches for distributed attack detection publication-title: IJCIP – year: 2012 article-title: Smart meter data analysis publication-title: Transmission and Distribution Conference and Exposition – volume: 1 start-page: 1 issue: 8 year: 2018 end-page: 24 article-title: Big data analytics in smart grids: a review publication-title: Energy Inf. – volume: 60 start-page: 3807 year: 2021 end-page: 3818 article-title: A combined deep learning application for short term load forecasting publication-title: Alex. Eng. J. – volume: 105 start-page: 1093 year: 2023 end-page: 1109 article-title: Overcurrent relay optimization in a radial distribution network considering different fault locations publication-title: Electr. Eng. – volume: 15 start-page: 21 issue: 1 year: 2012 end-page: 38 article-title: Smart grid communications: overview of research challenges, solutions, and standardization activities publication-title: IEEE Commun. Surv. Tutorials – volume: 1 start-page: 370 issue: 4 year: 2014 end-page: 379 article-title: Detection of faults and attacks including false data injection attack in smart grid using kalman filter publication-title: IEEE Trans. Control Network Syst. – volume: 3 start-page: 641 issue: 7 year: 2009 end-page: 649 article-title: Real‐coded genetic algorithm and fuzzy logic approach for real time tuning of proportional integral derivative controller in automatic voltage regulator system publication-title: IET Gener. Transm. Distrib. – volume: 2 start-page: 74 year: 2021 end-page: 82 article-title: Optimal reliability of a smart grid publication-title: Int. J. Smart Grid – volume: 134 start-page: 40 year: 2017 end-page: 47 article-title: Fault identification‐based voltage sag state estimation using artificial neural network publication-title: Energy Procedia – volume: 14 start-page: 799 issue: 3 year: 2012 end-page: 821 article-title: The progressive smart grid system from both power and communications aspects publication-title: IEEE Commun. Surv. Tutor. – year: 2019 article-title: Profiling with smart meter data in a virtual reality setting – volume: 7 start-page: 110835 year: 2019 end-page: 110845 article-title: Defending against data integrity attacks in smart grid: a deep reinforcement learning‐based approach publication-title: IEEE Access – volume: 11 start-page: 109 issue: 1 year: 2023 article-title: Fault location in distribution network by solving the optimization problem, based on power system status estimation using the PMU publication-title: Machines – volume: 144 year: 2023 article-title: Fault locating and severity assessment for power distribution systems based on elasticity network topology mapping publication-title: Int. Electr. Power Energy Syst. – volume: 9 start-page: 3122 issue: 4 year: 2018 end-page: 3132 article-title: Variational mode decomposition and decision tree based detection and classification of power quality disturbances in grid‐connected distributed generation system publication-title: IEEE Trans. Smart Grid – start-page: 211 year: 2020 end-page: 216 article-title: Performance evaluation of an inverter‐based microgrid under cyberattacks – volume: 4 start-page: 1 issue: 1 year: 2015 end-page: 13 article-title: Fault detection and classification in electrical power transmission system using artificial neural network publication-title: Springer Plus – volume: 12 start-page: 646 issue: 4 year: 2019 article-title: Energy aware virtual machine scheduling in data centers publication-title: Energies – year: 2017 article-title: Big data analysis of the electric power pmu data from smart grid – volume: 4 start-page: 362 issue: 3 year: 2018 end-page: 370 article-title: Review on the research and practice of deep learning and reinforcement learning in smart Grids publication-title: CSEE J. Power Energy Syst. – volume: 151 start-page: 496 year: 2017 end-page: 513 article-title: An enhanced machine learning based approach for failures detection and diagnosis of PV system publication-title: Energy Convers. Manage. – volume: 26 start-page: 13109 year: 2022 end-page: 13118 article-title: On the performance metrics for cyber‐physical attack detection in smart grid publication-title: Soft Comput. – volume: 45 start-page: 14274 year: 2021 end-page: 14305 article-title: Review of load data analytics using deep learning in smart grids: open load datasets, methodologies, and application challenges publication-title: Int. J. Energy Res. – start-page: 164 year: 2021 end-page: 169 article-title: Fault diagnosis of smart grids based on deep learning approach – year: 2019 article-title: Overview of big data in smart grid – volume: 22 start-page: 98 year: 2007 end-page: 204 article-title: Power distribution outage cause identification with imbalanced data using artificial immune recognition system (airs) algorithm publication-title: IEEE Trans Power Systems – volume: 7 start-page: 2525 issue: 5 year: 2016 end-page: 2536 article-title: Spatial‐temporal synchrophasor data characterization and analytics in smart grid fault detection, identification, and impact causal analysis publication-title: IEEE Trans. Smart Grid – volume: 2022 start-page: 1 year: 2022 end-page: 14 article-title: A novel smart method for state estimation in a smart grid using smart meter data publication-title: Appl. Comput. Intell. Soft Comput. – year: 2020 – volume: 10 start-page: 1694 issue: 2 year: 2019 end-page: 1703 article-title: Intelligent fault detection scheme for microgrids with wavelet‐based deep neural networks publication-title: IEEE Trans. Smart Grid – start-page: 1 year: 2012 end-page: 6 article-title: Impedance‐based fault location analysis for transmission lines – volume: 148 year: 2023 article-title: Master‐slave strategy based in artificial intelligence for the fault section estimation in active distribution networks and microgrids publication-title: Electr. Power Energy – start-page: 571 year: 2019 end-page: 579 article-title: Fault detection and location in medium voltage dc microgrids using travelling‐wave reflections publication-title: IET Renewable Power Gener. – volume: 145 year: 2023 article-title: Disturbance extracted methods for auxiliary power quality monitor‐based voltage sag localization in distribution network publication-title: Int. J. Electr. Power Energy Syst. – year: 2018 article-title: Data communication and analytics for smart grid systems – volume: 8 start-page: 2505 year: 2017 end-page: 2516 article-title: Real‐time detection of false data injection attacks in smart grid: a deep learning‐based intelligent mechanism publication-title: IEEE Trans. Smart Grid – volume: 78 start-page: 455 year: 2016 end-page: 462 article-title: Fast fault detection and classification based on a combination of wavelet singular entropy theory and fuzzy logic in distribution lines in the presence of distributed generations publication-title: Electrical Power and Energy Syst. – volume: 106 year: 2021 article-title: Machine learning applications in power system faulty diagnosis: research advancements and perspectives publication-title: Eng. Appl. Artif. Intell. – volume: 214 year: 2023 article-title: Detection and isolation of faulty line in an active distribution network using intelligent numerical relay publication-title: Electr. Power Syst. Res. – ident: e_1_2_10_97_1 doi: 10.1109/TAES.2014.120556 – volume: 72 start-page: 59564 year: 2020 ident: e_1_2_10_3_1 article-title: Smart grid big data analytics: survey of technologies, techniques, and applications publication-title: IEEE Access – volume: 1 start-page: 1 issue: 8 year: 2018 ident: e_1_2_10_4_1 article-title: Big data analytics in smart grids: a review publication-title: Energy Inf. – ident: e_1_2_10_101_1 doi: 10.1016/j.epsr.2022.109025 – ident: e_1_2_10_5_1 doi: 10.1109/ACCESS.2019.2894819 – ident: e_1_2_10_52_1 doi: 10.1002/er.6745 – ident: e_1_2_10_55_1 doi: 10.1109/TSG.2019.2918330 – ident: e_1_2_10_25_1 doi: 10.1016/j.protcy.2015.10.085 – ident: e_1_2_10_19_1 doi: 10.1016/j.ijepes.2021.107452 – ident: e_1_2_10_7_1 doi: 10.1016/j.rser.2016.01.023 – ident: e_1_2_10_86_1 doi: 10.1049/iet-gtd.2008.0287 – ident: e_1_2_10_92_1 doi: 10.1016/j.epsr.2022.108894 – ident: e_1_2_10_70_1 doi: 10.1109/ECCE.2016.7855166 – ident: e_1_2_10_64_1 doi: 10.1016/j.enconman.2017.09.019 – start-page: 571 year: 2019 ident: e_1_2_10_75_1 article-title: Fault detection and location in medium voltage dc microgrids using travelling‐wave reflections publication-title: IET Renewable Power Gener. – ident: e_1_2_10_57_1 doi: 10.1109/TAPENERGY.2017.8397249 – ident: e_1_2_10_93_1 doi: 10.1016/j.ijepes.2022.108699 – ident: e_1_2_10_103_1 doi: 10.1016/j.epsr.2022.108921 – ident: e_1_2_10_53_1 doi: 10.1016/j.cherd.2021.08.013 – ident: e_1_2_10_94_1 doi: 10.1016/j.ijepes.2022.108675 – volume: 26 start-page: 23 issue: 1 year: 2022 ident: e_1_2_10_83_1 article-title: Fault detection, classification and location in power distribution smart grid using smart meters data publication-title: J. Appl. Sci. Eng. – ident: e_1_2_10_2_1 doi: 10.3934/mbe.2022155 – ident: e_1_2_10_90_1 doi: 10.1016/j.ijepes.2022.108777 – ident: e_1_2_10_49_1 doi: 10.1109/ACCESS.2019.2951750 – ident: e_1_2_10_23_1 doi: 10.1109/SECON.2017.7925277 – ident: e_1_2_10_87_1 doi: 10.3390/machines11010109 – volume: 4 start-page: 970 year: 2016 ident: e_1_2_10_8_1 article-title: Reliability assessment method with integrated prior accelerated degradation and field degradation data publication-title: Syst. Eng. Electron. – ident: e_1_2_10_24_1 doi: 10.1016/j.procs.2015.09.169 – ident: e_1_2_10_56_1 doi: 10.1109/ACCESS.2019.2933020 – ident: e_1_2_10_62_1 doi: 10.1109/ChiCC.2016.7554408 – ident: e_1_2_10_13_1 doi: 10.1109/ACCESS.2018.2858256 – ident: e_1_2_10_39_1 – year: 2012 ident: e_1_2_10_38_1 article-title: Smart meter data analysis publication-title: Transmission and Distribution Conference and Exposition – ident: e_1_2_10_85_1 doi: 10.1109/INCOS45849.2019.8951377 – ident: e_1_2_10_29_1 doi: 10.1109/TSG.2018.2818167 – ident: e_1_2_10_88_1 doi: 10.1016/j.ijepes.2022.108921 – ident: e_1_2_10_46_1 doi: 10.1109/TDC.2012.6281527 – ident: e_1_2_10_66_1 doi: 10.1186/s40064-015-1080-x – volume: 22 start-page: 98 year: 2007 ident: e_1_2_10_16_1 article-title: Power distribution outage cause identification with imbalanced data using artificial immune recognition system (airs) algorithm publication-title: IEEE Trans Power Systems – ident: e_1_2_10_32_1 doi: 10.5220/0005936604890496 – ident: e_1_2_10_80_1 doi: 10.1016/j.compeleceng.2021.107211 – ident: e_1_2_10_61_1 doi: 10.1109/SoSE50414.2020.9130524 – volume: 28 year: 2020 ident: e_1_2_10_79_1 article-title: Generating invariants using design and data‐centric approaches for distributed attack detection publication-title: IJCIP – ident: e_1_2_10_35_1 doi: 10.1007/s11265-017-1269-z – ident: e_1_2_10_71_1 doi: 10.1109/TSG.2016.2626469 – ident: e_1_2_10_84_1 doi: 10.1016/j.aej.2021.02.050 – volume: 29 start-page: 171 issue: 6 year: 2020 ident: e_1_2_10_30_1 article-title: A review: big data analytics in smart grid management publication-title: Int. J. Adv. Sci. Technol. – ident: e_1_2_10_76_1 doi: 10.1016/j.ijepes.2015.11.048 – ident: e_1_2_10_27_1 doi: 10.1109/ISGT.2015.7131868 – ident: e_1_2_10_50_1 doi: 10.1109/JIOT.2019.2963635 – ident: e_1_2_10_43_1 doi: 10.1109/ICC.2018.8423021 – ident: e_1_2_10_68_1 doi: 10.1109/TCNS.2014.2357531 – ident: e_1_2_10_34_1 doi: 10.1109/JSAC.2019.2952769 – ident: e_1_2_10_69_1 doi: 10.1109/ISIE.2015.7281669 – ident: e_1_2_10_58_1 doi: 10.1109/TNSM.2021.3078381 – ident: e_1_2_10_65_1 doi: 10.1016/j.jesit.2015.03.015 – ident: e_1_2_10_26_1 doi: 10.1109/ICICTA.2018.00091 – ident: e_1_2_10_54_1 doi: 10.1109/TSG.2018.2805723 – ident: e_1_2_10_63_1 doi: 10.1016/j.enconman.2019.112317 – ident: e_1_2_10_77_1 doi: 10.1109/TSG.2017.2703842 – start-page: 1 volume-title: Fault intelligence: Distribution grid fault detection and classification year: 2017 ident: e_1_2_10_74_1 – ident: e_1_2_10_44_1 doi: 10.3390/s22062205 – volume: 14 start-page: 799 issue: 3 year: 2012 ident: e_1_2_10_12_1 article-title: The progressive smart grid system from both power and communications aspects publication-title: IEEE Commun. Surv. Tutor. – ident: e_1_2_10_81_1 doi: 10.1016/j.compeleceng.2021.107209 – ident: e_1_2_10_6_1 doi: 10.1016/j.bdr.2015.03.003 – ident: e_1_2_10_47_1 doi: 10.1007/s10586-017-1362-x – ident: e_1_2_10_73_1 doi: 10.1109/TSG.2017.2776310 – ident: e_1_2_10_78_1 doi: 10.1007/s10207-019-00452-z – ident: e_1_2_10_17_1 doi: 10.1109/SURV.2011.122211.00021 – ident: e_1_2_10_40_1 doi: 10.1016/j.egypro.2016.12.128 – ident: e_1_2_10_22_1 doi: 10.1109/ICRERA.2016.7884486 – ident: e_1_2_10_31_1 doi: 10.1016/j.rser.2017.05.134 – ident: e_1_2_10_98_1 doi: 10.1109/TSG.2016.2552229 – ident: e_1_2_10_20_1 doi: 10.1155/2022/7495548 – ident: e_1_2_10_45_1 doi: 10.1016/j.automatica.2018.06.039 – ident: e_1_2_10_59_1 doi: 10.23919/WAC50355.2021.9559474 – volume: 2022 start-page: 1 year: 2022 ident: e_1_2_10_9_1 article-title: A novel smart method for state estimation in a smart grid using smart meter data publication-title: Appl. Comput. Intell. Soft Comput. – ident: e_1_2_10_60_1 doi: 10.1016/j.engappai.2021.104504 – start-page: 1 year: 2016 ident: e_1_2_10_96_1 article-title: Fault location in distribution systems with distributed generation using support vector machines and smart meters publication-title: IEEE Ecuador Technical Chapters Meeting (ETCM) – volume: 148 year: 2023 ident: e_1_2_10_91_1 article-title: Master‐slave strategy based in artificial intelligence for the fault section estimation in active distribution networks and microgrids publication-title: Electr. Power Energy – ident: e_1_2_10_41_1 doi: 10.1088/1757-899X/750/1/012221 – ident: e_1_2_10_36_1 doi: 10.1155/2017/9429676 – ident: e_1_2_10_89_1 doi: 10.1007/s00202-022-01718-x – ident: e_1_2_10_100_1 doi: 10.1016/j.epsr.2022.108911 – ident: e_1_2_10_99_1 doi: 10.1109/TSG.2015.2478855 – ident: e_1_2_10_48_1 – ident: e_1_2_10_10_1 doi: 10.1016/j.rser.2015.12.257 – ident: e_1_2_10_72_1 doi: 10.1088/1755-1315/701/1/012074 – ident: e_1_2_10_33_1 doi: 10.1109/TSG.2016.2593358 – ident: e_1_2_10_51_1 doi: 10.17775/CSEEJPES.2018.00520 – volume: 2 start-page: 74 year: 2021 ident: e_1_2_10_18_1 article-title: Optimal reliability of a smart grid publication-title: Int. J. Smart Grid – ident: e_1_2_10_11_1 doi: 10.1002/psp.1972 – ident: e_1_2_10_28_1 doi: 10.1109/ISGT-Asia.2016.7796448 – ident: e_1_2_10_102_1 doi: 10.1016/j.epsr.2022.108973 – ident: e_1_2_10_42_1 doi: 10.1155/2017/2198262 – ident: e_1_2_10_67_1 doi: 10.1016/j.egypro.2017.09.596 – ident: e_1_2_10_21_1 doi: 10.3390/en12040646 – ident: e_1_2_10_95_1 doi: 10.1016/j.ijepes.2022.108570 – ident: e_1_2_10_37_1 doi: 10.1016/j.epsr.2017.06.006 – ident: e_1_2_10_15_1 doi: 10.1049/et.2016.0503 – ident: e_1_2_10_82_1 doi: 10.1007/s00500-022-06761-1 – ident: e_1_2_10_14_1 doi: 10.1109/ICRERA47325.2019.8996527 |
| SSID | ssj0001342041 |
| Score | 2.346313 |
| Snippet | This article proposes a deep learning (DL) model made of Long Short Term Memory (LSTM) and Adaptive Neuro Fuzzy Inference System (ANFIS) to detect fault in... Abstract This article proposes a deep learning (DL) model made of Long Short Term Memory (LSTM) and Adaptive Neuro Fuzzy Inference System (ANFIS) to detect... |
| SourceID | doaj unpaywall proquest crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Adaptive systems Algorithms Artificial neural networks Classification Communication Communications systems Consumer behavior Consumers Data analysis Data processing Deep learning Demand side management distribution networks Effectiveness electric current control Electricity Electricity distribution Energy Fault detection Fault location Fuzzy logic Fuzzy systems Machine learning Parameter identification Parameter robustness Performance evaluation Smart grid Smart meters |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBXp5tDmUPpJtk2LoLm0oMbWh20dSmnKLiHQpZQEchOyRnJTHO92421JTvkJ-Y39JZW09qYLZW_GDLbQzEhP0ug9hPYzC4mHFSUphLSE-wmYaCdz4nJjCwOJ5XEf8sskOzrlx2fibAtN-rswoayyHxPjQA1TE_bID1jioUjBUpp-nP0kQTUqnK72Ehq6k1aAD5Fi7B7apoEZa4C2D0eTr9_udl0Yp0mUs6Q-GolfzIues5TLg_aHpe8jxlibpSKZ_xoCvb9oZvrqt67rdUwbJ6XxI_SwQ5P409L9j9GWbZ6gnX84Bp-iX2O9qFsMto1FVw3WDWATMHMoEop-waH4vfImdoY7FYkKL6Wlo3XkvPxzc-sW19dXWNeV75f2-wU-9x_Dlxc--DAE_t1OOgtX83N4hk7Ho5PPR6QTWyCG5ZQToNL59GRGFCkrLDN5UrpEOqETCJiF0cLqIgNIrTN57miqbWaAZZKBY0yy52jQTBu7i7ClVljJw0pFc8mcTrmLVHJpzoQtYIje9p2rTMdEHgQxahVPxLlUwREqOmKI3qxsZ0v-jf9aHQYfrSwCZ3Z8MZ1XqktBxTzy83ikFOAbJKGUGeiEaymoKSWAHqK93sOqS-RLdRd2Q7S_8vrGpryLAbHBRJ0cj2h8erH5ly_Rg6Buv7z6uIcG7XxhX3kM1Javu8D-C1UoBX4 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVge0Ac-EYsKsgSvYCUJYntJD4W1FVViYpDVyony_GMw0KaXW0TUPfET-A38kuwneyqi1CFxC2KJtbEfmM_O5M3hBxkCLGjFWVUCIkRdwtwpK3MI5sbLAzEyMM55IfT7HjGT87F-bW_-Ht9iO2Bm4-MMF_7AF-C7ef5ftfJ5dv2C6aTQApuk71MODY-Inuz04-Hn3xNOYe3yG3XxUaVdOeBnXUoyPXvcMw7XbPUV991Xe-y1rDsTO8TvXG4zzb5OunacmLWf2g5_s8bPSD3Bk5KD3sQPSS3sHlE7l5TKnxMvk11V7cUsA2pWw3VDVDjmbdPNQqjS30KfeVMcEmHWhQV7QtUB-ugnPnrx0_brddXVNfVYjVvP1_QuWuMXl44CFPwKr5DAS5arebwhMymR2fvj6OhZENkWJ7yCFJpXZAzI4qEFchMHpc2llboGDzzYWmBusgAErQmz22aaMwMsEwysIxJ9pSMmkWDzwjFFAVK7vc7mktmdcJtEKRLciawgDF5vRlAZQY9c19Wo1bhuzqXyvelCn05Jq-2tstexeOvVu88DrYWXnk73FisKjUEsmKOPzpWUwpwDkkoZQY65lqK1JQSQI_J_gZFapgOLhWLHY8umPN-TA62yLrRlTcBKTeYqLOTozRcPf-3NvfJqF11-MKRqLZ8OcTJb4uXH9Y priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9RAFB1q-6A-iG0VV2sZsC8tRJP5SDLgi0qXUlB8aKFvw2TunbiSZpdtVmmf_An-Rn-JM5PstgtS8C2EmzDk3Js583UOIQc5QuppRZWUUmEifAecGKeKxBUWSwspijgP-flLfnIuTi_kxQZ5vzwL0-tDrCbcQmXE_3UocFP1LiSe1HoQu-_I3kZC8IBsZZ7IhPxm4uvtDAsXLI3WlcxnXuIH7nKpTyrUu9vH13qkKNy_xjYfLtqZuf5pmmadv8YOaPyUPBmYI_3QQ71NNrDdIY_v6Anukh9js2g6CtjFDVYtNS1QG_hx2BAUMaBho3vtQ3BGB8eImvY20jE66lv--fXbLW5urqlp6ul80n27pBP_Mnp16RONQtDaHWyyaD2fwDNyPj4--3SSDMYKieUFEwkw5XwpcivLjJfIbZFWLlVOmhQCP-GsRFPmABk6WxSOZQZzCzxXHBznij8nm-20xReEIkOJSoRRiRGKO5MJF2XjsoJLLGFEDpcfV9tBdTyYXzQ6rn4LpQMQOgIxIm9WsbNea-OfUR8DRquIoI8db0zntR7KTXPP8jz3qCT4BimoVA4mFUZJZisFYEZkb4mwHor2SvPUs92S-9aPyMEK9XubchQT4p4QfXZ6zOLVy_8JfkUeBV_7_tDjHtns5gt87dlPV-3HJP8L39X_sg priority: 102 providerName: Wiley-Blackwell |
| Title | Fault detection and classification using deep learning method and neuro‐fuzzy algorithm in a smart distribution grid |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftje2.12324 https://www.proquest.com/docview/3092383121 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/tje2.12324 https://doaj.org/article/3441426b5da149db96da04a952cb9dda |
| UnpaywallVersion | publishedVersion |
| Volume | 2023 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2051-3305 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: ADMLS dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: IDLOA dateStart: 20130601 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: BENPR dateStart: 20210201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: AVUZU dateStart: 20130601 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgPAAPiKtWGJUl9gJSmGM7if3YQcs0saqCVRpPkeNjd52yrOpS0PbET-A37pfMdtKqldB44SU3HUVH56Lz2Tn5DkK7qQHiYEURiUSaiLsCHCkrs8hm2ggNxPCwD3k0TA_G_PAkOVkb9eV7whp64MZwe8zVa1dFigSUA_NQyBQU4UomVBcSIEAjIuTaYirsrjBOCY-XfKRc7tVnhn4M-GGjAgWi_g10-XBRzdTVL1WWm3g1FJzBU_SkRYq412j4DN0z1XP0eI0_8AX6OVCLssZg6tBQVWFVAdYeD_sGoGBz7BvbJ07EzHA7IWKCm7HRQTrwWd78_mMX19dXWJWTi_m0Pj3HU_cyfHnu7IPBc-u2Y7HwZD6Fl2g86B9_OojaQQqRZhnlEVBpXeoxnYiYCcN0RgpLpE0UAY9HGBVGiRQgNlZnmaWxMqkGlkoGljHJXqGt6qIy2wgbahIjuV-FKC6ZdU6xgSYuzlhiBHTQ-6Vxc92yjPthF2UevnZzmXtH5MERHfRuJTtruDX-KrXvfbSS8HzY4YGLkryNkvxfUdJBO0sP522SXuaMOHQrmNO-g3ZXXr9TlQ8hIO4QyY8P-zRcvf4fer9Bj_x8--bnxx20Vc8X5q1DQXXRRfcpH7mjGHzpoge9z0dfv7vzfn84-tYNyeDuxsNR78ctxJAMwQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFLWqdlFYIJ4itIAlygKkoTO25-FFhSgkSl8RQqnU3eDxtYeidJImE6p0xSfwRXwMX4LteFIioey6G42uZizfa99j-_ochHYSBaGBFUWQxVwFzCTgQGieBjqVKpMQKub2IU96SfeUHZ7FZ2vod3MXxpZVNnOim6hhKO0e-S4NDRTJaESi96PLwKpG2dPVRkJDeGkF2HMUY_5ix5GaXZkl3GTv4JPx92tCOu3-x27gVQYCSVPCAiBcm7ikMs4imikq07DQIdexCMEma0oyJbIEIFJapqkmkVCJBJpwCppSS8ZkUsAGo4ybxd_Gfrv3-cvNLg9lJHTymcREf0DN6Go4Uhnfrb8r8s5hmqWs6MQDlhDv5rQaidmVGAyWMbRLgp376J5Hr_jDPNweoDVVPUR3_-E0fIR-dMR0UGNQtSvyqrCoAEuL0W1RkosDbIvtS2OiRtirVpR4LmXtrB3H5p-fv_T0-nqGxaA0fqi_XeBz8zE8uTDBjsHy_XqpLlyOz-ExOr2Vbn-C1qthpZ4irIiKFWd2ZSQYp1pETDvquiilscqghd40nZtLz3xuBTgGuTuBZzy3jsidI1ro1cJ2NOf7-K_VvvXRwsJydLsXw3GZ-yGfU4M0Df4pYjAN4lDwBETIBI-JLDiAaKHtxsO5nzgm-U2Yt9DOwusrm_LWBcQKk7x_2Cbu6dnqX75Em93-yXF-fNA72kJ3iMFz82uX22i9Hk_Vc4O_6uKFD3KMvt72uPoLV5JB1g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgK_E4IJ5iSwFL9AJSaGI7Dx8LdFUKVBy6qOJiOZ5x2CrNrrZZUHviJ_Ab-SXYTnbLSqgStyj6ZFmZGc9nZ_wNIdsZQuxoRRkVqcRIuAQcaSvzyOYGCwMxinAO-ekw2x-Lg-P0uK_N8XdhOn2I1YGbj4ywXvsAxxnYbsMpvEhme4LsdWAE18mGS-SxGJCN3S_jr-PLQxYuWBy6VzLnfJHbu6dLiVIhdy4HWEtKQbt_jXDeXDQzff5D1_U6hQ05aHSX3OnJI93trH2PXMPmPrn9l6TgA_J9pBd1SwHbUGPVUN0ANZ4i-5qgYAbqa90rB8EZ7ZtGVLTrJB3QQeLy989fdnFxcU51XU3nk_bbKZ24wejZqfM1Cl5ut--URav5BB6S8Wjv6O1-1PdWiAzPmYiASeuikZu0SHiB3ORxaWNpUx2DpyicFaiLDCBBa_LcskRjZoBnkoPlXPJHZNBMG3xMKDJMUQq_MdFCcqsTYYNyXJLzFAsYkpfLj6tMLzzu-1_UKvwAF1J5Q6hgiCF5scLOOrmNf6LeeButEF4iO7yYzivVR5zijug5-lGm4CYkoZQZ6FhomTJTSgA9JFtLC6s-bs8Ujx3hLbib_ZBsr6x-5VReBYe4AqKODvZYeNr8H_BzcuPzu5H6-P7wwxNyy3e5765AbpFBO1_gU8eF2vJZ7_F_AD8vBIE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVge0Ac-EYsKsgSvYCUJYntJD4W1FVViYpDVyony_GMw0KaXW0TUPfET-A38kuwneyqi1CFxC2KJtbEfmM_O5M3hBxkCLGjFWVUCIkRdwtwpK3MI5sbLAzEyMM55IfT7HjGT87F-bW_-Ht9iO2Bm4-MMF_7AF-C7ef5ftfJ5dv2C6aTQApuk71MODY-Inuz04-Hn3xNOYe3yG3XxUaVdOeBnXUoyPXvcMw7XbPUV991Xe-y1rDsTO8TvXG4zzb5OunacmLWf2g5_s8bPSD3Bk5KD3sQPSS3sHlE7l5TKnxMvk11V7cUsA2pWw3VDVDjmbdPNQqjS30KfeVMcEmHWhQV7QtUB-ugnPnrx0_brddXVNfVYjVvP1_QuWuMXl44CFPwKr5DAS5arebwhMymR2fvj6OhZENkWJ7yCFJpXZAzI4qEFchMHpc2llboGDzzYWmBusgAErQmz22aaMwMsEwysIxJ9pSMmkWDzwjFFAVK7vc7mktmdcJtEKRLciawgDF5vRlAZQY9c19Wo1bhuzqXyvelCn05Jq-2tstexeOvVu88DrYWXnk73FisKjUEsmKOPzpWUwpwDkkoZQY65lqK1JQSQI_J_gZFapgOLhWLHY8umPN-TA62yLrRlTcBKTeYqLOTozRcPf-3NvfJqF11-MKRqLZ8OcTJb4uXH9Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+detection+and+classification+using+deep+learning+method+and+neuro%E2%80%90fuzzy+algorithm+in+a+smart+distribution+grid&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Camille+Franklin+Mbey&rft.au=Vinny+Junior+Foba+Kakeu&rft.au=Alexandre+Teplaira+Boum&rft.au=Felix+Ghislain+Yem+Souhe&rft.date=2023-11-01&rft.pub=Wiley&rft.eissn=2051-3305&rft.volume=2023&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1049%2Ftje2.12324&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3441426b5da149db96da04a952cb9dda |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon |