Fault detection and classification using deep learning method and neuro‐fuzzy algorithm in a smart distribution grid

This article proposes a deep learning (DL) model made of Long Short Term Memory (LSTM) and Adaptive Neuro Fuzzy Inference System (ANFIS) to detect fault in smart distribution grid assisted by communication systems using smart meter data. In smart grid, data analysis for fault identification and dete...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineering (Stevenage, England) Vol. 2023; no. 11
Main Authors Mbey, Camille Franklin, Foba Kakeu, Vinny Junior, Boum, Alexandre Teplaira, Souhe, Felix Ghislain Yem
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.11.2023
Wiley
Subjects
Online AccessGet full text
ISSN2051-3305
2051-3305
DOI10.1049/tje2.12324

Cover

Abstract This article proposes a deep learning (DL) model made of Long Short Term Memory (LSTM) and Adaptive Neuro Fuzzy Inference System (ANFIS) to detect fault in smart distribution grid assisted by communication systems using smart meter data. In smart grid, data analysis for fault identification and detection is crucial for grid monitoring. Nowadays, there are several DL techniques developed for smart grid data analysis applications. To solve this problem, a novel data analysis model based on deep learning and Neuro‐fuzzy algorithm is developed for fault location in a smart power grid. First, the LSTM is applied for training the data samples extracted from the smart meters. Then, an ANFIS algorithm is implemented for fault detection and identification from the trained data. Finally, faults are located with the higher accuracy. With this intelligent method proposed, single‐phase, two‐phase and three‐phase faults can be identified using a restricted amount of data. The novelty of the proposed method compared with other methods is the capability of fast training and testing even with large amount of data. To verify the effectiveness of our methodology, an intelligent model of the IEEE 13‐node network is used. The effectiveness and robustness of the proposed model are evaluated using several parameters such as accuracy, precision‐recall, F1‐score, Receiver Operating Characteristic (ROC) curve and complexity time. The obtained results indicate that the proposed deep learning model outperforms existing deep learning methods in the literature for fault detection and classification with 99.99% accuracy. In this paper, a novel data analysis model based on deep learning and neuro‐fuzzy algorithm is proposed for detection and classification of faults in a smart grid. We used a 13‐node IEEE network modelled with smart meters and faults on some nodes to evaluate the ability of our deep learning method to analyze data and detect faults. The results of the proposed model show its outperformance compared to the models of the literature in terms of accuracy.
AbstractList This article proposes a deep learning (DL) model made of Long Short Term Memory (LSTM) and Adaptive Neuro Fuzzy Inference System (ANFIS) to detect fault in smart distribution grid assisted by communication systems using smart meter data. In smart grid, data analysis for fault identification and detection is crucial for grid monitoring. Nowadays, there are several DL techniques developed for smart grid data analysis applications. To solve this problem, a novel data analysis model based on deep learning and Neuro‐fuzzy algorithm is developed for fault location in a smart power grid. First, the LSTM is applied for training the data samples extracted from the smart meters. Then, an ANFIS algorithm is implemented for fault detection and identification from the trained data. Finally, faults are located with the higher accuracy. With this intelligent method proposed, single‐phase, two‐phase and three‐phase faults can be identified using a restricted amount of data. The novelty of the proposed method compared with other methods is the capability of fast training and testing even with large amount of data. To verify the effectiveness of our methodology, an intelligent model of the IEEE 13‐node network is used. The effectiveness and robustness of the proposed model are evaluated using several parameters such as accuracy, precision‐recall, F1‐score, Receiver Operating Characteristic (ROC) curve and complexity time. The obtained results indicate that the proposed deep learning model outperforms existing deep learning methods in the literature for fault detection and classification with 99.99% accuracy.
Abstract This article proposes a deep learning (DL) model made of Long Short Term Memory (LSTM) and Adaptive Neuro Fuzzy Inference System (ANFIS) to detect fault in smart distribution grid assisted by communication systems using smart meter data. In smart grid, data analysis for fault identification and detection is crucial for grid monitoring. Nowadays, there are several DL techniques developed for smart grid data analysis applications. To solve this problem, a novel data analysis model based on deep learning and Neuro‐fuzzy algorithm is developed for fault location in a smart power grid. First, the LSTM is applied for training the data samples extracted from the smart meters. Then, an ANFIS algorithm is implemented for fault detection and identification from the trained data. Finally, faults are located with the higher accuracy. With this intelligent method proposed, single‐phase, two‐phase and three‐phase faults can be identified using a restricted amount of data. The novelty of the proposed method compared with other methods is the capability of fast training and testing even with large amount of data. To verify the effectiveness of our methodology, an intelligent model of the IEEE 13‐node network is used. The effectiveness and robustness of the proposed model are evaluated using several parameters such as accuracy, precision‐recall, F1‐score, Receiver Operating Characteristic (ROC) curve and complexity time. The obtained results indicate that the proposed deep learning model outperforms existing deep learning methods in the literature for fault detection and classification with 99.99% accuracy.
This article proposes a deep learning (DL) model made of Long Short Term Memory (LSTM) and Adaptive Neuro Fuzzy Inference System (ANFIS) to detect fault in smart distribution grid assisted by communication systems using smart meter data. In smart grid, data analysis for fault identification and detection is crucial for grid monitoring. Nowadays, there are several DL techniques developed for smart grid data analysis applications. To solve this problem, a novel data analysis model based on deep learning and Neuro‐fuzzy algorithm is developed for fault location in a smart power grid. First, the LSTM is applied for training the data samples extracted from the smart meters. Then, an ANFIS algorithm is implemented for fault detection and identification from the trained data. Finally, faults are located with the higher accuracy. With this intelligent method proposed, single‐phase, two‐phase and three‐phase faults can be identified using a restricted amount of data. The novelty of the proposed method compared with other methods is the capability of fast training and testing even with large amount of data. To verify the effectiveness of our methodology, an intelligent model of the IEEE 13‐node network is used. The effectiveness and robustness of the proposed model are evaluated using several parameters such as accuracy, precision‐recall, F1‐score, Receiver Operating Characteristic (ROC) curve and complexity time. The obtained results indicate that the proposed deep learning model outperforms existing deep learning methods in the literature for fault detection and classification with 99.99% accuracy. In this paper, a novel data analysis model based on deep learning and neuro‐fuzzy algorithm is proposed for detection and classification of faults in a smart grid. We used a 13‐node IEEE network modelled with smart meters and faults on some nodes to evaluate the ability of our deep learning method to analyze data and detect faults. The results of the proposed model show its outperformance compared to the models of the literature in terms of accuracy.
Author Mbey, Camille Franklin
Foba Kakeu, Vinny Junior
Souhe, Felix Ghislain Yem
Boum, Alexandre Teplaira
Author_xml – sequence: 1
  givenname: Camille Franklin
  surname: Mbey
  fullname: Mbey, Camille Franklin
  organization: University of Douala
– sequence: 2
  givenname: Vinny Junior
  orcidid: 0000-0001-7848-3004
  surname: Foba Kakeu
  fullname: Foba Kakeu, Vinny Junior
  email: kakeuvinny@gmail.com
  organization: University of Douala
– sequence: 3
  givenname: Alexandre Teplaira
  surname: Boum
  fullname: Boum, Alexandre Teplaira
  organization: University of Douala
– sequence: 4
  givenname: Felix Ghislain Yem
  orcidid: 0000-0002-1257-8470
  surname: Souhe
  fullname: Souhe, Felix Ghislain Yem
  organization: University of Douala
BookMark eNp9kc1qVDEYhoNUsNZuvIID7pSp-Ts_WUppbUvBTV2H7-RnmiGTjEmOZbrqJXiNXomZc0REpKskH8_38Ib3NToKMRiE3hJ8RjAXH8vG0DNCGeUv0DHFLVkxhtujv-6v0GnOG4wxYZxiTo7R90uYfGm0KUYVF0MDQTfKQ87OOgXzaMourCtido03kMLhtTXlPuqZDmZK8efTDzs9Pu4b8OuYXLnfNq7KmryFVPUul-TGadatk9Nv0EsLPpvT3-cJ-np5cXd-tbr98vn6_NPtSrGe8pWmwpIaVrUDYYNhqsejxcK2gDUTfcfoYGDotCbGqr63lIDplGadYNoyJtgJul68OsJG7pKrcfYygpPzIKa1rPmc8kYyzgmn3dhqIFzoUXQaMAfRUjUKraG6PiyuKexg_wDe_xESLA8NyEMDcm6g0u8Wepfit8nkIjdxSqF-VjIsKBsYoaRS7xdKpZhzMvZ5Jf4HVq7MFZUEzv9_hSwrD86b_TNyeXdzQZedX5vKtt8
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3445287
crossref_primary_10_1080_23311916_2024_2340302
crossref_primary_10_1155_2024_9257508
Cites_doi 10.1109/TAES.2014.120556
10.1016/j.epsr.2022.109025
10.1109/ACCESS.2019.2894819
10.1002/er.6745
10.1109/TSG.2019.2918330
10.1016/j.protcy.2015.10.085
10.1016/j.ijepes.2021.107452
10.1016/j.rser.2016.01.023
10.1049/iet-gtd.2008.0287
10.1016/j.epsr.2022.108894
10.1109/ECCE.2016.7855166
10.1016/j.enconman.2017.09.019
10.1109/TAPENERGY.2017.8397249
10.1016/j.ijepes.2022.108699
10.1016/j.epsr.2022.108921
10.1016/j.cherd.2021.08.013
10.1016/j.ijepes.2022.108675
10.3934/mbe.2022155
10.1016/j.ijepes.2022.108777
10.1109/ACCESS.2019.2951750
10.1109/SECON.2017.7925277
10.3390/machines11010109
10.1016/j.procs.2015.09.169
10.1109/ACCESS.2019.2933020
10.1109/ChiCC.2016.7554408
10.1109/ACCESS.2018.2858256
10.1109/INCOS45849.2019.8951377
10.1109/TSG.2018.2818167
10.1016/j.ijepes.2022.108921
10.1109/TDC.2012.6281527
10.1186/s40064-015-1080-x
10.5220/0005936604890496
10.1016/j.compeleceng.2021.107211
10.1109/SoSE50414.2020.9130524
10.1007/s11265-017-1269-z
10.1109/TSG.2016.2626469
10.1016/j.aej.2021.02.050
10.1016/j.ijepes.2015.11.048
10.1109/ISGT.2015.7131868
10.1109/JIOT.2019.2963635
10.1109/ICC.2018.8423021
10.1109/TCNS.2014.2357531
10.1109/JSAC.2019.2952769
10.1109/ISIE.2015.7281669
10.1109/TNSM.2021.3078381
10.1016/j.jesit.2015.03.015
10.1109/ICICTA.2018.00091
10.1109/TSG.2018.2805723
10.1016/j.enconman.2019.112317
10.1109/TSG.2017.2703842
10.3390/s22062205
10.1016/j.compeleceng.2021.107209
10.1016/j.bdr.2015.03.003
10.1007/s10586-017-1362-x
10.1109/TSG.2017.2776310
10.1007/s10207-019-00452-z
10.1109/SURV.2011.122211.00021
10.1016/j.egypro.2016.12.128
10.1109/ICRERA.2016.7884486
10.1016/j.rser.2017.05.134
10.1109/TSG.2016.2552229
10.1155/2022/7495548
10.1016/j.automatica.2018.06.039
10.23919/WAC50355.2021.9559474
10.1016/j.engappai.2021.104504
10.1088/1757-899X/750/1/012221
10.1155/2017/9429676
10.1007/s00202-022-01718-x
10.1016/j.epsr.2022.108911
10.1109/TSG.2015.2478855
10.1016/j.rser.2015.12.257
10.1088/1755-1315/701/1/012074
10.1109/TSG.2016.2593358
10.17775/CSEEJPES.2018.00520
10.1002/psp.1972
10.1109/ISGT-Asia.2016.7796448
10.1016/j.epsr.2022.108973
10.1155/2017/2198262
10.1016/j.egypro.2017.09.596
10.3390/en12040646
10.1016/j.ijepes.2022.108570
10.1016/j.epsr.2017.06.006
10.1049/et.2016.0503
10.1007/s00500-022-06761-1
10.1109/ICRERA47325.2019.8996527
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1049/tje2.12324
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-3305
EndPage n/a
ExternalDocumentID oai_doaj_org_article_3441426b5da149db96da04a952cb9dda
10.1049/tje2.12324
10_1049_tje2_12324
TJE212324
Genre article
GroupedDBID 0R~
1OC
24P
5VS
AAHJG
AAJGR
AAMMB
ABJCF
ABQXS
ACCMX
ACESK
ACXQS
ADBBV
ADMLS
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
IAO
IDLOA
IGS
IPNFZ
ITC
KQ8
M43
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PTHSS
RIG
RNS
ROL
RUI
AAYXX
AFFHD
CITATION
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c3724-d29f1013c58138e3c70bf09f5a0d3976328ea86dd1efc77f21ae6cd3693df3393
IEDL.DBID DOA
ISSN 2051-3305
IngestDate Fri Oct 03 12:41:34 EDT 2025
Wed Oct 01 16:41:22 EDT 2025
Wed Aug 13 04:14:07 EDT 2025
Thu Apr 24 23:13:15 EDT 2025
Wed Oct 29 21:27:23 EDT 2025
Sun Jul 06 04:46:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3724-d29f1013c58138e3c70bf09f5a0d3976328ea86dd1efc77f21ae6cd3693df3393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7848-3004
0000-0002-1257-8470
OpenAccessLink https://doaj.org/article/3441426b5da149db96da04a952cb9dda
PQID 3092383121
PQPubID 6853465
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_3441426b5da149db96da04a952cb9dda
unpaywall_primary_10_1049_tje2_12324
proquest_journals_3092383121
crossref_primary_10_1049_tje2_12324
crossref_citationtrail_10_1049_tje2_12324
wiley_primary_10_1049_tje2_12324_TJE212324
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
20231101
2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of engineering (Stevenage, England)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2022; 134
2017; 8
2019; 11
2019; 10
2023; 146
2019; 12
2023; 145
2023; 144
2023; 105
2023; 148
2020; 205
2022; 26
2017; 151
2012; 15
2022; 22
2012; 14
2016; 78
2020; 19
2014; 1
2018; 6
2020; 7
2018; 9
2018; 4
2018; 1
2019; 22
2017; 79
2023; 216
2023; 215
2023; 214
2007; 22
2015; 2
2019; 7
2021; 45
2015; 4
2023; 11
2021; 2
2017; 2017
2012
2015; 51
2021; 106
2021; 701
2020; 38
2017; 134
2021; 93
2016; 59
2016; 58
2016; 11
2016; 4
2016; 7
2022; 2022
2021
2020; 72
2015; 61
2020
2021; 18
2015; 21
2020; 28
2019
2018
2018; 90
2017
2016
2020; 750
2018; 96
2015
2021; 174
2009; 3
2021; 60
2018; 10
2022; 19
2016; 22
2020; 29
2017; 107
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
Umer M.A. (e_1_2_10_79_1) 2020; 28
e_1_2_10_82_1
Dhupia B. (e_1_2_10_30_1) 2020; 29
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
Yem Souhe F.G. (e_1_2_10_83_1) 2022; 26
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_19_1
Xu L. (e_1_2_10_16_1) 2007; 22
e_1_2_10_98_1
e_1_2_10_56_1
Zhang Y. (e_1_2_10_4_1) 2018; 1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_60_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
Cai Z.Y. (e_1_2_10_8_1) 2016; 4
e_1_2_10_42_1
Yem Souhe F.G. (e_1_2_10_9_1) 2022; 2022
Perez R. (e_1_2_10_96_1) 2016
Lu N. (e_1_2_10_38_1) 2012
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_53_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
Chun‐Hao L. (e_1_2_10_12_1) 2012; 14
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
Foba Kakeu V.J. (e_1_2_10_18_1) 2021; 2
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_92_1
e_1_2_10_73_1
Taft J.D. (e_1_2_10_74_1) 2017
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_36_1
e_1_2_10_35_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
Syed D. (e_1_2_10_3_1) 2020; 72
Saleh K. (e_1_2_10_75_1) 2019
Atencia‐De la Ossa J. (e_1_2_10_91_1) 2023; 148
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 11
  start-page: 148
  year: 2019
  end-page: 160
  article-title: A practical solution for nonintrusive type ii load monitoring based on deep learning and post‐processing
  publication-title: IEEE Trans. Smart Grid
– volume: 19
  start-page: 189
  issue: 2
  year: 2020
  end-page: 211
  article-title: Attacks on smart grid: power supply interruption and malicious power generation
  publication-title: Int. J. Inf. Secur.
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 13
  article-title: Photovoltaic power generation forecasting using a novel hybrid intelligent model in smart grid
  publication-title: Comput. Intell. Neurosci.
– start-page: 20
  year: 2016
  end-page: 23
  article-title: Big data issues in smart grid systems
– start-page: 1
  year: 2017
  end-page: 38
– volume: 2
  start-page: 94
  issue: 3
  year: 2015
  end-page: 101
  article-title: Big data analytics for dynamic energy management in smart grids
  publication-title: Elsevier Big Data Res.
– volume: 72
  start-page: 59564
  year: 2020
  end-page: 59585
  article-title: Smart grid big data analytics: survey of technologies, techniques, and applications
  publication-title: IEEE Access
– volume: 215
  year: 2023
  article-title: Fault ride through constrained protection scheme for distribution networks with DFIG‐based wind parks
  publication-title: Electr. Power Syst. Res.
– volume: 701
  issue: 1
  year: 2021
  article-title: Deep adversarial‐ transfer learning based fault classification of power lines in smart grid
– year: 2015
  article-title: Big data analytics in power distribution systems
– volume: 7
  start-page: 13960
  year: 2019
  end-page: 13988
  article-title: Application of big data and machine learning in smart grid, and associated security concerns: a review
  publication-title: IEEE Access
– volume: 96
  start-page: 201
  year: 2018
  end-page: 212
  article-title: Model‐based fault identification of discrete event systems using partially observed Petri nets
  publication-title: Automatica
– volume: 148
  year: 2023
  article-title: Active detection fault diagnosis and fault location technology for LVDC distribution networks
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 51
  start-page: 40
  year: 2015
  end-page: 51
  article-title: Aircraft electric system intermittent arc fault detection and location
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 90
  start-page: 1091
  year: 2018
  end-page: 1103
  article-title: A query oriented adaptive indexing technique for smart grid big data analytics
  publication-title: J. Sign. Process. Syst.
– volume: 10
  start-page: 2593
  year: 2018
  end-page: 2602
  article-title: Deep learning‐based socio‐demographic information identification from smart meter data
  publication-title: IEEE Trans. Smart Grid
– volume: 7
  start-page: 164650
  year: 2019
  end-page: 164666
  article-title: A survey of deep learning techniques: application in wind and solar energy resources
  publication-title: IEEE Access
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Big data analytics embedded smart city architecture for performance enhancement through real‐time data processing and decision‐making
  publication-title: Wireless Commun. Mobile Comput.
– volume: 146
  year: 2023
  article-title: Location method of single line‐to‐ground faults in low‐resistance grounded distribution networks based on ratio of zero‐sequence admittance
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 11
  start-page: 38
  issue: 5
  year: 2016
  end-page: 41
  article-title: Greening the smart city
  publication-title: IEEE Eng. Technol.
– volume: 107
  start-page: 49
  year: 2017
  end-page: 59
  article-title: Smart meter data analytics for optimal customer selection in demand response Programs
  publication-title: Comput. Sci. Energy Procedia
– volume: 151
  start-page: 369
  year: 2017
  end-page: 380
  article-title: Big data framework for analytics in smart grids
  publication-title: Electr. Power Syst. Res.
– volume: 174
  start-page: 414
  year: 2021
  end-page: 441
  article-title: Machine learning on sustainable energy: a review and outlook on renewable energy systems, catalysis, smart grid and energy storage
  publication-title: Chem. Eng. Res. Des.
– volume: 93
  start-page: 1
  year: 2021
  end-page: 23
  article-title: Detection of false data cyber‐attacks for the assessment of security in smart grid using deep learning
  publication-title: Comput. Electr. Eng.
– volume: 6
  start-page: 40463
  year: 2018
  end-page: 40471
  article-title: Data lake lambda architecture for smart grids big data analytics
  publication-title: IEEE Access
– volume: 4
  start-page: 970
  year: 2016
  end-page: 976
  article-title: Reliability assessment method with integrated prior accelerated degradation and field degradation data
  publication-title: Syst. Eng. Electron.
– start-page: 1
  year: 2016
  end-page: 6
  article-title: A hybrid algorithm for fault locating in looped microgrids
– start-page: 375
  year: 2018
  end-page: 379
  article-title: Analysis and exploration of power grid realtime data communication technology under computer intelligence
– volume: 7
  start-page: 4329
  issue: 5
  year: 2020
  end-page: 4341
  article-title: Toward edge based deep learning in industrial internet of things
  publication-title: IEEE Internet Things J.
– volume: 58
  start-page: 911
  year: 2016
  end-page: 917
  article-title: Initiatives and technical challenges in smart distribution grid
  publication-title: Renewable Sustainable Energy Rev.
– volume: 22
  start-page: 1065
  year: 2019
  end-page: 1077
  article-title: Collaborative data analytics for smart buildings: Opportunities and models
  publication-title: Cluster Comput.
– volume: 93
  start-page: 1
  year: 2021
  end-page: 11
  article-title: Blockchain and homomorphic encryption based privacy‐preserving data aggregation model in smart grid
  publication-title: Comput. Electr. Eng.
– volume: 22
  start-page: 2205
  issue: 6
  year: 2022
  article-title: Fault handling in industry 4.0: definition, process and applications
  publication-title: Sensors
– volume: 79
  start-page: 1099
  year: 2017
  end-page: 1107
  article-title: Big data issues in smart grid—a review
  publication-title: Renewable Sustainable Energy Rev.
– start-page: 6678
  year: 2016
  end-page: 6683
  article-title: Deep learning neural network for power system fault diagnosis
– start-page: 1
  year: 2016
  end-page: 6
  article-title: Fault location in distribution systems with distributed generation using support vector machines and smart meters
  publication-title: IEEE Ecuador Technical Chapters Meeting (ETCM)
– volume: 214
  year: 2023
  article-title: Countermeasures for reduction of screen currents due to cross country faults in MV cable distribution networks
  publication-title: Electr. Power Syst. Res.
– volume: 22
  start-page: 849
  issue: 8
  year: 2016
  end-page: 863
  article-title: The role of digital trace data in supporting the collection of population statistics–the case for smart metered electricity consumption data
  publication-title: Popul. Space Place
– volume: 216
  year: 2023
  article-title: Machine learning based adaptive fault diagnosis considering hosting capacity amendment in active distribution network
  publication-title: Electr. Power Syst. Res.
– volume: 29
  start-page: 171
  issue: 6
  year: 2020
  end-page: 179
  article-title: A review: big data analytics in smart grid management
  publication-title: Int. J. Adv. Sci. Technol.
– volume: 38
  start-page: 1
  issue: 1
  year: 2020
  end-page: 4
  article-title: Guest editorial special issue on communications and data analytics in smart gri
  publication-title: IEEE J. Sel. Areas Commun.
– start-page: 1
  year: 2017
  end-page: 6
  article-title: Deep power: deep learning architectures for power quality disturbances classification
– volume: 59
  start-page: 1130
  year: 2016
  end-page: 1148
  article-title: Distributed generation: a review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks
  publication-title: Renew. Sustain. Energy Rev.
– volume: 2
  start-page: 257
  issue: 2
  year: 2015
  end-page: 267
  article-title: Fault identification in electrical power distribution system using combined discrete wavelet transform and fuzzy logic
  publication-title: J. Electr. Syst. Inf. Technol.
– volume: 10
  start-page: 3125
  issue: 3
  year: 2018
  end-page: 3148
  article-title: Review of smart meter data analytics: applications, methodologies, and challenges
  publication-title: IEEE Trans. Smart Grid
– volume: 8
  start-page: 1163
  issue: 3
  year: 2017
  end-page: 1172
  article-title: Photovoltaic energy conversion system fault detection using fractional‐order color relation classifier in micro distribution systems
  publication-title: IEEE Trans. Smart Grid
– volume: 7
  start-page: 2395
  issue: 5
  year: 2016
  end-page: 2396
  article-title: Guest editorial: big data analytics for grid modernization
  publication-title: IEEE Trans. Smart Grid
– volume: 61
  start-page: 113
  year: 2015
  end-page: 119
  article-title: Real‐time complex event processing and analytics for smart grid
  publication-title: Procedia Comput. Sci.
– volume: 750
  year: 2020
  article-title: Monitoring data analysis technology of smart grid based on cloud computing
  publication-title: IOP Conf. Series: Mater. Sci. Eng.
– start-page: 1351
  year: 2015
  end-page: 1356
  article-title: On phasor estimation for voltage sags detection in a smart grid context
– volume: 134
  year: 2022
  article-title: A novel hybrid model based on nonlinear weighted combination for short‐term wind power forecasting
  publication-title: Electr. Power Energy Syst.
– volume: 26
  start-page: 23
  issue: 1
  year: 2022
  end-page: 34
  article-title: Fault detection, classification and location in power distribution smart grid using smart meters data
  publication-title: J. Appl. Sci. Eng.
– volume: 19
  start-page: 3350
  issue: 4
  year: 2022
  end-page: 3368
  article-title: Mitigating consumer privacy breach in smart grid using obfuscation‐based generative adversarial network
  publication-title: Math. Biosci. and Engineering
– year: 2016
  article-title: Data analytics in smart distribution networks: applications and challenges
– year: 2019
  article-title: Smart meter data analysis issues: a data analytics perspective
– volume: 145
  year: 2023
  article-title: Single phase to ground fault location method of overhead line based on magnetic field detection and multi‐criteria fusion
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 18
  start-page: 1137
  year: 2021
  end-page: 1151
  article-title: A unified deep learning anomaly detection and classification approach for smart grid environments
  publication-title: IEEE Trans. Network Serv. Manage.
– start-page: 489
  year: 2016
  end-page: 496
  article-title: Business intelligence and data analytics (bi and da) to support the operation of smart grid
– volume: 21
  start-page: 171
  year: 2015
  end-page: 178
  article-title: Apache spark a big data analytics platform for smart grid
  publication-title: Procedia Technol.
– volume: 214
  year: 2023
  article-title: Distribution network fault diagnosis method for the deep integration of cyberphysics
  publication-title: Electr. Power Syst. Res.
– volume: 2017
  year: 2017
  article-title: Optimizing hadoop performance for big data analytics in smart grid
  publication-title: Math. Prob. Eng.
– volume: 205
  year: 2020
  article-title: Multivariate statistical monitoring of photovoltaic plant operation
  publication-title: Energy Convers. Manage.
– volume: 28
  year: 2020
  article-title: Generating invariants using design and data‐centric approaches for distributed attack detection
  publication-title: IJCIP
– year: 2012
  article-title: Smart meter data analysis
  publication-title: Transmission and Distribution Conference and Exposition
– volume: 1
  start-page: 1
  issue: 8
  year: 2018
  end-page: 24
  article-title: Big data analytics in smart grids: a review
  publication-title: Energy Inf.
– volume: 60
  start-page: 3807
  year: 2021
  end-page: 3818
  article-title: A combined deep learning application for short term load forecasting
  publication-title: Alex. Eng. J.
– volume: 105
  start-page: 1093
  year: 2023
  end-page: 1109
  article-title: Overcurrent relay optimization in a radial distribution network considering different fault locations
  publication-title: Electr. Eng.
– volume: 15
  start-page: 21
  issue: 1
  year: 2012
  end-page: 38
  article-title: Smart grid communications: overview of research challenges, solutions, and standardization activities
  publication-title: IEEE Commun. Surv. Tutorials
– volume: 1
  start-page: 370
  issue: 4
  year: 2014
  end-page: 379
  article-title: Detection of faults and attacks including false data injection attack in smart grid using kalman filter
  publication-title: IEEE Trans. Control Network Syst.
– volume: 3
  start-page: 641
  issue: 7
  year: 2009
  end-page: 649
  article-title: Real‐coded genetic algorithm and fuzzy logic approach for real time tuning of proportional integral derivative controller in automatic voltage regulator system
  publication-title: IET Gener. Transm. Distrib.
– volume: 2
  start-page: 74
  year: 2021
  end-page: 82
  article-title: Optimal reliability of a smart grid
  publication-title: Int. J. Smart Grid
– volume: 134
  start-page: 40
  year: 2017
  end-page: 47
  article-title: Fault identification‐based voltage sag state estimation using artificial neural network
  publication-title: Energy Procedia
– volume: 14
  start-page: 799
  issue: 3
  year: 2012
  end-page: 821
  article-title: The progressive smart grid system from both power and communications aspects
  publication-title: IEEE Commun. Surv. Tutor.
– year: 2019
  article-title: Profiling with smart meter data in a virtual reality setting
– volume: 7
  start-page: 110835
  year: 2019
  end-page: 110845
  article-title: Defending against data integrity attacks in smart grid: a deep reinforcement learning‐based approach
  publication-title: IEEE Access
– volume: 11
  start-page: 109
  issue: 1
  year: 2023
  article-title: Fault location in distribution network by solving the optimization problem, based on power system status estimation using the PMU
  publication-title: Machines
– volume: 144
  year: 2023
  article-title: Fault locating and severity assessment for power distribution systems based on elasticity network topology mapping
  publication-title: Int. Electr. Power Energy Syst.
– volume: 9
  start-page: 3122
  issue: 4
  year: 2018
  end-page: 3132
  article-title: Variational mode decomposition and decision tree based detection and classification of power quality disturbances in grid‐connected distributed generation system
  publication-title: IEEE Trans. Smart Grid
– start-page: 211
  year: 2020
  end-page: 216
  article-title: Performance evaluation of an inverter‐based microgrid under cyberattacks
– volume: 4
  start-page: 1
  issue: 1
  year: 2015
  end-page: 13
  article-title: Fault detection and classification in electrical power transmission system using artificial neural network
  publication-title: Springer Plus
– volume: 12
  start-page: 646
  issue: 4
  year: 2019
  article-title: Energy aware virtual machine scheduling in data centers
  publication-title: Energies
– year: 2017
  article-title: Big data analysis of the electric power pmu data from smart grid
– volume: 4
  start-page: 362
  issue: 3
  year: 2018
  end-page: 370
  article-title: Review on the research and practice of deep learning and reinforcement learning in smart Grids
  publication-title: CSEE J. Power Energy Syst.
– volume: 151
  start-page: 496
  year: 2017
  end-page: 513
  article-title: An enhanced machine learning based approach for failures detection and diagnosis of PV system
  publication-title: Energy Convers. Manage.
– volume: 26
  start-page: 13109
  year: 2022
  end-page: 13118
  article-title: On the performance metrics for cyber‐physical attack detection in smart grid
  publication-title: Soft Comput.
– volume: 45
  start-page: 14274
  year: 2021
  end-page: 14305
  article-title: Review of load data analytics using deep learning in smart grids: open load datasets, methodologies, and application challenges
  publication-title: Int. J. Energy Res.
– start-page: 164
  year: 2021
  end-page: 169
  article-title: Fault diagnosis of smart grids based on deep learning approach
– year: 2019
  article-title: Overview of big data in smart grid
– volume: 22
  start-page: 98
  year: 2007
  end-page: 204
  article-title: Power distribution outage cause identification with imbalanced data using artificial immune recognition system (airs) algorithm
  publication-title: IEEE Trans Power Systems
– volume: 7
  start-page: 2525
  issue: 5
  year: 2016
  end-page: 2536
  article-title: Spatial‐temporal synchrophasor data characterization and analytics in smart grid fault detection, identification, and impact causal analysis
  publication-title: IEEE Trans. Smart Grid
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 14
  article-title: A novel smart method for state estimation in a smart grid using smart meter data
  publication-title: Appl. Comput. Intell. Soft Comput.
– year: 2020
– volume: 10
  start-page: 1694
  issue: 2
  year: 2019
  end-page: 1703
  article-title: Intelligent fault detection scheme for microgrids with wavelet‐based deep neural networks
  publication-title: IEEE Trans. Smart Grid
– start-page: 1
  year: 2012
  end-page: 6
  article-title: Impedance‐based fault location analysis for transmission lines
– volume: 148
  year: 2023
  article-title: Master‐slave strategy based in artificial intelligence for the fault section estimation in active distribution networks and microgrids
  publication-title: Electr. Power Energy
– start-page: 571
  year: 2019
  end-page: 579
  article-title: Fault detection and location in medium voltage dc microgrids using travelling‐wave reflections
  publication-title: IET Renewable Power Gener.
– volume: 145
  year: 2023
  article-title: Disturbance extracted methods for auxiliary power quality monitor‐based voltage sag localization in distribution network
  publication-title: Int. J. Electr. Power Energy Syst.
– year: 2018
  article-title: Data communication and analytics for smart grid systems
– volume: 8
  start-page: 2505
  year: 2017
  end-page: 2516
  article-title: Real‐time detection of false data injection attacks in smart grid: a deep learning‐based intelligent mechanism
  publication-title: IEEE Trans. Smart Grid
– volume: 78
  start-page: 455
  year: 2016
  end-page: 462
  article-title: Fast fault detection and classification based on a combination of wavelet singular entropy theory and fuzzy logic in distribution lines in the presence of distributed generations
  publication-title: Electrical Power and Energy Syst.
– volume: 106
  year: 2021
  article-title: Machine learning applications in power system faulty diagnosis: research advancements and perspectives
  publication-title: Eng. Appl. Artif. Intell.
– volume: 214
  year: 2023
  article-title: Detection and isolation of faulty line in an active distribution network using intelligent numerical relay
  publication-title: Electr. Power Syst. Res.
– ident: e_1_2_10_97_1
  doi: 10.1109/TAES.2014.120556
– volume: 72
  start-page: 59564
  year: 2020
  ident: e_1_2_10_3_1
  article-title: Smart grid big data analytics: survey of technologies, techniques, and applications
  publication-title: IEEE Access
– volume: 1
  start-page: 1
  issue: 8
  year: 2018
  ident: e_1_2_10_4_1
  article-title: Big data analytics in smart grids: a review
  publication-title: Energy Inf.
– ident: e_1_2_10_101_1
  doi: 10.1016/j.epsr.2022.109025
– ident: e_1_2_10_5_1
  doi: 10.1109/ACCESS.2019.2894819
– ident: e_1_2_10_52_1
  doi: 10.1002/er.6745
– ident: e_1_2_10_55_1
  doi: 10.1109/TSG.2019.2918330
– ident: e_1_2_10_25_1
  doi: 10.1016/j.protcy.2015.10.085
– ident: e_1_2_10_19_1
  doi: 10.1016/j.ijepes.2021.107452
– ident: e_1_2_10_7_1
  doi: 10.1016/j.rser.2016.01.023
– ident: e_1_2_10_86_1
  doi: 10.1049/iet-gtd.2008.0287
– ident: e_1_2_10_92_1
  doi: 10.1016/j.epsr.2022.108894
– ident: e_1_2_10_70_1
  doi: 10.1109/ECCE.2016.7855166
– ident: e_1_2_10_64_1
  doi: 10.1016/j.enconman.2017.09.019
– start-page: 571
  year: 2019
  ident: e_1_2_10_75_1
  article-title: Fault detection and location in medium voltage dc microgrids using travelling‐wave reflections
  publication-title: IET Renewable Power Gener.
– ident: e_1_2_10_57_1
  doi: 10.1109/TAPENERGY.2017.8397249
– ident: e_1_2_10_93_1
  doi: 10.1016/j.ijepes.2022.108699
– ident: e_1_2_10_103_1
  doi: 10.1016/j.epsr.2022.108921
– ident: e_1_2_10_53_1
  doi: 10.1016/j.cherd.2021.08.013
– ident: e_1_2_10_94_1
  doi: 10.1016/j.ijepes.2022.108675
– volume: 26
  start-page: 23
  issue: 1
  year: 2022
  ident: e_1_2_10_83_1
  article-title: Fault detection, classification and location in power distribution smart grid using smart meters data
  publication-title: J. Appl. Sci. Eng.
– ident: e_1_2_10_2_1
  doi: 10.3934/mbe.2022155
– ident: e_1_2_10_90_1
  doi: 10.1016/j.ijepes.2022.108777
– ident: e_1_2_10_49_1
  doi: 10.1109/ACCESS.2019.2951750
– ident: e_1_2_10_23_1
  doi: 10.1109/SECON.2017.7925277
– ident: e_1_2_10_87_1
  doi: 10.3390/machines11010109
– volume: 4
  start-page: 970
  year: 2016
  ident: e_1_2_10_8_1
  article-title: Reliability assessment method with integrated prior accelerated degradation and field degradation data
  publication-title: Syst. Eng. Electron.
– ident: e_1_2_10_24_1
  doi: 10.1016/j.procs.2015.09.169
– ident: e_1_2_10_56_1
  doi: 10.1109/ACCESS.2019.2933020
– ident: e_1_2_10_62_1
  doi: 10.1109/ChiCC.2016.7554408
– ident: e_1_2_10_13_1
  doi: 10.1109/ACCESS.2018.2858256
– ident: e_1_2_10_39_1
– year: 2012
  ident: e_1_2_10_38_1
  article-title: Smart meter data analysis
  publication-title: Transmission and Distribution Conference and Exposition
– ident: e_1_2_10_85_1
  doi: 10.1109/INCOS45849.2019.8951377
– ident: e_1_2_10_29_1
  doi: 10.1109/TSG.2018.2818167
– ident: e_1_2_10_88_1
  doi: 10.1016/j.ijepes.2022.108921
– ident: e_1_2_10_46_1
  doi: 10.1109/TDC.2012.6281527
– ident: e_1_2_10_66_1
  doi: 10.1186/s40064-015-1080-x
– volume: 22
  start-page: 98
  year: 2007
  ident: e_1_2_10_16_1
  article-title: Power distribution outage cause identification with imbalanced data using artificial immune recognition system (airs) algorithm
  publication-title: IEEE Trans Power Systems
– ident: e_1_2_10_32_1
  doi: 10.5220/0005936604890496
– ident: e_1_2_10_80_1
  doi: 10.1016/j.compeleceng.2021.107211
– ident: e_1_2_10_61_1
  doi: 10.1109/SoSE50414.2020.9130524
– volume: 28
  year: 2020
  ident: e_1_2_10_79_1
  article-title: Generating invariants using design and data‐centric approaches for distributed attack detection
  publication-title: IJCIP
– ident: e_1_2_10_35_1
  doi: 10.1007/s11265-017-1269-z
– ident: e_1_2_10_71_1
  doi: 10.1109/TSG.2016.2626469
– ident: e_1_2_10_84_1
  doi: 10.1016/j.aej.2021.02.050
– volume: 29
  start-page: 171
  issue: 6
  year: 2020
  ident: e_1_2_10_30_1
  article-title: A review: big data analytics in smart grid management
  publication-title: Int. J. Adv. Sci. Technol.
– ident: e_1_2_10_76_1
  doi: 10.1016/j.ijepes.2015.11.048
– ident: e_1_2_10_27_1
  doi: 10.1109/ISGT.2015.7131868
– ident: e_1_2_10_50_1
  doi: 10.1109/JIOT.2019.2963635
– ident: e_1_2_10_43_1
  doi: 10.1109/ICC.2018.8423021
– ident: e_1_2_10_68_1
  doi: 10.1109/TCNS.2014.2357531
– ident: e_1_2_10_34_1
  doi: 10.1109/JSAC.2019.2952769
– ident: e_1_2_10_69_1
  doi: 10.1109/ISIE.2015.7281669
– ident: e_1_2_10_58_1
  doi: 10.1109/TNSM.2021.3078381
– ident: e_1_2_10_65_1
  doi: 10.1016/j.jesit.2015.03.015
– ident: e_1_2_10_26_1
  doi: 10.1109/ICICTA.2018.00091
– ident: e_1_2_10_54_1
  doi: 10.1109/TSG.2018.2805723
– ident: e_1_2_10_63_1
  doi: 10.1016/j.enconman.2019.112317
– ident: e_1_2_10_77_1
  doi: 10.1109/TSG.2017.2703842
– start-page: 1
  volume-title: Fault intelligence: Distribution grid fault detection and classification
  year: 2017
  ident: e_1_2_10_74_1
– ident: e_1_2_10_44_1
  doi: 10.3390/s22062205
– volume: 14
  start-page: 799
  issue: 3
  year: 2012
  ident: e_1_2_10_12_1
  article-title: The progressive smart grid system from both power and communications aspects
  publication-title: IEEE Commun. Surv. Tutor.
– ident: e_1_2_10_81_1
  doi: 10.1016/j.compeleceng.2021.107209
– ident: e_1_2_10_6_1
  doi: 10.1016/j.bdr.2015.03.003
– ident: e_1_2_10_47_1
  doi: 10.1007/s10586-017-1362-x
– ident: e_1_2_10_73_1
  doi: 10.1109/TSG.2017.2776310
– ident: e_1_2_10_78_1
  doi: 10.1007/s10207-019-00452-z
– ident: e_1_2_10_17_1
  doi: 10.1109/SURV.2011.122211.00021
– ident: e_1_2_10_40_1
  doi: 10.1016/j.egypro.2016.12.128
– ident: e_1_2_10_22_1
  doi: 10.1109/ICRERA.2016.7884486
– ident: e_1_2_10_31_1
  doi: 10.1016/j.rser.2017.05.134
– ident: e_1_2_10_98_1
  doi: 10.1109/TSG.2016.2552229
– ident: e_1_2_10_20_1
  doi: 10.1155/2022/7495548
– ident: e_1_2_10_45_1
  doi: 10.1016/j.automatica.2018.06.039
– ident: e_1_2_10_59_1
  doi: 10.23919/WAC50355.2021.9559474
– volume: 2022
  start-page: 1
  year: 2022
  ident: e_1_2_10_9_1
  article-title: A novel smart method for state estimation in a smart grid using smart meter data
  publication-title: Appl. Comput. Intell. Soft Comput.
– ident: e_1_2_10_60_1
  doi: 10.1016/j.engappai.2021.104504
– start-page: 1
  year: 2016
  ident: e_1_2_10_96_1
  article-title: Fault location in distribution systems with distributed generation using support vector machines and smart meters
  publication-title: IEEE Ecuador Technical Chapters Meeting (ETCM)
– volume: 148
  year: 2023
  ident: e_1_2_10_91_1
  article-title: Master‐slave strategy based in artificial intelligence for the fault section estimation in active distribution networks and microgrids
  publication-title: Electr. Power Energy
– ident: e_1_2_10_41_1
  doi: 10.1088/1757-899X/750/1/012221
– ident: e_1_2_10_36_1
  doi: 10.1155/2017/9429676
– ident: e_1_2_10_89_1
  doi: 10.1007/s00202-022-01718-x
– ident: e_1_2_10_100_1
  doi: 10.1016/j.epsr.2022.108911
– ident: e_1_2_10_99_1
  doi: 10.1109/TSG.2015.2478855
– ident: e_1_2_10_48_1
– ident: e_1_2_10_10_1
  doi: 10.1016/j.rser.2015.12.257
– ident: e_1_2_10_72_1
  doi: 10.1088/1755-1315/701/1/012074
– ident: e_1_2_10_33_1
  doi: 10.1109/TSG.2016.2593358
– ident: e_1_2_10_51_1
  doi: 10.17775/CSEEJPES.2018.00520
– volume: 2
  start-page: 74
  year: 2021
  ident: e_1_2_10_18_1
  article-title: Optimal reliability of a smart grid
  publication-title: Int. J. Smart Grid
– ident: e_1_2_10_11_1
  doi: 10.1002/psp.1972
– ident: e_1_2_10_28_1
  doi: 10.1109/ISGT-Asia.2016.7796448
– ident: e_1_2_10_102_1
  doi: 10.1016/j.epsr.2022.108973
– ident: e_1_2_10_42_1
  doi: 10.1155/2017/2198262
– ident: e_1_2_10_67_1
  doi: 10.1016/j.egypro.2017.09.596
– ident: e_1_2_10_21_1
  doi: 10.3390/en12040646
– ident: e_1_2_10_95_1
  doi: 10.1016/j.ijepes.2022.108570
– ident: e_1_2_10_37_1
  doi: 10.1016/j.epsr.2017.06.006
– ident: e_1_2_10_15_1
  doi: 10.1049/et.2016.0503
– ident: e_1_2_10_82_1
  doi: 10.1007/s00500-022-06761-1
– ident: e_1_2_10_14_1
  doi: 10.1109/ICRERA47325.2019.8996527
SSID ssj0001342041
Score 2.346313
Snippet This article proposes a deep learning (DL) model made of Long Short Term Memory (LSTM) and Adaptive Neuro Fuzzy Inference System (ANFIS) to detect fault in...
Abstract This article proposes a deep learning (DL) model made of Long Short Term Memory (LSTM) and Adaptive Neuro Fuzzy Inference System (ANFIS) to detect...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Adaptive systems
Algorithms
Artificial neural networks
Classification
Communication
Communications systems
Consumer behavior
Consumers
Data analysis
Data processing
Deep learning
Demand side management
distribution networks
Effectiveness
electric current control
Electricity
Electricity distribution
Energy
Fault detection
Fault location
Fuzzy logic
Fuzzy systems
Machine learning
Parameter identification
Parameter robustness
Performance evaluation
Smart grid
Smart meters
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBXp5tDmUPpJtk2LoLm0oMbWh20dSmnKLiHQpZQEchOyRnJTHO92421JTvkJ-Y39JZW09qYLZW_GDLbQzEhP0ug9hPYzC4mHFSUphLSE-wmYaCdz4nJjCwOJ5XEf8sskOzrlx2fibAtN-rswoayyHxPjQA1TE_bID1jioUjBUpp-nP0kQTUqnK72Ehq6k1aAD5Fi7B7apoEZa4C2D0eTr9_udl0Yp0mUs6Q-GolfzIues5TLg_aHpe8jxlibpSKZ_xoCvb9oZvrqt67rdUwbJ6XxI_SwQ5P409L9j9GWbZ6gnX84Bp-iX2O9qFsMto1FVw3WDWATMHMoEop-waH4vfImdoY7FYkKL6Wlo3XkvPxzc-sW19dXWNeV75f2-wU-9x_Dlxc--DAE_t1OOgtX83N4hk7Ho5PPR6QTWyCG5ZQToNL59GRGFCkrLDN5UrpEOqETCJiF0cLqIgNIrTN57miqbWaAZZKBY0yy52jQTBu7i7ClVljJw0pFc8mcTrmLVHJpzoQtYIje9p2rTMdEHgQxahVPxLlUwREqOmKI3qxsZ0v-jf9aHQYfrSwCZ3Z8MZ1XqktBxTzy83ikFOAbJKGUGeiEaymoKSWAHqK93sOqS-RLdRd2Q7S_8vrGpryLAbHBRJ0cj2h8erH5ly_Rg6Buv7z6uIcG7XxhX3kM1Javu8D-C1UoBX4
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVge0Ac-EYsKsgSvYCUJYntJD4W1FVViYpDVyony_GMw0KaXW0TUPfET-A38kuwneyqi1CFxC2KJtbEfmM_O5M3hBxkCLGjFWVUCIkRdwtwpK3MI5sbLAzEyMM55IfT7HjGT87F-bW_-Ht9iO2Bm4-MMF_7AF-C7ef5ftfJ5dv2C6aTQApuk71MODY-Inuz04-Hn3xNOYe3yG3XxUaVdOeBnXUoyPXvcMw7XbPUV991Xe-y1rDsTO8TvXG4zzb5OunacmLWf2g5_s8bPSD3Bk5KD3sQPSS3sHlE7l5TKnxMvk11V7cUsA2pWw3VDVDjmbdPNQqjS30KfeVMcEmHWhQV7QtUB-ugnPnrx0_brddXVNfVYjVvP1_QuWuMXl44CFPwKr5DAS5arebwhMymR2fvj6OhZENkWJ7yCFJpXZAzI4qEFchMHpc2llboGDzzYWmBusgAErQmz22aaMwMsEwysIxJ9pSMmkWDzwjFFAVK7vc7mktmdcJtEKRLciawgDF5vRlAZQY9c19Wo1bhuzqXyvelCn05Jq-2tstexeOvVu88DrYWXnk73FisKjUEsmKOPzpWUwpwDkkoZQY65lqK1JQSQI_J_gZFapgOLhWLHY8umPN-TA62yLrRlTcBKTeYqLOTozRcPf-3NvfJqF11-MKRqLZ8OcTJb4uXH9Y
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9RAFB1q-6A-iG0VV2sZsC8tRJP5SDLgi0qXUlB8aKFvw2TunbiSZpdtVmmf_An-Rn-JM5PstgtS8C2EmzDk3Js583UOIQc5QuppRZWUUmEifAecGKeKxBUWSwspijgP-flLfnIuTi_kxQZ5vzwL0-tDrCbcQmXE_3UocFP1LiSe1HoQu-_I3kZC8IBsZZ7IhPxm4uvtDAsXLI3WlcxnXuIH7nKpTyrUu9vH13qkKNy_xjYfLtqZuf5pmmadv8YOaPyUPBmYI_3QQ71NNrDdIY_v6Anukh9js2g6CtjFDVYtNS1QG_hx2BAUMaBho3vtQ3BGB8eImvY20jE66lv--fXbLW5urqlp6ul80n27pBP_Mnp16RONQtDaHWyyaD2fwDNyPj4--3SSDMYKieUFEwkw5XwpcivLjJfIbZFWLlVOmhQCP-GsRFPmABk6WxSOZQZzCzxXHBznij8nm-20xReEIkOJSoRRiRGKO5MJF2XjsoJLLGFEDpcfV9tBdTyYXzQ6rn4LpQMQOgIxIm9WsbNea-OfUR8DRquIoI8db0zntR7KTXPP8jz3qCT4BimoVA4mFUZJZisFYEZkb4mwHor2SvPUs92S-9aPyMEK9XubchQT4p4QfXZ6zOLVy_8JfkUeBV_7_tDjHtns5gt87dlPV-3HJP8L39X_sg
  priority: 102
  providerName: Wiley-Blackwell
Title Fault detection and classification using deep learning method and neuro‐fuzzy algorithm in a smart distribution grid
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftje2.12324
https://www.proquest.com/docview/3092383121
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/tje2.12324
https://doaj.org/article/3441426b5da149db96da04a952cb9dda
UnpaywallVersion publishedVersion
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: ADMLS
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: IDLOA
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: BENPR
  dateStart: 20210201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: AVUZU
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgPAAPiKtWGJUl9gJSmGM7if3YQcs0saqCVRpPkeNjd52yrOpS0PbET-A37pfMdtKqldB44SU3HUVH56Lz2Tn5DkK7qQHiYEURiUSaiLsCHCkrs8hm2ggNxPCwD3k0TA_G_PAkOVkb9eV7whp64MZwe8zVa1dFigSUA_NQyBQU4UomVBcSIEAjIuTaYirsrjBOCY-XfKRc7tVnhn4M-GGjAgWi_g10-XBRzdTVL1WWm3g1FJzBU_SkRYq412j4DN0z1XP0eI0_8AX6OVCLssZg6tBQVWFVAdYeD_sGoGBz7BvbJ07EzHA7IWKCm7HRQTrwWd78_mMX19dXWJWTi_m0Pj3HU_cyfHnu7IPBc-u2Y7HwZD6Fl2g86B9_OojaQQqRZhnlEVBpXeoxnYiYCcN0RgpLpE0UAY9HGBVGiRQgNlZnmaWxMqkGlkoGljHJXqGt6qIy2wgbahIjuV-FKC6ZdU6xgSYuzlhiBHTQ-6Vxc92yjPthF2UevnZzmXtH5MERHfRuJTtruDX-KrXvfbSS8HzY4YGLkryNkvxfUdJBO0sP522SXuaMOHQrmNO-g3ZXXr9TlQ8hIO4QyY8P-zRcvf4fer9Bj_x8--bnxx20Vc8X5q1DQXXRRfcpH7mjGHzpoge9z0dfv7vzfn84-tYNyeDuxsNR78ctxJAMwQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFLWqdlFYIJ4itIAlygKkoTO25-FFhSgkSl8RQqnU3eDxtYeidJImE6p0xSfwRXwMX4LteFIioey6G42uZizfa99j-_ochHYSBaGBFUWQxVwFzCTgQGieBjqVKpMQKub2IU96SfeUHZ7FZ2vod3MXxpZVNnOim6hhKO0e-S4NDRTJaESi96PLwKpG2dPVRkJDeGkF2HMUY_5ix5GaXZkl3GTv4JPx92tCOu3-x27gVQYCSVPCAiBcm7ikMs4imikq07DQIdexCMEma0oyJbIEIFJapqkmkVCJBJpwCppSS8ZkUsAGo4ybxd_Gfrv3-cvNLg9lJHTymcREf0DN6Go4Uhnfrb8r8s5hmqWs6MQDlhDv5rQaidmVGAyWMbRLgp376J5Hr_jDPNweoDVVPUR3_-E0fIR-dMR0UGNQtSvyqrCoAEuL0W1RkosDbIvtS2OiRtirVpR4LmXtrB3H5p-fv_T0-nqGxaA0fqi_XeBz8zE8uTDBjsHy_XqpLlyOz-ExOr2Vbn-C1qthpZ4irIiKFWd2ZSQYp1pETDvquiilscqghd40nZtLz3xuBTgGuTuBZzy3jsidI1ro1cJ2NOf7-K_VvvXRwsJydLsXw3GZ-yGfU4M0Df4pYjAN4lDwBETIBI-JLDiAaKHtxsO5nzgm-U2Yt9DOwusrm_LWBcQKk7x_2Cbu6dnqX75Em93-yXF-fNA72kJ3iMFz82uX22i9Hk_Vc4O_6uKFD3KMvt72uPoLV5JB1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgK_E4IJ5iSwFL9AJSaGI7Dx8LdFUKVBy6qOJiOZ5x2CrNrrZZUHviJ_Ab-SXYTnbLSqgStyj6ZFmZGc9nZ_wNIdsZQuxoRRkVqcRIuAQcaSvzyOYGCwMxinAO-ekw2x-Lg-P0uK_N8XdhOn2I1YGbj4ywXvsAxxnYbsMpvEhme4LsdWAE18mGS-SxGJCN3S_jr-PLQxYuWBy6VzLnfJHbu6dLiVIhdy4HWEtKQbt_jXDeXDQzff5D1_U6hQ05aHSX3OnJI93trH2PXMPmPrn9l6TgA_J9pBd1SwHbUGPVUN0ANZ4i-5qgYAbqa90rB8EZ7ZtGVLTrJB3QQeLy989fdnFxcU51XU3nk_bbKZ24wejZqfM1Cl5ut--URav5BB6S8Wjv6O1-1PdWiAzPmYiASeuikZu0SHiB3ORxaWNpUx2DpyicFaiLDCBBa_LcskRjZoBnkoPlXPJHZNBMG3xMKDJMUQq_MdFCcqsTYYNyXJLzFAsYkpfLj6tMLzzu-1_UKvwAF1J5Q6hgiCF5scLOOrmNf6LeeButEF4iO7yYzivVR5zijug5-lGm4CYkoZQZ6FhomTJTSgA9JFtLC6s-bs8Ujx3hLbib_ZBsr6x-5VReBYe4AqKODvZYeNr8H_BzcuPzu5H6-P7wwxNyy3e5765AbpFBO1_gU8eF2vJZ7_F_AD8vBIE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVge0Ac-EYsKsgSvYCUJYntJD4W1FVViYpDVyony_GMw0KaXW0TUPfET-A38kuwneyqi1CFxC2KJtbEfmM_O5M3hBxkCLGjFWVUCIkRdwtwpK3MI5sbLAzEyMM55IfT7HjGT87F-bW_-Ht9iO2Bm4-MMF_7AF-C7ef5ftfJ5dv2C6aTQApuk71MODY-Inuz04-Hn3xNOYe3yG3XxUaVdOeBnXUoyPXvcMw7XbPUV991Xe-y1rDsTO8TvXG4zzb5OunacmLWf2g5_s8bPSD3Bk5KD3sQPSS3sHlE7l5TKnxMvk11V7cUsA2pWw3VDVDjmbdPNQqjS30KfeVMcEmHWhQV7QtUB-ugnPnrx0_brddXVNfVYjVvP1_QuWuMXl44CFPwKr5DAS5arebwhMymR2fvj6OhZENkWJ7yCFJpXZAzI4qEFchMHpc2llboGDzzYWmBusgAErQmz22aaMwMsEwysIxJ9pSMmkWDzwjFFAVK7vc7mktmdcJtEKRLciawgDF5vRlAZQY9c19Wo1bhuzqXyvelCn05Jq-2tstexeOvVu88DrYWXnk73FisKjUEsmKOPzpWUwpwDkkoZQY65lqK1JQSQI_J_gZFapgOLhWLHY8umPN-TA62yLrRlTcBKTeYqLOTozRcPf-3NvfJqF11-MKRqLZ8OcTJb4uXH9Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+detection+and+classification+using+deep+learning+method+and+neuro%E2%80%90fuzzy+algorithm+in+a+smart+distribution+grid&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Camille+Franklin+Mbey&rft.au=Vinny+Junior+Foba+Kakeu&rft.au=Alexandre+Teplaira+Boum&rft.au=Felix+Ghislain+Yem+Souhe&rft.date=2023-11-01&rft.pub=Wiley&rft.eissn=2051-3305&rft.volume=2023&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1049%2Ftje2.12324&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3441426b5da149db96da04a952cb9dda
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon